54047d69b820c98195dfa534748019414d8e76ea
[linux-2.6.git] / arch / mips / au1000 / common / power.c
1 /*
2  * BRIEF MODULE DESCRIPTION
3  *      Au1000 Power Management routines.
4  *
5  * Copyright 2001 MontaVista Software Inc.
6  * Author: MontaVista Software, Inc.
7  *              ppopov@mvista.com or source@mvista.com
8  *
9  *  Some of the routines are right out of init/main.c, whose
10  *  copyrights apply here.
11  *
12  *  This program is free software; you can redistribute  it and/or modify it
13  *  under  the terms of  the GNU General  Public License as published by the
14  *  Free Software Foundation;  either version 2 of the  License, or (at your
15  *  option) any later version.
16  *
17  *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
18  *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
19  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
20  *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
21  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
23  *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
24  *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
25  *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  *  You should have received a copy of the  GNU General Public License along
29  *  with this program; if not, write  to the Free Software Foundation, Inc.,
30  *  675 Mass Ave, Cambridge, MA 02139, USA.
31  */
32 #include <linux/init.h>
33 #include <linux/pm.h>
34 #include <linux/pm_legacy.h>
35 #include <linux/slab.h>
36 #include <linux/sysctl.h>
37 #include <linux/jiffies.h>
38
39 #include <asm/string.h>
40 #include <asm/uaccess.h>
41 #include <asm/io.h>
42 #include <asm/system.h>
43 #include <asm/cacheflush.h>
44 #include <asm/mach-au1x00/au1000.h>
45
46 #ifdef CONFIG_PM
47
48 #define DEBUG 1
49 #ifdef DEBUG
50 #  define DPRINTK(fmt, args...) printk("%s: " fmt, __FUNCTION__ , ## args)
51 #else
52 #  define DPRINTK(fmt, args...)
53 #endif
54
55 static void au1000_calibrate_delay(void);
56
57 extern void set_au1x00_speed(unsigned int new_freq);
58 extern unsigned int get_au1x00_speed(void);
59 extern unsigned long get_au1x00_uart_baud_base(void);
60 extern void set_au1x00_uart_baud_base(unsigned long new_baud_base);
61 extern unsigned long save_local_and_disable(int controller);
62 extern void restore_local_and_enable(int controller, unsigned long mask);
63 extern void local_enable_irq(unsigned int irq_nr);
64
65 static DEFINE_SPINLOCK(pm_lock);
66
67 /* We need to save/restore a bunch of core registers that are
68  * either volatile or reset to some state across a processor sleep.
69  * If reading a register doesn't provide a proper result for a
70  * later restore, we have to provide a function for loading that
71  * register and save a copy.
72  *
73  * We only have to save/restore registers that aren't otherwise
74  * done as part of a driver pm_* function.
75  */
76 static unsigned int     sleep_aux_pll_cntrl;
77 static unsigned int     sleep_cpu_pll_cntrl;
78 static unsigned int     sleep_pin_function;
79 static unsigned int     sleep_uart0_inten;
80 static unsigned int     sleep_uart0_fifoctl;
81 static unsigned int     sleep_uart0_linectl;
82 static unsigned int     sleep_uart0_clkdiv;
83 static unsigned int     sleep_uart0_enable;
84 static unsigned int     sleep_usbhost_enable;
85 static unsigned int     sleep_usbdev_enable;
86 static unsigned int     sleep_static_memctlr[4][3];
87
88 /* Define this to cause the value you write to /proc/sys/pm/sleep to
89  * set the TOY timer for the amount of time you want to sleep.
90  * This is done mainly for testing, but may be useful in other cases.
91  * The value is number of 32KHz ticks to sleep.
92  */
93 #define SLEEP_TEST_TIMEOUT 1
94 #ifdef SLEEP_TEST_TIMEOUT
95 static  int     sleep_ticks;
96 void wakeup_counter0_set(int ticks);
97 #endif
98
99 static void
100 save_core_regs(void)
101 {
102         extern void save_au1xxx_intctl(void);
103         extern void pm_eth0_shutdown(void);
104
105         /* Do the serial ports.....these really should be a pm_*
106          * registered function by the driver......but of course the
107          * standard serial driver doesn't understand our Au1xxx
108          * unique registers.
109          */
110         sleep_uart0_inten = au_readl(UART0_ADDR + UART_IER);
111         sleep_uart0_fifoctl = au_readl(UART0_ADDR + UART_FCR);
112         sleep_uart0_linectl = au_readl(UART0_ADDR + UART_LCR);
113         sleep_uart0_clkdiv = au_readl(UART0_ADDR + UART_CLK);
114         sleep_uart0_enable = au_readl(UART0_ADDR + UART_MOD_CNTRL);
115
116         /* Shutdown USB host/device.
117         */
118         sleep_usbhost_enable = au_readl(USB_HOST_CONFIG);
119
120         /* There appears to be some undocumented reset register....
121         */
122         au_writel(0, 0xb0100004); au_sync();
123         au_writel(0, USB_HOST_CONFIG); au_sync();
124
125         sleep_usbdev_enable = au_readl(USBD_ENABLE);
126         au_writel(0, USBD_ENABLE); au_sync();
127
128         /* Save interrupt controller state.
129         */
130         save_au1xxx_intctl();
131
132         /* Clocks and PLLs.
133         */
134         sleep_aux_pll_cntrl = au_readl(SYS_AUXPLL);
135
136         /* We don't really need to do this one, but unless we
137          * write it again it won't have a valid value if we
138          * happen to read it.
139          */
140         sleep_cpu_pll_cntrl = au_readl(SYS_CPUPLL);
141
142         sleep_pin_function = au_readl(SYS_PINFUNC);
143
144         /* Save the static memory controller configuration.
145         */
146         sleep_static_memctlr[0][0] = au_readl(MEM_STCFG0);
147         sleep_static_memctlr[0][1] = au_readl(MEM_STTIME0);
148         sleep_static_memctlr[0][2] = au_readl(MEM_STADDR0);
149         sleep_static_memctlr[1][0] = au_readl(MEM_STCFG1);
150         sleep_static_memctlr[1][1] = au_readl(MEM_STTIME1);
151         sleep_static_memctlr[1][2] = au_readl(MEM_STADDR1);
152         sleep_static_memctlr[2][0] = au_readl(MEM_STCFG2);
153         sleep_static_memctlr[2][1] = au_readl(MEM_STTIME2);
154         sleep_static_memctlr[2][2] = au_readl(MEM_STADDR2);
155         sleep_static_memctlr[3][0] = au_readl(MEM_STCFG3);
156         sleep_static_memctlr[3][1] = au_readl(MEM_STTIME3);
157         sleep_static_memctlr[3][2] = au_readl(MEM_STADDR3);
158 }
159
160 static void
161 restore_core_regs(void)
162 {
163         extern void restore_au1xxx_intctl(void);
164         extern void wakeup_counter0_adjust(void);
165
166         au_writel(sleep_aux_pll_cntrl, SYS_AUXPLL); au_sync();
167         au_writel(sleep_cpu_pll_cntrl, SYS_CPUPLL); au_sync();
168         au_writel(sleep_pin_function, SYS_PINFUNC); au_sync();
169
170         /* Restore the static memory controller configuration.
171         */
172         au_writel(sleep_static_memctlr[0][0], MEM_STCFG0);
173         au_writel(sleep_static_memctlr[0][1], MEM_STTIME0);
174         au_writel(sleep_static_memctlr[0][2], MEM_STADDR0);
175         au_writel(sleep_static_memctlr[1][0], MEM_STCFG1);
176         au_writel(sleep_static_memctlr[1][1], MEM_STTIME1);
177         au_writel(sleep_static_memctlr[1][2], MEM_STADDR1);
178         au_writel(sleep_static_memctlr[2][0], MEM_STCFG2);
179         au_writel(sleep_static_memctlr[2][1], MEM_STTIME2);
180         au_writel(sleep_static_memctlr[2][2], MEM_STADDR2);
181         au_writel(sleep_static_memctlr[3][0], MEM_STCFG3);
182         au_writel(sleep_static_memctlr[3][1], MEM_STTIME3);
183         au_writel(sleep_static_memctlr[3][2], MEM_STADDR3);
184
185         /* Enable the UART if it was enabled before sleep.
186          * I guess I should define module control bits........
187          */
188         if (sleep_uart0_enable & 0x02) {
189                 au_writel(0, UART0_ADDR + UART_MOD_CNTRL); au_sync();
190                 au_writel(1, UART0_ADDR + UART_MOD_CNTRL); au_sync();
191                 au_writel(3, UART0_ADDR + UART_MOD_CNTRL); au_sync();
192                 au_writel(sleep_uart0_inten, UART0_ADDR + UART_IER); au_sync();
193                 au_writel(sleep_uart0_fifoctl, UART0_ADDR + UART_FCR); au_sync();
194                 au_writel(sleep_uart0_linectl, UART0_ADDR + UART_LCR); au_sync();
195                 au_writel(sleep_uart0_clkdiv, UART0_ADDR + UART_CLK); au_sync();
196         }
197
198         restore_au1xxx_intctl();
199         wakeup_counter0_adjust();
200 }
201
202 unsigned long suspend_mode;
203
204 void wakeup_from_suspend(void)
205 {
206         suspend_mode = 0;
207 }
208
209 int au_sleep(void)
210 {
211         unsigned long wakeup, flags;
212         extern  void    save_and_sleep(void);
213
214         spin_lock_irqsave(&pm_lock, flags);
215
216         save_core_regs();
217
218         flush_cache_all();
219
220         /** The code below is all system dependent and we should probably
221          ** have a function call out of here to set this up.  You need
222          ** to configure the GPIO or timer interrupts that will bring
223          ** you out of sleep.
224          ** For testing, the TOY counter wakeup is useful.
225          **/
226
227 #if 0
228         au_writel(au_readl(SYS_PINSTATERD) & ~(1 << 11), SYS_PINSTATERD);
229
230         /* gpio 6 can cause a wake up event */
231         wakeup = au_readl(SYS_WAKEMSK);
232         wakeup &= ~(1 << 8);    /* turn off match20 wakeup */
233         wakeup |= 1 << 6;       /* turn on gpio 6 wakeup   */
234 #else
235         /* For testing, allow match20 to wake us up.
236         */
237 #ifdef SLEEP_TEST_TIMEOUT
238         wakeup_counter0_set(sleep_ticks);
239 #endif
240         wakeup = 1 << 8;        /* turn on match20 wakeup   */
241         wakeup = 0;
242 #endif
243         au_writel(1, SYS_WAKESRC);      /* clear cause */
244         au_sync();
245         au_writel(wakeup, SYS_WAKEMSK);
246         au_sync();
247
248         save_and_sleep();
249
250         /* after a wakeup, the cpu vectors back to 0x1fc00000 so
251          * it's up to the boot code to get us back here.
252          */
253         restore_core_regs();
254         spin_unlock_irqrestore(&pm_lock, flags);
255         return 0;
256 }
257
258 static int pm_do_sleep(ctl_table * ctl, int write, struct file *file,
259                        void __user *buffer, size_t * len, loff_t *ppos)
260 {
261         int retval = 0;
262 #ifdef SLEEP_TEST_TIMEOUT
263 #define TMPBUFLEN2 16
264         char buf[TMPBUFLEN2], *p;
265 #endif
266
267         if (!write) {
268                 *len = 0;
269         } else {
270 #ifdef SLEEP_TEST_TIMEOUT
271                 if (*len > TMPBUFLEN2 - 1) {
272                         return -EFAULT;
273                 }
274                 if (copy_from_user(buf, buffer, *len)) {
275                         return -EFAULT;
276                 }
277                 buf[*len] = 0;
278                 p = buf;
279                 sleep_ticks = simple_strtoul(p, &p, 0);
280 #endif
281                 retval = pm_send_all(PM_SUSPEND, (void *) 2);
282
283                 if (retval)
284                         return retval;
285
286                 au_sleep();
287                 retval = pm_send_all(PM_RESUME, (void *) 0);
288         }
289         return retval;
290 }
291
292 static int pm_do_suspend(ctl_table * ctl, int write, struct file *file,
293                          void __user *buffer, size_t * len, loff_t *ppos)
294 {
295         int retval = 0;
296
297         if (!write) {
298                 *len = 0;
299         } else {
300                 retval = pm_send_all(PM_SUSPEND, (void *) 2);
301                 if (retval)
302                         return retval;
303                 suspend_mode = 1;
304
305                 retval = pm_send_all(PM_RESUME, (void *) 0);
306         }
307         return retval;
308 }
309
310
311 static int pm_do_freq(ctl_table * ctl, int write, struct file *file,
312                       void __user *buffer, size_t * len, loff_t *ppos)
313 {
314         int retval = 0, i;
315         unsigned long val, pll;
316 #define TMPBUFLEN 64
317 #define MAX_CPU_FREQ 396
318         char buf[TMPBUFLEN], *p;
319         unsigned long flags, intc0_mask, intc1_mask;
320         unsigned long old_baud_base, old_cpu_freq, baud_rate, old_clk,
321             old_refresh;
322         unsigned long new_baud_base, new_cpu_freq, new_clk, new_refresh;
323
324         spin_lock_irqsave(&pm_lock, flags);
325         if (!write) {
326                 *len = 0;
327         } else {
328                 /* Parse the new frequency */
329                 if (*len > TMPBUFLEN - 1) {
330                         spin_unlock_irqrestore(&pm_lock, flags);
331                         return -EFAULT;
332                 }
333                 if (copy_from_user(buf, buffer, *len)) {
334                         spin_unlock_irqrestore(&pm_lock, flags);
335                         return -EFAULT;
336                 }
337                 buf[*len] = 0;
338                 p = buf;
339                 val = simple_strtoul(p, &p, 0);
340                 if (val > MAX_CPU_FREQ) {
341                         spin_unlock_irqrestore(&pm_lock, flags);
342                         return -EFAULT;
343                 }
344
345                 pll = val / 12;
346                 if ((pll > 33) || (pll < 7)) {  /* 396 MHz max, 84 MHz min */
347                         /* revisit this for higher speed cpus */
348                         spin_unlock_irqrestore(&pm_lock, flags);
349                         return -EFAULT;
350                 }
351
352                 old_baud_base = get_au1x00_uart_baud_base();
353                 old_cpu_freq = get_au1x00_speed();
354
355                 new_cpu_freq = pll * 12 * 1000000;
356                 new_baud_base =  (new_cpu_freq / (2 * ((int)(au_readl(SYS_POWERCTRL)&0x03) + 2) * 16));
357                 set_au1x00_speed(new_cpu_freq);
358                 set_au1x00_uart_baud_base(new_baud_base);
359
360                 old_refresh = au_readl(MEM_SDREFCFG) & 0x1ffffff;
361                 new_refresh =
362                     ((old_refresh * new_cpu_freq) /
363                      old_cpu_freq) | (au_readl(MEM_SDREFCFG) & ~0x1ffffff);
364
365                 au_writel(pll, SYS_CPUPLL);
366                 au_sync_delay(1);
367                 au_writel(new_refresh, MEM_SDREFCFG);
368                 au_sync_delay(1);
369
370                 for (i = 0; i < 4; i++) {
371                         if (au_readl
372                             (UART_BASE + UART_MOD_CNTRL +
373                              i * 0x00100000) == 3) {
374                                 old_clk =
375                                     au_readl(UART_BASE + UART_CLK +
376                                           i * 0x00100000);
377                                 // baud_rate = baud_base/clk
378                                 baud_rate = old_baud_base / old_clk;
379                                 /* we won't get an exact baud rate and the error
380                                  * could be significant enough that our new
381                                  * calculation will result in a clock that will
382                                  * give us a baud rate that's too far off from
383                                  * what we really want.
384                                  */
385                                 if (baud_rate > 100000)
386                                         baud_rate = 115200;
387                                 else if (baud_rate > 50000)
388                                         baud_rate = 57600;
389                                 else if (baud_rate > 30000)
390                                         baud_rate = 38400;
391                                 else if (baud_rate > 17000)
392                                         baud_rate = 19200;
393                                 else
394                                         (baud_rate = 9600);
395                                 // new_clk = new_baud_base/baud_rate
396                                 new_clk = new_baud_base / baud_rate;
397                                 au_writel(new_clk,
398                                        UART_BASE + UART_CLK +
399                                        i * 0x00100000);
400                                 au_sync_delay(10);
401                         }
402                 }
403         }
404
405
406         /*
407          * We don't want _any_ interrupts other than match20. Otherwise our
408          * au1000_calibrate_delay() calculation will be off, potentially a lot.
409          */
410         intc0_mask = save_local_and_disable(0);
411         intc1_mask = save_local_and_disable(1);
412         local_enable_irq(AU1000_TOY_MATCH2_INT);
413         spin_unlock_irqrestore(&pm_lock, flags);
414         au1000_calibrate_delay();
415         restore_local_and_enable(0, intc0_mask);
416         restore_local_and_enable(1, intc1_mask);
417
418         return retval;
419 }
420
421
422 static struct ctl_table pm_table[] = {
423         {
424                 .ctl_name       = CTL_UNNUMBERED,
425                 .procname       = "suspend",
426                 .data           = NULL,
427                 .maxlen         = 0,
428                 .mode           = 0600,
429                 .proc_handler   = &pm_do_suspend
430         },
431         {
432                 .ctl_name       = CTL_UNNUMBERED,
433                 .procname       = "sleep",
434                 .data           = NULL,
435                 .maxlen         = 0,
436                 .mode           = 0600,
437                 .proc_handler   = &pm_do_sleep
438         },
439         {
440                 .ctl_name       = CTL_UNNUMBERED,
441                 .procname       = "freq",
442                 .data           = NULL,
443                 .maxlen         = 0,
444                 .mode           = 0600,
445                 .proc_handler   = &pm_do_freq
446         },
447         {}
448 };
449
450 static struct ctl_table pm_dir_table[] = {
451         {
452                 .ctl_name       = CTL_UNNUMBERED,
453                 .procname       = "pm",
454                 .mode           = 0555,
455                 .child          = pm_table
456         },
457         {}
458 };
459
460 /*
461  * Initialize power interface
462  */
463 static int __init pm_init(void)
464 {
465         register_sysctl_table(pm_dir_table);
466         return 0;
467 }
468
469 __initcall(pm_init);
470
471
472 /*
473  * This is right out of init/main.c
474  */
475
476 /* This is the number of bits of precision for the loops_per_jiffy.  Each
477    bit takes on average 1.5/HZ seconds.  This (like the original) is a little
478    better than 1% */
479 #define LPS_PREC 8
480
481 static void au1000_calibrate_delay(void)
482 {
483         unsigned long ticks, loopbit;
484         int lps_precision = LPS_PREC;
485
486         loops_per_jiffy = (1 << 12);
487
488         while (loops_per_jiffy <<= 1) {
489                 /* wait for "start of" clock tick */
490                 ticks = jiffies;
491                 while (ticks == jiffies)
492                         /* nothing */ ;
493                 /* Go .. */
494                 ticks = jiffies;
495                 __delay(loops_per_jiffy);
496                 ticks = jiffies - ticks;
497                 if (ticks)
498                         break;
499         }
500
501 /* Do a binary approximation to get loops_per_jiffy set to equal one clock
502    (up to lps_precision bits) */
503         loops_per_jiffy >>= 1;
504         loopbit = loops_per_jiffy;
505         while (lps_precision-- && (loopbit >>= 1)) {
506                 loops_per_jiffy |= loopbit;
507                 ticks = jiffies;
508                 while (ticks == jiffies);
509                 ticks = jiffies;
510                 __delay(loops_per_jiffy);
511                 if (jiffies != ticks)   /* longer than 1 tick */
512                         loops_per_jiffy &= ~loopbit;
513         }
514 }
515 #endif                          /* CONFIG_PM */