4a3f1f2b9b91c75e5c08e6c3a5f1b38187227b52
[linux-2.6.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/highmem.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/compat.h>
33
34 #if 0
35 #undef wrmsrl
36 #define wrmsrl(msr, val)                                        \
37 do {                                                            \
38         trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
39                         (unsigned long)(val));                  \
40         native_write_msr((msr), (u32)((u64)(val)),              \
41                         (u32)((u64)(val) >> 32));               \
42 } while (0)
43 #endif
44
45 /*
46  * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
47  */
48 static unsigned long
49 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
50 {
51         unsigned long offset, addr = (unsigned long)from;
52         int type = in_nmi() ? KM_NMI : KM_IRQ0;
53         unsigned long size, len = 0;
54         struct page *page;
55         void *map;
56         int ret;
57
58         do {
59                 ret = __get_user_pages_fast(addr, 1, 0, &page);
60                 if (!ret)
61                         break;
62
63                 offset = addr & (PAGE_SIZE - 1);
64                 size = min(PAGE_SIZE - offset, n - len);
65
66                 map = kmap_atomic(page, type);
67                 memcpy(to, map+offset, size);
68                 kunmap_atomic(map, type);
69                 put_page(page);
70
71                 len  += size;
72                 to   += size;
73                 addr += size;
74
75         } while (len < n);
76
77         return len;
78 }
79
80 struct event_constraint {
81         union {
82                 unsigned long   idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
83                 u64             idxmsk64;
84         };
85         u64     code;
86         u64     cmask;
87         int     weight;
88 };
89
90 struct amd_nb {
91         int nb_id;  /* NorthBridge id */
92         int refcnt; /* reference count */
93         struct perf_event *owners[X86_PMC_IDX_MAX];
94         struct event_constraint event_constraints[X86_PMC_IDX_MAX];
95 };
96
97 #define MAX_LBR_ENTRIES         16
98
99 struct cpu_hw_events {
100         /*
101          * Generic x86 PMC bits
102          */
103         struct perf_event       *events[X86_PMC_IDX_MAX]; /* in counter order */
104         unsigned long           active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
105         int                     enabled;
106
107         int                     n_events;
108         int                     n_added;
109         int                     assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
110         u64                     tags[X86_PMC_IDX_MAX];
111         struct perf_event       *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
112
113         /*
114          * Intel DebugStore bits
115          */
116         struct debug_store      *ds;
117         u64                     pebs_enabled;
118
119         /*
120          * Intel LBR bits
121          */
122         int                             lbr_users;
123         void                            *lbr_context;
124         struct perf_branch_stack        lbr_stack;
125         struct perf_branch_entry        lbr_entries[MAX_LBR_ENTRIES];
126
127         /*
128          * AMD specific bits
129          */
130         struct amd_nb           *amd_nb;
131 };
132
133 #define __EVENT_CONSTRAINT(c, n, m, w) {\
134         { .idxmsk64 = (n) },            \
135         .code = (c),                    \
136         .cmask = (m),                   \
137         .weight = (w),                  \
138 }
139
140 #define EVENT_CONSTRAINT(c, n, m)       \
141         __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
142
143 /*
144  * Constraint on the Event code.
145  */
146 #define INTEL_EVENT_CONSTRAINT(c, n)    \
147         EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
148
149 /*
150  * Constraint on the Event code + UMask + fixed-mask
151  *
152  * filter mask to validate fixed counter events.
153  * the following filters disqualify for fixed counters:
154  *  - inv
155  *  - edge
156  *  - cnt-mask
157  *  The other filters are supported by fixed counters.
158  *  The any-thread option is supported starting with v3.
159  */
160 #define FIXED_EVENT_CONSTRAINT(c, n)    \
161         EVENT_CONSTRAINT(c, (1ULL << (32+n)), X86_RAW_EVENT_MASK)
162
163 /*
164  * Constraint on the Event code + UMask
165  */
166 #define PEBS_EVENT_CONSTRAINT(c, n)     \
167         EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
168
169 #define EVENT_CONSTRAINT_END            \
170         EVENT_CONSTRAINT(0, 0, 0)
171
172 #define for_each_event_constraint(e, c) \
173         for ((e) = (c); (e)->weight; (e)++)
174
175 union perf_capabilities {
176         struct {
177                 u64     lbr_format    : 6;
178                 u64     pebs_trap     : 1;
179                 u64     pebs_arch_reg : 1;
180                 u64     pebs_format   : 4;
181                 u64     smm_freeze    : 1;
182         };
183         u64     capabilities;
184 };
185
186 /*
187  * struct x86_pmu - generic x86 pmu
188  */
189 struct x86_pmu {
190         /*
191          * Generic x86 PMC bits
192          */
193         const char      *name;
194         int             version;
195         int             (*handle_irq)(struct pt_regs *);
196         void            (*disable_all)(void);
197         void            (*enable_all)(int added);
198         void            (*enable)(struct perf_event *);
199         void            (*disable)(struct perf_event *);
200         int             (*hw_config)(struct perf_event *event);
201         int             (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
202         unsigned        eventsel;
203         unsigned        perfctr;
204         u64             (*event_map)(int);
205         int             max_events;
206         int             num_counters;
207         int             num_counters_fixed;
208         int             cntval_bits;
209         u64             cntval_mask;
210         int             apic;
211         u64             max_period;
212         struct event_constraint *
213                         (*get_event_constraints)(struct cpu_hw_events *cpuc,
214                                                  struct perf_event *event);
215
216         void            (*put_event_constraints)(struct cpu_hw_events *cpuc,
217                                                  struct perf_event *event);
218         struct event_constraint *event_constraints;
219         void            (*quirks)(void);
220
221         int             (*cpu_prepare)(int cpu);
222         void            (*cpu_starting)(int cpu);
223         void            (*cpu_dying)(int cpu);
224         void            (*cpu_dead)(int cpu);
225
226         /*
227          * Intel Arch Perfmon v2+
228          */
229         u64                     intel_ctrl;
230         union perf_capabilities intel_cap;
231
232         /*
233          * Intel DebugStore bits
234          */
235         int             bts, pebs;
236         int             pebs_record_size;
237         void            (*drain_pebs)(struct pt_regs *regs);
238         struct event_constraint *pebs_constraints;
239
240         /*
241          * Intel LBR
242          */
243         unsigned long   lbr_tos, lbr_from, lbr_to; /* MSR base regs       */
244         int             lbr_nr;                    /* hardware stack size */
245 };
246
247 static struct x86_pmu x86_pmu __read_mostly;
248
249 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
250         .enabled = 1,
251 };
252
253 static int x86_perf_event_set_period(struct perf_event *event);
254
255 /*
256  * Generalized hw caching related hw_event table, filled
257  * in on a per model basis. A value of 0 means
258  * 'not supported', -1 means 'hw_event makes no sense on
259  * this CPU', any other value means the raw hw_event
260  * ID.
261  */
262
263 #define C(x) PERF_COUNT_HW_CACHE_##x
264
265 static u64 __read_mostly hw_cache_event_ids
266                                 [PERF_COUNT_HW_CACHE_MAX]
267                                 [PERF_COUNT_HW_CACHE_OP_MAX]
268                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
269
270 /*
271  * Propagate event elapsed time into the generic event.
272  * Can only be executed on the CPU where the event is active.
273  * Returns the delta events processed.
274  */
275 static u64
276 x86_perf_event_update(struct perf_event *event)
277 {
278         struct hw_perf_event *hwc = &event->hw;
279         int shift = 64 - x86_pmu.cntval_bits;
280         u64 prev_raw_count, new_raw_count;
281         int idx = hwc->idx;
282         s64 delta;
283
284         if (idx == X86_PMC_IDX_FIXED_BTS)
285                 return 0;
286
287         /*
288          * Careful: an NMI might modify the previous event value.
289          *
290          * Our tactic to handle this is to first atomically read and
291          * exchange a new raw count - then add that new-prev delta
292          * count to the generic event atomically:
293          */
294 again:
295         prev_raw_count = atomic64_read(&hwc->prev_count);
296         rdmsrl(hwc->event_base + idx, new_raw_count);
297
298         if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
299                                         new_raw_count) != prev_raw_count)
300                 goto again;
301
302         /*
303          * Now we have the new raw value and have updated the prev
304          * timestamp already. We can now calculate the elapsed delta
305          * (event-)time and add that to the generic event.
306          *
307          * Careful, not all hw sign-extends above the physical width
308          * of the count.
309          */
310         delta = (new_raw_count << shift) - (prev_raw_count << shift);
311         delta >>= shift;
312
313         atomic64_add(delta, &event->count);
314         atomic64_sub(delta, &hwc->period_left);
315
316         return new_raw_count;
317 }
318
319 static atomic_t active_events;
320 static DEFINE_MUTEX(pmc_reserve_mutex);
321
322 #ifdef CONFIG_X86_LOCAL_APIC
323
324 static bool reserve_pmc_hardware(void)
325 {
326         int i;
327
328         if (nmi_watchdog == NMI_LOCAL_APIC)
329                 disable_lapic_nmi_watchdog();
330
331         for (i = 0; i < x86_pmu.num_counters; i++) {
332                 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
333                         goto perfctr_fail;
334         }
335
336         for (i = 0; i < x86_pmu.num_counters; i++) {
337                 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
338                         goto eventsel_fail;
339         }
340
341         return true;
342
343 eventsel_fail:
344         for (i--; i >= 0; i--)
345                 release_evntsel_nmi(x86_pmu.eventsel + i);
346
347         i = x86_pmu.num_counters;
348
349 perfctr_fail:
350         for (i--; i >= 0; i--)
351                 release_perfctr_nmi(x86_pmu.perfctr + i);
352
353         if (nmi_watchdog == NMI_LOCAL_APIC)
354                 enable_lapic_nmi_watchdog();
355
356         return false;
357 }
358
359 static void release_pmc_hardware(void)
360 {
361         int i;
362
363         for (i = 0; i < x86_pmu.num_counters; i++) {
364                 release_perfctr_nmi(x86_pmu.perfctr + i);
365                 release_evntsel_nmi(x86_pmu.eventsel + i);
366         }
367
368         if (nmi_watchdog == NMI_LOCAL_APIC)
369                 enable_lapic_nmi_watchdog();
370 }
371
372 #else
373
374 static bool reserve_pmc_hardware(void) { return true; }
375 static void release_pmc_hardware(void) {}
376
377 #endif
378
379 static int reserve_ds_buffers(void);
380 static void release_ds_buffers(void);
381
382 static void hw_perf_event_destroy(struct perf_event *event)
383 {
384         if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
385                 release_pmc_hardware();
386                 release_ds_buffers();
387                 mutex_unlock(&pmc_reserve_mutex);
388         }
389 }
390
391 static inline int x86_pmu_initialized(void)
392 {
393         return x86_pmu.handle_irq != NULL;
394 }
395
396 static inline int
397 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
398 {
399         unsigned int cache_type, cache_op, cache_result;
400         u64 config, val;
401
402         config = attr->config;
403
404         cache_type = (config >>  0) & 0xff;
405         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
406                 return -EINVAL;
407
408         cache_op = (config >>  8) & 0xff;
409         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
410                 return -EINVAL;
411
412         cache_result = (config >> 16) & 0xff;
413         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
414                 return -EINVAL;
415
416         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
417
418         if (val == 0)
419                 return -ENOENT;
420
421         if (val == -1)
422                 return -EINVAL;
423
424         hwc->config |= val;
425
426         return 0;
427 }
428
429 static int x86_setup_perfctr(struct perf_event *event)
430 {
431         struct perf_event_attr *attr = &event->attr;
432         struct hw_perf_event *hwc = &event->hw;
433         u64 config;
434
435         if (!hwc->sample_period) {
436                 hwc->sample_period = x86_pmu.max_period;
437                 hwc->last_period = hwc->sample_period;
438                 atomic64_set(&hwc->period_left, hwc->sample_period);
439         } else {
440                 /*
441                  * If we have a PMU initialized but no APIC
442                  * interrupts, we cannot sample hardware
443                  * events (user-space has to fall back and
444                  * sample via a hrtimer based software event):
445                  */
446                 if (!x86_pmu.apic)
447                         return -EOPNOTSUPP;
448         }
449
450         if (attr->type == PERF_TYPE_RAW)
451                 return 0;
452
453         if (attr->type == PERF_TYPE_HW_CACHE)
454                 return set_ext_hw_attr(hwc, attr);
455
456         if (attr->config >= x86_pmu.max_events)
457                 return -EINVAL;
458
459         /*
460          * The generic map:
461          */
462         config = x86_pmu.event_map(attr->config);
463
464         if (config == 0)
465                 return -ENOENT;
466
467         if (config == -1LL)
468                 return -EINVAL;
469
470         /*
471          * Branch tracing:
472          */
473         if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
474             (hwc->sample_period == 1)) {
475                 /* BTS is not supported by this architecture. */
476                 if (!x86_pmu.bts)
477                         return -EOPNOTSUPP;
478
479                 /* BTS is currently only allowed for user-mode. */
480                 if (!attr->exclude_kernel)
481                         return -EOPNOTSUPP;
482         }
483
484         hwc->config |= config;
485
486         return 0;
487 }
488
489 static int x86_pmu_hw_config(struct perf_event *event)
490 {
491         /*
492          * Generate PMC IRQs:
493          * (keep 'enabled' bit clear for now)
494          */
495         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
496
497         /*
498          * Count user and OS events unless requested not to
499          */
500         if (!event->attr.exclude_user)
501                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
502         if (!event->attr.exclude_kernel)
503                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
504
505         if (event->attr.type == PERF_TYPE_RAW)
506                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
507
508         return x86_setup_perfctr(event);
509 }
510
511 /*
512  * Setup the hardware configuration for a given attr_type
513  */
514 static int __hw_perf_event_init(struct perf_event *event)
515 {
516         int err;
517
518         if (!x86_pmu_initialized())
519                 return -ENODEV;
520
521         err = 0;
522         if (!atomic_inc_not_zero(&active_events)) {
523                 mutex_lock(&pmc_reserve_mutex);
524                 if (atomic_read(&active_events) == 0) {
525                         if (!reserve_pmc_hardware())
526                                 err = -EBUSY;
527                         else {
528                                 err = reserve_ds_buffers();
529                                 if (err)
530                                         release_pmc_hardware();
531                         }
532                 }
533                 if (!err)
534                         atomic_inc(&active_events);
535                 mutex_unlock(&pmc_reserve_mutex);
536         }
537         if (err)
538                 return err;
539
540         event->destroy = hw_perf_event_destroy;
541
542         event->hw.idx = -1;
543         event->hw.last_cpu = -1;
544         event->hw.last_tag = ~0ULL;
545
546         return x86_pmu.hw_config(event);
547 }
548
549 static void x86_pmu_disable_all(void)
550 {
551         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
552         int idx;
553
554         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
555                 u64 val;
556
557                 if (!test_bit(idx, cpuc->active_mask))
558                         continue;
559                 rdmsrl(x86_pmu.eventsel + idx, val);
560                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
561                         continue;
562                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
563                 wrmsrl(x86_pmu.eventsel + idx, val);
564         }
565 }
566
567 void hw_perf_disable(void)
568 {
569         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
570
571         if (!x86_pmu_initialized())
572                 return;
573
574         if (!cpuc->enabled)
575                 return;
576
577         cpuc->n_added = 0;
578         cpuc->enabled = 0;
579         barrier();
580
581         x86_pmu.disable_all();
582 }
583
584 static void x86_pmu_enable_all(int added)
585 {
586         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
587         int idx;
588
589         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
590                 struct perf_event *event = cpuc->events[idx];
591                 u64 val;
592
593                 if (!test_bit(idx, cpuc->active_mask))
594                         continue;
595
596                 val = event->hw.config;
597                 val |= ARCH_PERFMON_EVENTSEL_ENABLE;
598                 wrmsrl(x86_pmu.eventsel + idx, val);
599         }
600 }
601
602 static const struct pmu pmu;
603
604 static inline int is_x86_event(struct perf_event *event)
605 {
606         return event->pmu == &pmu;
607 }
608
609 static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
610 {
611         struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
612         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
613         int i, j, w, wmax, num = 0;
614         struct hw_perf_event *hwc;
615
616         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
617
618         for (i = 0; i < n; i++) {
619                 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
620                 constraints[i] = c;
621         }
622
623         /*
624          * fastpath, try to reuse previous register
625          */
626         for (i = 0; i < n; i++) {
627                 hwc = &cpuc->event_list[i]->hw;
628                 c = constraints[i];
629
630                 /* never assigned */
631                 if (hwc->idx == -1)
632                         break;
633
634                 /* constraint still honored */
635                 if (!test_bit(hwc->idx, c->idxmsk))
636                         break;
637
638                 /* not already used */
639                 if (test_bit(hwc->idx, used_mask))
640                         break;
641
642                 __set_bit(hwc->idx, used_mask);
643                 if (assign)
644                         assign[i] = hwc->idx;
645         }
646         if (i == n)
647                 goto done;
648
649         /*
650          * begin slow path
651          */
652
653         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
654
655         /*
656          * weight = number of possible counters
657          *
658          * 1    = most constrained, only works on one counter
659          * wmax = least constrained, works on any counter
660          *
661          * assign events to counters starting with most
662          * constrained events.
663          */
664         wmax = x86_pmu.num_counters;
665
666         /*
667          * when fixed event counters are present,
668          * wmax is incremented by 1 to account
669          * for one more choice
670          */
671         if (x86_pmu.num_counters_fixed)
672                 wmax++;
673
674         for (w = 1, num = n; num && w <= wmax; w++) {
675                 /* for each event */
676                 for (i = 0; num && i < n; i++) {
677                         c = constraints[i];
678                         hwc = &cpuc->event_list[i]->hw;
679
680                         if (c->weight != w)
681                                 continue;
682
683                         for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
684                                 if (!test_bit(j, used_mask))
685                                         break;
686                         }
687
688                         if (j == X86_PMC_IDX_MAX)
689                                 break;
690
691                         __set_bit(j, used_mask);
692
693                         if (assign)
694                                 assign[i] = j;
695                         num--;
696                 }
697         }
698 done:
699         /*
700          * scheduling failed or is just a simulation,
701          * free resources if necessary
702          */
703         if (!assign || num) {
704                 for (i = 0; i < n; i++) {
705                         if (x86_pmu.put_event_constraints)
706                                 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
707                 }
708         }
709         return num ? -ENOSPC : 0;
710 }
711
712 /*
713  * dogrp: true if must collect siblings events (group)
714  * returns total number of events and error code
715  */
716 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
717 {
718         struct perf_event *event;
719         int n, max_count;
720
721         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
722
723         /* current number of events already accepted */
724         n = cpuc->n_events;
725
726         if (is_x86_event(leader)) {
727                 if (n >= max_count)
728                         return -ENOSPC;
729                 cpuc->event_list[n] = leader;
730                 n++;
731         }
732         if (!dogrp)
733                 return n;
734
735         list_for_each_entry(event, &leader->sibling_list, group_entry) {
736                 if (!is_x86_event(event) ||
737                     event->state <= PERF_EVENT_STATE_OFF)
738                         continue;
739
740                 if (n >= max_count)
741                         return -ENOSPC;
742
743                 cpuc->event_list[n] = event;
744                 n++;
745         }
746         return n;
747 }
748
749 static inline void x86_assign_hw_event(struct perf_event *event,
750                                 struct cpu_hw_events *cpuc, int i)
751 {
752         struct hw_perf_event *hwc = &event->hw;
753
754         hwc->idx = cpuc->assign[i];
755         hwc->last_cpu = smp_processor_id();
756         hwc->last_tag = ++cpuc->tags[i];
757
758         if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
759                 hwc->config_base = 0;
760                 hwc->event_base = 0;
761         } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
762                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
763                 /*
764                  * We set it so that event_base + idx in wrmsr/rdmsr maps to
765                  * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
766                  */
767                 hwc->event_base =
768                         MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
769         } else {
770                 hwc->config_base = x86_pmu.eventsel;
771                 hwc->event_base  = x86_pmu.perfctr;
772         }
773 }
774
775 static inline int match_prev_assignment(struct hw_perf_event *hwc,
776                                         struct cpu_hw_events *cpuc,
777                                         int i)
778 {
779         return hwc->idx == cpuc->assign[i] &&
780                 hwc->last_cpu == smp_processor_id() &&
781                 hwc->last_tag == cpuc->tags[i];
782 }
783
784 static int x86_pmu_start(struct perf_event *event);
785 static void x86_pmu_stop(struct perf_event *event);
786
787 void hw_perf_enable(void)
788 {
789         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
790         struct perf_event *event;
791         struct hw_perf_event *hwc;
792         int i, added = cpuc->n_added;
793
794         if (!x86_pmu_initialized())
795                 return;
796
797         if (cpuc->enabled)
798                 return;
799
800         if (cpuc->n_added) {
801                 int n_running = cpuc->n_events - cpuc->n_added;
802                 /*
803                  * apply assignment obtained either from
804                  * hw_perf_group_sched_in() or x86_pmu_enable()
805                  *
806                  * step1: save events moving to new counters
807                  * step2: reprogram moved events into new counters
808                  */
809                 for (i = 0; i < n_running; i++) {
810                         event = cpuc->event_list[i];
811                         hwc = &event->hw;
812
813                         /*
814                          * we can avoid reprogramming counter if:
815                          * - assigned same counter as last time
816                          * - running on same CPU as last time
817                          * - no other event has used the counter since
818                          */
819                         if (hwc->idx == -1 ||
820                             match_prev_assignment(hwc, cpuc, i))
821                                 continue;
822
823                         x86_pmu_stop(event);
824                 }
825
826                 for (i = 0; i < cpuc->n_events; i++) {
827                         event = cpuc->event_list[i];
828                         hwc = &event->hw;
829
830                         if (!match_prev_assignment(hwc, cpuc, i))
831                                 x86_assign_hw_event(event, cpuc, i);
832                         else if (i < n_running)
833                                 continue;
834
835                         x86_pmu_start(event);
836                 }
837                 cpuc->n_added = 0;
838                 perf_events_lapic_init();
839         }
840
841         cpuc->enabled = 1;
842         barrier();
843
844         x86_pmu.enable_all(added);
845 }
846
847 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc,
848                                           u64 enable_mask)
849 {
850         wrmsrl(hwc->config_base + hwc->idx, hwc->config | enable_mask);
851 }
852
853 static inline void x86_pmu_disable_event(struct perf_event *event)
854 {
855         struct hw_perf_event *hwc = &event->hw;
856
857         wrmsrl(hwc->config_base + hwc->idx, hwc->config);
858 }
859
860 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
861
862 /*
863  * Set the next IRQ period, based on the hwc->period_left value.
864  * To be called with the event disabled in hw:
865  */
866 static int
867 x86_perf_event_set_period(struct perf_event *event)
868 {
869         struct hw_perf_event *hwc = &event->hw;
870         s64 left = atomic64_read(&hwc->period_left);
871         s64 period = hwc->sample_period;
872         int ret = 0, idx = hwc->idx;
873
874         if (idx == X86_PMC_IDX_FIXED_BTS)
875                 return 0;
876
877         /*
878          * If we are way outside a reasonable range then just skip forward:
879          */
880         if (unlikely(left <= -period)) {
881                 left = period;
882                 atomic64_set(&hwc->period_left, left);
883                 hwc->last_period = period;
884                 ret = 1;
885         }
886
887         if (unlikely(left <= 0)) {
888                 left += period;
889                 atomic64_set(&hwc->period_left, left);
890                 hwc->last_period = period;
891                 ret = 1;
892         }
893         /*
894          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
895          */
896         if (unlikely(left < 2))
897                 left = 2;
898
899         if (left > x86_pmu.max_period)
900                 left = x86_pmu.max_period;
901
902         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
903
904         /*
905          * The hw event starts counting from this event offset,
906          * mark it to be able to extra future deltas:
907          */
908         atomic64_set(&hwc->prev_count, (u64)-left);
909
910         wrmsrl(hwc->event_base + idx,
911                         (u64)(-left) & x86_pmu.cntval_mask);
912
913         perf_event_update_userpage(event);
914
915         return ret;
916 }
917
918 static void x86_pmu_enable_event(struct perf_event *event)
919 {
920         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
921         if (cpuc->enabled)
922                 __x86_pmu_enable_event(&event->hw,
923                                        ARCH_PERFMON_EVENTSEL_ENABLE);
924 }
925
926 /*
927  * activate a single event
928  *
929  * The event is added to the group of enabled events
930  * but only if it can be scehduled with existing events.
931  *
932  * Called with PMU disabled. If successful and return value 1,
933  * then guaranteed to call perf_enable() and hw_perf_enable()
934  */
935 static int x86_pmu_enable(struct perf_event *event)
936 {
937         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
938         struct hw_perf_event *hwc;
939         int assign[X86_PMC_IDX_MAX];
940         int n, n0, ret;
941
942         hwc = &event->hw;
943
944         n0 = cpuc->n_events;
945         n = collect_events(cpuc, event, false);
946         if (n < 0)
947                 return n;
948
949         ret = x86_pmu.schedule_events(cpuc, n, assign);
950         if (ret)
951                 return ret;
952         /*
953          * copy new assignment, now we know it is possible
954          * will be used by hw_perf_enable()
955          */
956         memcpy(cpuc->assign, assign, n*sizeof(int));
957
958         cpuc->n_events = n;
959         cpuc->n_added += n - n0;
960
961         return 0;
962 }
963
964 static int x86_pmu_start(struct perf_event *event)
965 {
966         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
967         int idx = event->hw.idx;
968
969         if (idx == -1)
970                 return -EAGAIN;
971
972         x86_perf_event_set_period(event);
973         cpuc->events[idx] = event;
974         __set_bit(idx, cpuc->active_mask);
975         x86_pmu.enable(event);
976         perf_event_update_userpage(event);
977
978         return 0;
979 }
980
981 static void x86_pmu_unthrottle(struct perf_event *event)
982 {
983         int ret = x86_pmu_start(event);
984         WARN_ON_ONCE(ret);
985 }
986
987 void perf_event_print_debug(void)
988 {
989         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
990         u64 pebs;
991         struct cpu_hw_events *cpuc;
992         unsigned long flags;
993         int cpu, idx;
994
995         if (!x86_pmu.num_counters)
996                 return;
997
998         local_irq_save(flags);
999
1000         cpu = smp_processor_id();
1001         cpuc = &per_cpu(cpu_hw_events, cpu);
1002
1003         if (x86_pmu.version >= 2) {
1004                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1005                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1006                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1007                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1008                 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1009
1010                 pr_info("\n");
1011                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1012                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1013                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1014                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1015                 pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1016         }
1017         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1018
1019         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1020                 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1021                 rdmsrl(x86_pmu.perfctr  + idx, pmc_count);
1022
1023                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1024
1025                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1026                         cpu, idx, pmc_ctrl);
1027                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1028                         cpu, idx, pmc_count);
1029                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1030                         cpu, idx, prev_left);
1031         }
1032         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1033                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1034
1035                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1036                         cpu, idx, pmc_count);
1037         }
1038         local_irq_restore(flags);
1039 }
1040
1041 static void x86_pmu_stop(struct perf_event *event)
1042 {
1043         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1044         struct hw_perf_event *hwc = &event->hw;
1045         int idx = hwc->idx;
1046
1047         if (!__test_and_clear_bit(idx, cpuc->active_mask))
1048                 return;
1049
1050         x86_pmu.disable(event);
1051
1052         /*
1053          * Drain the remaining delta count out of a event
1054          * that we are disabling:
1055          */
1056         x86_perf_event_update(event);
1057
1058         cpuc->events[idx] = NULL;
1059 }
1060
1061 static void x86_pmu_disable(struct perf_event *event)
1062 {
1063         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1064         int i;
1065
1066         x86_pmu_stop(event);
1067
1068         for (i = 0; i < cpuc->n_events; i++) {
1069                 if (event == cpuc->event_list[i]) {
1070
1071                         if (x86_pmu.put_event_constraints)
1072                                 x86_pmu.put_event_constraints(cpuc, event);
1073
1074                         while (++i < cpuc->n_events)
1075                                 cpuc->event_list[i-1] = cpuc->event_list[i];
1076
1077                         --cpuc->n_events;
1078                         break;
1079                 }
1080         }
1081         perf_event_update_userpage(event);
1082 }
1083
1084 static int x86_pmu_handle_irq(struct pt_regs *regs)
1085 {
1086         struct perf_sample_data data;
1087         struct cpu_hw_events *cpuc;
1088         struct perf_event *event;
1089         struct hw_perf_event *hwc;
1090         int idx, handled = 0;
1091         u64 val;
1092
1093         perf_sample_data_init(&data, 0);
1094
1095         cpuc = &__get_cpu_var(cpu_hw_events);
1096
1097         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1098                 if (!test_bit(idx, cpuc->active_mask))
1099                         continue;
1100
1101                 event = cpuc->events[idx];
1102                 hwc = &event->hw;
1103
1104                 val = x86_perf_event_update(event);
1105                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1106                         continue;
1107
1108                 /*
1109                  * event overflow
1110                  */
1111                 handled         = 1;
1112                 data.period     = event->hw.last_period;
1113
1114                 if (!x86_perf_event_set_period(event))
1115                         continue;
1116
1117                 if (perf_event_overflow(event, 1, &data, regs))
1118                         x86_pmu_stop(event);
1119         }
1120
1121         if (handled)
1122                 inc_irq_stat(apic_perf_irqs);
1123
1124         return handled;
1125 }
1126
1127 void smp_perf_pending_interrupt(struct pt_regs *regs)
1128 {
1129         irq_enter();
1130         ack_APIC_irq();
1131         inc_irq_stat(apic_pending_irqs);
1132         perf_event_do_pending();
1133         irq_exit();
1134 }
1135
1136 void set_perf_event_pending(void)
1137 {
1138 #ifdef CONFIG_X86_LOCAL_APIC
1139         if (!x86_pmu.apic || !x86_pmu_initialized())
1140                 return;
1141
1142         apic->send_IPI_self(LOCAL_PENDING_VECTOR);
1143 #endif
1144 }
1145
1146 void perf_events_lapic_init(void)
1147 {
1148         if (!x86_pmu.apic || !x86_pmu_initialized())
1149                 return;
1150
1151         /*
1152          * Always use NMI for PMU
1153          */
1154         apic_write(APIC_LVTPC, APIC_DM_NMI);
1155 }
1156
1157 static int __kprobes
1158 perf_event_nmi_handler(struct notifier_block *self,
1159                          unsigned long cmd, void *__args)
1160 {
1161         struct die_args *args = __args;
1162         struct pt_regs *regs;
1163
1164         if (!atomic_read(&active_events))
1165                 return NOTIFY_DONE;
1166
1167         switch (cmd) {
1168         case DIE_NMI:
1169         case DIE_NMI_IPI:
1170                 break;
1171
1172         default:
1173                 return NOTIFY_DONE;
1174         }
1175
1176         regs = args->regs;
1177
1178         apic_write(APIC_LVTPC, APIC_DM_NMI);
1179         /*
1180          * Can't rely on the handled return value to say it was our NMI, two
1181          * events could trigger 'simultaneously' raising two back-to-back NMIs.
1182          *
1183          * If the first NMI handles both, the latter will be empty and daze
1184          * the CPU.
1185          */
1186         x86_pmu.handle_irq(regs);
1187
1188         return NOTIFY_STOP;
1189 }
1190
1191 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1192         .notifier_call          = perf_event_nmi_handler,
1193         .next                   = NULL,
1194         .priority               = 1
1195 };
1196
1197 static struct event_constraint unconstrained;
1198 static struct event_constraint emptyconstraint;
1199
1200 static struct event_constraint *
1201 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1202 {
1203         struct event_constraint *c;
1204
1205         if (x86_pmu.event_constraints) {
1206                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1207                         if ((event->hw.config & c->cmask) == c->code)
1208                                 return c;
1209                 }
1210         }
1211
1212         return &unconstrained;
1213 }
1214
1215 static int x86_event_sched_in(struct perf_event *event,
1216                           struct perf_cpu_context *cpuctx)
1217 {
1218         int ret = 0;
1219
1220         event->state = PERF_EVENT_STATE_ACTIVE;
1221         event->oncpu = smp_processor_id();
1222         event->tstamp_running += event->ctx->time - event->tstamp_stopped;
1223
1224         if (!is_x86_event(event))
1225                 ret = event->pmu->enable(event);
1226
1227         if (!ret && !is_software_event(event))
1228                 cpuctx->active_oncpu++;
1229
1230         if (!ret && event->attr.exclusive)
1231                 cpuctx->exclusive = 1;
1232
1233         return ret;
1234 }
1235
1236 static void x86_event_sched_out(struct perf_event *event,
1237                             struct perf_cpu_context *cpuctx)
1238 {
1239         event->state = PERF_EVENT_STATE_INACTIVE;
1240         event->oncpu = -1;
1241
1242         if (!is_x86_event(event))
1243                 event->pmu->disable(event);
1244
1245         event->tstamp_running -= event->ctx->time - event->tstamp_stopped;
1246
1247         if (!is_software_event(event))
1248                 cpuctx->active_oncpu--;
1249
1250         if (event->attr.exclusive || !cpuctx->active_oncpu)
1251                 cpuctx->exclusive = 0;
1252 }
1253
1254 /*
1255  * Called to enable a whole group of events.
1256  * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
1257  * Assumes the caller has disabled interrupts and has
1258  * frozen the PMU with hw_perf_save_disable.
1259  *
1260  * called with PMU disabled. If successful and return value 1,
1261  * then guaranteed to call perf_enable() and hw_perf_enable()
1262  */
1263 int hw_perf_group_sched_in(struct perf_event *leader,
1264                struct perf_cpu_context *cpuctx,
1265                struct perf_event_context *ctx)
1266 {
1267         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1268         struct perf_event *sub;
1269         int assign[X86_PMC_IDX_MAX];
1270         int n0, n1, ret;
1271
1272         if (!x86_pmu_initialized())
1273                 return 0;
1274
1275         /* n0 = total number of events */
1276         n0 = collect_events(cpuc, leader, true);
1277         if (n0 < 0)
1278                 return n0;
1279
1280         ret = x86_pmu.schedule_events(cpuc, n0, assign);
1281         if (ret)
1282                 return ret;
1283
1284         ret = x86_event_sched_in(leader, cpuctx);
1285         if (ret)
1286                 return ret;
1287
1288         n1 = 1;
1289         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1290                 if (sub->state > PERF_EVENT_STATE_OFF) {
1291                         ret = x86_event_sched_in(sub, cpuctx);
1292                         if (ret)
1293                                 goto undo;
1294                         ++n1;
1295                 }
1296         }
1297         /*
1298          * copy new assignment, now we know it is possible
1299          * will be used by hw_perf_enable()
1300          */
1301         memcpy(cpuc->assign, assign, n0*sizeof(int));
1302
1303         cpuc->n_events  = n0;
1304         cpuc->n_added  += n1;
1305         ctx->nr_active += n1;
1306
1307         /*
1308          * 1 means successful and events are active
1309          * This is not quite true because we defer
1310          * actual activation until hw_perf_enable() but
1311          * this way we* ensure caller won't try to enable
1312          * individual events
1313          */
1314         return 1;
1315 undo:
1316         x86_event_sched_out(leader, cpuctx);
1317         n0  = 1;
1318         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1319                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
1320                         x86_event_sched_out(sub, cpuctx);
1321                         if (++n0 == n1)
1322                                 break;
1323                 }
1324         }
1325         return ret;
1326 }
1327
1328 #include "perf_event_amd.c"
1329 #include "perf_event_p6.c"
1330 #include "perf_event_p4.c"
1331 #include "perf_event_intel_lbr.c"
1332 #include "perf_event_intel_ds.c"
1333 #include "perf_event_intel.c"
1334
1335 static int __cpuinit
1336 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1337 {
1338         unsigned int cpu = (long)hcpu;
1339         int ret = NOTIFY_OK;
1340
1341         switch (action & ~CPU_TASKS_FROZEN) {
1342         case CPU_UP_PREPARE:
1343                 if (x86_pmu.cpu_prepare)
1344                         ret = x86_pmu.cpu_prepare(cpu);
1345                 break;
1346
1347         case CPU_STARTING:
1348                 if (x86_pmu.cpu_starting)
1349                         x86_pmu.cpu_starting(cpu);
1350                 break;
1351
1352         case CPU_DYING:
1353                 if (x86_pmu.cpu_dying)
1354                         x86_pmu.cpu_dying(cpu);
1355                 break;
1356
1357         case CPU_UP_CANCELED:
1358         case CPU_DEAD:
1359                 if (x86_pmu.cpu_dead)
1360                         x86_pmu.cpu_dead(cpu);
1361                 break;
1362
1363         default:
1364                 break;
1365         }
1366
1367         return ret;
1368 }
1369
1370 static void __init pmu_check_apic(void)
1371 {
1372         if (cpu_has_apic)
1373                 return;
1374
1375         x86_pmu.apic = 0;
1376         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1377         pr_info("no hardware sampling interrupt available.\n");
1378 }
1379
1380 void __init init_hw_perf_events(void)
1381 {
1382         struct event_constraint *c;
1383         int err;
1384
1385         pr_info("Performance Events: ");
1386
1387         switch (boot_cpu_data.x86_vendor) {
1388         case X86_VENDOR_INTEL:
1389                 err = intel_pmu_init();
1390                 break;
1391         case X86_VENDOR_AMD:
1392                 err = amd_pmu_init();
1393                 break;
1394         default:
1395                 return;
1396         }
1397         if (err != 0) {
1398                 pr_cont("no PMU driver, software events only.\n");
1399                 return;
1400         }
1401
1402         pmu_check_apic();
1403
1404         pr_cont("%s PMU driver.\n", x86_pmu.name);
1405
1406         if (x86_pmu.quirks)
1407                 x86_pmu.quirks();
1408
1409         if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1410                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1411                      x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1412                 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1413         }
1414         x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1415         perf_max_events = x86_pmu.num_counters;
1416
1417         if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1418                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1419                      x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1420                 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1421         }
1422
1423         x86_pmu.intel_ctrl |=
1424                 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1425
1426         perf_events_lapic_init();
1427         register_die_notifier(&perf_event_nmi_notifier);
1428
1429         unconstrained = (struct event_constraint)
1430                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1431                                    0, x86_pmu.num_counters);
1432
1433         if (x86_pmu.event_constraints) {
1434                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1435                         if (c->cmask != X86_RAW_EVENT_MASK)
1436                                 continue;
1437
1438                         c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1439                         c->weight += x86_pmu.num_counters;
1440                 }
1441         }
1442
1443         pr_info("... version:                %d\n",     x86_pmu.version);
1444         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1445         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1446         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1447         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1448         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1449         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1450
1451         perf_cpu_notifier(x86_pmu_notifier);
1452 }
1453
1454 static inline void x86_pmu_read(struct perf_event *event)
1455 {
1456         x86_perf_event_update(event);
1457 }
1458
1459 static const struct pmu pmu = {
1460         .enable         = x86_pmu_enable,
1461         .disable        = x86_pmu_disable,
1462         .start          = x86_pmu_start,
1463         .stop           = x86_pmu_stop,
1464         .read           = x86_pmu_read,
1465         .unthrottle     = x86_pmu_unthrottle,
1466 };
1467
1468 /*
1469  * validate that we can schedule this event
1470  */
1471 static int validate_event(struct perf_event *event)
1472 {
1473         struct cpu_hw_events *fake_cpuc;
1474         struct event_constraint *c;
1475         int ret = 0;
1476
1477         fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1478         if (!fake_cpuc)
1479                 return -ENOMEM;
1480
1481         c = x86_pmu.get_event_constraints(fake_cpuc, event);
1482
1483         if (!c || !c->weight)
1484                 ret = -ENOSPC;
1485
1486         if (x86_pmu.put_event_constraints)
1487                 x86_pmu.put_event_constraints(fake_cpuc, event);
1488
1489         kfree(fake_cpuc);
1490
1491         return ret;
1492 }
1493
1494 /*
1495  * validate a single event group
1496  *
1497  * validation include:
1498  *      - check events are compatible which each other
1499  *      - events do not compete for the same counter
1500  *      - number of events <= number of counters
1501  *
1502  * validation ensures the group can be loaded onto the
1503  * PMU if it was the only group available.
1504  */
1505 static int validate_group(struct perf_event *event)
1506 {
1507         struct perf_event *leader = event->group_leader;
1508         struct cpu_hw_events *fake_cpuc;
1509         int ret, n;
1510
1511         ret = -ENOMEM;
1512         fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1513         if (!fake_cpuc)
1514                 goto out;
1515
1516         /*
1517          * the event is not yet connected with its
1518          * siblings therefore we must first collect
1519          * existing siblings, then add the new event
1520          * before we can simulate the scheduling
1521          */
1522         ret = -ENOSPC;
1523         n = collect_events(fake_cpuc, leader, true);
1524         if (n < 0)
1525                 goto out_free;
1526
1527         fake_cpuc->n_events = n;
1528         n = collect_events(fake_cpuc, event, false);
1529         if (n < 0)
1530                 goto out_free;
1531
1532         fake_cpuc->n_events = n;
1533
1534         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1535
1536 out_free:
1537         kfree(fake_cpuc);
1538 out:
1539         return ret;
1540 }
1541
1542 const struct pmu *hw_perf_event_init(struct perf_event *event)
1543 {
1544         const struct pmu *tmp;
1545         int err;
1546
1547         err = __hw_perf_event_init(event);
1548         if (!err) {
1549                 /*
1550                  * we temporarily connect event to its pmu
1551                  * such that validate_group() can classify
1552                  * it as an x86 event using is_x86_event()
1553                  */
1554                 tmp = event->pmu;
1555                 event->pmu = &pmu;
1556
1557                 if (event->group_leader != event)
1558                         err = validate_group(event);
1559                 else
1560                         err = validate_event(event);
1561
1562                 event->pmu = tmp;
1563         }
1564         if (err) {
1565                 if (event->destroy)
1566                         event->destroy(event);
1567                 return ERR_PTR(err);
1568         }
1569
1570         return &pmu;
1571 }
1572
1573 /*
1574  * callchain support
1575  */
1576
1577 static inline
1578 void callchain_store(struct perf_callchain_entry *entry, u64 ip)
1579 {
1580         if (entry->nr < PERF_MAX_STACK_DEPTH)
1581                 entry->ip[entry->nr++] = ip;
1582 }
1583
1584 static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
1585 static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
1586
1587
1588 static void
1589 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1590 {
1591         /* Ignore warnings */
1592 }
1593
1594 static void backtrace_warning(void *data, char *msg)
1595 {
1596         /* Ignore warnings */
1597 }
1598
1599 static int backtrace_stack(void *data, char *name)
1600 {
1601         return 0;
1602 }
1603
1604 static void backtrace_address(void *data, unsigned long addr, int reliable)
1605 {
1606         struct perf_callchain_entry *entry = data;
1607
1608         callchain_store(entry, addr);
1609 }
1610
1611 static const struct stacktrace_ops backtrace_ops = {
1612         .warning                = backtrace_warning,
1613         .warning_symbol         = backtrace_warning_symbol,
1614         .stack                  = backtrace_stack,
1615         .address                = backtrace_address,
1616         .walk_stack             = print_context_stack_bp,
1617 };
1618
1619 #include "../dumpstack.h"
1620
1621 static void
1622 perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
1623 {
1624         callchain_store(entry, PERF_CONTEXT_KERNEL);
1625         callchain_store(entry, regs->ip);
1626
1627         dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
1628 }
1629
1630 #ifdef CONFIG_COMPAT
1631 static inline int
1632 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1633 {
1634         /* 32-bit process in 64-bit kernel. */
1635         struct stack_frame_ia32 frame;
1636         const void __user *fp;
1637
1638         if (!test_thread_flag(TIF_IA32))
1639                 return 0;
1640
1641         fp = compat_ptr(regs->bp);
1642         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1643                 unsigned long bytes;
1644                 frame.next_frame     = 0;
1645                 frame.return_address = 0;
1646
1647                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1648                 if (bytes != sizeof(frame))
1649                         break;
1650
1651                 if (fp < compat_ptr(regs->sp))
1652                         break;
1653
1654                 callchain_store(entry, frame.return_address);
1655                 fp = compat_ptr(frame.next_frame);
1656         }
1657         return 1;
1658 }
1659 #else
1660 static inline int
1661 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1662 {
1663     return 0;
1664 }
1665 #endif
1666
1667 static void
1668 perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
1669 {
1670         struct stack_frame frame;
1671         const void __user *fp;
1672
1673         if (!user_mode(regs))
1674                 regs = task_pt_regs(current);
1675
1676         fp = (void __user *)regs->bp;
1677
1678         callchain_store(entry, PERF_CONTEXT_USER);
1679         callchain_store(entry, regs->ip);
1680
1681         if (perf_callchain_user32(regs, entry))
1682                 return;
1683
1684         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1685                 unsigned long bytes;
1686                 frame.next_frame             = NULL;
1687                 frame.return_address = 0;
1688
1689                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1690                 if (bytes != sizeof(frame))
1691                         break;
1692
1693                 if ((unsigned long)fp < regs->sp)
1694                         break;
1695
1696                 callchain_store(entry, frame.return_address);
1697                 fp = frame.next_frame;
1698         }
1699 }
1700
1701 static void
1702 perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
1703 {
1704         int is_user;
1705
1706         if (!regs)
1707                 return;
1708
1709         is_user = user_mode(regs);
1710
1711         if (is_user && current->state != TASK_RUNNING)
1712                 return;
1713
1714         if (!is_user)
1715                 perf_callchain_kernel(regs, entry);
1716
1717         if (current->mm)
1718                 perf_callchain_user(regs, entry);
1719 }
1720
1721 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1722 {
1723         struct perf_callchain_entry *entry;
1724
1725         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1726                 /* TODO: We don't support guest os callchain now */
1727                 return NULL;
1728         }
1729
1730         if (in_nmi())
1731                 entry = &__get_cpu_var(pmc_nmi_entry);
1732         else
1733                 entry = &__get_cpu_var(pmc_irq_entry);
1734
1735         entry->nr = 0;
1736
1737         perf_do_callchain(regs, entry);
1738
1739         return entry;
1740 }
1741
1742 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
1743 {
1744         regs->ip = ip;
1745         /*
1746          * perf_arch_fetch_caller_regs adds another call, we need to increment
1747          * the skip level
1748          */
1749         regs->bp = rewind_frame_pointer(skip + 1);
1750         regs->cs = __KERNEL_CS;
1751         local_save_flags(regs->flags);
1752 }
1753
1754 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1755 {
1756         unsigned long ip;
1757
1758         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1759                 ip = perf_guest_cbs->get_guest_ip();
1760         else
1761                 ip = instruction_pointer(regs);
1762
1763         return ip;
1764 }
1765
1766 unsigned long perf_misc_flags(struct pt_regs *regs)
1767 {
1768         int misc = 0;
1769
1770         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1771                 if (perf_guest_cbs->is_user_mode())
1772                         misc |= PERF_RECORD_MISC_GUEST_USER;
1773                 else
1774                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1775         } else {
1776                 if (user_mode(regs))
1777                         misc |= PERF_RECORD_MISC_USER;
1778                 else
1779                         misc |= PERF_RECORD_MISC_KERNEL;
1780         }
1781
1782         if (regs->flags & PERF_EFLAGS_EXACT)
1783                 misc |= PERF_RECORD_MISC_EXACT;
1784
1785         return misc;
1786 }