2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
23 /* max queue in one round of service */
24 static const int cfq_quantum = 8;
25 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max = 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty = 2;
30 static const int cfq_slice_sync = HZ / 10;
31 static int cfq_slice_async = HZ / 25;
32 static const int cfq_slice_async_rq = 2;
33 static int cfq_slice_idle = HZ / 125;
34 static int cfq_group_idle = HZ / 125;
35 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36 static const int cfq_hist_divisor = 4;
39 * offset from end of service tree
41 #define CFQ_IDLE_DELAY (HZ / 5)
44 * below this threshold, we consider thinktime immediate
46 #define CFQ_MIN_TT (2)
48 #define CFQ_SLICE_SCALE (5)
49 #define CFQ_HW_QUEUE_MIN (5)
50 #define CFQ_SERVICE_SHIFT 12
52 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
57 #define RQ_CIC(rq) icq_to_cic((rq)->elevator_private[0])
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
61 static struct kmem_cache *cfq_pool;
62 static struct kmem_cache *cfq_icq_pool;
64 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
65 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
66 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
68 #define sample_valid(samples) ((samples) > 80)
69 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
72 unsigned long last_end_request;
74 unsigned long ttime_total;
75 unsigned long ttime_samples;
76 unsigned long ttime_mean;
80 * Most of our rbtree usage is for sorting with min extraction, so
81 * if we cache the leftmost node we don't have to walk down the tree
82 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
83 * move this into the elevator for the rq sorting as well.
89 unsigned total_weight;
91 struct cfq_ttime ttime;
93 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
94 .ttime = {.last_end_request = jiffies,},}
97 * Per process-grouping structure
100 /* reference count */
102 /* various state flags, see below */
104 /* parent cfq_data */
105 struct cfq_data *cfqd;
106 /* service_tree member */
107 struct rb_node rb_node;
108 /* service_tree key */
109 unsigned long rb_key;
110 /* prio tree member */
111 struct rb_node p_node;
112 /* prio tree root we belong to, if any */
113 struct rb_root *p_root;
114 /* sorted list of pending requests */
115 struct rb_root sort_list;
116 /* if fifo isn't expired, next request to serve */
117 struct request *next_rq;
118 /* requests queued in sort_list */
120 /* currently allocated requests */
122 /* fifo list of requests in sort_list */
123 struct list_head fifo;
125 /* time when queue got scheduled in to dispatch first request. */
126 unsigned long dispatch_start;
127 unsigned int allocated_slice;
128 unsigned int slice_dispatch;
129 /* time when first request from queue completed and slice started. */
130 unsigned long slice_start;
131 unsigned long slice_end;
134 /* pending priority requests */
136 /* number of requests that are on the dispatch list or inside driver */
139 /* io prio of this group */
140 unsigned short ioprio, org_ioprio;
141 unsigned short ioprio_class;
146 sector_t last_request_pos;
148 struct cfq_rb_root *service_tree;
149 struct cfq_queue *new_cfqq;
150 struct cfq_group *cfqg;
151 /* Number of sectors dispatched from queue in single dispatch round */
152 unsigned long nr_sectors;
156 * First index in the service_trees.
157 * IDLE is handled separately, so it has negative index
167 * Second index in the service_trees.
171 SYNC_NOIDLE_WORKLOAD = 1,
175 /* This is per cgroup per device grouping structure */
177 /* group service_tree member */
178 struct rb_node rb_node;
180 /* group service_tree key */
183 unsigned int new_weight;
186 /* number of cfqq currently on this group */
190 * Per group busy queues average. Useful for workload slice calc. We
191 * create the array for each prio class but at run time it is used
192 * only for RT and BE class and slot for IDLE class remains unused.
193 * This is primarily done to avoid confusion and a gcc warning.
195 unsigned int busy_queues_avg[CFQ_PRIO_NR];
197 * rr lists of queues with requests. We maintain service trees for
198 * RT and BE classes. These trees are subdivided in subclasses
199 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
200 * class there is no subclassification and all the cfq queues go on
201 * a single tree service_tree_idle.
202 * Counts are embedded in the cfq_rb_root
204 struct cfq_rb_root service_trees[2][3];
205 struct cfq_rb_root service_tree_idle;
207 unsigned long saved_workload_slice;
208 enum wl_type_t saved_workload;
209 enum wl_prio_t saved_serving_prio;
210 struct blkio_group blkg;
211 #ifdef CONFIG_CFQ_GROUP_IOSCHED
212 struct hlist_node cfqd_node;
215 /* number of requests that are on the dispatch list or inside driver */
217 struct cfq_ttime ttime;
221 struct io_cq icq; /* must be the first member */
222 struct cfq_queue *cfqq[2];
223 struct cfq_ttime ttime;
227 * Per block device queue structure
230 struct request_queue *queue;
231 /* Root service tree for cfq_groups */
232 struct cfq_rb_root grp_service_tree;
233 struct cfq_group root_group;
236 * The priority currently being served
238 enum wl_prio_t serving_prio;
239 enum wl_type_t serving_type;
240 unsigned long workload_expires;
241 struct cfq_group *serving_group;
244 * Each priority tree is sorted by next_request position. These
245 * trees are used when determining if two or more queues are
246 * interleaving requests (see cfq_close_cooperator).
248 struct rb_root prio_trees[CFQ_PRIO_LISTS];
250 unsigned int busy_queues;
251 unsigned int busy_sync_queues;
257 * queue-depth detection
263 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
264 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
267 int hw_tag_est_depth;
268 unsigned int hw_tag_samples;
271 * idle window management
273 struct timer_list idle_slice_timer;
274 struct work_struct unplug_work;
276 struct cfq_queue *active_queue;
277 struct cfq_io_cq *active_cic;
280 * async queue for each priority case
282 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
283 struct cfq_queue *async_idle_cfqq;
285 sector_t last_position;
288 * tunables, see top of file
290 unsigned int cfq_quantum;
291 unsigned int cfq_fifo_expire[2];
292 unsigned int cfq_back_penalty;
293 unsigned int cfq_back_max;
294 unsigned int cfq_slice[2];
295 unsigned int cfq_slice_async_rq;
296 unsigned int cfq_slice_idle;
297 unsigned int cfq_group_idle;
298 unsigned int cfq_latency;
300 struct list_head icq_list;
303 * Fallback dummy cfqq for extreme OOM conditions
305 struct cfq_queue oom_cfqq;
307 unsigned long last_delayed_sync;
309 /* List of cfq groups being managed on this device*/
310 struct hlist_head cfqg_list;
312 /* Number of groups which are on blkcg->blkg_list */
313 unsigned int nr_blkcg_linked_grps;
316 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
318 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
325 if (prio == IDLE_WORKLOAD)
326 return &cfqg->service_tree_idle;
328 return &cfqg->service_trees[prio][type];
331 enum cfqq_state_flags {
332 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
333 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
334 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
335 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
336 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
337 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
338 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
339 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
340 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
341 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
342 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
343 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
344 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
347 #define CFQ_CFQQ_FNS(name) \
348 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
350 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
352 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
354 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
356 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
358 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
362 CFQ_CFQQ_FNS(wait_request);
363 CFQ_CFQQ_FNS(must_dispatch);
364 CFQ_CFQQ_FNS(must_alloc_slice);
365 CFQ_CFQQ_FNS(fifo_expire);
366 CFQ_CFQQ_FNS(idle_window);
367 CFQ_CFQQ_FNS(prio_changed);
368 CFQ_CFQQ_FNS(slice_new);
371 CFQ_CFQQ_FNS(split_coop);
373 CFQ_CFQQ_FNS(wait_busy);
376 #ifdef CONFIG_CFQ_GROUP_IOSCHED
377 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
378 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
379 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
380 blkg_path(&(cfqq)->cfqg->blkg), ##args)
382 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
383 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
384 blkg_path(&(cfqg)->blkg), ##args) \
387 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
388 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
389 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
391 #define cfq_log(cfqd, fmt, args...) \
392 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
394 /* Traverses through cfq group service trees */
395 #define for_each_cfqg_st(cfqg, i, j, st) \
396 for (i = 0; i <= IDLE_WORKLOAD; i++) \
397 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
398 : &cfqg->service_tree_idle; \
399 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
400 (i == IDLE_WORKLOAD && j == 0); \
401 j++, st = i < IDLE_WORKLOAD ? \
402 &cfqg->service_trees[i][j]: NULL) \
404 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
405 struct cfq_ttime *ttime, bool group_idle)
408 if (!sample_valid(ttime->ttime_samples))
411 slice = cfqd->cfq_group_idle;
413 slice = cfqd->cfq_slice_idle;
414 return ttime->ttime_mean > slice;
417 static inline bool iops_mode(struct cfq_data *cfqd)
420 * If we are not idling on queues and it is a NCQ drive, parallel
421 * execution of requests is on and measuring time is not possible
422 * in most of the cases until and unless we drive shallower queue
423 * depths and that becomes a performance bottleneck. In such cases
424 * switch to start providing fairness in terms of number of IOs.
426 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
432 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
434 if (cfq_class_idle(cfqq))
435 return IDLE_WORKLOAD;
436 if (cfq_class_rt(cfqq))
442 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
444 if (!cfq_cfqq_sync(cfqq))
445 return ASYNC_WORKLOAD;
446 if (!cfq_cfqq_idle_window(cfqq))
447 return SYNC_NOIDLE_WORKLOAD;
448 return SYNC_WORKLOAD;
451 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
452 struct cfq_data *cfqd,
453 struct cfq_group *cfqg)
455 if (wl == IDLE_WORKLOAD)
456 return cfqg->service_tree_idle.count;
458 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
459 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
460 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
463 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
464 struct cfq_group *cfqg)
466 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
467 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
470 static void cfq_dispatch_insert(struct request_queue *, struct request *);
471 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
472 struct io_context *, gfp_t);
473 static struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *, struct io_context *);
475 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
477 /* cic->icq is the first member, %NULL will convert to %NULL */
478 return container_of(icq, struct cfq_io_cq, icq);
481 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
483 return cic->cfqq[is_sync];
486 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
489 cic->cfqq[is_sync] = cfqq;
492 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
494 return cic->icq.q->elevator->elevator_data;
498 * We regard a request as SYNC, if it's either a read or has the SYNC bit
499 * set (in which case it could also be direct WRITE).
501 static inline bool cfq_bio_sync(struct bio *bio)
503 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
507 * scheduler run of queue, if there are requests pending and no one in the
508 * driver that will restart queueing
510 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
512 if (cfqd->busy_queues) {
513 cfq_log(cfqd, "schedule dispatch");
514 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
519 * Scale schedule slice based on io priority. Use the sync time slice only
520 * if a queue is marked sync and has sync io queued. A sync queue with async
521 * io only, should not get full sync slice length.
523 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
526 const int base_slice = cfqd->cfq_slice[sync];
528 WARN_ON(prio >= IOPRIO_BE_NR);
530 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
534 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
536 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
539 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
541 u64 d = delta << CFQ_SERVICE_SHIFT;
543 d = d * BLKIO_WEIGHT_DEFAULT;
544 do_div(d, cfqg->weight);
548 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
550 s64 delta = (s64)(vdisktime - min_vdisktime);
552 min_vdisktime = vdisktime;
554 return min_vdisktime;
557 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
559 s64 delta = (s64)(vdisktime - min_vdisktime);
561 min_vdisktime = vdisktime;
563 return min_vdisktime;
566 static void update_min_vdisktime(struct cfq_rb_root *st)
568 struct cfq_group *cfqg;
571 cfqg = rb_entry_cfqg(st->left);
572 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
578 * get averaged number of queues of RT/BE priority.
579 * average is updated, with a formula that gives more weight to higher numbers,
580 * to quickly follows sudden increases and decrease slowly
583 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
584 struct cfq_group *cfqg, bool rt)
586 unsigned min_q, max_q;
587 unsigned mult = cfq_hist_divisor - 1;
588 unsigned round = cfq_hist_divisor / 2;
589 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
591 min_q = min(cfqg->busy_queues_avg[rt], busy);
592 max_q = max(cfqg->busy_queues_avg[rt], busy);
593 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
595 return cfqg->busy_queues_avg[rt];
598 static inline unsigned
599 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
601 struct cfq_rb_root *st = &cfqd->grp_service_tree;
603 return cfq_target_latency * cfqg->weight / st->total_weight;
606 static inline unsigned
607 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
609 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
610 if (cfqd->cfq_latency) {
612 * interested queues (we consider only the ones with the same
613 * priority class in the cfq group)
615 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
617 unsigned sync_slice = cfqd->cfq_slice[1];
618 unsigned expect_latency = sync_slice * iq;
619 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
621 if (expect_latency > group_slice) {
622 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
623 /* scale low_slice according to IO priority
624 * and sync vs async */
626 min(slice, base_low_slice * slice / sync_slice);
627 /* the adapted slice value is scaled to fit all iqs
628 * into the target latency */
629 slice = max(slice * group_slice / expect_latency,
637 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
639 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
641 cfqq->slice_start = jiffies;
642 cfqq->slice_end = jiffies + slice;
643 cfqq->allocated_slice = slice;
644 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
648 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
649 * isn't valid until the first request from the dispatch is activated
650 * and the slice time set.
652 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
654 if (cfq_cfqq_slice_new(cfqq))
656 if (time_before(jiffies, cfqq->slice_end))
663 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
664 * We choose the request that is closest to the head right now. Distance
665 * behind the head is penalized and only allowed to a certain extent.
667 static struct request *
668 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
670 sector_t s1, s2, d1 = 0, d2 = 0;
671 unsigned long back_max;
672 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
673 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
674 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
676 if (rq1 == NULL || rq1 == rq2)
681 if (rq_is_sync(rq1) != rq_is_sync(rq2))
682 return rq_is_sync(rq1) ? rq1 : rq2;
684 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
685 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
687 s1 = blk_rq_pos(rq1);
688 s2 = blk_rq_pos(rq2);
691 * by definition, 1KiB is 2 sectors
693 back_max = cfqd->cfq_back_max * 2;
696 * Strict one way elevator _except_ in the case where we allow
697 * short backward seeks which are biased as twice the cost of a
698 * similar forward seek.
702 else if (s1 + back_max >= last)
703 d1 = (last - s1) * cfqd->cfq_back_penalty;
705 wrap |= CFQ_RQ1_WRAP;
709 else if (s2 + back_max >= last)
710 d2 = (last - s2) * cfqd->cfq_back_penalty;
712 wrap |= CFQ_RQ2_WRAP;
714 /* Found required data */
717 * By doing switch() on the bit mask "wrap" we avoid having to
718 * check two variables for all permutations: --> faster!
721 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
737 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
740 * Since both rqs are wrapped,
741 * start with the one that's further behind head
742 * (--> only *one* back seek required),
743 * since back seek takes more time than forward.
753 * The below is leftmost cache rbtree addon
755 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
757 /* Service tree is empty */
762 root->left = rb_first(&root->rb);
765 return rb_entry(root->left, struct cfq_queue, rb_node);
770 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
773 root->left = rb_first(&root->rb);
776 return rb_entry_cfqg(root->left);
781 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
787 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
791 rb_erase_init(n, &root->rb);
796 * would be nice to take fifo expire time into account as well
798 static struct request *
799 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
800 struct request *last)
802 struct rb_node *rbnext = rb_next(&last->rb_node);
803 struct rb_node *rbprev = rb_prev(&last->rb_node);
804 struct request *next = NULL, *prev = NULL;
806 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
809 prev = rb_entry_rq(rbprev);
812 next = rb_entry_rq(rbnext);
814 rbnext = rb_first(&cfqq->sort_list);
815 if (rbnext && rbnext != &last->rb_node)
816 next = rb_entry_rq(rbnext);
819 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
822 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
823 struct cfq_queue *cfqq)
826 * just an approximation, should be ok.
828 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
829 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
833 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
835 return cfqg->vdisktime - st->min_vdisktime;
839 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
841 struct rb_node **node = &st->rb.rb_node;
842 struct rb_node *parent = NULL;
843 struct cfq_group *__cfqg;
844 s64 key = cfqg_key(st, cfqg);
847 while (*node != NULL) {
849 __cfqg = rb_entry_cfqg(parent);
851 if (key < cfqg_key(st, __cfqg))
852 node = &parent->rb_left;
854 node = &parent->rb_right;
860 st->left = &cfqg->rb_node;
862 rb_link_node(&cfqg->rb_node, parent, node);
863 rb_insert_color(&cfqg->rb_node, &st->rb);
867 cfq_update_group_weight(struct cfq_group *cfqg)
869 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
870 if (cfqg->needs_update) {
871 cfqg->weight = cfqg->new_weight;
872 cfqg->needs_update = false;
877 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
879 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
881 cfq_update_group_weight(cfqg);
882 __cfq_group_service_tree_add(st, cfqg);
883 st->total_weight += cfqg->weight;
887 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
889 struct cfq_rb_root *st = &cfqd->grp_service_tree;
890 struct cfq_group *__cfqg;
894 if (!RB_EMPTY_NODE(&cfqg->rb_node))
898 * Currently put the group at the end. Later implement something
899 * so that groups get lesser vtime based on their weights, so that
900 * if group does not loose all if it was not continuously backlogged.
902 n = rb_last(&st->rb);
904 __cfqg = rb_entry_cfqg(n);
905 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
907 cfqg->vdisktime = st->min_vdisktime;
908 cfq_group_service_tree_add(st, cfqg);
912 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
914 st->total_weight -= cfqg->weight;
915 if (!RB_EMPTY_NODE(&cfqg->rb_node))
916 cfq_rb_erase(&cfqg->rb_node, st);
920 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
922 struct cfq_rb_root *st = &cfqd->grp_service_tree;
924 BUG_ON(cfqg->nr_cfqq < 1);
927 /* If there are other cfq queues under this group, don't delete it */
931 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
932 cfq_group_service_tree_del(st, cfqg);
933 cfqg->saved_workload_slice = 0;
934 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
937 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
938 unsigned int *unaccounted_time)
940 unsigned int slice_used;
943 * Queue got expired before even a single request completed or
944 * got expired immediately after first request completion.
946 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
948 * Also charge the seek time incurred to the group, otherwise
949 * if there are mutiple queues in the group, each can dispatch
950 * a single request on seeky media and cause lots of seek time
951 * and group will never know it.
953 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
956 slice_used = jiffies - cfqq->slice_start;
957 if (slice_used > cfqq->allocated_slice) {
958 *unaccounted_time = slice_used - cfqq->allocated_slice;
959 slice_used = cfqq->allocated_slice;
961 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
962 *unaccounted_time += cfqq->slice_start -
963 cfqq->dispatch_start;
969 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
970 struct cfq_queue *cfqq)
972 struct cfq_rb_root *st = &cfqd->grp_service_tree;
973 unsigned int used_sl, charge, unaccounted_sl = 0;
974 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
975 - cfqg->service_tree_idle.count;
978 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
981 charge = cfqq->slice_dispatch;
982 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
983 charge = cfqq->allocated_slice;
985 /* Can't update vdisktime while group is on service tree */
986 cfq_group_service_tree_del(st, cfqg);
987 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
988 /* If a new weight was requested, update now, off tree */
989 cfq_group_service_tree_add(st, cfqg);
991 /* This group is being expired. Save the context */
992 if (time_after(cfqd->workload_expires, jiffies)) {
993 cfqg->saved_workload_slice = cfqd->workload_expires
995 cfqg->saved_workload = cfqd->serving_type;
996 cfqg->saved_serving_prio = cfqd->serving_prio;
998 cfqg->saved_workload_slice = 0;
1000 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1002 cfq_log_cfqq(cfqq->cfqd, cfqq,
1003 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1004 used_sl, cfqq->slice_dispatch, charge,
1005 iops_mode(cfqd), cfqq->nr_sectors);
1006 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
1008 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1011 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1012 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1015 return container_of(blkg, struct cfq_group, blkg);
1019 static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1020 unsigned int weight)
1022 struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1023 cfqg->new_weight = weight;
1024 cfqg->needs_update = true;
1027 static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1028 struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
1030 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1031 unsigned int major, minor;
1034 * Add group onto cgroup list. It might happen that bdi->dev is
1035 * not initialized yet. Initialize this new group without major
1036 * and minor info and this info will be filled in once a new thread
1040 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1041 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1042 (void *)cfqd, MKDEV(major, minor));
1044 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1047 cfqd->nr_blkcg_linked_grps++;
1048 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1050 /* Add group on cfqd list */
1051 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1055 * Should be called from sleepable context. No request queue lock as per
1056 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1057 * from sleepable context.
1059 static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1061 struct cfq_group *cfqg = NULL;
1063 struct cfq_rb_root *st;
1065 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1069 for_each_cfqg_st(cfqg, i, j, st)
1071 RB_CLEAR_NODE(&cfqg->rb_node);
1073 cfqg->ttime.last_end_request = jiffies;
1076 * Take the initial reference that will be released on destroy
1077 * This can be thought of a joint reference by cgroup and
1078 * elevator which will be dropped by either elevator exit
1079 * or cgroup deletion path depending on who is exiting first.
1083 ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1092 static struct cfq_group *
1093 cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1095 struct cfq_group *cfqg = NULL;
1097 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1098 unsigned int major, minor;
1101 * This is the common case when there are no blkio cgroups.
1102 * Avoid lookup in this case
1104 if (blkcg == &blkio_root_cgroup)
1105 cfqg = &cfqd->root_group;
1107 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
1109 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1110 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1111 cfqg->blkg.dev = MKDEV(major, minor);
1118 * Search for the cfq group current task belongs to. request_queue lock must
1121 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1123 struct blkio_cgroup *blkcg;
1124 struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1125 struct request_queue *q = cfqd->queue;
1128 blkcg = task_blkio_cgroup(current);
1129 cfqg = cfq_find_cfqg(cfqd, blkcg);
1136 * Need to allocate a group. Allocation of group also needs allocation
1137 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1138 * we need to drop rcu lock and queue_lock before we call alloc.
1140 * Not taking any queue reference here and assuming that queue is
1141 * around by the time we return. CFQ queue allocation code does
1142 * the same. It might be racy though.
1146 spin_unlock_irq(q->queue_lock);
1148 cfqg = cfq_alloc_cfqg(cfqd);
1150 spin_lock_irq(q->queue_lock);
1153 blkcg = task_blkio_cgroup(current);
1156 * If some other thread already allocated the group while we were
1157 * not holding queue lock, free up the group
1159 __cfqg = cfq_find_cfqg(cfqd, blkcg);
1168 cfqg = &cfqd->root_group;
1170 cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
1175 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1181 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1183 /* Currently, all async queues are mapped to root group */
1184 if (!cfq_cfqq_sync(cfqq))
1185 cfqg = &cfqq->cfqd->root_group;
1188 /* cfqq reference on cfqg */
1192 static void cfq_put_cfqg(struct cfq_group *cfqg)
1194 struct cfq_rb_root *st;
1197 BUG_ON(cfqg->ref <= 0);
1201 for_each_cfqg_st(cfqg, i, j, st)
1202 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1203 free_percpu(cfqg->blkg.stats_cpu);
1207 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1209 /* Something wrong if we are trying to remove same group twice */
1210 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1212 hlist_del_init(&cfqg->cfqd_node);
1214 BUG_ON(cfqd->nr_blkcg_linked_grps <= 0);
1215 cfqd->nr_blkcg_linked_grps--;
1218 * Put the reference taken at the time of creation so that when all
1219 * queues are gone, group can be destroyed.
1224 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1226 struct hlist_node *pos, *n;
1227 struct cfq_group *cfqg;
1229 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1231 * If cgroup removal path got to blk_group first and removed
1232 * it from cgroup list, then it will take care of destroying
1235 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1236 cfq_destroy_cfqg(cfqd, cfqg);
1241 * Blk cgroup controller notification saying that blkio_group object is being
1242 * delinked as associated cgroup object is going away. That also means that
1243 * no new IO will come in this group. So get rid of this group as soon as
1244 * any pending IO in the group is finished.
1246 * This function is called under rcu_read_lock(). key is the rcu protected
1247 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1250 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1251 * it should not be NULL as even if elevator was exiting, cgroup deltion
1252 * path got to it first.
1254 static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1256 unsigned long flags;
1257 struct cfq_data *cfqd = key;
1259 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1260 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1261 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1264 #else /* GROUP_IOSCHED */
1265 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1267 return &cfqd->root_group;
1270 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1276 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1280 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1281 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1283 #endif /* GROUP_IOSCHED */
1286 * The cfqd->service_trees holds all pending cfq_queue's that have
1287 * requests waiting to be processed. It is sorted in the order that
1288 * we will service the queues.
1290 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1293 struct rb_node **p, *parent;
1294 struct cfq_queue *__cfqq;
1295 unsigned long rb_key;
1296 struct cfq_rb_root *service_tree;
1300 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1302 if (cfq_class_idle(cfqq)) {
1303 rb_key = CFQ_IDLE_DELAY;
1304 parent = rb_last(&service_tree->rb);
1305 if (parent && parent != &cfqq->rb_node) {
1306 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1307 rb_key += __cfqq->rb_key;
1310 } else if (!add_front) {
1312 * Get our rb key offset. Subtract any residual slice
1313 * value carried from last service. A negative resid
1314 * count indicates slice overrun, and this should position
1315 * the next service time further away in the tree.
1317 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1318 rb_key -= cfqq->slice_resid;
1319 cfqq->slice_resid = 0;
1322 __cfqq = cfq_rb_first(service_tree);
1323 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1326 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1329 * same position, nothing more to do
1331 if (rb_key == cfqq->rb_key &&
1332 cfqq->service_tree == service_tree)
1335 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1336 cfqq->service_tree = NULL;
1341 cfqq->service_tree = service_tree;
1342 p = &service_tree->rb.rb_node;
1347 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1350 * sort by key, that represents service time.
1352 if (time_before(rb_key, __cfqq->rb_key))
1355 n = &(*p)->rb_right;
1363 service_tree->left = &cfqq->rb_node;
1365 cfqq->rb_key = rb_key;
1366 rb_link_node(&cfqq->rb_node, parent, p);
1367 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1368 service_tree->count++;
1369 if (add_front || !new_cfqq)
1371 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1374 static struct cfq_queue *
1375 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1376 sector_t sector, struct rb_node **ret_parent,
1377 struct rb_node ***rb_link)
1379 struct rb_node **p, *parent;
1380 struct cfq_queue *cfqq = NULL;
1388 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1391 * Sort strictly based on sector. Smallest to the left,
1392 * largest to the right.
1394 if (sector > blk_rq_pos(cfqq->next_rq))
1395 n = &(*p)->rb_right;
1396 else if (sector < blk_rq_pos(cfqq->next_rq))
1404 *ret_parent = parent;
1410 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1412 struct rb_node **p, *parent;
1413 struct cfq_queue *__cfqq;
1416 rb_erase(&cfqq->p_node, cfqq->p_root);
1417 cfqq->p_root = NULL;
1420 if (cfq_class_idle(cfqq))
1425 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1426 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1427 blk_rq_pos(cfqq->next_rq), &parent, &p);
1429 rb_link_node(&cfqq->p_node, parent, p);
1430 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1432 cfqq->p_root = NULL;
1436 * Update cfqq's position in the service tree.
1438 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1441 * Resorting requires the cfqq to be on the RR list already.
1443 if (cfq_cfqq_on_rr(cfqq)) {
1444 cfq_service_tree_add(cfqd, cfqq, 0);
1445 cfq_prio_tree_add(cfqd, cfqq);
1450 * add to busy list of queues for service, trying to be fair in ordering
1451 * the pending list according to last request service
1453 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1455 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1456 BUG_ON(cfq_cfqq_on_rr(cfqq));
1457 cfq_mark_cfqq_on_rr(cfqq);
1458 cfqd->busy_queues++;
1459 if (cfq_cfqq_sync(cfqq))
1460 cfqd->busy_sync_queues++;
1462 cfq_resort_rr_list(cfqd, cfqq);
1466 * Called when the cfqq no longer has requests pending, remove it from
1469 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1471 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1472 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1473 cfq_clear_cfqq_on_rr(cfqq);
1475 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1476 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1477 cfqq->service_tree = NULL;
1480 rb_erase(&cfqq->p_node, cfqq->p_root);
1481 cfqq->p_root = NULL;
1484 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1485 BUG_ON(!cfqd->busy_queues);
1486 cfqd->busy_queues--;
1487 if (cfq_cfqq_sync(cfqq))
1488 cfqd->busy_sync_queues--;
1492 * rb tree support functions
1494 static void cfq_del_rq_rb(struct request *rq)
1496 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1497 const int sync = rq_is_sync(rq);
1499 BUG_ON(!cfqq->queued[sync]);
1500 cfqq->queued[sync]--;
1502 elv_rb_del(&cfqq->sort_list, rq);
1504 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1506 * Queue will be deleted from service tree when we actually
1507 * expire it later. Right now just remove it from prio tree
1511 rb_erase(&cfqq->p_node, cfqq->p_root);
1512 cfqq->p_root = NULL;
1517 static void cfq_add_rq_rb(struct request *rq)
1519 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1520 struct cfq_data *cfqd = cfqq->cfqd;
1521 struct request *prev;
1523 cfqq->queued[rq_is_sync(rq)]++;
1525 elv_rb_add(&cfqq->sort_list, rq);
1527 if (!cfq_cfqq_on_rr(cfqq))
1528 cfq_add_cfqq_rr(cfqd, cfqq);
1531 * check if this request is a better next-serve candidate
1533 prev = cfqq->next_rq;
1534 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1537 * adjust priority tree position, if ->next_rq changes
1539 if (prev != cfqq->next_rq)
1540 cfq_prio_tree_add(cfqd, cfqq);
1542 BUG_ON(!cfqq->next_rq);
1545 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1547 elv_rb_del(&cfqq->sort_list, rq);
1548 cfqq->queued[rq_is_sync(rq)]--;
1549 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1550 rq_data_dir(rq), rq_is_sync(rq));
1552 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1553 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1557 static struct request *
1558 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1560 struct task_struct *tsk = current;
1561 struct cfq_io_cq *cic;
1562 struct cfq_queue *cfqq;
1564 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1568 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1570 sector_t sector = bio->bi_sector + bio_sectors(bio);
1572 return elv_rb_find(&cfqq->sort_list, sector);
1578 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1580 struct cfq_data *cfqd = q->elevator->elevator_data;
1582 cfqd->rq_in_driver++;
1583 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1584 cfqd->rq_in_driver);
1586 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1589 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1591 struct cfq_data *cfqd = q->elevator->elevator_data;
1593 WARN_ON(!cfqd->rq_in_driver);
1594 cfqd->rq_in_driver--;
1595 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1596 cfqd->rq_in_driver);
1599 static void cfq_remove_request(struct request *rq)
1601 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1603 if (cfqq->next_rq == rq)
1604 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1606 list_del_init(&rq->queuelist);
1609 cfqq->cfqd->rq_queued--;
1610 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1611 rq_data_dir(rq), rq_is_sync(rq));
1612 if (rq->cmd_flags & REQ_PRIO) {
1613 WARN_ON(!cfqq->prio_pending);
1614 cfqq->prio_pending--;
1618 static int cfq_merge(struct request_queue *q, struct request **req,
1621 struct cfq_data *cfqd = q->elevator->elevator_data;
1622 struct request *__rq;
1624 __rq = cfq_find_rq_fmerge(cfqd, bio);
1625 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1627 return ELEVATOR_FRONT_MERGE;
1630 return ELEVATOR_NO_MERGE;
1633 static void cfq_merged_request(struct request_queue *q, struct request *req,
1636 if (type == ELEVATOR_FRONT_MERGE) {
1637 struct cfq_queue *cfqq = RQ_CFQQ(req);
1639 cfq_reposition_rq_rb(cfqq, req);
1643 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1646 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1647 bio_data_dir(bio), cfq_bio_sync(bio));
1651 cfq_merged_requests(struct request_queue *q, struct request *rq,
1652 struct request *next)
1654 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1656 * reposition in fifo if next is older than rq
1658 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1659 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1660 list_move(&rq->queuelist, &next->queuelist);
1661 rq_set_fifo_time(rq, rq_fifo_time(next));
1664 if (cfqq->next_rq == next)
1666 cfq_remove_request(next);
1667 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1668 rq_data_dir(next), rq_is_sync(next));
1671 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1674 struct cfq_data *cfqd = q->elevator->elevator_data;
1675 struct cfq_io_cq *cic;
1676 struct cfq_queue *cfqq;
1679 * Disallow merge of a sync bio into an async request.
1681 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1685 * Lookup the cfqq that this bio will be queued with and allow
1686 * merge only if rq is queued there. This function can be called
1687 * from plug merge without queue_lock. In such cases, ioc of @rq
1688 * and %current are guaranteed to be equal. Avoid lookup which
1689 * requires queue_lock by using @rq's cic.
1691 if (current->io_context == RQ_CIC(rq)->icq.ioc) {
1694 cic = cfq_cic_lookup(cfqd, current->io_context);
1699 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1700 return cfqq == RQ_CFQQ(rq);
1703 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1705 del_timer(&cfqd->idle_slice_timer);
1706 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1709 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1710 struct cfq_queue *cfqq)
1713 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1714 cfqd->serving_prio, cfqd->serving_type);
1715 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1716 cfqq->slice_start = 0;
1717 cfqq->dispatch_start = jiffies;
1718 cfqq->allocated_slice = 0;
1719 cfqq->slice_end = 0;
1720 cfqq->slice_dispatch = 0;
1721 cfqq->nr_sectors = 0;
1723 cfq_clear_cfqq_wait_request(cfqq);
1724 cfq_clear_cfqq_must_dispatch(cfqq);
1725 cfq_clear_cfqq_must_alloc_slice(cfqq);
1726 cfq_clear_cfqq_fifo_expire(cfqq);
1727 cfq_mark_cfqq_slice_new(cfqq);
1729 cfq_del_timer(cfqd, cfqq);
1732 cfqd->active_queue = cfqq;
1736 * current cfqq expired its slice (or was too idle), select new one
1739 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1742 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1744 if (cfq_cfqq_wait_request(cfqq))
1745 cfq_del_timer(cfqd, cfqq);
1747 cfq_clear_cfqq_wait_request(cfqq);
1748 cfq_clear_cfqq_wait_busy(cfqq);
1751 * If this cfqq is shared between multiple processes, check to
1752 * make sure that those processes are still issuing I/Os within
1753 * the mean seek distance. If not, it may be time to break the
1754 * queues apart again.
1756 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1757 cfq_mark_cfqq_split_coop(cfqq);
1760 * store what was left of this slice, if the queue idled/timed out
1763 if (cfq_cfqq_slice_new(cfqq))
1764 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1766 cfqq->slice_resid = cfqq->slice_end - jiffies;
1767 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1770 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1772 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1773 cfq_del_cfqq_rr(cfqd, cfqq);
1775 cfq_resort_rr_list(cfqd, cfqq);
1777 if (cfqq == cfqd->active_queue)
1778 cfqd->active_queue = NULL;
1780 if (cfqd->active_cic) {
1781 put_io_context(cfqd->active_cic->icq.ioc, cfqd->queue);
1782 cfqd->active_cic = NULL;
1786 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1788 struct cfq_queue *cfqq = cfqd->active_queue;
1791 __cfq_slice_expired(cfqd, cfqq, timed_out);
1795 * Get next queue for service. Unless we have a queue preemption,
1796 * we'll simply select the first cfqq in the service tree.
1798 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1800 struct cfq_rb_root *service_tree =
1801 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1802 cfqd->serving_type);
1804 if (!cfqd->rq_queued)
1807 /* There is nothing to dispatch */
1810 if (RB_EMPTY_ROOT(&service_tree->rb))
1812 return cfq_rb_first(service_tree);
1815 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1817 struct cfq_group *cfqg;
1818 struct cfq_queue *cfqq;
1820 struct cfq_rb_root *st;
1822 if (!cfqd->rq_queued)
1825 cfqg = cfq_get_next_cfqg(cfqd);
1829 for_each_cfqg_st(cfqg, i, j, st)
1830 if ((cfqq = cfq_rb_first(st)) != NULL)
1836 * Get and set a new active queue for service.
1838 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1839 struct cfq_queue *cfqq)
1842 cfqq = cfq_get_next_queue(cfqd);
1844 __cfq_set_active_queue(cfqd, cfqq);
1848 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1851 if (blk_rq_pos(rq) >= cfqd->last_position)
1852 return blk_rq_pos(rq) - cfqd->last_position;
1854 return cfqd->last_position - blk_rq_pos(rq);
1857 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1860 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1863 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1864 struct cfq_queue *cur_cfqq)
1866 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1867 struct rb_node *parent, *node;
1868 struct cfq_queue *__cfqq;
1869 sector_t sector = cfqd->last_position;
1871 if (RB_EMPTY_ROOT(root))
1875 * First, if we find a request starting at the end of the last
1876 * request, choose it.
1878 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1883 * If the exact sector wasn't found, the parent of the NULL leaf
1884 * will contain the closest sector.
1886 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1887 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1890 if (blk_rq_pos(__cfqq->next_rq) < sector)
1891 node = rb_next(&__cfqq->p_node);
1893 node = rb_prev(&__cfqq->p_node);
1897 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1898 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1906 * cur_cfqq - passed in so that we don't decide that the current queue is
1907 * closely cooperating with itself.
1909 * So, basically we're assuming that that cur_cfqq has dispatched at least
1910 * one request, and that cfqd->last_position reflects a position on the disk
1911 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1914 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1915 struct cfq_queue *cur_cfqq)
1917 struct cfq_queue *cfqq;
1919 if (cfq_class_idle(cur_cfqq))
1921 if (!cfq_cfqq_sync(cur_cfqq))
1923 if (CFQQ_SEEKY(cur_cfqq))
1927 * Don't search priority tree if it's the only queue in the group.
1929 if (cur_cfqq->cfqg->nr_cfqq == 1)
1933 * We should notice if some of the queues are cooperating, eg
1934 * working closely on the same area of the disk. In that case,
1935 * we can group them together and don't waste time idling.
1937 cfqq = cfqq_close(cfqd, cur_cfqq);
1941 /* If new queue belongs to different cfq_group, don't choose it */
1942 if (cur_cfqq->cfqg != cfqq->cfqg)
1946 * It only makes sense to merge sync queues.
1948 if (!cfq_cfqq_sync(cfqq))
1950 if (CFQQ_SEEKY(cfqq))
1954 * Do not merge queues of different priority classes
1956 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1963 * Determine whether we should enforce idle window for this queue.
1966 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1968 enum wl_prio_t prio = cfqq_prio(cfqq);
1969 struct cfq_rb_root *service_tree = cfqq->service_tree;
1971 BUG_ON(!service_tree);
1972 BUG_ON(!service_tree->count);
1974 if (!cfqd->cfq_slice_idle)
1977 /* We never do for idle class queues. */
1978 if (prio == IDLE_WORKLOAD)
1981 /* We do for queues that were marked with idle window flag. */
1982 if (cfq_cfqq_idle_window(cfqq) &&
1983 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1987 * Otherwise, we do only if they are the last ones
1988 * in their service tree.
1990 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
1991 !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
1993 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1994 service_tree->count);
1998 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2000 struct cfq_queue *cfqq = cfqd->active_queue;
2001 struct cfq_io_cq *cic;
2002 unsigned long sl, group_idle = 0;
2005 * SSD device without seek penalty, disable idling. But only do so
2006 * for devices that support queuing, otherwise we still have a problem
2007 * with sync vs async workloads.
2009 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2012 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2013 WARN_ON(cfq_cfqq_slice_new(cfqq));
2016 * idle is disabled, either manually or by past process history
2018 if (!cfq_should_idle(cfqd, cfqq)) {
2019 /* no queue idling. Check for group idling */
2020 if (cfqd->cfq_group_idle)
2021 group_idle = cfqd->cfq_group_idle;
2027 * still active requests from this queue, don't idle
2029 if (cfqq->dispatched)
2033 * task has exited, don't wait
2035 cic = cfqd->active_cic;
2036 if (!cic || !atomic_read(&cic->icq.ioc->nr_tasks))
2040 * If our average think time is larger than the remaining time
2041 * slice, then don't idle. This avoids overrunning the allotted
2044 if (sample_valid(cic->ttime.ttime_samples) &&
2045 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2046 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2047 cic->ttime.ttime_mean);
2051 /* There are other queues in the group, don't do group idle */
2052 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2055 cfq_mark_cfqq_wait_request(cfqq);
2058 sl = cfqd->cfq_group_idle;
2060 sl = cfqd->cfq_slice_idle;
2062 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2063 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
2064 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2065 group_idle ? 1 : 0);
2069 * Move request from internal lists to the request queue dispatch list.
2071 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2073 struct cfq_data *cfqd = q->elevator->elevator_data;
2074 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2076 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2078 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2079 cfq_remove_request(rq);
2081 (RQ_CFQG(rq))->dispatched++;
2082 elv_dispatch_sort(q, rq);
2084 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2085 cfqq->nr_sectors += blk_rq_sectors(rq);
2086 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
2087 rq_data_dir(rq), rq_is_sync(rq));
2091 * return expired entry, or NULL to just start from scratch in rbtree
2093 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2095 struct request *rq = NULL;
2097 if (cfq_cfqq_fifo_expire(cfqq))
2100 cfq_mark_cfqq_fifo_expire(cfqq);
2102 if (list_empty(&cfqq->fifo))
2105 rq = rq_entry_fifo(cfqq->fifo.next);
2106 if (time_before(jiffies, rq_fifo_time(rq)))
2109 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2114 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2116 const int base_rq = cfqd->cfq_slice_async_rq;
2118 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2120 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2124 * Must be called with the queue_lock held.
2126 static int cfqq_process_refs(struct cfq_queue *cfqq)
2128 int process_refs, io_refs;
2130 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2131 process_refs = cfqq->ref - io_refs;
2132 BUG_ON(process_refs < 0);
2133 return process_refs;
2136 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2138 int process_refs, new_process_refs;
2139 struct cfq_queue *__cfqq;
2142 * If there are no process references on the new_cfqq, then it is
2143 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2144 * chain may have dropped their last reference (not just their
2145 * last process reference).
2147 if (!cfqq_process_refs(new_cfqq))
2150 /* Avoid a circular list and skip interim queue merges */
2151 while ((__cfqq = new_cfqq->new_cfqq)) {
2157 process_refs = cfqq_process_refs(cfqq);
2158 new_process_refs = cfqq_process_refs(new_cfqq);
2160 * If the process for the cfqq has gone away, there is no
2161 * sense in merging the queues.
2163 if (process_refs == 0 || new_process_refs == 0)
2167 * Merge in the direction of the lesser amount of work.
2169 if (new_process_refs >= process_refs) {
2170 cfqq->new_cfqq = new_cfqq;
2171 new_cfqq->ref += process_refs;
2173 new_cfqq->new_cfqq = cfqq;
2174 cfqq->ref += new_process_refs;
2178 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2179 struct cfq_group *cfqg, enum wl_prio_t prio)
2181 struct cfq_queue *queue;
2183 bool key_valid = false;
2184 unsigned long lowest_key = 0;
2185 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2187 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2188 /* select the one with lowest rb_key */
2189 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2191 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2192 lowest_key = queue->rb_key;
2201 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2205 struct cfq_rb_root *st;
2206 unsigned group_slice;
2207 enum wl_prio_t original_prio = cfqd->serving_prio;
2209 /* Choose next priority. RT > BE > IDLE */
2210 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2211 cfqd->serving_prio = RT_WORKLOAD;
2212 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2213 cfqd->serving_prio = BE_WORKLOAD;
2215 cfqd->serving_prio = IDLE_WORKLOAD;
2216 cfqd->workload_expires = jiffies + 1;
2220 if (original_prio != cfqd->serving_prio)
2224 * For RT and BE, we have to choose also the type
2225 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2228 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2232 * check workload expiration, and that we still have other queues ready
2234 if (count && !time_after(jiffies, cfqd->workload_expires))
2238 /* otherwise select new workload type */
2239 cfqd->serving_type =
2240 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2241 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2245 * the workload slice is computed as a fraction of target latency
2246 * proportional to the number of queues in that workload, over
2247 * all the queues in the same priority class
2249 group_slice = cfq_group_slice(cfqd, cfqg);
2251 slice = group_slice * count /
2252 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2253 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2255 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2259 * Async queues are currently system wide. Just taking
2260 * proportion of queues with-in same group will lead to higher
2261 * async ratio system wide as generally root group is going
2262 * to have higher weight. A more accurate thing would be to
2263 * calculate system wide asnc/sync ratio.
2265 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2266 tmp = tmp/cfqd->busy_queues;
2267 slice = min_t(unsigned, slice, tmp);
2269 /* async workload slice is scaled down according to
2270 * the sync/async slice ratio. */
2271 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2273 /* sync workload slice is at least 2 * cfq_slice_idle */
2274 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2276 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2277 cfq_log(cfqd, "workload slice:%d", slice);
2278 cfqd->workload_expires = jiffies + slice;
2281 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2283 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2284 struct cfq_group *cfqg;
2286 if (RB_EMPTY_ROOT(&st->rb))
2288 cfqg = cfq_rb_first_group(st);
2289 update_min_vdisktime(st);
2293 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2295 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2297 cfqd->serving_group = cfqg;
2299 /* Restore the workload type data */
2300 if (cfqg->saved_workload_slice) {
2301 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2302 cfqd->serving_type = cfqg->saved_workload;
2303 cfqd->serving_prio = cfqg->saved_serving_prio;
2305 cfqd->workload_expires = jiffies - 1;
2307 choose_service_tree(cfqd, cfqg);
2311 * Select a queue for service. If we have a current active queue,
2312 * check whether to continue servicing it, or retrieve and set a new one.
2314 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2316 struct cfq_queue *cfqq, *new_cfqq = NULL;
2318 cfqq = cfqd->active_queue;
2322 if (!cfqd->rq_queued)
2326 * We were waiting for group to get backlogged. Expire the queue
2328 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2332 * The active queue has run out of time, expire it and select new.
2334 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2336 * If slice had not expired at the completion of last request
2337 * we might not have turned on wait_busy flag. Don't expire
2338 * the queue yet. Allow the group to get backlogged.
2340 * The very fact that we have used the slice, that means we
2341 * have been idling all along on this queue and it should be
2342 * ok to wait for this request to complete.
2344 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2345 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2349 goto check_group_idle;
2353 * The active queue has requests and isn't expired, allow it to
2356 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2360 * If another queue has a request waiting within our mean seek
2361 * distance, let it run. The expire code will check for close
2362 * cooperators and put the close queue at the front of the service
2363 * tree. If possible, merge the expiring queue with the new cfqq.
2365 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2367 if (!cfqq->new_cfqq)
2368 cfq_setup_merge(cfqq, new_cfqq);
2373 * No requests pending. If the active queue still has requests in
2374 * flight or is idling for a new request, allow either of these
2375 * conditions to happen (or time out) before selecting a new queue.
2377 if (timer_pending(&cfqd->idle_slice_timer)) {
2383 * This is a deep seek queue, but the device is much faster than
2384 * the queue can deliver, don't idle
2386 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2387 (cfq_cfqq_slice_new(cfqq) ||
2388 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2389 cfq_clear_cfqq_deep(cfqq);
2390 cfq_clear_cfqq_idle_window(cfqq);
2393 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2399 * If group idle is enabled and there are requests dispatched from
2400 * this group, wait for requests to complete.
2403 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2404 cfqq->cfqg->dispatched &&
2405 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2411 cfq_slice_expired(cfqd, 0);
2414 * Current queue expired. Check if we have to switch to a new
2418 cfq_choose_cfqg(cfqd);
2420 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2425 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2429 while (cfqq->next_rq) {
2430 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2434 BUG_ON(!list_empty(&cfqq->fifo));
2436 /* By default cfqq is not expired if it is empty. Do it explicitly */
2437 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2442 * Drain our current requests. Used for barriers and when switching
2443 * io schedulers on-the-fly.
2445 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2447 struct cfq_queue *cfqq;
2450 /* Expire the timeslice of the current active queue first */
2451 cfq_slice_expired(cfqd, 0);
2452 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2453 __cfq_set_active_queue(cfqd, cfqq);
2454 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2457 BUG_ON(cfqd->busy_queues);
2459 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2463 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2464 struct cfq_queue *cfqq)
2466 /* the queue hasn't finished any request, can't estimate */
2467 if (cfq_cfqq_slice_new(cfqq))
2469 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2476 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2478 unsigned int max_dispatch;
2481 * Drain async requests before we start sync IO
2483 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2487 * If this is an async queue and we have sync IO in flight, let it wait
2489 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2492 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2493 if (cfq_class_idle(cfqq))
2497 * Does this cfqq already have too much IO in flight?
2499 if (cfqq->dispatched >= max_dispatch) {
2500 bool promote_sync = false;
2502 * idle queue must always only have a single IO in flight
2504 if (cfq_class_idle(cfqq))
2508 * If there is only one sync queue
2509 * we can ignore async queue here and give the sync
2510 * queue no dispatch limit. The reason is a sync queue can
2511 * preempt async queue, limiting the sync queue doesn't make
2512 * sense. This is useful for aiostress test.
2514 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2515 promote_sync = true;
2518 * We have other queues, don't allow more IO from this one
2520 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2525 * Sole queue user, no limit
2527 if (cfqd->busy_queues == 1 || promote_sync)
2531 * Normally we start throttling cfqq when cfq_quantum/2
2532 * requests have been dispatched. But we can drive
2533 * deeper queue depths at the beginning of slice
2534 * subjected to upper limit of cfq_quantum.
2536 max_dispatch = cfqd->cfq_quantum;
2540 * Async queues must wait a bit before being allowed dispatch.
2541 * We also ramp up the dispatch depth gradually for async IO,
2542 * based on the last sync IO we serviced
2544 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2545 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2548 depth = last_sync / cfqd->cfq_slice[1];
2549 if (!depth && !cfqq->dispatched)
2551 if (depth < max_dispatch)
2552 max_dispatch = depth;
2556 * If we're below the current max, allow a dispatch
2558 return cfqq->dispatched < max_dispatch;
2562 * Dispatch a request from cfqq, moving them to the request queue
2565 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2569 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2571 if (!cfq_may_dispatch(cfqd, cfqq))
2575 * follow expired path, else get first next available
2577 rq = cfq_check_fifo(cfqq);
2582 * insert request into driver dispatch list
2584 cfq_dispatch_insert(cfqd->queue, rq);
2586 if (!cfqd->active_cic) {
2587 struct cfq_io_cq *cic = RQ_CIC(rq);
2589 atomic_long_inc(&cic->icq.ioc->refcount);
2590 cfqd->active_cic = cic;
2597 * Find the cfqq that we need to service and move a request from that to the
2600 static int cfq_dispatch_requests(struct request_queue *q, int force)
2602 struct cfq_data *cfqd = q->elevator->elevator_data;
2603 struct cfq_queue *cfqq;
2605 if (!cfqd->busy_queues)
2608 if (unlikely(force))
2609 return cfq_forced_dispatch(cfqd);
2611 cfqq = cfq_select_queue(cfqd);
2616 * Dispatch a request from this cfqq, if it is allowed
2618 if (!cfq_dispatch_request(cfqd, cfqq))
2621 cfqq->slice_dispatch++;
2622 cfq_clear_cfqq_must_dispatch(cfqq);
2625 * expire an async queue immediately if it has used up its slice. idle
2626 * queue always expire after 1 dispatch round.
2628 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2629 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2630 cfq_class_idle(cfqq))) {
2631 cfqq->slice_end = jiffies + 1;
2632 cfq_slice_expired(cfqd, 0);
2635 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2640 * task holds one reference to the queue, dropped when task exits. each rq
2641 * in-flight on this queue also holds a reference, dropped when rq is freed.
2643 * Each cfq queue took a reference on the parent group. Drop it now.
2644 * queue lock must be held here.
2646 static void cfq_put_queue(struct cfq_queue *cfqq)
2648 struct cfq_data *cfqd = cfqq->cfqd;
2649 struct cfq_group *cfqg;
2651 BUG_ON(cfqq->ref <= 0);
2657 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2658 BUG_ON(rb_first(&cfqq->sort_list));
2659 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2662 if (unlikely(cfqd->active_queue == cfqq)) {
2663 __cfq_slice_expired(cfqd, cfqq, 0);
2664 cfq_schedule_dispatch(cfqd);
2667 BUG_ON(cfq_cfqq_on_rr(cfqq));
2668 kmem_cache_free(cfq_pool, cfqq);
2672 static void cfq_icq_free_rcu(struct rcu_head *head)
2674 kmem_cache_free(cfq_icq_pool,
2675 icq_to_cic(container_of(head, struct io_cq, rcu_head)));
2678 static void cfq_icq_free(struct io_cq *icq)
2680 call_rcu(&icq->rcu_head, cfq_icq_free_rcu);
2683 static void cfq_release_icq(struct io_cq *icq)
2685 struct io_context *ioc = icq->ioc;
2687 radix_tree_delete(&ioc->icq_tree, icq->q->id);
2688 hlist_del(&icq->ioc_node);
2692 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2694 struct cfq_queue *__cfqq, *next;
2697 * If this queue was scheduled to merge with another queue, be
2698 * sure to drop the reference taken on that queue (and others in
2699 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2701 __cfqq = cfqq->new_cfqq;
2703 if (__cfqq == cfqq) {
2704 WARN(1, "cfqq->new_cfqq loop detected\n");
2707 next = __cfqq->new_cfqq;
2708 cfq_put_queue(__cfqq);
2713 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2715 if (unlikely(cfqq == cfqd->active_queue)) {
2716 __cfq_slice_expired(cfqd, cfqq, 0);
2717 cfq_schedule_dispatch(cfqd);
2720 cfq_put_cooperator(cfqq);
2722 cfq_put_queue(cfqq);
2725 static void cfq_exit_icq(struct io_cq *icq)
2727 struct cfq_io_cq *cic = icq_to_cic(icq);
2728 struct cfq_data *cfqd = cic_to_cfqd(cic);
2729 struct io_context *ioc = icq->ioc;
2731 list_del_init(&icq->q_node);
2734 * Both setting lookup hint to and clearing it from @icq are done
2735 * under queue_lock. If it's not pointing to @icq now, it never
2736 * will. Hint assignment itself can race safely.
2738 if (rcu_dereference_raw(ioc->icq_hint) == icq)
2739 rcu_assign_pointer(ioc->icq_hint, NULL);
2741 if (cic->cfqq[BLK_RW_ASYNC]) {
2742 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2743 cic->cfqq[BLK_RW_ASYNC] = NULL;
2746 if (cic->cfqq[BLK_RW_SYNC]) {
2747 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2748 cic->cfqq[BLK_RW_SYNC] = NULL;
2752 static struct cfq_io_cq *cfq_alloc_cic(struct cfq_data *cfqd, gfp_t gfp_mask)
2754 struct cfq_io_cq *cic;
2756 cic = kmem_cache_alloc_node(cfq_icq_pool, gfp_mask | __GFP_ZERO,
2759 cic->ttime.last_end_request = jiffies;
2760 INIT_LIST_HEAD(&cic->icq.q_node);
2761 INIT_HLIST_NODE(&cic->icq.ioc_node);
2762 cic->icq.exit = cfq_exit_icq;
2763 cic->icq.release = cfq_release_icq;
2769 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2771 struct task_struct *tsk = current;
2774 if (!cfq_cfqq_prio_changed(cfqq))
2777 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2778 switch (ioprio_class) {
2780 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2781 case IOPRIO_CLASS_NONE:
2783 * no prio set, inherit CPU scheduling settings
2785 cfqq->ioprio = task_nice_ioprio(tsk);
2786 cfqq->ioprio_class = task_nice_ioclass(tsk);
2788 case IOPRIO_CLASS_RT:
2789 cfqq->ioprio = task_ioprio(ioc);
2790 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2792 case IOPRIO_CLASS_BE:
2793 cfqq->ioprio = task_ioprio(ioc);
2794 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2796 case IOPRIO_CLASS_IDLE:
2797 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2799 cfq_clear_cfqq_idle_window(cfqq);
2804 * keep track of original prio settings in case we have to temporarily
2805 * elevate the priority of this queue
2807 cfqq->org_ioprio = cfqq->ioprio;
2808 cfq_clear_cfqq_prio_changed(cfqq);
2811 static void changed_ioprio(struct cfq_io_cq *cic)
2813 struct cfq_data *cfqd = cic_to_cfqd(cic);
2814 struct cfq_queue *cfqq;
2816 if (unlikely(!cfqd))
2819 cfqq = cic->cfqq[BLK_RW_ASYNC];
2821 struct cfq_queue *new_cfqq;
2822 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->icq.ioc,
2825 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2826 cfq_put_queue(cfqq);
2830 cfqq = cic->cfqq[BLK_RW_SYNC];
2832 cfq_mark_cfqq_prio_changed(cfqq);
2835 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2836 pid_t pid, bool is_sync)
2838 RB_CLEAR_NODE(&cfqq->rb_node);
2839 RB_CLEAR_NODE(&cfqq->p_node);
2840 INIT_LIST_HEAD(&cfqq->fifo);
2845 cfq_mark_cfqq_prio_changed(cfqq);
2848 if (!cfq_class_idle(cfqq))
2849 cfq_mark_cfqq_idle_window(cfqq);
2850 cfq_mark_cfqq_sync(cfqq);
2855 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2856 static void changed_cgroup(struct cfq_io_cq *cic)
2858 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2859 struct cfq_data *cfqd = cic_to_cfqd(cic);
2860 struct request_queue *q;
2862 if (unlikely(!cfqd))
2869 * Drop reference to sync queue. A new sync queue will be
2870 * assigned in new group upon arrival of a fresh request.
2872 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2873 cic_set_cfqq(cic, NULL, 1);
2874 cfq_put_queue(sync_cfqq);
2877 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2879 static struct cfq_queue *
2880 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2881 struct io_context *ioc, gfp_t gfp_mask)
2883 struct cfq_queue *cfqq, *new_cfqq = NULL;
2884 struct cfq_io_cq *cic;
2885 struct cfq_group *cfqg;
2888 cfqg = cfq_get_cfqg(cfqd);
2889 cic = cfq_cic_lookup(cfqd, ioc);
2890 /* cic always exists here */
2891 cfqq = cic_to_cfqq(cic, is_sync);
2894 * Always try a new alloc if we fell back to the OOM cfqq
2895 * originally, since it should just be a temporary situation.
2897 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2902 } else if (gfp_mask & __GFP_WAIT) {
2903 spin_unlock_irq(cfqd->queue->queue_lock);
2904 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2905 gfp_mask | __GFP_ZERO,
2907 spin_lock_irq(cfqd->queue->queue_lock);
2911 cfqq = kmem_cache_alloc_node(cfq_pool,
2912 gfp_mask | __GFP_ZERO,
2917 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2918 cfq_init_prio_data(cfqq, ioc);
2919 cfq_link_cfqq_cfqg(cfqq, cfqg);
2920 cfq_log_cfqq(cfqd, cfqq, "alloced");
2922 cfqq = &cfqd->oom_cfqq;
2926 kmem_cache_free(cfq_pool, new_cfqq);
2931 static struct cfq_queue **
2932 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2934 switch (ioprio_class) {
2935 case IOPRIO_CLASS_RT:
2936 return &cfqd->async_cfqq[0][ioprio];
2937 case IOPRIO_CLASS_BE:
2938 return &cfqd->async_cfqq[1][ioprio];
2939 case IOPRIO_CLASS_IDLE:
2940 return &cfqd->async_idle_cfqq;
2946 static struct cfq_queue *
2947 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2950 const int ioprio = task_ioprio(ioc);
2951 const int ioprio_class = task_ioprio_class(ioc);
2952 struct cfq_queue **async_cfqq = NULL;
2953 struct cfq_queue *cfqq = NULL;
2956 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2961 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2964 * pin the queue now that it's allocated, scheduler exit will prune it
2966 if (!is_sync && !(*async_cfqq)) {
2976 * cfq_cic_lookup - lookup cfq_io_cq
2977 * @cfqd: the associated cfq_data
2978 * @ioc: the associated io_context
2980 * Look up cfq_io_cq associated with @cfqd - @ioc pair. Must be called
2981 * with queue_lock held.
2983 static struct cfq_io_cq *
2984 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2986 struct request_queue *q = cfqd->queue;
2989 lockdep_assert_held(cfqd->queue->queue_lock);
2994 * icq's are indexed from @ioc using radix tree and hint pointer,
2995 * both of which are protected with RCU. All removals are done
2996 * holding both q and ioc locks, and we're holding q lock - if we
2997 * find a icq which points to us, it's guaranteed to be valid.
3000 icq = rcu_dereference(ioc->icq_hint);
3001 if (icq && icq->q == q)
3004 icq = radix_tree_lookup(&ioc->icq_tree, cfqd->queue->id);
3005 if (icq && icq->q == q)
3006 rcu_assign_pointer(ioc->icq_hint, icq); /* allowed to race */
3011 return icq_to_cic(icq);
3015 * cfq_create_cic - create and link a cfq_io_cq
3016 * @cfqd: cfqd of interest
3017 * @gfp_mask: allocation mask
3019 * Make sure cfq_io_cq linking %current->io_context and @cfqd exists. If
3020 * ioc and/or cic doesn't exist, they will be created using @gfp_mask.
3022 static int cfq_create_cic(struct cfq_data *cfqd, gfp_t gfp_mask)
3024 struct request_queue *q = cfqd->queue;
3025 struct io_cq *icq = NULL;
3026 struct cfq_io_cq *cic;
3027 struct io_context *ioc;
3030 might_sleep_if(gfp_mask & __GFP_WAIT);
3032 /* allocate stuff */
3033 ioc = create_io_context(current, gfp_mask, q->node);
3037 cic = cfq_alloc_cic(cfqd, gfp_mask);
3042 ret = radix_tree_preload(gfp_mask);
3047 icq->q = cfqd->queue;
3049 /* lock both q and ioc and try to link @icq */
3050 spin_lock_irq(q->queue_lock);
3051 spin_lock(&ioc->lock);
3053 ret = radix_tree_insert(&ioc->icq_tree, q->id, icq);
3055 hlist_add_head(&icq->ioc_node, &ioc->icq_list);
3056 list_add(&icq->q_node, &cfqd->icq_list);
3058 } else if (ret == -EEXIST) {
3059 /* someone else already did it */
3063 spin_unlock(&ioc->lock);
3064 spin_unlock_irq(q->queue_lock);
3066 radix_tree_preload_end();
3069 printk(KERN_ERR "cfq: icq link failed!\n");
3076 * cfq_get_cic - acquire cfq_io_cq and bump refcnt on io_context
3077 * @cfqd: cfqd to setup cic for
3078 * @gfp_mask: allocation mask
3080 * Return cfq_io_cq associating @cfqd and %current->io_context and
3081 * bump refcnt on io_context. If ioc or cic doesn't exist, they're created
3084 * Must be called under queue_lock which may be released and re-acquired.
3085 * This function also may sleep depending on @gfp_mask.
3087 static struct cfq_io_cq *cfq_get_cic(struct cfq_data *cfqd, gfp_t gfp_mask)
3089 struct request_queue *q = cfqd->queue;
3090 struct cfq_io_cq *cic = NULL;
3091 struct io_context *ioc;
3094 lockdep_assert_held(q->queue_lock);
3098 ioc = current->io_context;
3100 cic = cfq_cic_lookup(cfqd, ioc);
3105 /* slow path - unlock, create missing ones and retry */
3106 spin_unlock_irq(q->queue_lock);
3107 err = cfq_create_cic(cfqd, gfp_mask);
3108 spin_lock_irq(q->queue_lock);
3113 /* bump @ioc's refcnt and handle changed notifications */
3114 get_io_context(ioc);
3116 if (unlikely(cic->icq.changed)) {
3117 if (test_and_clear_bit(ICQ_IOPRIO_CHANGED, &cic->icq.changed))
3118 changed_ioprio(cic);
3119 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3120 if (test_and_clear_bit(ICQ_CGROUP_CHANGED, &cic->icq.changed))
3121 changed_cgroup(cic);
3129 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3131 unsigned long elapsed = jiffies - ttime->last_end_request;
3132 elapsed = min(elapsed, 2UL * slice_idle);
3134 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3135 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3136 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3140 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3141 struct cfq_io_cq *cic)
3143 if (cfq_cfqq_sync(cfqq)) {
3144 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3145 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3146 cfqd->cfq_slice_idle);
3148 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3149 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3154 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3158 sector_t n_sec = blk_rq_sectors(rq);
3159 if (cfqq->last_request_pos) {
3160 if (cfqq->last_request_pos < blk_rq_pos(rq))
3161 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3163 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3166 cfqq->seek_history <<= 1;
3167 if (blk_queue_nonrot(cfqd->queue))
3168 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3170 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3174 * Disable idle window if the process thinks too long or seeks so much that
3178 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3179 struct cfq_io_cq *cic)
3181 int old_idle, enable_idle;
3184 * Don't idle for async or idle io prio class
3186 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3189 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3191 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3192 cfq_mark_cfqq_deep(cfqq);
3194 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3196 else if (!atomic_read(&cic->icq.ioc->nr_tasks) ||
3197 !cfqd->cfq_slice_idle ||
3198 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3200 else if (sample_valid(cic->ttime.ttime_samples)) {
3201 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3207 if (old_idle != enable_idle) {
3208 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3210 cfq_mark_cfqq_idle_window(cfqq);
3212 cfq_clear_cfqq_idle_window(cfqq);
3217 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3218 * no or if we aren't sure, a 1 will cause a preempt.
3221 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3224 struct cfq_queue *cfqq;
3226 cfqq = cfqd->active_queue;
3230 if (cfq_class_idle(new_cfqq))
3233 if (cfq_class_idle(cfqq))
3237 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3239 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3243 * if the new request is sync, but the currently running queue is
3244 * not, let the sync request have priority.
3246 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3249 if (new_cfqq->cfqg != cfqq->cfqg)
3252 if (cfq_slice_used(cfqq))
3255 /* Allow preemption only if we are idling on sync-noidle tree */
3256 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3257 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3258 new_cfqq->service_tree->count == 2 &&
3259 RB_EMPTY_ROOT(&cfqq->sort_list))
3263 * So both queues are sync. Let the new request get disk time if
3264 * it's a metadata request and the current queue is doing regular IO.
3266 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3270 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3272 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3275 /* An idle queue should not be idle now for some reason */
3276 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3279 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3283 * if this request is as-good as one we would expect from the
3284 * current cfqq, let it preempt
3286 if (cfq_rq_close(cfqd, cfqq, rq))
3293 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3294 * let it have half of its nominal slice.
3296 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3298 struct cfq_queue *old_cfqq = cfqd->active_queue;
3300 cfq_log_cfqq(cfqd, cfqq, "preempt");
3301 cfq_slice_expired(cfqd, 1);
3304 * workload type is changed, don't save slice, otherwise preempt
3307 if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3308 cfqq->cfqg->saved_workload_slice = 0;
3311 * Put the new queue at the front of the of the current list,
3312 * so we know that it will be selected next.
3314 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3316 cfq_service_tree_add(cfqd, cfqq, 1);
3318 cfqq->slice_end = 0;
3319 cfq_mark_cfqq_slice_new(cfqq);
3323 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3324 * something we should do about it
3327 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3330 struct cfq_io_cq *cic = RQ_CIC(rq);
3333 if (rq->cmd_flags & REQ_PRIO)
3334 cfqq->prio_pending++;
3336 cfq_update_io_thinktime(cfqd, cfqq, cic);
3337 cfq_update_io_seektime(cfqd, cfqq, rq);
3338 cfq_update_idle_window(cfqd, cfqq, cic);
3340 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3342 if (cfqq == cfqd->active_queue) {
3344 * Remember that we saw a request from this process, but
3345 * don't start queuing just yet. Otherwise we risk seeing lots
3346 * of tiny requests, because we disrupt the normal plugging
3347 * and merging. If the request is already larger than a single
3348 * page, let it rip immediately. For that case we assume that
3349 * merging is already done. Ditto for a busy system that
3350 * has other work pending, don't risk delaying until the
3351 * idle timer unplug to continue working.
3353 if (cfq_cfqq_wait_request(cfqq)) {
3354 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3355 cfqd->busy_queues > 1) {
3356 cfq_del_timer(cfqd, cfqq);
3357 cfq_clear_cfqq_wait_request(cfqq);
3358 __blk_run_queue(cfqd->queue);
3360 cfq_blkiocg_update_idle_time_stats(
3362 cfq_mark_cfqq_must_dispatch(cfqq);
3365 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3367 * not the active queue - expire current slice if it is
3368 * idle and has expired it's mean thinktime or this new queue
3369 * has some old slice time left and is of higher priority or
3370 * this new queue is RT and the current one is BE
3372 cfq_preempt_queue(cfqd, cfqq);
3373 __blk_run_queue(cfqd->queue);
3377 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3379 struct cfq_data *cfqd = q->elevator->elevator_data;
3380 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3382 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3383 cfq_init_prio_data(cfqq, RQ_CIC(rq)->icq.ioc);
3385 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3386 list_add_tail(&rq->queuelist, &cfqq->fifo);
3388 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3389 &cfqd->serving_group->blkg, rq_data_dir(rq),
3391 cfq_rq_enqueued(cfqd, cfqq, rq);
3395 * Update hw_tag based on peak queue depth over 50 samples under
3398 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3400 struct cfq_queue *cfqq = cfqd->active_queue;
3402 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3403 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3405 if (cfqd->hw_tag == 1)
3408 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3409 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3413 * If active queue hasn't enough requests and can idle, cfq might not
3414 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3417 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3418 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3419 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3422 if (cfqd->hw_tag_samples++ < 50)
3425 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3431 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3433 struct cfq_io_cq *cic = cfqd->active_cic;
3435 /* If the queue already has requests, don't wait */
3436 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3439 /* If there are other queues in the group, don't wait */
3440 if (cfqq->cfqg->nr_cfqq > 1)
3443 /* the only queue in the group, but think time is big */
3444 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3447 if (cfq_slice_used(cfqq))
3450 /* if slice left is less than think time, wait busy */
3451 if (cic && sample_valid(cic->ttime.ttime_samples)
3452 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3456 * If think times is less than a jiffy than ttime_mean=0 and above
3457 * will not be true. It might happen that slice has not expired yet
3458 * but will expire soon (4-5 ns) during select_queue(). To cover the
3459 * case where think time is less than a jiffy, mark the queue wait
3460 * busy if only 1 jiffy is left in the slice.
3462 if (cfqq->slice_end - jiffies == 1)
3468 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3470 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3471 struct cfq_data *cfqd = cfqq->cfqd;
3472 const int sync = rq_is_sync(rq);
3476 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3477 !!(rq->cmd_flags & REQ_NOIDLE));
3479 cfq_update_hw_tag(cfqd);
3481 WARN_ON(!cfqd->rq_in_driver);
3482 WARN_ON(!cfqq->dispatched);
3483 cfqd->rq_in_driver--;
3485 (RQ_CFQG(rq))->dispatched--;
3486 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3487 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3488 rq_data_dir(rq), rq_is_sync(rq));
3490 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3493 struct cfq_rb_root *service_tree;
3495 RQ_CIC(rq)->ttime.last_end_request = now;
3497 if (cfq_cfqq_on_rr(cfqq))
3498 service_tree = cfqq->service_tree;
3500 service_tree = service_tree_for(cfqq->cfqg,
3501 cfqq_prio(cfqq), cfqq_type(cfqq));
3502 service_tree->ttime.last_end_request = now;
3503 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3504 cfqd->last_delayed_sync = now;
3507 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3508 cfqq->cfqg->ttime.last_end_request = now;
3512 * If this is the active queue, check if it needs to be expired,
3513 * or if we want to idle in case it has no pending requests.
3515 if (cfqd->active_queue == cfqq) {
3516 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3518 if (cfq_cfqq_slice_new(cfqq)) {
3519 cfq_set_prio_slice(cfqd, cfqq);
3520 cfq_clear_cfqq_slice_new(cfqq);
3524 * Should we wait for next request to come in before we expire
3527 if (cfq_should_wait_busy(cfqd, cfqq)) {
3528 unsigned long extend_sl = cfqd->cfq_slice_idle;
3529 if (!cfqd->cfq_slice_idle)
3530 extend_sl = cfqd->cfq_group_idle;
3531 cfqq->slice_end = jiffies + extend_sl;
3532 cfq_mark_cfqq_wait_busy(cfqq);
3533 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3537 * Idling is not enabled on:
3539 * - idle-priority queues
3541 * - queues with still some requests queued
3542 * - when there is a close cooperator
3544 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3545 cfq_slice_expired(cfqd, 1);
3546 else if (sync && cfqq_empty &&
3547 !cfq_close_cooperator(cfqd, cfqq)) {
3548 cfq_arm_slice_timer(cfqd);
3552 if (!cfqd->rq_in_driver)
3553 cfq_schedule_dispatch(cfqd);
3556 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3558 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3559 cfq_mark_cfqq_must_alloc_slice(cfqq);
3560 return ELV_MQUEUE_MUST;
3563 return ELV_MQUEUE_MAY;
3566 static int cfq_may_queue(struct request_queue *q, int rw)
3568 struct cfq_data *cfqd = q->elevator->elevator_data;
3569 struct task_struct *tsk = current;
3570 struct cfq_io_cq *cic;
3571 struct cfq_queue *cfqq;
3574 * don't force setup of a queue from here, as a call to may_queue
3575 * does not necessarily imply that a request actually will be queued.
3576 * so just lookup a possibly existing queue, or return 'may queue'
3579 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3581 return ELV_MQUEUE_MAY;
3583 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3585 cfq_init_prio_data(cfqq, cic->icq.ioc);
3587 return __cfq_may_queue(cfqq);
3590 return ELV_MQUEUE_MAY;
3594 * queue lock held here
3596 static void cfq_put_request(struct request *rq)
3598 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3601 const int rw = rq_data_dir(rq);
3603 BUG_ON(!cfqq->allocated[rw]);
3604 cfqq->allocated[rw]--;
3606 put_io_context(RQ_CIC(rq)->icq.ioc, cfqq->cfqd->queue);
3608 rq->elevator_private[0] = NULL;
3609 rq->elevator_private[1] = NULL;
3611 /* Put down rq reference on cfqg */
3612 cfq_put_cfqg(RQ_CFQG(rq));
3613 rq->elevator_private[2] = NULL;
3615 cfq_put_queue(cfqq);
3619 static struct cfq_queue *
3620 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
3621 struct cfq_queue *cfqq)
3623 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3624 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3625 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3626 cfq_put_queue(cfqq);
3627 return cic_to_cfqq(cic, 1);
3631 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3632 * was the last process referring to said cfqq.
3634 static struct cfq_queue *
3635 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
3637 if (cfqq_process_refs(cfqq) == 1) {
3638 cfqq->pid = current->pid;
3639 cfq_clear_cfqq_coop(cfqq);
3640 cfq_clear_cfqq_split_coop(cfqq);
3644 cic_set_cfqq(cic, NULL, 1);
3646 cfq_put_cooperator(cfqq);
3648 cfq_put_queue(cfqq);
3652 * Allocate cfq data structures associated with this request.
3655 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3657 struct cfq_data *cfqd = q->elevator->elevator_data;
3658 struct cfq_io_cq *cic;
3659 const int rw = rq_data_dir(rq);
3660 const bool is_sync = rq_is_sync(rq);
3661 struct cfq_queue *cfqq;
3663 might_sleep_if(gfp_mask & __GFP_WAIT);
3665 spin_lock_irq(q->queue_lock);
3666 cic = cfq_get_cic(cfqd, gfp_mask);
3671 cfqq = cic_to_cfqq(cic, is_sync);
3672 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3673 cfqq = cfq_get_queue(cfqd, is_sync, cic->icq.ioc, gfp_mask);
3674 cic_set_cfqq(cic, cfqq, is_sync);
3677 * If the queue was seeky for too long, break it apart.
3679 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3680 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3681 cfqq = split_cfqq(cic, cfqq);
3687 * Check to see if this queue is scheduled to merge with
3688 * another, closely cooperating queue. The merging of
3689 * queues happens here as it must be done in process context.
3690 * The reference on new_cfqq was taken in merge_cfqqs.
3693 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3696 cfqq->allocated[rw]++;
3699 rq->elevator_private[0] = &cic->icq;
3700 rq->elevator_private[1] = cfqq;
3701 rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
3702 spin_unlock_irq(q->queue_lock);
3706 cfq_schedule_dispatch(cfqd);
3707 spin_unlock_irq(q->queue_lock);
3708 cfq_log(cfqd, "set_request fail");
3712 static void cfq_kick_queue(struct work_struct *work)
3714 struct cfq_data *cfqd =
3715 container_of(work, struct cfq_data, unplug_work);
3716 struct request_queue *q = cfqd->queue;
3718 spin_lock_irq(q->queue_lock);
3719 __blk_run_queue(cfqd->queue);
3720 spin_unlock_irq(q->queue_lock);
3724 * Timer running if the active_queue is currently idling inside its time slice
3726 static void cfq_idle_slice_timer(unsigned long data)
3728 struct cfq_data *cfqd = (struct cfq_data *) data;
3729 struct cfq_queue *cfqq;
3730 unsigned long flags;
3733 cfq_log(cfqd, "idle timer fired");
3735 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3737 cfqq = cfqd->active_queue;
3742 * We saw a request before the queue expired, let it through
3744 if (cfq_cfqq_must_dispatch(cfqq))
3750 if (cfq_slice_used(cfqq))
3754 * only expire and reinvoke request handler, if there are
3755 * other queues with pending requests
3757 if (!cfqd->busy_queues)
3761 * not expired and it has a request pending, let it dispatch
3763 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3767 * Queue depth flag is reset only when the idle didn't succeed
3769 cfq_clear_cfqq_deep(cfqq);
3772 cfq_slice_expired(cfqd, timed_out);
3774 cfq_schedule_dispatch(cfqd);
3776 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3779 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3781 del_timer_sync(&cfqd->idle_slice_timer);
3782 cancel_work_sync(&cfqd->unplug_work);
3785 static void cfq_put_async_queues(struct cfq_data *cfqd)
3789 for (i = 0; i < IOPRIO_BE_NR; i++) {
3790 if (cfqd->async_cfqq[0][i])
3791 cfq_put_queue(cfqd->async_cfqq[0][i]);
3792 if (cfqd->async_cfqq[1][i])
3793 cfq_put_queue(cfqd->async_cfqq[1][i]);
3796 if (cfqd->async_idle_cfqq)
3797 cfq_put_queue(cfqd->async_idle_cfqq);
3800 static void cfq_exit_queue(struct elevator_queue *e)
3802 struct cfq_data *cfqd = e->elevator_data;
3803 struct request_queue *q = cfqd->queue;
3806 cfq_shutdown_timer_wq(cfqd);
3808 spin_lock_irq(q->queue_lock);
3810 if (cfqd->active_queue)
3811 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3813 while (!list_empty(&cfqd->icq_list)) {
3814 struct io_cq *icq = list_entry(cfqd->icq_list.next,
3815 struct io_cq, q_node);
3816 struct io_context *ioc = icq->ioc;
3818 spin_lock(&ioc->lock);
3820 cfq_release_icq(icq);
3821 spin_unlock(&ioc->lock);
3824 cfq_put_async_queues(cfqd);
3825 cfq_release_cfq_groups(cfqd);
3828 * If there are groups which we could not unlink from blkcg list,
3829 * wait for a rcu period for them to be freed.
3831 if (cfqd->nr_blkcg_linked_grps)
3834 spin_unlock_irq(q->queue_lock);
3836 cfq_shutdown_timer_wq(cfqd);
3839 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3840 * Do this wait only if there are other unlinked groups out
3841 * there. This can happen if cgroup deletion path claimed the
3842 * responsibility of cleaning up a group before queue cleanup code
3845 * Do not call synchronize_rcu() unconditionally as there are drivers
3846 * which create/delete request queue hundreds of times during scan/boot
3847 * and synchronize_rcu() can take significant time and slow down boot.
3852 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3853 /* Free up per cpu stats for root group */
3854 free_percpu(cfqd->root_group.blkg.stats_cpu);
3859 static void *cfq_init_queue(struct request_queue *q)
3861 struct cfq_data *cfqd;
3863 struct cfq_group *cfqg;
3864 struct cfq_rb_root *st;
3866 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3870 /* Init root service tree */
3871 cfqd->grp_service_tree = CFQ_RB_ROOT;
3873 /* Init root group */
3874 cfqg = &cfqd->root_group;
3875 for_each_cfqg_st(cfqg, i, j, st)
3877 RB_CLEAR_NODE(&cfqg->rb_node);
3879 /* Give preference to root group over other groups */
3880 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3882 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3884 * Set root group reference to 2. One reference will be dropped when
3885 * all groups on cfqd->cfqg_list are being deleted during queue exit.
3886 * Other reference will remain there as we don't want to delete this
3887 * group as it is statically allocated and gets destroyed when
3888 * throtl_data goes away.
3892 if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
3900 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3903 cfqd->nr_blkcg_linked_grps++;
3905 /* Add group on cfqd->cfqg_list */
3906 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
3909 * Not strictly needed (since RB_ROOT just clears the node and we
3910 * zeroed cfqd on alloc), but better be safe in case someone decides
3911 * to add magic to the rb code
3913 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3914 cfqd->prio_trees[i] = RB_ROOT;
3917 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3918 * Grab a permanent reference to it, so that the normal code flow
3919 * will not attempt to free it.
3921 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3922 cfqd->oom_cfqq.ref++;
3923 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3925 INIT_LIST_HEAD(&cfqd->icq_list);
3929 init_timer(&cfqd->idle_slice_timer);
3930 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3931 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3933 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3935 cfqd->cfq_quantum = cfq_quantum;
3936 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3937 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3938 cfqd->cfq_back_max = cfq_back_max;
3939 cfqd->cfq_back_penalty = cfq_back_penalty;
3940 cfqd->cfq_slice[0] = cfq_slice_async;
3941 cfqd->cfq_slice[1] = cfq_slice_sync;
3942 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3943 cfqd->cfq_slice_idle = cfq_slice_idle;
3944 cfqd->cfq_group_idle = cfq_group_idle;
3945 cfqd->cfq_latency = 1;
3948 * we optimistically start assuming sync ops weren't delayed in last
3949 * second, in order to have larger depth for async operations.
3951 cfqd->last_delayed_sync = jiffies - HZ;
3955 static void cfq_slab_kill(void)
3958 * Caller already ensured that pending RCU callbacks are completed,
3959 * so we should have no busy allocations at this point.
3962 kmem_cache_destroy(cfq_pool);
3964 kmem_cache_destroy(cfq_icq_pool);
3967 static int __init cfq_slab_setup(void)
3969 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3973 cfq_icq_pool = KMEM_CACHE(cfq_io_cq, 0);
3984 * sysfs parts below -->
3987 cfq_var_show(unsigned int var, char *page)
3989 return sprintf(page, "%d\n", var);
3993 cfq_var_store(unsigned int *var, const char *page, size_t count)
3995 char *p = (char *) page;
3997 *var = simple_strtoul(p, &p, 10);
4001 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4002 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4004 struct cfq_data *cfqd = e->elevator_data; \
4005 unsigned int __data = __VAR; \
4007 __data = jiffies_to_msecs(__data); \
4008 return cfq_var_show(__data, (page)); \
4010 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4011 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4012 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4013 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4014 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4015 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4016 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4017 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4018 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4019 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4020 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4021 #undef SHOW_FUNCTION
4023 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4024 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4026 struct cfq_data *cfqd = e->elevator_data; \
4027 unsigned int __data; \
4028 int ret = cfq_var_store(&__data, (page), count); \
4029 if (__data < (MIN)) \
4031 else if (__data > (MAX)) \
4034 *(__PTR) = msecs_to_jiffies(__data); \
4036 *(__PTR) = __data; \
4039 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4040 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4042 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4044 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4045 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4047 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4048 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4049 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4050 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4051 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4053 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4054 #undef STORE_FUNCTION
4056 #define CFQ_ATTR(name) \
4057 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4059 static struct elv_fs_entry cfq_attrs[] = {
4061 CFQ_ATTR(fifo_expire_sync),
4062 CFQ_ATTR(fifo_expire_async),
4063 CFQ_ATTR(back_seek_max),
4064 CFQ_ATTR(back_seek_penalty),
4065 CFQ_ATTR(slice_sync),
4066 CFQ_ATTR(slice_async),
4067 CFQ_ATTR(slice_async_rq),
4068 CFQ_ATTR(slice_idle),
4069 CFQ_ATTR(group_idle),
4070 CFQ_ATTR(low_latency),
4074 static struct elevator_type iosched_cfq = {
4076 .elevator_merge_fn = cfq_merge,
4077 .elevator_merged_fn = cfq_merged_request,
4078 .elevator_merge_req_fn = cfq_merged_requests,
4079 .elevator_allow_merge_fn = cfq_allow_merge,
4080 .elevator_bio_merged_fn = cfq_bio_merged,
4081 .elevator_dispatch_fn = cfq_dispatch_requests,
4082 .elevator_add_req_fn = cfq_insert_request,
4083 .elevator_activate_req_fn = cfq_activate_request,
4084 .elevator_deactivate_req_fn = cfq_deactivate_request,
4085 .elevator_completed_req_fn = cfq_completed_request,
4086 .elevator_former_req_fn = elv_rb_former_request,
4087 .elevator_latter_req_fn = elv_rb_latter_request,
4088 .elevator_set_req_fn = cfq_set_request,
4089 .elevator_put_req_fn = cfq_put_request,
4090 .elevator_may_queue_fn = cfq_may_queue,
4091 .elevator_init_fn = cfq_init_queue,
4092 .elevator_exit_fn = cfq_exit_queue,
4094 .elevator_attrs = cfq_attrs,
4095 .elevator_name = "cfq",
4096 .elevator_owner = THIS_MODULE,
4099 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4100 static struct blkio_policy_type blkio_policy_cfq = {
4102 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4103 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4105 .plid = BLKIO_POLICY_PROP,
4108 static struct blkio_policy_type blkio_policy_cfq;
4111 static int __init cfq_init(void)
4114 * could be 0 on HZ < 1000 setups
4116 if (!cfq_slice_async)
4117 cfq_slice_async = 1;
4118 if (!cfq_slice_idle)
4121 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4122 if (!cfq_group_idle)
4127 if (cfq_slab_setup())
4130 elv_register(&iosched_cfq);
4131 blkio_policy_register(&blkio_policy_cfq);
4136 static void __exit cfq_exit(void)
4138 blkio_policy_unregister(&blkio_policy_cfq);
4139 elv_unregister(&iosched_cfq);
4140 rcu_barrier(); /* make sure all cic RCU frees are complete */
4144 module_init(cfq_init);
4145 module_exit(cfq_exit);
4147 MODULE_AUTHOR("Jens Axboe");
4148 MODULE_LICENSE("GPL");
4149 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");