ia64: allocate percpu area for cpu0 like percpu areas for other cpus
[linux-2.6.git] / arch / ia64 / mm / contig.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1998-2003 Hewlett-Packard Co
7  *      David Mosberger-Tang <davidm@hpl.hp.com>
8  *      Stephane Eranian <eranian@hpl.hp.com>
9  * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
10  * Copyright (C) 1999 VA Linux Systems
11  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
12  * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
13  *
14  * Routines used by ia64 machines with contiguous (or virtually contiguous)
15  * memory.
16  */
17 #include <linux/bootmem.h>
18 #include <linux/efi.h>
19 #include <linux/mm.h>
20 #include <linux/nmi.h>
21 #include <linux/swap.h>
22
23 #include <asm/meminit.h>
24 #include <asm/pgalloc.h>
25 #include <asm/pgtable.h>
26 #include <asm/sections.h>
27 #include <asm/mca.h>
28
29 #ifdef CONFIG_VIRTUAL_MEM_MAP
30 static unsigned long max_gap;
31 #endif
32
33 /**
34  * show_mem - give short summary of memory stats
35  *
36  * Shows a simple page count of reserved and used pages in the system.
37  * For discontig machines, it does this on a per-pgdat basis.
38  */
39 void show_mem(void)
40 {
41         int i, total_reserved = 0;
42         int total_shared = 0, total_cached = 0;
43         unsigned long total_present = 0;
44         pg_data_t *pgdat;
45
46         printk(KERN_INFO "Mem-info:\n");
47         show_free_areas();
48         printk(KERN_INFO "Node memory in pages:\n");
49         for_each_online_pgdat(pgdat) {
50                 unsigned long present;
51                 unsigned long flags;
52                 int shared = 0, cached = 0, reserved = 0;
53
54                 pgdat_resize_lock(pgdat, &flags);
55                 present = pgdat->node_present_pages;
56                 for(i = 0; i < pgdat->node_spanned_pages; i++) {
57                         struct page *page;
58                         if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
59                                 touch_nmi_watchdog();
60                         if (pfn_valid(pgdat->node_start_pfn + i))
61                                 page = pfn_to_page(pgdat->node_start_pfn + i);
62                         else {
63 #ifdef CONFIG_VIRTUAL_MEM_MAP
64                                 if (max_gap < LARGE_GAP)
65                                         continue;
66 #endif
67                                 i = vmemmap_find_next_valid_pfn(pgdat->node_id,
68                                          i) - 1;
69                                 continue;
70                         }
71                         if (PageReserved(page))
72                                 reserved++;
73                         else if (PageSwapCache(page))
74                                 cached++;
75                         else if (page_count(page))
76                                 shared += page_count(page)-1;
77                 }
78                 pgdat_resize_unlock(pgdat, &flags);
79                 total_present += present;
80                 total_reserved += reserved;
81                 total_cached += cached;
82                 total_shared += shared;
83                 printk(KERN_INFO "Node %4d:  RAM: %11ld, rsvd: %8d, "
84                        "shrd: %10d, swpd: %10d\n", pgdat->node_id,
85                        present, reserved, shared, cached);
86         }
87         printk(KERN_INFO "%ld pages of RAM\n", total_present);
88         printk(KERN_INFO "%d reserved pages\n", total_reserved);
89         printk(KERN_INFO "%d pages shared\n", total_shared);
90         printk(KERN_INFO "%d pages swap cached\n", total_cached);
91         printk(KERN_INFO "Total of %ld pages in page table cache\n",
92                quicklist_total_size());
93         printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
94 }
95
96
97 /* physical address where the bootmem map is located */
98 unsigned long bootmap_start;
99
100 /**
101  * find_bootmap_location - callback to find a memory area for the bootmap
102  * @start: start of region
103  * @end: end of region
104  * @arg: unused callback data
105  *
106  * Find a place to put the bootmap and return its starting address in
107  * bootmap_start.  This address must be page-aligned.
108  */
109 static int __init
110 find_bootmap_location (u64 start, u64 end, void *arg)
111 {
112         u64 needed = *(unsigned long *)arg;
113         u64 range_start, range_end, free_start;
114         int i;
115
116 #if IGNORE_PFN0
117         if (start == PAGE_OFFSET) {
118                 start += PAGE_SIZE;
119                 if (start >= end)
120                         return 0;
121         }
122 #endif
123
124         free_start = PAGE_OFFSET;
125
126         for (i = 0; i < num_rsvd_regions; i++) {
127                 range_start = max(start, free_start);
128                 range_end   = min(end, rsvd_region[i].start & PAGE_MASK);
129
130                 free_start = PAGE_ALIGN(rsvd_region[i].end);
131
132                 if (range_end <= range_start)
133                         continue; /* skip over empty range */
134
135                 if (range_end - range_start >= needed) {
136                         bootmap_start = __pa(range_start);
137                         return -1;      /* done */
138                 }
139
140                 /* nothing more available in this segment */
141                 if (range_end == end)
142                         return 0;
143         }
144         return 0;
145 }
146
147 #ifdef CONFIG_SMP
148 static void *cpu_data;
149 /**
150  * per_cpu_init - setup per-cpu variables
151  *
152  * Allocate and setup per-cpu data areas.
153  */
154 void * __cpuinit
155 per_cpu_init (void)
156 {
157         static bool first_time = true;
158         void *cpu0_data = __cpu0_per_cpu;
159         unsigned int cpu;
160
161         if (!first_time)
162                 goto skip;
163         first_time = false;
164
165         /*
166          * get_free_pages() cannot be used before cpu_init() done.  BSP
167          * allocates "NR_CPUS" pages for all CPUs to avoid that AP calls
168          * get_zeroed_page().
169          */
170         for (cpu = 0; cpu < NR_CPUS; cpu++) {
171                 void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start;
172
173                 memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start);
174                 __per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start;
175                 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
176
177                 /*
178                  * percpu area for cpu0 is moved from the __init area
179                  * which is setup by head.S and used till this point.
180                  * Update ar.k3.  This move is ensures that percpu
181                  * area for cpu0 is on the correct node and its
182                  * virtual address isn't insanely far from other
183                  * percpu areas which is important for congruent
184                  * percpu allocator.
185                  */
186                 if (cpu == 0)
187                         ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) -
188                                     (unsigned long)__per_cpu_start);
189
190                 cpu_data += PERCPU_PAGE_SIZE;
191         }
192 skip:
193         return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
194 }
195
196 static inline void
197 alloc_per_cpu_data(void)
198 {
199         cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * NR_CPUS,
200                                    PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
201 }
202 #else
203 #define alloc_per_cpu_data() do { } while (0)
204 #endif /* CONFIG_SMP */
205
206 /**
207  * find_memory - setup memory map
208  *
209  * Walk the EFI memory map and find usable memory for the system, taking
210  * into account reserved areas.
211  */
212 void __init
213 find_memory (void)
214 {
215         unsigned long bootmap_size;
216
217         reserve_memory();
218
219         /* first find highest page frame number */
220         min_low_pfn = ~0UL;
221         max_low_pfn = 0;
222         efi_memmap_walk(find_max_min_low_pfn, NULL);
223         max_pfn = max_low_pfn;
224         /* how many bytes to cover all the pages */
225         bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
226
227         /* look for a location to hold the bootmap */
228         bootmap_start = ~0UL;
229         efi_memmap_walk(find_bootmap_location, &bootmap_size);
230         if (bootmap_start == ~0UL)
231                 panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
232
233         bootmap_size = init_bootmem_node(NODE_DATA(0),
234                         (bootmap_start >> PAGE_SHIFT), 0, max_pfn);
235
236         /* Free all available memory, then mark bootmem-map as being in use. */
237         efi_memmap_walk(filter_rsvd_memory, free_bootmem);
238         reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT);
239
240         find_initrd();
241
242         alloc_per_cpu_data();
243 }
244
245 static int count_pages(u64 start, u64 end, void *arg)
246 {
247         unsigned long *count = arg;
248
249         *count += (end - start) >> PAGE_SHIFT;
250         return 0;
251 }
252
253 /*
254  * Set up the page tables.
255  */
256
257 void __init
258 paging_init (void)
259 {
260         unsigned long max_dma;
261         unsigned long max_zone_pfns[MAX_NR_ZONES];
262
263         num_physpages = 0;
264         efi_memmap_walk(count_pages, &num_physpages);
265
266         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
267 #ifdef CONFIG_ZONE_DMA
268         max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
269         max_zone_pfns[ZONE_DMA] = max_dma;
270 #endif
271         max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
272
273 #ifdef CONFIG_VIRTUAL_MEM_MAP
274         efi_memmap_walk(filter_memory, register_active_ranges);
275         efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
276         if (max_gap < LARGE_GAP) {
277                 vmem_map = (struct page *) 0;
278                 free_area_init_nodes(max_zone_pfns);
279         } else {
280                 unsigned long map_size;
281
282                 /* allocate virtual_mem_map */
283
284                 map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
285                         sizeof(struct page));
286                 VMALLOC_END -= map_size;
287                 vmem_map = (struct page *) VMALLOC_END;
288                 efi_memmap_walk(create_mem_map_page_table, NULL);
289
290                 /*
291                  * alloc_node_mem_map makes an adjustment for mem_map
292                  * which isn't compatible with vmem_map.
293                  */
294                 NODE_DATA(0)->node_mem_map = vmem_map +
295                         find_min_pfn_with_active_regions();
296                 free_area_init_nodes(max_zone_pfns);
297
298                 printk("Virtual mem_map starts at 0x%p\n", mem_map);
299         }
300 #else /* !CONFIG_VIRTUAL_MEM_MAP */
301         add_active_range(0, 0, max_low_pfn);
302         free_area_init_nodes(max_zone_pfns);
303 #endif /* !CONFIG_VIRTUAL_MEM_MAP */
304         zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
305 }