sh: romImage support V2
[linux-2.6.git] / arch / sparc / mm / init_64.c
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/percpu.h>
27 #include <linux/lmb.h>
28 #include <linux/mmzone.h>
29
30 #include <asm/head.h>
31 #include <asm/system.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/irq.h>
52
53 #include "init_64.h"
54
55 unsigned long kern_linear_pte_xor[2] __read_mostly;
56
57 /* A bitmap, one bit for every 256MB of physical memory.  If the bit
58  * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
59  * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
60  */
61 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
62
63 #ifndef CONFIG_DEBUG_PAGEALLOC
64 /* A special kernel TSB for 4MB and 256MB linear mappings.
65  * Space is allocated for this right after the trap table
66  * in arch/sparc64/kernel/head.S
67  */
68 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
69 #endif
70
71 #define MAX_BANKS       32
72
73 static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
74 static int pavail_ents __devinitdata;
75
76 static int cmp_p64(const void *a, const void *b)
77 {
78         const struct linux_prom64_registers *x = a, *y = b;
79
80         if (x->phys_addr > y->phys_addr)
81                 return 1;
82         if (x->phys_addr < y->phys_addr)
83                 return -1;
84         return 0;
85 }
86
87 static void __init read_obp_memory(const char *property,
88                                    struct linux_prom64_registers *regs,
89                                    int *num_ents)
90 {
91         int node = prom_finddevice("/memory");
92         int prop_size = prom_getproplen(node, property);
93         int ents, ret, i;
94
95         ents = prop_size / sizeof(struct linux_prom64_registers);
96         if (ents > MAX_BANKS) {
97                 prom_printf("The machine has more %s property entries than "
98                             "this kernel can support (%d).\n",
99                             property, MAX_BANKS);
100                 prom_halt();
101         }
102
103         ret = prom_getproperty(node, property, (char *) regs, prop_size);
104         if (ret == -1) {
105                 prom_printf("Couldn't get %s property from /memory.\n");
106                 prom_halt();
107         }
108
109         /* Sanitize what we got from the firmware, by page aligning
110          * everything.
111          */
112         for (i = 0; i < ents; i++) {
113                 unsigned long base, size;
114
115                 base = regs[i].phys_addr;
116                 size = regs[i].reg_size;
117
118                 size &= PAGE_MASK;
119                 if (base & ~PAGE_MASK) {
120                         unsigned long new_base = PAGE_ALIGN(base);
121
122                         size -= new_base - base;
123                         if ((long) size < 0L)
124                                 size = 0UL;
125                         base = new_base;
126                 }
127                 if (size == 0UL) {
128                         /* If it is empty, simply get rid of it.
129                          * This simplifies the logic of the other
130                          * functions that process these arrays.
131                          */
132                         memmove(&regs[i], &regs[i + 1],
133                                 (ents - i - 1) * sizeof(regs[0]));
134                         i--;
135                         ents--;
136                         continue;
137                 }
138                 regs[i].phys_addr = base;
139                 regs[i].reg_size = size;
140         }
141
142         *num_ents = ents;
143
144         sort(regs, ents, sizeof(struct linux_prom64_registers),
145              cmp_p64, NULL);
146 }
147
148 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
149 EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
150
151 /* Kernel physical address base and size in bytes.  */
152 unsigned long kern_base __read_mostly;
153 unsigned long kern_size __read_mostly;
154
155 /* Initial ramdisk setup */
156 extern unsigned long sparc_ramdisk_image64;
157 extern unsigned int sparc_ramdisk_image;
158 extern unsigned int sparc_ramdisk_size;
159
160 struct page *mem_map_zero __read_mostly;
161 EXPORT_SYMBOL(mem_map_zero);
162
163 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
164
165 unsigned long sparc64_kern_pri_context __read_mostly;
166 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
167 unsigned long sparc64_kern_sec_context __read_mostly;
168
169 int num_kernel_image_mappings;
170
171 #ifdef CONFIG_DEBUG_DCFLUSH
172 atomic_t dcpage_flushes = ATOMIC_INIT(0);
173 #ifdef CONFIG_SMP
174 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
175 #endif
176 #endif
177
178 inline void flush_dcache_page_impl(struct page *page)
179 {
180         BUG_ON(tlb_type == hypervisor);
181 #ifdef CONFIG_DEBUG_DCFLUSH
182         atomic_inc(&dcpage_flushes);
183 #endif
184
185 #ifdef DCACHE_ALIASING_POSSIBLE
186         __flush_dcache_page(page_address(page),
187                             ((tlb_type == spitfire) &&
188                              page_mapping(page) != NULL));
189 #else
190         if (page_mapping(page) != NULL &&
191             tlb_type == spitfire)
192                 __flush_icache_page(__pa(page_address(page)));
193 #endif
194 }
195
196 #define PG_dcache_dirty         PG_arch_1
197 #define PG_dcache_cpu_shift     32UL
198 #define PG_dcache_cpu_mask      \
199         ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
200
201 #define dcache_dirty_cpu(page) \
202         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
203
204 static inline void set_dcache_dirty(struct page *page, int this_cpu)
205 {
206         unsigned long mask = this_cpu;
207         unsigned long non_cpu_bits;
208
209         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
210         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
211
212         __asm__ __volatile__("1:\n\t"
213                              "ldx       [%2], %%g7\n\t"
214                              "and       %%g7, %1, %%g1\n\t"
215                              "or        %%g1, %0, %%g1\n\t"
216                              "casx      [%2], %%g7, %%g1\n\t"
217                              "cmp       %%g7, %%g1\n\t"
218                              "bne,pn    %%xcc, 1b\n\t"
219                              " nop"
220                              : /* no outputs */
221                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
222                              : "g1", "g7");
223 }
224
225 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
226 {
227         unsigned long mask = (1UL << PG_dcache_dirty);
228
229         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
230                              "1:\n\t"
231                              "ldx       [%2], %%g7\n\t"
232                              "srlx      %%g7, %4, %%g1\n\t"
233                              "and       %%g1, %3, %%g1\n\t"
234                              "cmp       %%g1, %0\n\t"
235                              "bne,pn    %%icc, 2f\n\t"
236                              " andn     %%g7, %1, %%g1\n\t"
237                              "casx      [%2], %%g7, %%g1\n\t"
238                              "cmp       %%g7, %%g1\n\t"
239                              "bne,pn    %%xcc, 1b\n\t"
240                              " nop\n"
241                              "2:"
242                              : /* no outputs */
243                              : "r" (cpu), "r" (mask), "r" (&page->flags),
244                                "i" (PG_dcache_cpu_mask),
245                                "i" (PG_dcache_cpu_shift)
246                              : "g1", "g7");
247 }
248
249 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
250 {
251         unsigned long tsb_addr = (unsigned long) ent;
252
253         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
254                 tsb_addr = __pa(tsb_addr);
255
256         __tsb_insert(tsb_addr, tag, pte);
257 }
258
259 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
260 unsigned long _PAGE_SZBITS __read_mostly;
261
262 static void flush_dcache(unsigned long pfn)
263 {
264         struct page *page;
265
266         page = pfn_to_page(pfn);
267         if (page && page_mapping(page)) {
268                 unsigned long pg_flags;
269
270                 pg_flags = page->flags;
271                 if (pg_flags & (1UL << PG_dcache_dirty)) {
272                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
273                                    PG_dcache_cpu_mask);
274                         int this_cpu = get_cpu();
275
276                         /* This is just to optimize away some function calls
277                          * in the SMP case.
278                          */
279                         if (cpu == this_cpu)
280                                 flush_dcache_page_impl(page);
281                         else
282                                 smp_flush_dcache_page_impl(page, cpu);
283
284                         clear_dcache_dirty_cpu(page, cpu);
285
286                         put_cpu();
287                 }
288         }
289 }
290
291 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
292 {
293         struct mm_struct *mm;
294         struct tsb *tsb;
295         unsigned long tag, flags;
296         unsigned long tsb_index, tsb_hash_shift;
297
298         if (tlb_type != hypervisor) {
299                 unsigned long pfn = pte_pfn(pte);
300
301                 if (pfn_valid(pfn))
302                         flush_dcache(pfn);
303         }
304
305         mm = vma->vm_mm;
306
307         tsb_index = MM_TSB_BASE;
308         tsb_hash_shift = PAGE_SHIFT;
309
310         spin_lock_irqsave(&mm->context.lock, flags);
311
312 #ifdef CONFIG_HUGETLB_PAGE
313         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
314                 if ((tlb_type == hypervisor &&
315                      (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
316                     (tlb_type != hypervisor &&
317                      (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
318                         tsb_index = MM_TSB_HUGE;
319                         tsb_hash_shift = HPAGE_SHIFT;
320                 }
321         }
322 #endif
323
324         tsb = mm->context.tsb_block[tsb_index].tsb;
325         tsb += ((address >> tsb_hash_shift) &
326                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
327         tag = (address >> 22UL);
328         tsb_insert(tsb, tag, pte_val(pte));
329
330         spin_unlock_irqrestore(&mm->context.lock, flags);
331 }
332
333 void flush_dcache_page(struct page *page)
334 {
335         struct address_space *mapping;
336         int this_cpu;
337
338         if (tlb_type == hypervisor)
339                 return;
340
341         /* Do not bother with the expensive D-cache flush if it
342          * is merely the zero page.  The 'bigcore' testcase in GDB
343          * causes this case to run millions of times.
344          */
345         if (page == ZERO_PAGE(0))
346                 return;
347
348         this_cpu = get_cpu();
349
350         mapping = page_mapping(page);
351         if (mapping && !mapping_mapped(mapping)) {
352                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
353                 if (dirty) {
354                         int dirty_cpu = dcache_dirty_cpu(page);
355
356                         if (dirty_cpu == this_cpu)
357                                 goto out;
358                         smp_flush_dcache_page_impl(page, dirty_cpu);
359                 }
360                 set_dcache_dirty(page, this_cpu);
361         } else {
362                 /* We could delay the flush for the !page_mapping
363                  * case too.  But that case is for exec env/arg
364                  * pages and those are %99 certainly going to get
365                  * faulted into the tlb (and thus flushed) anyways.
366                  */
367                 flush_dcache_page_impl(page);
368         }
369
370 out:
371         put_cpu();
372 }
373 EXPORT_SYMBOL(flush_dcache_page);
374
375 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
376 {
377         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
378         if (tlb_type == spitfire) {
379                 unsigned long kaddr;
380
381                 /* This code only runs on Spitfire cpus so this is
382                  * why we can assume _PAGE_PADDR_4U.
383                  */
384                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
385                         unsigned long paddr, mask = _PAGE_PADDR_4U;
386
387                         if (kaddr >= PAGE_OFFSET)
388                                 paddr = kaddr & mask;
389                         else {
390                                 pgd_t *pgdp = pgd_offset_k(kaddr);
391                                 pud_t *pudp = pud_offset(pgdp, kaddr);
392                                 pmd_t *pmdp = pmd_offset(pudp, kaddr);
393                                 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
394
395                                 paddr = pte_val(*ptep) & mask;
396                         }
397                         __flush_icache_page(paddr);
398                 }
399         }
400 }
401 EXPORT_SYMBOL(flush_icache_range);
402
403 void mmu_info(struct seq_file *m)
404 {
405         if (tlb_type == cheetah)
406                 seq_printf(m, "MMU Type\t: Cheetah\n");
407         else if (tlb_type == cheetah_plus)
408                 seq_printf(m, "MMU Type\t: Cheetah+\n");
409         else if (tlb_type == spitfire)
410                 seq_printf(m, "MMU Type\t: Spitfire\n");
411         else if (tlb_type == hypervisor)
412                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
413         else
414                 seq_printf(m, "MMU Type\t: ???\n");
415
416 #ifdef CONFIG_DEBUG_DCFLUSH
417         seq_printf(m, "DCPageFlushes\t: %d\n",
418                    atomic_read(&dcpage_flushes));
419 #ifdef CONFIG_SMP
420         seq_printf(m, "DCPageFlushesXC\t: %d\n",
421                    atomic_read(&dcpage_flushes_xcall));
422 #endif /* CONFIG_SMP */
423 #endif /* CONFIG_DEBUG_DCFLUSH */
424 }
425
426 struct linux_prom_translation prom_trans[512] __read_mostly;
427 unsigned int prom_trans_ents __read_mostly;
428
429 unsigned long kern_locked_tte_data;
430
431 /* The obp translations are saved based on 8k pagesize, since obp can
432  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
433  * HI_OBP_ADDRESS range are handled in ktlb.S.
434  */
435 static inline int in_obp_range(unsigned long vaddr)
436 {
437         return (vaddr >= LOW_OBP_ADDRESS &&
438                 vaddr < HI_OBP_ADDRESS);
439 }
440
441 static int cmp_ptrans(const void *a, const void *b)
442 {
443         const struct linux_prom_translation *x = a, *y = b;
444
445         if (x->virt > y->virt)
446                 return 1;
447         if (x->virt < y->virt)
448                 return -1;
449         return 0;
450 }
451
452 /* Read OBP translations property into 'prom_trans[]'.  */
453 static void __init read_obp_translations(void)
454 {
455         int n, node, ents, first, last, i;
456
457         node = prom_finddevice("/virtual-memory");
458         n = prom_getproplen(node, "translations");
459         if (unlikely(n == 0 || n == -1)) {
460                 prom_printf("prom_mappings: Couldn't get size.\n");
461                 prom_halt();
462         }
463         if (unlikely(n > sizeof(prom_trans))) {
464                 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
465                 prom_halt();
466         }
467
468         if ((n = prom_getproperty(node, "translations",
469                                   (char *)&prom_trans[0],
470                                   sizeof(prom_trans))) == -1) {
471                 prom_printf("prom_mappings: Couldn't get property.\n");
472                 prom_halt();
473         }
474
475         n = n / sizeof(struct linux_prom_translation);
476
477         ents = n;
478
479         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
480              cmp_ptrans, NULL);
481
482         /* Now kick out all the non-OBP entries.  */
483         for (i = 0; i < ents; i++) {
484                 if (in_obp_range(prom_trans[i].virt))
485                         break;
486         }
487         first = i;
488         for (; i < ents; i++) {
489                 if (!in_obp_range(prom_trans[i].virt))
490                         break;
491         }
492         last = i;
493
494         for (i = 0; i < (last - first); i++) {
495                 struct linux_prom_translation *src = &prom_trans[i + first];
496                 struct linux_prom_translation *dest = &prom_trans[i];
497
498                 *dest = *src;
499         }
500         for (; i < ents; i++) {
501                 struct linux_prom_translation *dest = &prom_trans[i];
502                 dest->virt = dest->size = dest->data = 0x0UL;
503         }
504
505         prom_trans_ents = last - first;
506
507         if (tlb_type == spitfire) {
508                 /* Clear diag TTE bits. */
509                 for (i = 0; i < prom_trans_ents; i++)
510                         prom_trans[i].data &= ~0x0003fe0000000000UL;
511         }
512 }
513
514 static void __init hypervisor_tlb_lock(unsigned long vaddr,
515                                        unsigned long pte,
516                                        unsigned long mmu)
517 {
518         unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
519
520         if (ret != 0) {
521                 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
522                             "errors with %lx\n", vaddr, 0, pte, mmu, ret);
523                 prom_halt();
524         }
525 }
526
527 static unsigned long kern_large_tte(unsigned long paddr);
528
529 static void __init remap_kernel(void)
530 {
531         unsigned long phys_page, tte_vaddr, tte_data;
532         int i, tlb_ent = sparc64_highest_locked_tlbent();
533
534         tte_vaddr = (unsigned long) KERNBASE;
535         phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
536         tte_data = kern_large_tte(phys_page);
537
538         kern_locked_tte_data = tte_data;
539
540         /* Now lock us into the TLBs via Hypervisor or OBP. */
541         if (tlb_type == hypervisor) {
542                 for (i = 0; i < num_kernel_image_mappings; i++) {
543                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
544                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
545                         tte_vaddr += 0x400000;
546                         tte_data += 0x400000;
547                 }
548         } else {
549                 for (i = 0; i < num_kernel_image_mappings; i++) {
550                         prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
551                         prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
552                         tte_vaddr += 0x400000;
553                         tte_data += 0x400000;
554                 }
555                 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
556         }
557         if (tlb_type == cheetah_plus) {
558                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
559                                             CTX_CHEETAH_PLUS_NUC);
560                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
561                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
562         }
563 }
564
565
566 static void __init inherit_prom_mappings(void)
567 {
568         /* Now fixup OBP's idea about where we really are mapped. */
569         printk("Remapping the kernel... ");
570         remap_kernel();
571         printk("done.\n");
572 }
573
574 void prom_world(int enter)
575 {
576         if (!enter)
577                 set_fs((mm_segment_t) { get_thread_current_ds() });
578
579         __asm__ __volatile__("flushw");
580 }
581
582 void __flush_dcache_range(unsigned long start, unsigned long end)
583 {
584         unsigned long va;
585
586         if (tlb_type == spitfire) {
587                 int n = 0;
588
589                 for (va = start; va < end; va += 32) {
590                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
591                         if (++n >= 512)
592                                 break;
593                 }
594         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
595                 start = __pa(start);
596                 end = __pa(end);
597                 for (va = start; va < end; va += 32)
598                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
599                                              "membar #Sync"
600                                              : /* no outputs */
601                                              : "r" (va),
602                                                "i" (ASI_DCACHE_INVALIDATE));
603         }
604 }
605 EXPORT_SYMBOL(__flush_dcache_range);
606
607 /* get_new_mmu_context() uses "cache + 1".  */
608 DEFINE_SPINLOCK(ctx_alloc_lock);
609 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
610 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
611 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
612 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
613
614 /* Caller does TLB context flushing on local CPU if necessary.
615  * The caller also ensures that CTX_VALID(mm->context) is false.
616  *
617  * We must be careful about boundary cases so that we never
618  * let the user have CTX 0 (nucleus) or we ever use a CTX
619  * version of zero (and thus NO_CONTEXT would not be caught
620  * by version mis-match tests in mmu_context.h).
621  *
622  * Always invoked with interrupts disabled.
623  */
624 void get_new_mmu_context(struct mm_struct *mm)
625 {
626         unsigned long ctx, new_ctx;
627         unsigned long orig_pgsz_bits;
628         unsigned long flags;
629         int new_version;
630
631         spin_lock_irqsave(&ctx_alloc_lock, flags);
632         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
633         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
634         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
635         new_version = 0;
636         if (new_ctx >= (1 << CTX_NR_BITS)) {
637                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
638                 if (new_ctx >= ctx) {
639                         int i;
640                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
641                                 CTX_FIRST_VERSION;
642                         if (new_ctx == 1)
643                                 new_ctx = CTX_FIRST_VERSION;
644
645                         /* Don't call memset, for 16 entries that's just
646                          * plain silly...
647                          */
648                         mmu_context_bmap[0] = 3;
649                         mmu_context_bmap[1] = 0;
650                         mmu_context_bmap[2] = 0;
651                         mmu_context_bmap[3] = 0;
652                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
653                                 mmu_context_bmap[i + 0] = 0;
654                                 mmu_context_bmap[i + 1] = 0;
655                                 mmu_context_bmap[i + 2] = 0;
656                                 mmu_context_bmap[i + 3] = 0;
657                         }
658                         new_version = 1;
659                         goto out;
660                 }
661         }
662         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
663         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
664 out:
665         tlb_context_cache = new_ctx;
666         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
667         spin_unlock_irqrestore(&ctx_alloc_lock, flags);
668
669         if (unlikely(new_version))
670                 smp_new_mmu_context_version();
671 }
672
673 static int numa_enabled = 1;
674 static int numa_debug;
675
676 static int __init early_numa(char *p)
677 {
678         if (!p)
679                 return 0;
680
681         if (strstr(p, "off"))
682                 numa_enabled = 0;
683
684         if (strstr(p, "debug"))
685                 numa_debug = 1;
686
687         return 0;
688 }
689 early_param("numa", early_numa);
690
691 #define numadbg(f, a...) \
692 do {    if (numa_debug) \
693                 printk(KERN_INFO f, ## a); \
694 } while (0)
695
696 static void __init find_ramdisk(unsigned long phys_base)
697 {
698 #ifdef CONFIG_BLK_DEV_INITRD
699         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
700                 unsigned long ramdisk_image;
701
702                 /* Older versions of the bootloader only supported a
703                  * 32-bit physical address for the ramdisk image
704                  * location, stored at sparc_ramdisk_image.  Newer
705                  * SILO versions set sparc_ramdisk_image to zero and
706                  * provide a full 64-bit physical address at
707                  * sparc_ramdisk_image64.
708                  */
709                 ramdisk_image = sparc_ramdisk_image;
710                 if (!ramdisk_image)
711                         ramdisk_image = sparc_ramdisk_image64;
712
713                 /* Another bootloader quirk.  The bootloader normalizes
714                  * the physical address to KERNBASE, so we have to
715                  * factor that back out and add in the lowest valid
716                  * physical page address to get the true physical address.
717                  */
718                 ramdisk_image -= KERNBASE;
719                 ramdisk_image += phys_base;
720
721                 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
722                         ramdisk_image, sparc_ramdisk_size);
723
724                 initrd_start = ramdisk_image;
725                 initrd_end = ramdisk_image + sparc_ramdisk_size;
726
727                 lmb_reserve(initrd_start, sparc_ramdisk_size);
728
729                 initrd_start += PAGE_OFFSET;
730                 initrd_end += PAGE_OFFSET;
731         }
732 #endif
733 }
734
735 struct node_mem_mask {
736         unsigned long mask;
737         unsigned long val;
738         unsigned long bootmem_paddr;
739 };
740 static struct node_mem_mask node_masks[MAX_NUMNODES];
741 static int num_node_masks;
742
743 int numa_cpu_lookup_table[NR_CPUS];
744 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
745
746 #ifdef CONFIG_NEED_MULTIPLE_NODES
747
748 struct mdesc_mblock {
749         u64     base;
750         u64     size;
751         u64     offset; /* RA-to-PA */
752 };
753 static struct mdesc_mblock *mblocks;
754 static int num_mblocks;
755
756 static unsigned long ra_to_pa(unsigned long addr)
757 {
758         int i;
759
760         for (i = 0; i < num_mblocks; i++) {
761                 struct mdesc_mblock *m = &mblocks[i];
762
763                 if (addr >= m->base &&
764                     addr < (m->base + m->size)) {
765                         addr += m->offset;
766                         break;
767                 }
768         }
769         return addr;
770 }
771
772 static int find_node(unsigned long addr)
773 {
774         int i;
775
776         addr = ra_to_pa(addr);
777         for (i = 0; i < num_node_masks; i++) {
778                 struct node_mem_mask *p = &node_masks[i];
779
780                 if ((addr & p->mask) == p->val)
781                         return i;
782         }
783         return -1;
784 }
785
786 static unsigned long long nid_range(unsigned long long start,
787                                     unsigned long long end, int *nid)
788 {
789         *nid = find_node(start);
790         start += PAGE_SIZE;
791         while (start < end) {
792                 int n = find_node(start);
793
794                 if (n != *nid)
795                         break;
796                 start += PAGE_SIZE;
797         }
798
799         if (start > end)
800                 start = end;
801
802         return start;
803 }
804 #else
805 static unsigned long long nid_range(unsigned long long start,
806                                     unsigned long long end, int *nid)
807 {
808         *nid = 0;
809         return end;
810 }
811 #endif
812
813 /* This must be invoked after performing all of the necessary
814  * add_active_range() calls for 'nid'.  We need to be able to get
815  * correct data from get_pfn_range_for_nid().
816  */
817 static void __init allocate_node_data(int nid)
818 {
819         unsigned long paddr, num_pages, start_pfn, end_pfn;
820         struct pglist_data *p;
821
822 #ifdef CONFIG_NEED_MULTIPLE_NODES
823         paddr = lmb_alloc_nid(sizeof(struct pglist_data),
824                               SMP_CACHE_BYTES, nid, nid_range);
825         if (!paddr) {
826                 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
827                 prom_halt();
828         }
829         NODE_DATA(nid) = __va(paddr);
830         memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
831
832         NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
833 #endif
834
835         p = NODE_DATA(nid);
836
837         get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
838         p->node_start_pfn = start_pfn;
839         p->node_spanned_pages = end_pfn - start_pfn;
840
841         if (p->node_spanned_pages) {
842                 num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
843
844                 paddr = lmb_alloc_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid,
845                                       nid_range);
846                 if (!paddr) {
847                         prom_printf("Cannot allocate bootmap for nid[%d]\n",
848                                   nid);
849                         prom_halt();
850                 }
851                 node_masks[nid].bootmem_paddr = paddr;
852         }
853 }
854
855 static void init_node_masks_nonnuma(void)
856 {
857         int i;
858
859         numadbg("Initializing tables for non-numa.\n");
860
861         node_masks[0].mask = node_masks[0].val = 0;
862         num_node_masks = 1;
863
864         for (i = 0; i < NR_CPUS; i++)
865                 numa_cpu_lookup_table[i] = 0;
866
867         numa_cpumask_lookup_table[0] = CPU_MASK_ALL;
868 }
869
870 #ifdef CONFIG_NEED_MULTIPLE_NODES
871 struct pglist_data *node_data[MAX_NUMNODES];
872
873 EXPORT_SYMBOL(numa_cpu_lookup_table);
874 EXPORT_SYMBOL(numa_cpumask_lookup_table);
875 EXPORT_SYMBOL(node_data);
876
877 struct mdesc_mlgroup {
878         u64     node;
879         u64     latency;
880         u64     match;
881         u64     mask;
882 };
883 static struct mdesc_mlgroup *mlgroups;
884 static int num_mlgroups;
885
886 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
887                                    u32 cfg_handle)
888 {
889         u64 arc;
890
891         mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
892                 u64 target = mdesc_arc_target(md, arc);
893                 const u64 *val;
894
895                 val = mdesc_get_property(md, target,
896                                          "cfg-handle", NULL);
897                 if (val && *val == cfg_handle)
898                         return 0;
899         }
900         return -ENODEV;
901 }
902
903 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
904                                     u32 cfg_handle)
905 {
906         u64 arc, candidate, best_latency = ~(u64)0;
907
908         candidate = MDESC_NODE_NULL;
909         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
910                 u64 target = mdesc_arc_target(md, arc);
911                 const char *name = mdesc_node_name(md, target);
912                 const u64 *val;
913
914                 if (strcmp(name, "pio-latency-group"))
915                         continue;
916
917                 val = mdesc_get_property(md, target, "latency", NULL);
918                 if (!val)
919                         continue;
920
921                 if (*val < best_latency) {
922                         candidate = target;
923                         best_latency = *val;
924                 }
925         }
926
927         if (candidate == MDESC_NODE_NULL)
928                 return -ENODEV;
929
930         return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
931 }
932
933 int of_node_to_nid(struct device_node *dp)
934 {
935         const struct linux_prom64_registers *regs;
936         struct mdesc_handle *md;
937         u32 cfg_handle;
938         int count, nid;
939         u64 grp;
940
941         /* This is the right thing to do on currently supported
942          * SUN4U NUMA platforms as well, as the PCI controller does
943          * not sit behind any particular memory controller.
944          */
945         if (!mlgroups)
946                 return -1;
947
948         regs = of_get_property(dp, "reg", NULL);
949         if (!regs)
950                 return -1;
951
952         cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
953
954         md = mdesc_grab();
955
956         count = 0;
957         nid = -1;
958         mdesc_for_each_node_by_name(md, grp, "group") {
959                 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
960                         nid = count;
961                         break;
962                 }
963                 count++;
964         }
965
966         mdesc_release(md);
967
968         return nid;
969 }
970
971 static void __init add_node_ranges(void)
972 {
973         int i;
974
975         for (i = 0; i < lmb.memory.cnt; i++) {
976                 unsigned long size = lmb_size_bytes(&lmb.memory, i);
977                 unsigned long start, end;
978
979                 start = lmb.memory.region[i].base;
980                 end = start + size;
981                 while (start < end) {
982                         unsigned long this_end;
983                         int nid;
984
985                         this_end = nid_range(start, end, &nid);
986
987                         numadbg("Adding active range nid[%d] "
988                                 "start[%lx] end[%lx]\n",
989                                 nid, start, this_end);
990
991                         add_active_range(nid,
992                                          start >> PAGE_SHIFT,
993                                          this_end >> PAGE_SHIFT);
994
995                         start = this_end;
996                 }
997         }
998 }
999
1000 static int __init grab_mlgroups(struct mdesc_handle *md)
1001 {
1002         unsigned long paddr;
1003         int count = 0;
1004         u64 node;
1005
1006         mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1007                 count++;
1008         if (!count)
1009                 return -ENOENT;
1010
1011         paddr = lmb_alloc(count * sizeof(struct mdesc_mlgroup),
1012                           SMP_CACHE_BYTES);
1013         if (!paddr)
1014                 return -ENOMEM;
1015
1016         mlgroups = __va(paddr);
1017         num_mlgroups = count;
1018
1019         count = 0;
1020         mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1021                 struct mdesc_mlgroup *m = &mlgroups[count++];
1022                 const u64 *val;
1023
1024                 m->node = node;
1025
1026                 val = mdesc_get_property(md, node, "latency", NULL);
1027                 m->latency = *val;
1028                 val = mdesc_get_property(md, node, "address-match", NULL);
1029                 m->match = *val;
1030                 val = mdesc_get_property(md, node, "address-mask", NULL);
1031                 m->mask = *val;
1032
1033                 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1034                         "match[%llx] mask[%llx]\n",
1035                         count - 1, m->node, m->latency, m->match, m->mask);
1036         }
1037
1038         return 0;
1039 }
1040
1041 static int __init grab_mblocks(struct mdesc_handle *md)
1042 {
1043         unsigned long paddr;
1044         int count = 0;
1045         u64 node;
1046
1047         mdesc_for_each_node_by_name(md, node, "mblock")
1048                 count++;
1049         if (!count)
1050                 return -ENOENT;
1051
1052         paddr = lmb_alloc(count * sizeof(struct mdesc_mblock),
1053                           SMP_CACHE_BYTES);
1054         if (!paddr)
1055                 return -ENOMEM;
1056
1057         mblocks = __va(paddr);
1058         num_mblocks = count;
1059
1060         count = 0;
1061         mdesc_for_each_node_by_name(md, node, "mblock") {
1062                 struct mdesc_mblock *m = &mblocks[count++];
1063                 const u64 *val;
1064
1065                 val = mdesc_get_property(md, node, "base", NULL);
1066                 m->base = *val;
1067                 val = mdesc_get_property(md, node, "size", NULL);
1068                 m->size = *val;
1069                 val = mdesc_get_property(md, node,
1070                                          "address-congruence-offset", NULL);
1071                 m->offset = *val;
1072
1073                 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1074                         count - 1, m->base, m->size, m->offset);
1075         }
1076
1077         return 0;
1078 }
1079
1080 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1081                                                u64 grp, cpumask_t *mask)
1082 {
1083         u64 arc;
1084
1085         cpus_clear(*mask);
1086
1087         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1088                 u64 target = mdesc_arc_target(md, arc);
1089                 const char *name = mdesc_node_name(md, target);
1090                 const u64 *id;
1091
1092                 if (strcmp(name, "cpu"))
1093                         continue;
1094                 id = mdesc_get_property(md, target, "id", NULL);
1095                 if (*id < nr_cpu_ids)
1096                         cpu_set(*id, *mask);
1097         }
1098 }
1099
1100 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1101 {
1102         int i;
1103
1104         for (i = 0; i < num_mlgroups; i++) {
1105                 struct mdesc_mlgroup *m = &mlgroups[i];
1106                 if (m->node == node)
1107                         return m;
1108         }
1109         return NULL;
1110 }
1111
1112 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1113                                       int index)
1114 {
1115         struct mdesc_mlgroup *candidate = NULL;
1116         u64 arc, best_latency = ~(u64)0;
1117         struct node_mem_mask *n;
1118
1119         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1120                 u64 target = mdesc_arc_target(md, arc);
1121                 struct mdesc_mlgroup *m = find_mlgroup(target);
1122                 if (!m)
1123                         continue;
1124                 if (m->latency < best_latency) {
1125                         candidate = m;
1126                         best_latency = m->latency;
1127                 }
1128         }
1129         if (!candidate)
1130                 return -ENOENT;
1131
1132         if (num_node_masks != index) {
1133                 printk(KERN_ERR "Inconsistent NUMA state, "
1134                        "index[%d] != num_node_masks[%d]\n",
1135                        index, num_node_masks);
1136                 return -EINVAL;
1137         }
1138
1139         n = &node_masks[num_node_masks++];
1140
1141         n->mask = candidate->mask;
1142         n->val = candidate->match;
1143
1144         numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1145                 index, n->mask, n->val, candidate->latency);
1146
1147         return 0;
1148 }
1149
1150 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1151                                          int index)
1152 {
1153         cpumask_t mask;
1154         int cpu;
1155
1156         numa_parse_mdesc_group_cpus(md, grp, &mask);
1157
1158         for_each_cpu_mask(cpu, mask)
1159                 numa_cpu_lookup_table[cpu] = index;
1160         numa_cpumask_lookup_table[index] = mask;
1161
1162         if (numa_debug) {
1163                 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1164                 for_each_cpu_mask(cpu, mask)
1165                         printk("%d ", cpu);
1166                 printk("]\n");
1167         }
1168
1169         return numa_attach_mlgroup(md, grp, index);
1170 }
1171
1172 static int __init numa_parse_mdesc(void)
1173 {
1174         struct mdesc_handle *md = mdesc_grab();
1175         int i, err, count;
1176         u64 node;
1177
1178         node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1179         if (node == MDESC_NODE_NULL) {
1180                 mdesc_release(md);
1181                 return -ENOENT;
1182         }
1183
1184         err = grab_mblocks(md);
1185         if (err < 0)
1186                 goto out;
1187
1188         err = grab_mlgroups(md);
1189         if (err < 0)
1190                 goto out;
1191
1192         count = 0;
1193         mdesc_for_each_node_by_name(md, node, "group") {
1194                 err = numa_parse_mdesc_group(md, node, count);
1195                 if (err < 0)
1196                         break;
1197                 count++;
1198         }
1199
1200         add_node_ranges();
1201
1202         for (i = 0; i < num_node_masks; i++) {
1203                 allocate_node_data(i);
1204                 node_set_online(i);
1205         }
1206
1207         err = 0;
1208 out:
1209         mdesc_release(md);
1210         return err;
1211 }
1212
1213 static int __init numa_parse_jbus(void)
1214 {
1215         unsigned long cpu, index;
1216
1217         /* NUMA node id is encoded in bits 36 and higher, and there is
1218          * a 1-to-1 mapping from CPU ID to NUMA node ID.
1219          */
1220         index = 0;
1221         for_each_present_cpu(cpu) {
1222                 numa_cpu_lookup_table[cpu] = index;
1223                 numa_cpumask_lookup_table[index] = cpumask_of_cpu(cpu);
1224                 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1225                 node_masks[index].val = cpu << 36UL;
1226
1227                 index++;
1228         }
1229         num_node_masks = index;
1230
1231         add_node_ranges();
1232
1233         for (index = 0; index < num_node_masks; index++) {
1234                 allocate_node_data(index);
1235                 node_set_online(index);
1236         }
1237
1238         return 0;
1239 }
1240
1241 static int __init numa_parse_sun4u(void)
1242 {
1243         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1244                 unsigned long ver;
1245
1246                 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1247                 if ((ver >> 32UL) == __JALAPENO_ID ||
1248                     (ver >> 32UL) == __SERRANO_ID)
1249                         return numa_parse_jbus();
1250         }
1251         return -1;
1252 }
1253
1254 static int __init bootmem_init_numa(void)
1255 {
1256         int err = -1;
1257
1258         numadbg("bootmem_init_numa()\n");
1259
1260         if (numa_enabled) {
1261                 if (tlb_type == hypervisor)
1262                         err = numa_parse_mdesc();
1263                 else
1264                         err = numa_parse_sun4u();
1265         }
1266         return err;
1267 }
1268
1269 #else
1270
1271 static int bootmem_init_numa(void)
1272 {
1273         return -1;
1274 }
1275
1276 #endif
1277
1278 static void __init bootmem_init_nonnuma(void)
1279 {
1280         unsigned long top_of_ram = lmb_end_of_DRAM();
1281         unsigned long total_ram = lmb_phys_mem_size();
1282         unsigned int i;
1283
1284         numadbg("bootmem_init_nonnuma()\n");
1285
1286         printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1287                top_of_ram, total_ram);
1288         printk(KERN_INFO "Memory hole size: %ldMB\n",
1289                (top_of_ram - total_ram) >> 20);
1290
1291         init_node_masks_nonnuma();
1292
1293         for (i = 0; i < lmb.memory.cnt; i++) {
1294                 unsigned long size = lmb_size_bytes(&lmb.memory, i);
1295                 unsigned long start_pfn, end_pfn;
1296
1297                 if (!size)
1298                         continue;
1299
1300                 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
1301                 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
1302                 add_active_range(0, start_pfn, end_pfn);
1303         }
1304
1305         allocate_node_data(0);
1306
1307         node_set_online(0);
1308 }
1309
1310 static void __init reserve_range_in_node(int nid, unsigned long start,
1311                                          unsigned long end)
1312 {
1313         numadbg("    reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1314                 nid, start, end);
1315         while (start < end) {
1316                 unsigned long this_end;
1317                 int n;
1318
1319                 this_end = nid_range(start, end, &n);
1320                 if (n == nid) {
1321                         numadbg("      MATCH reserving range [%lx:%lx]\n",
1322                                 start, this_end);
1323                         reserve_bootmem_node(NODE_DATA(nid), start,
1324                                              (this_end - start), BOOTMEM_DEFAULT);
1325                 } else
1326                         numadbg("      NO MATCH, advancing start to %lx\n",
1327                                 this_end);
1328
1329                 start = this_end;
1330         }
1331 }
1332
1333 static void __init trim_reserved_in_node(int nid)
1334 {
1335         int i;
1336
1337         numadbg("  trim_reserved_in_node(%d)\n", nid);
1338
1339         for (i = 0; i < lmb.reserved.cnt; i++) {
1340                 unsigned long start = lmb.reserved.region[i].base;
1341                 unsigned long size = lmb_size_bytes(&lmb.reserved, i);
1342                 unsigned long end = start + size;
1343
1344                 reserve_range_in_node(nid, start, end);
1345         }
1346 }
1347
1348 static void __init bootmem_init_one_node(int nid)
1349 {
1350         struct pglist_data *p;
1351
1352         numadbg("bootmem_init_one_node(%d)\n", nid);
1353
1354         p = NODE_DATA(nid);
1355
1356         if (p->node_spanned_pages) {
1357                 unsigned long paddr = node_masks[nid].bootmem_paddr;
1358                 unsigned long end_pfn;
1359
1360                 end_pfn = p->node_start_pfn + p->node_spanned_pages;
1361
1362                 numadbg("  init_bootmem_node(%d, %lx, %lx, %lx)\n",
1363                         nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
1364
1365                 init_bootmem_node(p, paddr >> PAGE_SHIFT,
1366                                   p->node_start_pfn, end_pfn);
1367
1368                 numadbg("  free_bootmem_with_active_regions(%d, %lx)\n",
1369                         nid, end_pfn);
1370                 free_bootmem_with_active_regions(nid, end_pfn);
1371
1372                 trim_reserved_in_node(nid);
1373
1374                 numadbg("  sparse_memory_present_with_active_regions(%d)\n",
1375                         nid);
1376                 sparse_memory_present_with_active_regions(nid);
1377         }
1378 }
1379
1380 static unsigned long __init bootmem_init(unsigned long phys_base)
1381 {
1382         unsigned long end_pfn;
1383         int nid;
1384
1385         end_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
1386         max_pfn = max_low_pfn = end_pfn;
1387         min_low_pfn = (phys_base >> PAGE_SHIFT);
1388
1389         if (bootmem_init_numa() < 0)
1390                 bootmem_init_nonnuma();
1391
1392         /* XXX cpu notifier XXX */
1393
1394         for_each_online_node(nid)
1395                 bootmem_init_one_node(nid);
1396
1397         sparse_init();
1398
1399         return end_pfn;
1400 }
1401
1402 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1403 static int pall_ents __initdata;
1404
1405 #ifdef CONFIG_DEBUG_PAGEALLOC
1406 static unsigned long __ref kernel_map_range(unsigned long pstart,
1407                                             unsigned long pend, pgprot_t prot)
1408 {
1409         unsigned long vstart = PAGE_OFFSET + pstart;
1410         unsigned long vend = PAGE_OFFSET + pend;
1411         unsigned long alloc_bytes = 0UL;
1412
1413         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1414                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1415                             vstart, vend);
1416                 prom_halt();
1417         }
1418
1419         while (vstart < vend) {
1420                 unsigned long this_end, paddr = __pa(vstart);
1421                 pgd_t *pgd = pgd_offset_k(vstart);
1422                 pud_t *pud;
1423                 pmd_t *pmd;
1424                 pte_t *pte;
1425
1426                 pud = pud_offset(pgd, vstart);
1427                 if (pud_none(*pud)) {
1428                         pmd_t *new;
1429
1430                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1431                         alloc_bytes += PAGE_SIZE;
1432                         pud_populate(&init_mm, pud, new);
1433                 }
1434
1435                 pmd = pmd_offset(pud, vstart);
1436                 if (!pmd_present(*pmd)) {
1437                         pte_t *new;
1438
1439                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1440                         alloc_bytes += PAGE_SIZE;
1441                         pmd_populate_kernel(&init_mm, pmd, new);
1442                 }
1443
1444                 pte = pte_offset_kernel(pmd, vstart);
1445                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1446                 if (this_end > vend)
1447                         this_end = vend;
1448
1449                 while (vstart < this_end) {
1450                         pte_val(*pte) = (paddr | pgprot_val(prot));
1451
1452                         vstart += PAGE_SIZE;
1453                         paddr += PAGE_SIZE;
1454                         pte++;
1455                 }
1456         }
1457
1458         return alloc_bytes;
1459 }
1460
1461 extern unsigned int kvmap_linear_patch[1];
1462 #endif /* CONFIG_DEBUG_PAGEALLOC */
1463
1464 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1465 {
1466         const unsigned long shift_256MB = 28;
1467         const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1468         const unsigned long size_256MB = (1UL << shift_256MB);
1469
1470         while (start < end) {
1471                 long remains;
1472
1473                 remains = end - start;
1474                 if (remains < size_256MB)
1475                         break;
1476
1477                 if (start & mask_256MB) {
1478                         start = (start + size_256MB) & ~mask_256MB;
1479                         continue;
1480                 }
1481
1482                 while (remains >= size_256MB) {
1483                         unsigned long index = start >> shift_256MB;
1484
1485                         __set_bit(index, kpte_linear_bitmap);
1486
1487                         start += size_256MB;
1488                         remains -= size_256MB;
1489                 }
1490         }
1491 }
1492
1493 static void __init init_kpte_bitmap(void)
1494 {
1495         unsigned long i;
1496
1497         for (i = 0; i < pall_ents; i++) {
1498                 unsigned long phys_start, phys_end;
1499
1500                 phys_start = pall[i].phys_addr;
1501                 phys_end = phys_start + pall[i].reg_size;
1502
1503                 mark_kpte_bitmap(phys_start, phys_end);
1504         }
1505 }
1506
1507 static void __init kernel_physical_mapping_init(void)
1508 {
1509 #ifdef CONFIG_DEBUG_PAGEALLOC
1510         unsigned long i, mem_alloced = 0UL;
1511
1512         for (i = 0; i < pall_ents; i++) {
1513                 unsigned long phys_start, phys_end;
1514
1515                 phys_start = pall[i].phys_addr;
1516                 phys_end = phys_start + pall[i].reg_size;
1517
1518                 mem_alloced += kernel_map_range(phys_start, phys_end,
1519                                                 PAGE_KERNEL);
1520         }
1521
1522         printk("Allocated %ld bytes for kernel page tables.\n",
1523                mem_alloced);
1524
1525         kvmap_linear_patch[0] = 0x01000000; /* nop */
1526         flushi(&kvmap_linear_patch[0]);
1527
1528         __flush_tlb_all();
1529 #endif
1530 }
1531
1532 #ifdef CONFIG_DEBUG_PAGEALLOC
1533 void kernel_map_pages(struct page *page, int numpages, int enable)
1534 {
1535         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1536         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1537
1538         kernel_map_range(phys_start, phys_end,
1539                          (enable ? PAGE_KERNEL : __pgprot(0)));
1540
1541         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1542                                PAGE_OFFSET + phys_end);
1543
1544         /* we should perform an IPI and flush all tlbs,
1545          * but that can deadlock->flush only current cpu.
1546          */
1547         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1548                                  PAGE_OFFSET + phys_end);
1549 }
1550 #endif
1551
1552 unsigned long __init find_ecache_flush_span(unsigned long size)
1553 {
1554         int i;
1555
1556         for (i = 0; i < pavail_ents; i++) {
1557                 if (pavail[i].reg_size >= size)
1558                         return pavail[i].phys_addr;
1559         }
1560
1561         return ~0UL;
1562 }
1563
1564 static void __init tsb_phys_patch(void)
1565 {
1566         struct tsb_ldquad_phys_patch_entry *pquad;
1567         struct tsb_phys_patch_entry *p;
1568
1569         pquad = &__tsb_ldquad_phys_patch;
1570         while (pquad < &__tsb_ldquad_phys_patch_end) {
1571                 unsigned long addr = pquad->addr;
1572
1573                 if (tlb_type == hypervisor)
1574                         *(unsigned int *) addr = pquad->sun4v_insn;
1575                 else
1576                         *(unsigned int *) addr = pquad->sun4u_insn;
1577                 wmb();
1578                 __asm__ __volatile__("flush     %0"
1579                                      : /* no outputs */
1580                                      : "r" (addr));
1581
1582                 pquad++;
1583         }
1584
1585         p = &__tsb_phys_patch;
1586         while (p < &__tsb_phys_patch_end) {
1587                 unsigned long addr = p->addr;
1588
1589                 *(unsigned int *) addr = p->insn;
1590                 wmb();
1591                 __asm__ __volatile__("flush     %0"
1592                                      : /* no outputs */
1593                                      : "r" (addr));
1594
1595                 p++;
1596         }
1597 }
1598
1599 /* Don't mark as init, we give this to the Hypervisor.  */
1600 #ifndef CONFIG_DEBUG_PAGEALLOC
1601 #define NUM_KTSB_DESCR  2
1602 #else
1603 #define NUM_KTSB_DESCR  1
1604 #endif
1605 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1606 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1607
1608 static void __init sun4v_ktsb_init(void)
1609 {
1610         unsigned long ktsb_pa;
1611
1612         /* First KTSB for PAGE_SIZE mappings.  */
1613         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1614
1615         switch (PAGE_SIZE) {
1616         case 8 * 1024:
1617         default:
1618                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1619                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1620                 break;
1621
1622         case 64 * 1024:
1623                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1624                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1625                 break;
1626
1627         case 512 * 1024:
1628                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1629                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1630                 break;
1631
1632         case 4 * 1024 * 1024:
1633                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1634                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1635                 break;
1636         };
1637
1638         ktsb_descr[0].assoc = 1;
1639         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1640         ktsb_descr[0].ctx_idx = 0;
1641         ktsb_descr[0].tsb_base = ktsb_pa;
1642         ktsb_descr[0].resv = 0;
1643
1644 #ifndef CONFIG_DEBUG_PAGEALLOC
1645         /* Second KTSB for 4MB/256MB mappings.  */
1646         ktsb_pa = (kern_base +
1647                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1648
1649         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1650         ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1651                                    HV_PGSZ_MASK_256MB);
1652         ktsb_descr[1].assoc = 1;
1653         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1654         ktsb_descr[1].ctx_idx = 0;
1655         ktsb_descr[1].tsb_base = ktsb_pa;
1656         ktsb_descr[1].resv = 0;
1657 #endif
1658 }
1659
1660 void __cpuinit sun4v_ktsb_register(void)
1661 {
1662         unsigned long pa, ret;
1663
1664         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1665
1666         ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1667         if (ret != 0) {
1668                 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1669                             "errors with %lx\n", pa, ret);
1670                 prom_halt();
1671         }
1672 }
1673
1674 /* paging_init() sets up the page tables */
1675
1676 static unsigned long last_valid_pfn;
1677 pgd_t swapper_pg_dir[2048];
1678
1679 static void sun4u_pgprot_init(void);
1680 static void sun4v_pgprot_init(void);
1681
1682 void __init paging_init(void)
1683 {
1684         unsigned long end_pfn, shift, phys_base;
1685         unsigned long real_end, i;
1686
1687         /* These build time checkes make sure that the dcache_dirty_cpu()
1688          * page->flags usage will work.
1689          *
1690          * When a page gets marked as dcache-dirty, we store the
1691          * cpu number starting at bit 32 in the page->flags.  Also,
1692          * functions like clear_dcache_dirty_cpu use the cpu mask
1693          * in 13-bit signed-immediate instruction fields.
1694          */
1695
1696         /*
1697          * Page flags must not reach into upper 32 bits that are used
1698          * for the cpu number
1699          */
1700         BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1701
1702         /*
1703          * The bit fields placed in the high range must not reach below
1704          * the 32 bit boundary. Otherwise we cannot place the cpu field
1705          * at the 32 bit boundary.
1706          */
1707         BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1708                 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1709
1710         BUILD_BUG_ON(NR_CPUS > 4096);
1711
1712         kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1713         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1714
1715         /* Invalidate both kernel TSBs.  */
1716         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1717 #ifndef CONFIG_DEBUG_PAGEALLOC
1718         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1719 #endif
1720
1721         if (tlb_type == hypervisor)
1722                 sun4v_pgprot_init();
1723         else
1724                 sun4u_pgprot_init();
1725
1726         if (tlb_type == cheetah_plus ||
1727             tlb_type == hypervisor)
1728                 tsb_phys_patch();
1729
1730         if (tlb_type == hypervisor) {
1731                 sun4v_patch_tlb_handlers();
1732                 sun4v_ktsb_init();
1733         }
1734
1735         lmb_init();
1736
1737         /* Find available physical memory...
1738          *
1739          * Read it twice in order to work around a bug in openfirmware.
1740          * The call to grab this table itself can cause openfirmware to
1741          * allocate memory, which in turn can take away some space from
1742          * the list of available memory.  Reading it twice makes sure
1743          * we really do get the final value.
1744          */
1745         read_obp_translations();
1746         read_obp_memory("reg", &pall[0], &pall_ents);
1747         read_obp_memory("available", &pavail[0], &pavail_ents);
1748         read_obp_memory("available", &pavail[0], &pavail_ents);
1749
1750         phys_base = 0xffffffffffffffffUL;
1751         for (i = 0; i < pavail_ents; i++) {
1752                 phys_base = min(phys_base, pavail[i].phys_addr);
1753                 lmb_add(pavail[i].phys_addr, pavail[i].reg_size);
1754         }
1755
1756         lmb_reserve(kern_base, kern_size);
1757
1758         find_ramdisk(phys_base);
1759
1760         lmb_enforce_memory_limit(cmdline_memory_size);
1761
1762         lmb_analyze();
1763         lmb_dump_all();
1764
1765         set_bit(0, mmu_context_bmap);
1766
1767         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1768
1769         real_end = (unsigned long)_end;
1770         num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1771         printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1772                num_kernel_image_mappings);
1773
1774         /* Set kernel pgd to upper alias so physical page computations
1775          * work.
1776          */
1777         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1778         
1779         memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1780
1781         /* Now can init the kernel/bad page tables. */
1782         pud_set(pud_offset(&swapper_pg_dir[0], 0),
1783                 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1784         
1785         inherit_prom_mappings();
1786         
1787         init_kpte_bitmap();
1788
1789         /* Ok, we can use our TLB miss and window trap handlers safely.  */
1790         setup_tba();
1791
1792         __flush_tlb_all();
1793
1794         if (tlb_type == hypervisor)
1795                 sun4v_ktsb_register();
1796
1797         prom_build_devicetree();
1798         of_populate_present_mask();
1799 #ifndef CONFIG_SMP
1800         of_fill_in_cpu_data();
1801 #endif
1802
1803         if (tlb_type == hypervisor) {
1804                 sun4v_mdesc_init();
1805                 mdesc_populate_present_mask(cpu_all_mask);
1806 #ifndef CONFIG_SMP
1807                 mdesc_fill_in_cpu_data(cpu_all_mask);
1808 #endif
1809         }
1810
1811         /* Once the OF device tree and MDESC have been setup, we know
1812          * the list of possible cpus.  Therefore we can allocate the
1813          * IRQ stacks.
1814          */
1815         for_each_possible_cpu(i) {
1816                 /* XXX Use node local allocations... XXX */
1817                 softirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
1818                 hardirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
1819         }
1820
1821         /* Setup bootmem... */
1822         last_valid_pfn = end_pfn = bootmem_init(phys_base);
1823
1824 #ifndef CONFIG_NEED_MULTIPLE_NODES
1825         max_mapnr = last_valid_pfn;
1826 #endif
1827         kernel_physical_mapping_init();
1828
1829         {
1830                 unsigned long max_zone_pfns[MAX_NR_ZONES];
1831
1832                 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1833
1834                 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1835
1836                 free_area_init_nodes(max_zone_pfns);
1837         }
1838
1839         printk("Booting Linux...\n");
1840 }
1841
1842 int __devinit page_in_phys_avail(unsigned long paddr)
1843 {
1844         int i;
1845
1846         paddr &= PAGE_MASK;
1847
1848         for (i = 0; i < pavail_ents; i++) {
1849                 unsigned long start, end;
1850
1851                 start = pavail[i].phys_addr;
1852                 end = start + pavail[i].reg_size;
1853
1854                 if (paddr >= start && paddr < end)
1855                         return 1;
1856         }
1857         if (paddr >= kern_base && paddr < (kern_base + kern_size))
1858                 return 1;
1859 #ifdef CONFIG_BLK_DEV_INITRD
1860         if (paddr >= __pa(initrd_start) &&
1861             paddr < __pa(PAGE_ALIGN(initrd_end)))
1862                 return 1;
1863 #endif
1864
1865         return 0;
1866 }
1867
1868 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1869 static int pavail_rescan_ents __initdata;
1870
1871 /* Certain OBP calls, such as fetching "available" properties, can
1872  * claim physical memory.  So, along with initializing the valid
1873  * address bitmap, what we do here is refetch the physical available
1874  * memory list again, and make sure it provides at least as much
1875  * memory as 'pavail' does.
1876  */
1877 static void __init setup_valid_addr_bitmap_from_pavail(void)
1878 {
1879         int i;
1880
1881         read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1882
1883         for (i = 0; i < pavail_ents; i++) {
1884                 unsigned long old_start, old_end;
1885
1886                 old_start = pavail[i].phys_addr;
1887                 old_end = old_start + pavail[i].reg_size;
1888                 while (old_start < old_end) {
1889                         int n;
1890
1891                         for (n = 0; n < pavail_rescan_ents; n++) {
1892                                 unsigned long new_start, new_end;
1893
1894                                 new_start = pavail_rescan[n].phys_addr;
1895                                 new_end = new_start +
1896                                         pavail_rescan[n].reg_size;
1897
1898                                 if (new_start <= old_start &&
1899                                     new_end >= (old_start + PAGE_SIZE)) {
1900                                         set_bit(old_start >> 22,
1901                                                 sparc64_valid_addr_bitmap);
1902                                         goto do_next_page;
1903                                 }
1904                         }
1905
1906                         prom_printf("mem_init: Lost memory in pavail\n");
1907                         prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1908                                     pavail[i].phys_addr,
1909                                     pavail[i].reg_size);
1910                         prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1911                                     pavail_rescan[i].phys_addr,
1912                                     pavail_rescan[i].reg_size);
1913                         prom_printf("mem_init: Cannot continue, aborting.\n");
1914                         prom_halt();
1915
1916                 do_next_page:
1917                         old_start += PAGE_SIZE;
1918                 }
1919         }
1920 }
1921
1922 void __init mem_init(void)
1923 {
1924         unsigned long codepages, datapages, initpages;
1925         unsigned long addr, last;
1926         int i;
1927
1928         i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1929         i += 1;
1930         sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1931         if (sparc64_valid_addr_bitmap == NULL) {
1932                 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1933                 prom_halt();
1934         }
1935         memset(sparc64_valid_addr_bitmap, 0, i << 3);
1936
1937         addr = PAGE_OFFSET + kern_base;
1938         last = PAGE_ALIGN(kern_size) + addr;
1939         while (addr < last) {
1940                 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1941                 addr += PAGE_SIZE;
1942         }
1943
1944         setup_valid_addr_bitmap_from_pavail();
1945
1946         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1947
1948 #ifdef CONFIG_NEED_MULTIPLE_NODES
1949         for_each_online_node(i) {
1950                 if (NODE_DATA(i)->node_spanned_pages != 0) {
1951                         totalram_pages +=
1952                                 free_all_bootmem_node(NODE_DATA(i));
1953                 }
1954         }
1955 #else
1956         totalram_pages = free_all_bootmem();
1957 #endif
1958
1959         /* We subtract one to account for the mem_map_zero page
1960          * allocated below.
1961          */
1962         totalram_pages -= 1;
1963         num_physpages = totalram_pages;
1964
1965         /*
1966          * Set up the zero page, mark it reserved, so that page count
1967          * is not manipulated when freeing the page from user ptes.
1968          */
1969         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1970         if (mem_map_zero == NULL) {
1971                 prom_printf("paging_init: Cannot alloc zero page.\n");
1972                 prom_halt();
1973         }
1974         SetPageReserved(mem_map_zero);
1975
1976         codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1977         codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1978         datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1979         datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1980         initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1981         initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1982
1983         printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1984                nr_free_pages() << (PAGE_SHIFT-10),
1985                codepages << (PAGE_SHIFT-10),
1986                datapages << (PAGE_SHIFT-10), 
1987                initpages << (PAGE_SHIFT-10), 
1988                PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1989
1990         if (tlb_type == cheetah || tlb_type == cheetah_plus)
1991                 cheetah_ecache_flush_init();
1992 }
1993
1994 void free_initmem(void)
1995 {
1996         unsigned long addr, initend;
1997         int do_free = 1;
1998
1999         /* If the physical memory maps were trimmed by kernel command
2000          * line options, don't even try freeing this initmem stuff up.
2001          * The kernel image could have been in the trimmed out region
2002          * and if so the freeing below will free invalid page structs.
2003          */
2004         if (cmdline_memory_size)
2005                 do_free = 0;
2006
2007         /*
2008          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2009          */
2010         addr = PAGE_ALIGN((unsigned long)(__init_begin));
2011         initend = (unsigned long)(__init_end) & PAGE_MASK;
2012         for (; addr < initend; addr += PAGE_SIZE) {
2013                 unsigned long page;
2014                 struct page *p;
2015
2016                 page = (addr +
2017                         ((unsigned long) __va(kern_base)) -
2018                         ((unsigned long) KERNBASE));
2019                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2020
2021                 if (do_free) {
2022                         p = virt_to_page(page);
2023
2024                         ClearPageReserved(p);
2025                         init_page_count(p);
2026                         __free_page(p);
2027                         num_physpages++;
2028                         totalram_pages++;
2029                 }
2030         }
2031 }
2032
2033 #ifdef CONFIG_BLK_DEV_INITRD
2034 void free_initrd_mem(unsigned long start, unsigned long end)
2035 {
2036         if (start < end)
2037                 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2038         for (; start < end; start += PAGE_SIZE) {
2039                 struct page *p = virt_to_page(start);
2040
2041                 ClearPageReserved(p);
2042                 init_page_count(p);
2043                 __free_page(p);
2044                 num_physpages++;
2045                 totalram_pages++;
2046         }
2047 }
2048 #endif
2049
2050 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
2051 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
2052 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2053 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2054 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2055 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2056
2057 pgprot_t PAGE_KERNEL __read_mostly;
2058 EXPORT_SYMBOL(PAGE_KERNEL);
2059
2060 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2061 pgprot_t PAGE_COPY __read_mostly;
2062
2063 pgprot_t PAGE_SHARED __read_mostly;
2064 EXPORT_SYMBOL(PAGE_SHARED);
2065
2066 unsigned long pg_iobits __read_mostly;
2067
2068 unsigned long _PAGE_IE __read_mostly;
2069 EXPORT_SYMBOL(_PAGE_IE);
2070
2071 unsigned long _PAGE_E __read_mostly;
2072 EXPORT_SYMBOL(_PAGE_E);
2073
2074 unsigned long _PAGE_CACHE __read_mostly;
2075 EXPORT_SYMBOL(_PAGE_CACHE);
2076
2077 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2078 unsigned long vmemmap_table[VMEMMAP_SIZE];
2079
2080 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2081 {
2082         unsigned long vstart = (unsigned long) start;
2083         unsigned long vend = (unsigned long) (start + nr);
2084         unsigned long phys_start = (vstart - VMEMMAP_BASE);
2085         unsigned long phys_end = (vend - VMEMMAP_BASE);
2086         unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2087         unsigned long end = VMEMMAP_ALIGN(phys_end);
2088         unsigned long pte_base;
2089
2090         pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2091                     _PAGE_CP_4U | _PAGE_CV_4U |
2092                     _PAGE_P_4U | _PAGE_W_4U);
2093         if (tlb_type == hypervisor)
2094                 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2095                             _PAGE_CP_4V | _PAGE_CV_4V |
2096                             _PAGE_P_4V | _PAGE_W_4V);
2097
2098         for (; addr < end; addr += VMEMMAP_CHUNK) {
2099                 unsigned long *vmem_pp =
2100                         vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2101                 void *block;
2102
2103                 if (!(*vmem_pp & _PAGE_VALID)) {
2104                         block = vmemmap_alloc_block(1UL << 22, node);
2105                         if (!block)
2106                                 return -ENOMEM;
2107
2108                         *vmem_pp = pte_base | __pa(block);
2109
2110                         printk(KERN_INFO "[%p-%p] page_structs=%lu "
2111                                "node=%d entry=%lu/%lu\n", start, block, nr,
2112                                node,
2113                                addr >> VMEMMAP_CHUNK_SHIFT,
2114                                VMEMMAP_SIZE >> VMEMMAP_CHUNK_SHIFT);
2115                 }
2116         }
2117         return 0;
2118 }
2119 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2120
2121 static void prot_init_common(unsigned long page_none,
2122                              unsigned long page_shared,
2123                              unsigned long page_copy,
2124                              unsigned long page_readonly,
2125                              unsigned long page_exec_bit)
2126 {
2127         PAGE_COPY = __pgprot(page_copy);
2128         PAGE_SHARED = __pgprot(page_shared);
2129
2130         protection_map[0x0] = __pgprot(page_none);
2131         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2132         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2133         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2134         protection_map[0x4] = __pgprot(page_readonly);
2135         protection_map[0x5] = __pgprot(page_readonly);
2136         protection_map[0x6] = __pgprot(page_copy);
2137         protection_map[0x7] = __pgprot(page_copy);
2138         protection_map[0x8] = __pgprot(page_none);
2139         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2140         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2141         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2142         protection_map[0xc] = __pgprot(page_readonly);
2143         protection_map[0xd] = __pgprot(page_readonly);
2144         protection_map[0xe] = __pgprot(page_shared);
2145         protection_map[0xf] = __pgprot(page_shared);
2146 }
2147
2148 static void __init sun4u_pgprot_init(void)
2149 {
2150         unsigned long page_none, page_shared, page_copy, page_readonly;
2151         unsigned long page_exec_bit;
2152
2153         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2154                                 _PAGE_CACHE_4U | _PAGE_P_4U |
2155                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2156                                 _PAGE_EXEC_4U);
2157         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2158                                        _PAGE_CACHE_4U | _PAGE_P_4U |
2159                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2160                                        _PAGE_EXEC_4U | _PAGE_L_4U);
2161
2162         _PAGE_IE = _PAGE_IE_4U;
2163         _PAGE_E = _PAGE_E_4U;
2164         _PAGE_CACHE = _PAGE_CACHE_4U;
2165
2166         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2167                      __ACCESS_BITS_4U | _PAGE_E_4U);
2168
2169 #ifdef CONFIG_DEBUG_PAGEALLOC
2170         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2171                 0xfffff80000000000UL;
2172 #else
2173         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2174                 0xfffff80000000000UL;
2175 #endif
2176         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2177                                    _PAGE_P_4U | _PAGE_W_4U);
2178
2179         /* XXX Should use 256MB on Panther. XXX */
2180         kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2181
2182         _PAGE_SZBITS = _PAGE_SZBITS_4U;
2183         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2184                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2185                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2186
2187
2188         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2189         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2190                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2191         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2192                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2193         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2194                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2195
2196         page_exec_bit = _PAGE_EXEC_4U;
2197
2198         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2199                          page_exec_bit);
2200 }
2201
2202 static void __init sun4v_pgprot_init(void)
2203 {
2204         unsigned long page_none, page_shared, page_copy, page_readonly;
2205         unsigned long page_exec_bit;
2206
2207         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2208                                 _PAGE_CACHE_4V | _PAGE_P_4V |
2209                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2210                                 _PAGE_EXEC_4V);
2211         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2212
2213         _PAGE_IE = _PAGE_IE_4V;
2214         _PAGE_E = _PAGE_E_4V;
2215         _PAGE_CACHE = _PAGE_CACHE_4V;
2216
2217 #ifdef CONFIG_DEBUG_PAGEALLOC
2218         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2219                 0xfffff80000000000UL;
2220 #else
2221         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2222                 0xfffff80000000000UL;
2223 #endif
2224         kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2225                                    _PAGE_P_4V | _PAGE_W_4V);
2226
2227 #ifdef CONFIG_DEBUG_PAGEALLOC
2228         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2229                 0xfffff80000000000UL;
2230 #else
2231         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2232                 0xfffff80000000000UL;
2233 #endif
2234         kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2235                                    _PAGE_P_4V | _PAGE_W_4V);
2236
2237         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2238                      __ACCESS_BITS_4V | _PAGE_E_4V);
2239
2240         _PAGE_SZBITS = _PAGE_SZBITS_4V;
2241         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2242                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2243                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2244                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2245
2246         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2247         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2248                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2249         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2250                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2251         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2252                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2253
2254         page_exec_bit = _PAGE_EXEC_4V;
2255
2256         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2257                          page_exec_bit);
2258 }
2259
2260 unsigned long pte_sz_bits(unsigned long sz)
2261 {
2262         if (tlb_type == hypervisor) {
2263                 switch (sz) {
2264                 case 8 * 1024:
2265                 default:
2266                         return _PAGE_SZ8K_4V;
2267                 case 64 * 1024:
2268                         return _PAGE_SZ64K_4V;
2269                 case 512 * 1024:
2270                         return _PAGE_SZ512K_4V;
2271                 case 4 * 1024 * 1024:
2272                         return _PAGE_SZ4MB_4V;
2273                 };
2274         } else {
2275                 switch (sz) {
2276                 case 8 * 1024:
2277                 default:
2278                         return _PAGE_SZ8K_4U;
2279                 case 64 * 1024:
2280                         return _PAGE_SZ64K_4U;
2281                 case 512 * 1024:
2282                         return _PAGE_SZ512K_4U;
2283                 case 4 * 1024 * 1024:
2284                         return _PAGE_SZ4MB_4U;
2285                 };
2286         }
2287 }
2288
2289 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2290 {
2291         pte_t pte;
2292
2293         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2294         pte_val(pte) |= (((unsigned long)space) << 32);
2295         pte_val(pte) |= pte_sz_bits(page_size);
2296
2297         return pte;
2298 }
2299
2300 static unsigned long kern_large_tte(unsigned long paddr)
2301 {
2302         unsigned long val;
2303
2304         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2305                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2306                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2307         if (tlb_type == hypervisor)
2308                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2309                        _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2310                        _PAGE_EXEC_4V | _PAGE_W_4V);
2311
2312         return val | paddr;
2313 }
2314
2315 /* If not locked, zap it. */
2316 void __flush_tlb_all(void)
2317 {
2318         unsigned long pstate;
2319         int i;
2320
2321         __asm__ __volatile__("flushw\n\t"
2322                              "rdpr      %%pstate, %0\n\t"
2323                              "wrpr      %0, %1, %%pstate"
2324                              : "=r" (pstate)
2325                              : "i" (PSTATE_IE));
2326         if (tlb_type == hypervisor) {
2327                 sun4v_mmu_demap_all();
2328         } else if (tlb_type == spitfire) {
2329                 for (i = 0; i < 64; i++) {
2330                         /* Spitfire Errata #32 workaround */
2331                         /* NOTE: Always runs on spitfire, so no
2332                          *       cheetah+ page size encodings.
2333                          */
2334                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2335                                              "flush     %%g6"
2336                                              : /* No outputs */
2337                                              : "r" (0),
2338                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2339
2340                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2341                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2342                                                      "membar #Sync"
2343                                                      : /* no outputs */
2344                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2345                                 spitfire_put_dtlb_data(i, 0x0UL);
2346                         }
2347
2348                         /* Spitfire Errata #32 workaround */
2349                         /* NOTE: Always runs on spitfire, so no
2350                          *       cheetah+ page size encodings.
2351                          */
2352                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2353                                              "flush     %%g6"
2354                                              : /* No outputs */
2355                                              : "r" (0),
2356                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2357
2358                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2359                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2360                                                      "membar #Sync"
2361                                                      : /* no outputs */
2362                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2363                                 spitfire_put_itlb_data(i, 0x0UL);
2364                         }
2365                 }
2366         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2367                 cheetah_flush_dtlb_all();
2368                 cheetah_flush_itlb_all();
2369         }
2370         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
2371                              : : "r" (pstate));
2372 }