]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - arch/sh/kernel/setup.c
af766b6cd3c1384dcb7ecb433943a896c87686ee
[linux-2.6.git] / arch / sh / kernel / setup.c
1 /*
2  * arch/sh/kernel/setup.c
3  *
4  * This file handles the architecture-dependent parts of initialization
5  *
6  *  Copyright (C) 1999  Niibe Yutaka
7  *  Copyright (C) 2002 - 2007 Paul Mundt
8  */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <asm/uaccess.h>
26 #include <asm/io.h>
27 #include <asm/page.h>
28 #include <asm/sections.h>
29 #include <asm/irq.h>
30 #include <asm/setup.h>
31 #include <asm/clock.h>
32 #include <asm/mmu_context.h>
33
34 extern void * __rd_start, * __rd_end;
35
36 /*
37  * Machine setup..
38  */
39
40 /*
41  * Initialize loops_per_jiffy as 10000000 (1000MIPS).
42  * This value will be used at the very early stage of serial setup.
43  * The bigger value means no problem.
44  */
45 struct sh_cpuinfo boot_cpu_data = { CPU_SH_NONE, 10000000, };
46
47 /*
48  * The machine vector. First entry in .machvec.init, or clobbered by
49  * sh_mv= on the command line, prior to .machvec.init teardown.
50  */
51 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
52
53 #ifdef CONFIG_VT
54 struct screen_info screen_info;
55 #endif
56
57 extern int root_mountflags;
58
59 /*
60  * This is set up by the setup-routine at boot-time
61  */
62 #define PARAM   ((unsigned char *)empty_zero_page)
63
64 #define MOUNT_ROOT_RDONLY (*(unsigned long *) (PARAM+0x000))
65 #define RAMDISK_FLAGS (*(unsigned long *) (PARAM+0x004))
66 #define ORIG_ROOT_DEV (*(unsigned long *) (PARAM+0x008))
67 #define LOADER_TYPE (*(unsigned long *) (PARAM+0x00c))
68 #define INITRD_START (*(unsigned long *) (PARAM+0x010))
69 #define INITRD_SIZE (*(unsigned long *) (PARAM+0x014))
70 /* ... */
71 #define COMMAND_LINE ((char *) (PARAM+0x100))
72
73 #define RAMDISK_IMAGE_START_MASK        0x07FF
74 #define RAMDISK_PROMPT_FLAG             0x8000
75 #define RAMDISK_LOAD_FLAG               0x4000
76
77 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
78
79 static struct resource code_resource = { .name = "Kernel code", };
80 static struct resource data_resource = { .name = "Kernel data", };
81
82 unsigned long memory_start;
83 EXPORT_SYMBOL(memory_start);
84
85 unsigned long memory_end;
86 EXPORT_SYMBOL(memory_end);
87
88 static int __init early_parse_mem(char *p)
89 {
90         unsigned long size;
91
92         memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START;
93         size = memparse(p, &p);
94         memory_end = memory_start + size;
95
96         return 0;
97 }
98 early_param("mem", early_parse_mem);
99
100 /*
101  * Register fully available low RAM pages with the bootmem allocator.
102  */
103 static void __init register_bootmem_low_pages(void)
104 {
105         unsigned long curr_pfn, last_pfn, pages;
106
107         /*
108          * We are rounding up the start address of usable memory:
109          */
110         curr_pfn = PFN_UP(__MEMORY_START);
111
112         /*
113          * ... and at the end of the usable range downwards:
114          */
115         last_pfn = PFN_DOWN(__pa(memory_end));
116
117         if (last_pfn > max_low_pfn)
118                 last_pfn = max_low_pfn;
119
120         pages = last_pfn - curr_pfn;
121         free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
122 }
123
124 void __init setup_bootmem_allocator(unsigned long free_pfn)
125 {
126         unsigned long bootmap_size;
127
128         /*
129          * Find a proper area for the bootmem bitmap. After this
130          * bootstrap step all allocations (until the page allocator
131          * is intact) must be done via bootmem_alloc().
132          */
133         bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
134                                          min_low_pfn, max_low_pfn);
135
136         add_active_range(0, min_low_pfn, max_low_pfn);
137         register_bootmem_low_pages();
138
139         node_set_online(0);
140
141         /*
142          * Reserve the kernel text and
143          * Reserve the bootmem bitmap. We do this in two steps (first step
144          * was init_bootmem()), because this catches the (definitely buggy)
145          * case of us accidentally initializing the bootmem allocator with
146          * an invalid RAM area.
147          */
148         reserve_bootmem(__MEMORY_START+PAGE_SIZE,
149                 (PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START);
150
151         /*
152          * reserve physical page 0 - it's a special BIOS page on many boxes,
153          * enabling clean reboots, SMP operation, laptop functions.
154          */
155         reserve_bootmem(__MEMORY_START, PAGE_SIZE);
156
157         sparse_memory_present_with_active_regions(0);
158
159 #ifdef CONFIG_BLK_DEV_INITRD
160         ROOT_DEV = MKDEV(RAMDISK_MAJOR, 0);
161         if (&__rd_start != &__rd_end) {
162                 LOADER_TYPE = 1;
163                 INITRD_START = PHYSADDR((unsigned long)&__rd_start) -
164                                         __MEMORY_START;
165                 INITRD_SIZE = (unsigned long)&__rd_end -
166                               (unsigned long)&__rd_start;
167         }
168
169         if (LOADER_TYPE && INITRD_START) {
170                 if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
171                         reserve_bootmem(INITRD_START + __MEMORY_START,
172                                         INITRD_SIZE);
173                         initrd_start = INITRD_START + PAGE_OFFSET +
174                                         __MEMORY_START;
175                         initrd_end = initrd_start + INITRD_SIZE;
176                 } else {
177                         printk("initrd extends beyond end of memory "
178                             "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
179                                     INITRD_START + INITRD_SIZE,
180                                     max_low_pfn << PAGE_SHIFT);
181                         initrd_start = 0;
182                 }
183         }
184 #endif
185 #ifdef CONFIG_KEXEC
186         if (crashk_res.start != crashk_res.end)
187                 reserve_bootmem(crashk_res.start,
188                         crashk_res.end - crashk_res.start + 1);
189 #endif
190 }
191
192 #ifndef CONFIG_NEED_MULTIPLE_NODES
193 static void __init setup_memory(void)
194 {
195         unsigned long start_pfn;
196
197         /*
198          * Partially used pages are not usable - thus
199          * we are rounding upwards:
200          */
201         start_pfn = PFN_UP(__pa(_end));
202         setup_bootmem_allocator(start_pfn);
203 }
204 #else
205 extern void __init setup_memory(void);
206 #endif
207
208 void __init setup_arch(char **cmdline_p)
209 {
210         enable_mmu();
211
212         ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
213
214 #ifdef CONFIG_BLK_DEV_RAM
215         rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
216         rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
217         rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
218 #endif
219
220         if (!MOUNT_ROOT_RDONLY)
221                 root_mountflags &= ~MS_RDONLY;
222         init_mm.start_code = (unsigned long) _text;
223         init_mm.end_code = (unsigned long) _etext;
224         init_mm.end_data = (unsigned long) _edata;
225         init_mm.brk = (unsigned long) _end;
226
227         code_resource.start = virt_to_phys(_text);
228         code_resource.end = virt_to_phys(_etext)-1;
229         data_resource.start = virt_to_phys(_etext);
230         data_resource.end = virt_to_phys(_edata)-1;
231
232         memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START;
233         memory_end = memory_start + __MEMORY_SIZE;
234
235 #ifdef CONFIG_CMDLINE_BOOL
236         strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
237 #else
238         strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
239 #endif
240
241         /* Save unparsed command line copy for /proc/cmdline */
242         memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
243         *cmdline_p = command_line;
244
245         parse_early_param();
246
247         sh_mv_setup();
248
249         /*
250          * Find the highest page frame number we have available
251          */
252         max_pfn = PFN_DOWN(__pa(memory_end));
253
254         /*
255          * Determine low and high memory ranges:
256          */
257         max_low_pfn = max_pfn;
258         min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
259
260         nodes_clear(node_online_map);
261
262         /* Setup bootmem with available RAM */
263         setup_memory();
264         sparse_init();
265
266 #ifdef CONFIG_DUMMY_CONSOLE
267         conswitchp = &dummy_con;
268 #endif
269
270         /* Perform the machine specific initialisation */
271         if (likely(sh_mv.mv_setup))
272                 sh_mv.mv_setup(cmdline_p);
273
274         paging_init();
275 }
276
277 static const char *cpu_name[] = {
278         [CPU_SH7206]    = "SH7206",     [CPU_SH7619]    = "SH7619",
279         [CPU_SH7300]    = "SH7300",
280         [CPU_SH7705]    = "SH7705",     [CPU_SH7706]    = "SH7706",
281         [CPU_SH7707]    = "SH7707",     [CPU_SH7708]    = "SH7708",
282         [CPU_SH7709]    = "SH7709",     [CPU_SH7710]    = "SH7710",
283         [CPU_SH7712]    = "SH7712",
284         [CPU_SH7729]    = "SH7729",     [CPU_SH7750]    = "SH7750",
285         [CPU_SH7750S]   = "SH7750S",    [CPU_SH7750R]   = "SH7750R",
286         [CPU_SH7751]    = "SH7751",     [CPU_SH7751R]   = "SH7751R",
287         [CPU_SH7760]    = "SH7760",
288         [CPU_ST40RA]    = "ST40RA",     [CPU_ST40GX1]   = "ST40GX1",
289         [CPU_SH4_202]   = "SH4-202",    [CPU_SH4_501]   = "SH4-501",
290         [CPU_SH7770]    = "SH7770",     [CPU_SH7780]    = "SH7780",
291         [CPU_SH7781]    = "SH7781",     [CPU_SH7343]    = "SH7343",
292         [CPU_SH7785]    = "SH7785",     [CPU_SH7722]    = "SH7722",
293         [CPU_SHX3]      = "SH-X3",      [CPU_SH_NONE]   = "Unknown"
294 };
295
296 const char *get_cpu_subtype(struct sh_cpuinfo *c)
297 {
298         return cpu_name[c->type];
299 }
300
301 #ifdef CONFIG_PROC_FS
302 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
303 static const char *cpu_flags[] = {
304         "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
305         "ptea", "llsc", "l2", "op32", NULL
306 };
307
308 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
309 {
310         unsigned long i;
311
312         seq_printf(m, "cpu flags\t:");
313
314         if (!c->flags) {
315                 seq_printf(m, " %s\n", cpu_flags[0]);
316                 return;
317         }
318
319         for (i = 0; cpu_flags[i]; i++)
320                 if ((c->flags & (1 << i)))
321                         seq_printf(m, " %s", cpu_flags[i+1]);
322
323         seq_printf(m, "\n");
324 }
325
326 static void show_cacheinfo(struct seq_file *m, const char *type,
327                            struct cache_info info)
328 {
329         unsigned int cache_size;
330
331         cache_size = info.ways * info.sets * info.linesz;
332
333         seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
334                    type, cache_size >> 10, info.ways);
335 }
336
337 /*
338  *      Get CPU information for use by the procfs.
339  */
340 static int show_cpuinfo(struct seq_file *m, void *v)
341 {
342         struct sh_cpuinfo *c = v;
343         unsigned int cpu = c - cpu_data;
344
345         if (!cpu_online(cpu))
346                 return 0;
347
348         if (cpu == 0)
349                 seq_printf(m, "machine\t\t: %s\n", get_system_type());
350
351         seq_printf(m, "processor\t: %d\n", cpu);
352         seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
353         seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
354
355         show_cpuflags(m, c);
356
357         seq_printf(m, "cache type\t: ");
358
359         /*
360          * Check for what type of cache we have, we support both the
361          * unified cache on the SH-2 and SH-3, as well as the harvard
362          * style cache on the SH-4.
363          */
364         if (c->icache.flags & SH_CACHE_COMBINED) {
365                 seq_printf(m, "unified\n");
366                 show_cacheinfo(m, "cache", c->icache);
367         } else {
368                 seq_printf(m, "split (harvard)\n");
369                 show_cacheinfo(m, "icache", c->icache);
370                 show_cacheinfo(m, "dcache", c->dcache);
371         }
372
373         /* Optional secondary cache */
374         if (c->flags & CPU_HAS_L2_CACHE)
375                 show_cacheinfo(m, "scache", c->scache);
376
377         seq_printf(m, "bogomips\t: %lu.%02lu\n",
378                      c->loops_per_jiffy/(500000/HZ),
379                      (c->loops_per_jiffy/(5000/HZ)) % 100);
380
381         return 0;
382 }
383
384 static void *c_start(struct seq_file *m, loff_t *pos)
385 {
386         return *pos < NR_CPUS ? cpu_data + *pos : NULL;
387 }
388 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
389 {
390         ++*pos;
391         return c_start(m, pos);
392 }
393 static void c_stop(struct seq_file *m, void *v)
394 {
395 }
396 struct seq_operations cpuinfo_op = {
397         .start  = c_start,
398         .next   = c_next,
399         .stop   = c_stop,
400         .show   = show_cpuinfo,
401 };
402 #endif /* CONFIG_PROC_FS */