KVM: s390: ucontrol: export SIE control block to user
[linux-2.6.git] / arch / ia64 / kvm / kvm-ia64.c
1 /*
2  * kvm_ia64.c: Basic KVM suppport On Itanium series processors
3  *
4  *
5  *      Copyright (C) 2007, Intel Corporation.
6  *      Xiantao Zhang  (xiantao.zhang@intel.com)
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
19  * Place - Suite 330, Boston, MA 02111-1307 USA.
20  *
21  */
22
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/smp.h>
29 #include <linux/kvm_host.h>
30 #include <linux/kvm.h>
31 #include <linux/bitops.h>
32 #include <linux/hrtimer.h>
33 #include <linux/uaccess.h>
34 #include <linux/iommu.h>
35 #include <linux/intel-iommu.h>
36 #include <linux/pci.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/gcc_intrin.h>
40 #include <asm/pal.h>
41 #include <asm/cacheflush.h>
42 #include <asm/div64.h>
43 #include <asm/tlb.h>
44 #include <asm/elf.h>
45 #include <asm/sn/addrs.h>
46 #include <asm/sn/clksupport.h>
47 #include <asm/sn/shub_mmr.h>
48
49 #include "misc.h"
50 #include "vti.h"
51 #include "iodev.h"
52 #include "ioapic.h"
53 #include "lapic.h"
54 #include "irq.h"
55
56 static unsigned long kvm_vmm_base;
57 static unsigned long kvm_vsa_base;
58 static unsigned long kvm_vm_buffer;
59 static unsigned long kvm_vm_buffer_size;
60 unsigned long kvm_vmm_gp;
61
62 static long vp_env_info;
63
64 static struct kvm_vmm_info *kvm_vmm_info;
65
66 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
67
68 struct kvm_stats_debugfs_item debugfs_entries[] = {
69         { NULL }
70 };
71
72 static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
73 {
74 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
75         if (vcpu->kvm->arch.is_sn2)
76                 return rtc_time();
77         else
78 #endif
79                 return ia64_getreg(_IA64_REG_AR_ITC);
80 }
81
82 static void kvm_flush_icache(unsigned long start, unsigned long len)
83 {
84         int l;
85
86         for (l = 0; l < (len + 32); l += 32)
87                 ia64_fc((void *)(start + l));
88
89         ia64_sync_i();
90         ia64_srlz_i();
91 }
92
93 static void kvm_flush_tlb_all(void)
94 {
95         unsigned long i, j, count0, count1, stride0, stride1, addr;
96         long flags;
97
98         addr    = local_cpu_data->ptce_base;
99         count0  = local_cpu_data->ptce_count[0];
100         count1  = local_cpu_data->ptce_count[1];
101         stride0 = local_cpu_data->ptce_stride[0];
102         stride1 = local_cpu_data->ptce_stride[1];
103
104         local_irq_save(flags);
105         for (i = 0; i < count0; ++i) {
106                 for (j = 0; j < count1; ++j) {
107                         ia64_ptce(addr);
108                         addr += stride1;
109                 }
110                 addr += stride0;
111         }
112         local_irq_restore(flags);
113         ia64_srlz_i();                  /* srlz.i implies srlz.d */
114 }
115
116 long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
117 {
118         struct ia64_pal_retval iprv;
119
120         PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
121                         (u64)opt_handler);
122
123         return iprv.status;
124 }
125
126 static  DEFINE_SPINLOCK(vp_lock);
127
128 int kvm_arch_hardware_enable(void *garbage)
129 {
130         long  status;
131         long  tmp_base;
132         unsigned long pte;
133         unsigned long saved_psr;
134         int slot;
135
136         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
137         local_irq_save(saved_psr);
138         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
139         local_irq_restore(saved_psr);
140         if (slot < 0)
141                 return -EINVAL;
142
143         spin_lock(&vp_lock);
144         status = ia64_pal_vp_init_env(kvm_vsa_base ?
145                                 VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
146                         __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
147         if (status != 0) {
148                 spin_unlock(&vp_lock);
149                 printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
150                 return -EINVAL;
151         }
152
153         if (!kvm_vsa_base) {
154                 kvm_vsa_base = tmp_base;
155                 printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
156         }
157         spin_unlock(&vp_lock);
158         ia64_ptr_entry(0x3, slot);
159
160         return 0;
161 }
162
163 void kvm_arch_hardware_disable(void *garbage)
164 {
165
166         long status;
167         int slot;
168         unsigned long pte;
169         unsigned long saved_psr;
170         unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
171
172         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
173                                 PAGE_KERNEL));
174
175         local_irq_save(saved_psr);
176         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
177         local_irq_restore(saved_psr);
178         if (slot < 0)
179                 return;
180
181         status = ia64_pal_vp_exit_env(host_iva);
182         if (status)
183                 printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
184                                 status);
185         ia64_ptr_entry(0x3, slot);
186 }
187
188 void kvm_arch_check_processor_compat(void *rtn)
189 {
190         *(int *)rtn = 0;
191 }
192
193 int kvm_dev_ioctl_check_extension(long ext)
194 {
195
196         int r;
197
198         switch (ext) {
199         case KVM_CAP_IRQCHIP:
200         case KVM_CAP_MP_STATE:
201         case KVM_CAP_IRQ_INJECT_STATUS:
202                 r = 1;
203                 break;
204         case KVM_CAP_COALESCED_MMIO:
205                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
206                 break;
207         case KVM_CAP_IOMMU:
208                 r = iommu_present(&pci_bus_type);
209                 break;
210         default:
211                 r = 0;
212         }
213         return r;
214
215 }
216
217 static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
218 {
219         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
220         kvm_run->hw.hardware_exit_reason = 1;
221         return 0;
222 }
223
224 static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
225 {
226         struct kvm_mmio_req *p;
227         struct kvm_io_device *mmio_dev;
228         int r;
229
230         p = kvm_get_vcpu_ioreq(vcpu);
231
232         if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
233                 goto mmio;
234         vcpu->mmio_needed = 1;
235         vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
236         vcpu->mmio_size = kvm_run->mmio.len = p->size;
237         vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
238
239         if (vcpu->mmio_is_write)
240                 memcpy(vcpu->mmio_data, &p->data, p->size);
241         memcpy(kvm_run->mmio.data, &p->data, p->size);
242         kvm_run->exit_reason = KVM_EXIT_MMIO;
243         return 0;
244 mmio:
245         if (p->dir)
246                 r = kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, p->addr,
247                                     p->size, &p->data);
248         else
249                 r = kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, p->addr,
250                                      p->size, &p->data);
251         if (r)
252                 printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
253         p->state = STATE_IORESP_READY;
254
255         return 1;
256 }
257
258 static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
259 {
260         struct exit_ctl_data *p;
261
262         p = kvm_get_exit_data(vcpu);
263
264         if (p->exit_reason == EXIT_REASON_PAL_CALL)
265                 return kvm_pal_emul(vcpu, kvm_run);
266         else {
267                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
268                 kvm_run->hw.hardware_exit_reason = 2;
269                 return 0;
270         }
271 }
272
273 static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
274 {
275         struct exit_ctl_data *p;
276
277         p = kvm_get_exit_data(vcpu);
278
279         if (p->exit_reason == EXIT_REASON_SAL_CALL) {
280                 kvm_sal_emul(vcpu);
281                 return 1;
282         } else {
283                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
284                 kvm_run->hw.hardware_exit_reason = 3;
285                 return 0;
286         }
287
288 }
289
290 static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
291 {
292         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
293
294         if (!test_and_set_bit(vector, &vpd->irr[0])) {
295                 vcpu->arch.irq_new_pending = 1;
296                 kvm_vcpu_kick(vcpu);
297                 return 1;
298         }
299         return 0;
300 }
301
302 /*
303  *  offset: address offset to IPI space.
304  *  value:  deliver value.
305  */
306 static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
307                                 uint64_t vector)
308 {
309         switch (dm) {
310         case SAPIC_FIXED:
311                 break;
312         case SAPIC_NMI:
313                 vector = 2;
314                 break;
315         case SAPIC_EXTINT:
316                 vector = 0;
317                 break;
318         case SAPIC_INIT:
319         case SAPIC_PMI:
320         default:
321                 printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
322                 return;
323         }
324         __apic_accept_irq(vcpu, vector);
325 }
326
327 static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
328                         unsigned long eid)
329 {
330         union ia64_lid lid;
331         int i;
332         struct kvm_vcpu *vcpu;
333
334         kvm_for_each_vcpu(i, vcpu, kvm) {
335                 lid.val = VCPU_LID(vcpu);
336                 if (lid.id == id && lid.eid == eid)
337                         return vcpu;
338         }
339
340         return NULL;
341 }
342
343 static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
344 {
345         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
346         struct kvm_vcpu *target_vcpu;
347         struct kvm_pt_regs *regs;
348         union ia64_ipi_a addr = p->u.ipi_data.addr;
349         union ia64_ipi_d data = p->u.ipi_data.data;
350
351         target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
352         if (!target_vcpu)
353                 return handle_vm_error(vcpu, kvm_run);
354
355         if (!target_vcpu->arch.launched) {
356                 regs = vcpu_regs(target_vcpu);
357
358                 regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
359                 regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
360
361                 target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
362                 if (waitqueue_active(&target_vcpu->wq))
363                         wake_up_interruptible(&target_vcpu->wq);
364         } else {
365                 vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
366                 if (target_vcpu != vcpu)
367                         kvm_vcpu_kick(target_vcpu);
368         }
369
370         return 1;
371 }
372
373 struct call_data {
374         struct kvm_ptc_g ptc_g_data;
375         struct kvm_vcpu *vcpu;
376 };
377
378 static void vcpu_global_purge(void *info)
379 {
380         struct call_data *p = (struct call_data *)info;
381         struct kvm_vcpu *vcpu = p->vcpu;
382
383         if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
384                 return;
385
386         set_bit(KVM_REQ_PTC_G, &vcpu->requests);
387         if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
388                 vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
389                                                         p->ptc_g_data;
390         } else {
391                 clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
392                 vcpu->arch.ptc_g_count = 0;
393                 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
394         }
395 }
396
397 static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
398 {
399         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
400         struct kvm *kvm = vcpu->kvm;
401         struct call_data call_data;
402         int i;
403         struct kvm_vcpu *vcpui;
404
405         call_data.ptc_g_data = p->u.ptc_g_data;
406
407         kvm_for_each_vcpu(i, vcpui, kvm) {
408                 if (vcpui->arch.mp_state == KVM_MP_STATE_UNINITIALIZED ||
409                                 vcpu == vcpui)
410                         continue;
411
412                 if (waitqueue_active(&vcpui->wq))
413                         wake_up_interruptible(&vcpui->wq);
414
415                 if (vcpui->cpu != -1) {
416                         call_data.vcpu = vcpui;
417                         smp_call_function_single(vcpui->cpu,
418                                         vcpu_global_purge, &call_data, 1);
419                 } else
420                         printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
421
422         }
423         return 1;
424 }
425
426 static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
427 {
428         return 1;
429 }
430
431 static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
432 {
433         unsigned long pte, rtc_phys_addr, map_addr;
434         int slot;
435
436         map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
437         rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
438         pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
439         slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
440         vcpu->arch.sn_rtc_tr_slot = slot;
441         if (slot < 0) {
442                 printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
443                 slot = 0;
444         }
445         return slot;
446 }
447
448 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
449 {
450
451         ktime_t kt;
452         long itc_diff;
453         unsigned long vcpu_now_itc;
454         unsigned long expires;
455         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
456         unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
457         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
458
459         if (irqchip_in_kernel(vcpu->kvm)) {
460
461                 vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
462
463                 if (time_after(vcpu_now_itc, vpd->itm)) {
464                         vcpu->arch.timer_check = 1;
465                         return 1;
466                 }
467                 itc_diff = vpd->itm - vcpu_now_itc;
468                 if (itc_diff < 0)
469                         itc_diff = -itc_diff;
470
471                 expires = div64_u64(itc_diff, cyc_per_usec);
472                 kt = ktime_set(0, 1000 * expires);
473
474                 vcpu->arch.ht_active = 1;
475                 hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
476
477                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
478                 kvm_vcpu_block(vcpu);
479                 hrtimer_cancel(p_ht);
480                 vcpu->arch.ht_active = 0;
481
482                 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) ||
483                                 kvm_cpu_has_pending_timer(vcpu))
484                         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
485                                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
486
487                 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
488                         return -EINTR;
489                 return 1;
490         } else {
491                 printk(KERN_ERR"kvm: Unsupported userspace halt!");
492                 return 0;
493         }
494 }
495
496 static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
497                 struct kvm_run *kvm_run)
498 {
499         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
500         return 0;
501 }
502
503 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
504                 struct kvm_run *kvm_run)
505 {
506         return 1;
507 }
508
509 static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
510                                 struct kvm_run *kvm_run)
511 {
512         printk("VMM: %s", vcpu->arch.log_buf);
513         return 1;
514 }
515
516 static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
517                 struct kvm_run *kvm_run) = {
518         [EXIT_REASON_VM_PANIC]              = handle_vm_error,
519         [EXIT_REASON_MMIO_INSTRUCTION]      = handle_mmio,
520         [EXIT_REASON_PAL_CALL]              = handle_pal_call,
521         [EXIT_REASON_SAL_CALL]              = handle_sal_call,
522         [EXIT_REASON_SWITCH_RR6]            = handle_switch_rr6,
523         [EXIT_REASON_VM_DESTROY]            = handle_vm_shutdown,
524         [EXIT_REASON_EXTERNAL_INTERRUPT]    = handle_external_interrupt,
525         [EXIT_REASON_IPI]                   = handle_ipi,
526         [EXIT_REASON_PTC_G]                 = handle_global_purge,
527         [EXIT_REASON_DEBUG]                 = handle_vcpu_debug,
528
529 };
530
531 static const int kvm_vti_max_exit_handlers =
532                 sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
533
534 static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
535 {
536         struct exit_ctl_data *p_exit_data;
537
538         p_exit_data = kvm_get_exit_data(vcpu);
539         return p_exit_data->exit_reason;
540 }
541
542 /*
543  * The guest has exited.  See if we can fix it or if we need userspace
544  * assistance.
545  */
546 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
547 {
548         u32 exit_reason = kvm_get_exit_reason(vcpu);
549         vcpu->arch.last_exit = exit_reason;
550
551         if (exit_reason < kvm_vti_max_exit_handlers
552                         && kvm_vti_exit_handlers[exit_reason])
553                 return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
554         else {
555                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
556                 kvm_run->hw.hardware_exit_reason = exit_reason;
557         }
558         return 0;
559 }
560
561 static inline void vti_set_rr6(unsigned long rr6)
562 {
563         ia64_set_rr(RR6, rr6);
564         ia64_srlz_i();
565 }
566
567 static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
568 {
569         unsigned long pte;
570         struct kvm *kvm = vcpu->kvm;
571         int r;
572
573         /*Insert a pair of tr to map vmm*/
574         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
575         r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
576         if (r < 0)
577                 goto out;
578         vcpu->arch.vmm_tr_slot = r;
579         /*Insert a pairt of tr to map data of vm*/
580         pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
581         r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
582                                         pte, KVM_VM_DATA_SHIFT);
583         if (r < 0)
584                 goto out;
585         vcpu->arch.vm_tr_slot = r;
586
587 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
588         if (kvm->arch.is_sn2) {
589                 r = kvm_sn2_setup_mappings(vcpu);
590                 if (r < 0)
591                         goto out;
592         }
593 #endif
594
595         r = 0;
596 out:
597         return r;
598 }
599
600 static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
601 {
602         struct kvm *kvm = vcpu->kvm;
603         ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
604         ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
605 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
606         if (kvm->arch.is_sn2)
607                 ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
608 #endif
609 }
610
611 static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
612 {
613         unsigned long psr;
614         int r;
615         int cpu = smp_processor_id();
616
617         if (vcpu->arch.last_run_cpu != cpu ||
618                         per_cpu(last_vcpu, cpu) != vcpu) {
619                 per_cpu(last_vcpu, cpu) = vcpu;
620                 vcpu->arch.last_run_cpu = cpu;
621                 kvm_flush_tlb_all();
622         }
623
624         vcpu->arch.host_rr6 = ia64_get_rr(RR6);
625         vti_set_rr6(vcpu->arch.vmm_rr);
626         local_irq_save(psr);
627         r = kvm_insert_vmm_mapping(vcpu);
628         local_irq_restore(psr);
629         return r;
630 }
631
632 static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
633 {
634         kvm_purge_vmm_mapping(vcpu);
635         vti_set_rr6(vcpu->arch.host_rr6);
636 }
637
638 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
639 {
640         union context *host_ctx, *guest_ctx;
641         int r, idx;
642
643         idx = srcu_read_lock(&vcpu->kvm->srcu);
644
645 again:
646         if (signal_pending(current)) {
647                 r = -EINTR;
648                 kvm_run->exit_reason = KVM_EXIT_INTR;
649                 goto out;
650         }
651
652         preempt_disable();
653         local_irq_disable();
654
655         /*Get host and guest context with guest address space.*/
656         host_ctx = kvm_get_host_context(vcpu);
657         guest_ctx = kvm_get_guest_context(vcpu);
658
659         clear_bit(KVM_REQ_KICK, &vcpu->requests);
660
661         r = kvm_vcpu_pre_transition(vcpu);
662         if (r < 0)
663                 goto vcpu_run_fail;
664
665         srcu_read_unlock(&vcpu->kvm->srcu, idx);
666         vcpu->mode = IN_GUEST_MODE;
667         kvm_guest_enter();
668
669         /*
670          * Transition to the guest
671          */
672         kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
673
674         kvm_vcpu_post_transition(vcpu);
675
676         vcpu->arch.launched = 1;
677         set_bit(KVM_REQ_KICK, &vcpu->requests);
678         local_irq_enable();
679
680         /*
681          * We must have an instruction between local_irq_enable() and
682          * kvm_guest_exit(), so the timer interrupt isn't delayed by
683          * the interrupt shadow.  The stat.exits increment will do nicely.
684          * But we need to prevent reordering, hence this barrier():
685          */
686         barrier();
687         kvm_guest_exit();
688         vcpu->mode = OUTSIDE_GUEST_MODE;
689         preempt_enable();
690
691         idx = srcu_read_lock(&vcpu->kvm->srcu);
692
693         r = kvm_handle_exit(kvm_run, vcpu);
694
695         if (r > 0) {
696                 if (!need_resched())
697                         goto again;
698         }
699
700 out:
701         srcu_read_unlock(&vcpu->kvm->srcu, idx);
702         if (r > 0) {
703                 kvm_resched(vcpu);
704                 idx = srcu_read_lock(&vcpu->kvm->srcu);
705                 goto again;
706         }
707
708         return r;
709
710 vcpu_run_fail:
711         local_irq_enable();
712         preempt_enable();
713         kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
714         goto out;
715 }
716
717 static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
718 {
719         struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
720
721         if (!vcpu->mmio_is_write)
722                 memcpy(&p->data, vcpu->mmio_data, 8);
723         p->state = STATE_IORESP_READY;
724 }
725
726 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
727 {
728         int r;
729         sigset_t sigsaved;
730
731         if (vcpu->sigset_active)
732                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
733
734         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
735                 kvm_vcpu_block(vcpu);
736                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
737                 r = -EAGAIN;
738                 goto out;
739         }
740
741         if (vcpu->mmio_needed) {
742                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
743                 kvm_set_mmio_data(vcpu);
744                 vcpu->mmio_read_completed = 1;
745                 vcpu->mmio_needed = 0;
746         }
747         r = __vcpu_run(vcpu, kvm_run);
748 out:
749         if (vcpu->sigset_active)
750                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
751
752         return r;
753 }
754
755 struct kvm *kvm_arch_alloc_vm(void)
756 {
757
758         struct kvm *kvm;
759         uint64_t  vm_base;
760
761         BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
762
763         vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
764
765         if (!vm_base)
766                 return NULL;
767
768         memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
769         kvm = (struct kvm *)(vm_base +
770                         offsetof(struct kvm_vm_data, kvm_vm_struct));
771         kvm->arch.vm_base = vm_base;
772         printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
773
774         return kvm;
775 }
776
777 struct kvm_ia64_io_range {
778         unsigned long start;
779         unsigned long size;
780         unsigned long type;
781 };
782
783 static const struct kvm_ia64_io_range io_ranges[] = {
784         {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
785         {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
786         {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
787         {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
788         {PIB_START, PIB_SIZE, GPFN_PIB},
789 };
790
791 static void kvm_build_io_pmt(struct kvm *kvm)
792 {
793         unsigned long i, j;
794
795         /* Mark I/O ranges */
796         for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
797                                                         i++) {
798                 for (j = io_ranges[i].start;
799                                 j < io_ranges[i].start + io_ranges[i].size;
800                                 j += PAGE_SIZE)
801                         kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
802                                         io_ranges[i].type, 0);
803         }
804
805 }
806
807 /*Use unused rids to virtualize guest rid.*/
808 #define GUEST_PHYSICAL_RR0      0x1739
809 #define GUEST_PHYSICAL_RR4      0x2739
810 #define VMM_INIT_RR             0x1660
811
812 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
813 {
814         BUG_ON(!kvm);
815
816         if (type)
817                 return -EINVAL;
818
819         kvm->arch.is_sn2 = ia64_platform_is("sn2");
820
821         kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
822         kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
823         kvm->arch.vmm_init_rr = VMM_INIT_RR;
824
825         /*
826          *Fill P2M entries for MMIO/IO ranges
827          */
828         kvm_build_io_pmt(kvm);
829
830         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
831
832         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
833         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
834
835         return 0;
836 }
837
838 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
839                                         struct kvm_irqchip *chip)
840 {
841         int r;
842
843         r = 0;
844         switch (chip->chip_id) {
845         case KVM_IRQCHIP_IOAPIC:
846                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
847                 break;
848         default:
849                 r = -EINVAL;
850                 break;
851         }
852         return r;
853 }
854
855 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
856 {
857         int r;
858
859         r = 0;
860         switch (chip->chip_id) {
861         case KVM_IRQCHIP_IOAPIC:
862                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
863                 break;
864         default:
865                 r = -EINVAL;
866                 break;
867         }
868         return r;
869 }
870
871 #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
872
873 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
874 {
875         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
876         int i;
877
878         for (i = 0; i < 16; i++) {
879                 vpd->vgr[i] = regs->vpd.vgr[i];
880                 vpd->vbgr[i] = regs->vpd.vbgr[i];
881         }
882         for (i = 0; i < 128; i++)
883                 vpd->vcr[i] = regs->vpd.vcr[i];
884         vpd->vhpi = regs->vpd.vhpi;
885         vpd->vnat = regs->vpd.vnat;
886         vpd->vbnat = regs->vpd.vbnat;
887         vpd->vpsr = regs->vpd.vpsr;
888
889         vpd->vpr = regs->vpd.vpr;
890
891         memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
892
893         RESTORE_REGS(mp_state);
894         RESTORE_REGS(vmm_rr);
895         memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
896         memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
897         RESTORE_REGS(itr_regions);
898         RESTORE_REGS(dtr_regions);
899         RESTORE_REGS(tc_regions);
900         RESTORE_REGS(irq_check);
901         RESTORE_REGS(itc_check);
902         RESTORE_REGS(timer_check);
903         RESTORE_REGS(timer_pending);
904         RESTORE_REGS(last_itc);
905         for (i = 0; i < 8; i++) {
906                 vcpu->arch.vrr[i] = regs->vrr[i];
907                 vcpu->arch.ibr[i] = regs->ibr[i];
908                 vcpu->arch.dbr[i] = regs->dbr[i];
909         }
910         for (i = 0; i < 4; i++)
911                 vcpu->arch.insvc[i] = regs->insvc[i];
912         RESTORE_REGS(xtp);
913         RESTORE_REGS(metaphysical_rr0);
914         RESTORE_REGS(metaphysical_rr4);
915         RESTORE_REGS(metaphysical_saved_rr0);
916         RESTORE_REGS(metaphysical_saved_rr4);
917         RESTORE_REGS(fp_psr);
918         RESTORE_REGS(saved_gp);
919
920         vcpu->arch.irq_new_pending = 1;
921         vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
922         set_bit(KVM_REQ_RESUME, &vcpu->requests);
923
924         return 0;
925 }
926
927 long kvm_arch_vm_ioctl(struct file *filp,
928                 unsigned int ioctl, unsigned long arg)
929 {
930         struct kvm *kvm = filp->private_data;
931         void __user *argp = (void __user *)arg;
932         int r = -ENOTTY;
933
934         switch (ioctl) {
935         case KVM_SET_MEMORY_REGION: {
936                 struct kvm_memory_region kvm_mem;
937                 struct kvm_userspace_memory_region kvm_userspace_mem;
938
939                 r = -EFAULT;
940                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
941                         goto out;
942                 kvm_userspace_mem.slot = kvm_mem.slot;
943                 kvm_userspace_mem.flags = kvm_mem.flags;
944                 kvm_userspace_mem.guest_phys_addr =
945                                         kvm_mem.guest_phys_addr;
946                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
947                 r = kvm_vm_ioctl_set_memory_region(kvm,
948                                         &kvm_userspace_mem, 0);
949                 if (r)
950                         goto out;
951                 break;
952                 }
953         case KVM_CREATE_IRQCHIP:
954                 r = -EFAULT;
955                 r = kvm_ioapic_init(kvm);
956                 if (r)
957                         goto out;
958                 r = kvm_setup_default_irq_routing(kvm);
959                 if (r) {
960                         mutex_lock(&kvm->slots_lock);
961                         kvm_ioapic_destroy(kvm);
962                         mutex_unlock(&kvm->slots_lock);
963                         goto out;
964                 }
965                 break;
966         case KVM_IRQ_LINE_STATUS:
967         case KVM_IRQ_LINE: {
968                 struct kvm_irq_level irq_event;
969
970                 r = -EFAULT;
971                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
972                         goto out;
973                 r = -ENXIO;
974                 if (irqchip_in_kernel(kvm)) {
975                         __s32 status;
976                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
977                                     irq_event.irq, irq_event.level);
978                         if (ioctl == KVM_IRQ_LINE_STATUS) {
979                                 r = -EFAULT;
980                                 irq_event.status = status;
981                                 if (copy_to_user(argp, &irq_event,
982                                                         sizeof irq_event))
983                                         goto out;
984                         }
985                         r = 0;
986                 }
987                 break;
988                 }
989         case KVM_GET_IRQCHIP: {
990                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
991                 struct kvm_irqchip chip;
992
993                 r = -EFAULT;
994                 if (copy_from_user(&chip, argp, sizeof chip))
995                                 goto out;
996                 r = -ENXIO;
997                 if (!irqchip_in_kernel(kvm))
998                         goto out;
999                 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
1000                 if (r)
1001                         goto out;
1002                 r = -EFAULT;
1003                 if (copy_to_user(argp, &chip, sizeof chip))
1004                                 goto out;
1005                 r = 0;
1006                 break;
1007                 }
1008         case KVM_SET_IRQCHIP: {
1009                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1010                 struct kvm_irqchip chip;
1011
1012                 r = -EFAULT;
1013                 if (copy_from_user(&chip, argp, sizeof chip))
1014                                 goto out;
1015                 r = -ENXIO;
1016                 if (!irqchip_in_kernel(kvm))
1017                         goto out;
1018                 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1019                 if (r)
1020                         goto out;
1021                 r = 0;
1022                 break;
1023                 }
1024         default:
1025                 ;
1026         }
1027 out:
1028         return r;
1029 }
1030
1031 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1032                 struct kvm_sregs *sregs)
1033 {
1034         return -EINVAL;
1035 }
1036
1037 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1038                 struct kvm_sregs *sregs)
1039 {
1040         return -EINVAL;
1041
1042 }
1043 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1044                 struct kvm_translation *tr)
1045 {
1046
1047         return -EINVAL;
1048 }
1049
1050 static int kvm_alloc_vmm_area(void)
1051 {
1052         if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
1053                 kvm_vmm_base = __get_free_pages(GFP_KERNEL,
1054                                 get_order(KVM_VMM_SIZE));
1055                 if (!kvm_vmm_base)
1056                         return -ENOMEM;
1057
1058                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1059                 kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
1060
1061                 printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
1062                                 kvm_vmm_base, kvm_vm_buffer);
1063         }
1064
1065         return 0;
1066 }
1067
1068 static void kvm_free_vmm_area(void)
1069 {
1070         if (kvm_vmm_base) {
1071                 /*Zero this area before free to avoid bits leak!!*/
1072                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1073                 free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
1074                 kvm_vmm_base  = 0;
1075                 kvm_vm_buffer = 0;
1076                 kvm_vsa_base = 0;
1077         }
1078 }
1079
1080 static int vti_init_vpd(struct kvm_vcpu *vcpu)
1081 {
1082         int i;
1083         union cpuid3_t cpuid3;
1084         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1085
1086         if (IS_ERR(vpd))
1087                 return PTR_ERR(vpd);
1088
1089         /* CPUID init */
1090         for (i = 0; i < 5; i++)
1091                 vpd->vcpuid[i] = ia64_get_cpuid(i);
1092
1093         /* Limit the CPUID number to 5 */
1094         cpuid3.value = vpd->vcpuid[3];
1095         cpuid3.number = 4;      /* 5 - 1 */
1096         vpd->vcpuid[3] = cpuid3.value;
1097
1098         /*Set vac and vdc fields*/
1099         vpd->vac.a_from_int_cr = 1;
1100         vpd->vac.a_to_int_cr = 1;
1101         vpd->vac.a_from_psr = 1;
1102         vpd->vac.a_from_cpuid = 1;
1103         vpd->vac.a_cover = 1;
1104         vpd->vac.a_bsw = 1;
1105         vpd->vac.a_int = 1;
1106         vpd->vdc.d_vmsw = 1;
1107
1108         /*Set virtual buffer*/
1109         vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
1110
1111         return 0;
1112 }
1113
1114 static int vti_create_vp(struct kvm_vcpu *vcpu)
1115 {
1116         long ret;
1117         struct vpd *vpd = vcpu->arch.vpd;
1118         unsigned long  vmm_ivt;
1119
1120         vmm_ivt = kvm_vmm_info->vmm_ivt;
1121
1122         printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
1123
1124         ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
1125
1126         if (ret) {
1127                 printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
1128                 return -EINVAL;
1129         }
1130         return 0;
1131 }
1132
1133 static void init_ptce_info(struct kvm_vcpu *vcpu)
1134 {
1135         ia64_ptce_info_t ptce = {0};
1136
1137         ia64_get_ptce(&ptce);
1138         vcpu->arch.ptce_base = ptce.base;
1139         vcpu->arch.ptce_count[0] = ptce.count[0];
1140         vcpu->arch.ptce_count[1] = ptce.count[1];
1141         vcpu->arch.ptce_stride[0] = ptce.stride[0];
1142         vcpu->arch.ptce_stride[1] = ptce.stride[1];
1143 }
1144
1145 static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
1146 {
1147         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
1148
1149         if (hrtimer_cancel(p_ht))
1150                 hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
1151 }
1152
1153 static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
1154 {
1155         struct kvm_vcpu *vcpu;
1156         wait_queue_head_t *q;
1157
1158         vcpu  = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1159         q = &vcpu->wq;
1160
1161         if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1162                 goto out;
1163
1164         if (waitqueue_active(q))
1165                 wake_up_interruptible(q);
1166
1167 out:
1168         vcpu->arch.timer_fired = 1;
1169         vcpu->arch.timer_check = 1;
1170         return HRTIMER_NORESTART;
1171 }
1172
1173 #define PALE_RESET_ENTRY    0x80000000ffffffb0UL
1174
1175 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1176 {
1177         struct kvm_vcpu *v;
1178         int r;
1179         int i;
1180         long itc_offset;
1181         struct kvm *kvm = vcpu->kvm;
1182         struct kvm_pt_regs *regs = vcpu_regs(vcpu);
1183
1184         union context *p_ctx = &vcpu->arch.guest;
1185         struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
1186
1187         /*Init vcpu context for first run.*/
1188         if (IS_ERR(vmm_vcpu))
1189                 return PTR_ERR(vmm_vcpu);
1190
1191         if (kvm_vcpu_is_bsp(vcpu)) {
1192                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1193
1194                 /*Set entry address for first run.*/
1195                 regs->cr_iip = PALE_RESET_ENTRY;
1196
1197                 /*Initialize itc offset for vcpus*/
1198                 itc_offset = 0UL - kvm_get_itc(vcpu);
1199                 for (i = 0; i < KVM_MAX_VCPUS; i++) {
1200                         v = (struct kvm_vcpu *)((char *)vcpu +
1201                                         sizeof(struct kvm_vcpu_data) * i);
1202                         v->arch.itc_offset = itc_offset;
1203                         v->arch.last_itc = 0;
1204                 }
1205         } else
1206                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1207
1208         r = -ENOMEM;
1209         vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
1210         if (!vcpu->arch.apic)
1211                 goto out;
1212         vcpu->arch.apic->vcpu = vcpu;
1213
1214         p_ctx->gr[1] = 0;
1215         p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
1216         p_ctx->gr[13] = (unsigned long)vmm_vcpu;
1217         p_ctx->psr = 0x1008522000UL;
1218         p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
1219         p_ctx->caller_unat = 0;
1220         p_ctx->pr = 0x0;
1221         p_ctx->ar[36] = 0x0; /*unat*/
1222         p_ctx->ar[19] = 0x0; /*rnat*/
1223         p_ctx->ar[18] = (unsigned long)vmm_vcpu +
1224                                 ((sizeof(struct kvm_vcpu)+15) & ~15);
1225         p_ctx->ar[64] = 0x0; /*pfs*/
1226         p_ctx->cr[0] = 0x7e04UL;
1227         p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
1228         p_ctx->cr[8] = 0x3c;
1229
1230         /*Initialize region register*/
1231         p_ctx->rr[0] = 0x30;
1232         p_ctx->rr[1] = 0x30;
1233         p_ctx->rr[2] = 0x30;
1234         p_ctx->rr[3] = 0x30;
1235         p_ctx->rr[4] = 0x30;
1236         p_ctx->rr[5] = 0x30;
1237         p_ctx->rr[7] = 0x30;
1238
1239         /*Initialize branch register 0*/
1240         p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
1241
1242         vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
1243         vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
1244         vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
1245
1246         hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1247         vcpu->arch.hlt_timer.function = hlt_timer_fn;
1248
1249         vcpu->arch.last_run_cpu = -1;
1250         vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
1251         vcpu->arch.vsa_base = kvm_vsa_base;
1252         vcpu->arch.__gp = kvm_vmm_gp;
1253         vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1254         vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
1255         vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
1256         init_ptce_info(vcpu);
1257
1258         r = 0;
1259 out:
1260         return r;
1261 }
1262
1263 static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
1264 {
1265         unsigned long psr;
1266         int r;
1267
1268         local_irq_save(psr);
1269         r = kvm_insert_vmm_mapping(vcpu);
1270         local_irq_restore(psr);
1271         if (r)
1272                 goto fail;
1273         r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
1274         if (r)
1275                 goto fail;
1276
1277         r = vti_init_vpd(vcpu);
1278         if (r) {
1279                 printk(KERN_DEBUG"kvm: vpd init error!!\n");
1280                 goto uninit;
1281         }
1282
1283         r = vti_create_vp(vcpu);
1284         if (r)
1285                 goto uninit;
1286
1287         kvm_purge_vmm_mapping(vcpu);
1288
1289         return 0;
1290 uninit:
1291         kvm_vcpu_uninit(vcpu);
1292 fail:
1293         return r;
1294 }
1295
1296 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1297                 unsigned int id)
1298 {
1299         struct kvm_vcpu *vcpu;
1300         unsigned long vm_base = kvm->arch.vm_base;
1301         int r;
1302         int cpu;
1303
1304         BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
1305
1306         r = -EINVAL;
1307         if (id >= KVM_MAX_VCPUS) {
1308                 printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
1309                                 KVM_MAX_VCPUS);
1310                 goto fail;
1311         }
1312
1313         r = -ENOMEM;
1314         if (!vm_base) {
1315                 printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
1316                 goto fail;
1317         }
1318         vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
1319                                         vcpu_data[id].vcpu_struct));
1320         vcpu->kvm = kvm;
1321
1322         cpu = get_cpu();
1323         r = vti_vcpu_setup(vcpu, id);
1324         put_cpu();
1325
1326         if (r) {
1327                 printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
1328                 goto fail;
1329         }
1330
1331         return vcpu;
1332 fail:
1333         return ERR_PTR(r);
1334 }
1335
1336 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1337 {
1338         return 0;
1339 }
1340
1341 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1342 {
1343         return -EINVAL;
1344 }
1345
1346 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1347 {
1348         return -EINVAL;
1349 }
1350
1351 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1352                                         struct kvm_guest_debug *dbg)
1353 {
1354         return -EINVAL;
1355 }
1356
1357 void kvm_arch_free_vm(struct kvm *kvm)
1358 {
1359         unsigned long vm_base = kvm->arch.vm_base;
1360
1361         if (vm_base) {
1362                 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
1363                 free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
1364         }
1365
1366 }
1367
1368 static void kvm_release_vm_pages(struct kvm *kvm)
1369 {
1370         struct kvm_memslots *slots;
1371         struct kvm_memory_slot *memslot;
1372         int j;
1373         unsigned long base_gfn;
1374
1375         slots = kvm_memslots(kvm);
1376         kvm_for_each_memslot(memslot, slots) {
1377                 base_gfn = memslot->base_gfn;
1378                 for (j = 0; j < memslot->npages; j++) {
1379                         if (memslot->rmap[j])
1380                                 put_page((struct page *)memslot->rmap[j]);
1381                 }
1382         }
1383 }
1384
1385 void kvm_arch_sync_events(struct kvm *kvm)
1386 {
1387 }
1388
1389 void kvm_arch_destroy_vm(struct kvm *kvm)
1390 {
1391         kvm_iommu_unmap_guest(kvm);
1392 #ifdef  KVM_CAP_DEVICE_ASSIGNMENT
1393         kvm_free_all_assigned_devices(kvm);
1394 #endif
1395         kfree(kvm->arch.vioapic);
1396         kvm_release_vm_pages(kvm);
1397 }
1398
1399 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1400 {
1401 }
1402
1403 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1404 {
1405         if (cpu != vcpu->cpu) {
1406                 vcpu->cpu = cpu;
1407                 if (vcpu->arch.ht_active)
1408                         kvm_migrate_hlt_timer(vcpu);
1409         }
1410 }
1411
1412 #define SAVE_REGS(_x)   regs->_x = vcpu->arch._x
1413
1414 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1415 {
1416         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1417         int i;
1418
1419         vcpu_load(vcpu);
1420
1421         for (i = 0; i < 16; i++) {
1422                 regs->vpd.vgr[i] = vpd->vgr[i];
1423                 regs->vpd.vbgr[i] = vpd->vbgr[i];
1424         }
1425         for (i = 0; i < 128; i++)
1426                 regs->vpd.vcr[i] = vpd->vcr[i];
1427         regs->vpd.vhpi = vpd->vhpi;
1428         regs->vpd.vnat = vpd->vnat;
1429         regs->vpd.vbnat = vpd->vbnat;
1430         regs->vpd.vpsr = vpd->vpsr;
1431         regs->vpd.vpr = vpd->vpr;
1432
1433         memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
1434
1435         SAVE_REGS(mp_state);
1436         SAVE_REGS(vmm_rr);
1437         memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
1438         memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
1439         SAVE_REGS(itr_regions);
1440         SAVE_REGS(dtr_regions);
1441         SAVE_REGS(tc_regions);
1442         SAVE_REGS(irq_check);
1443         SAVE_REGS(itc_check);
1444         SAVE_REGS(timer_check);
1445         SAVE_REGS(timer_pending);
1446         SAVE_REGS(last_itc);
1447         for (i = 0; i < 8; i++) {
1448                 regs->vrr[i] = vcpu->arch.vrr[i];
1449                 regs->ibr[i] = vcpu->arch.ibr[i];
1450                 regs->dbr[i] = vcpu->arch.dbr[i];
1451         }
1452         for (i = 0; i < 4; i++)
1453                 regs->insvc[i] = vcpu->arch.insvc[i];
1454         regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
1455         SAVE_REGS(xtp);
1456         SAVE_REGS(metaphysical_rr0);
1457         SAVE_REGS(metaphysical_rr4);
1458         SAVE_REGS(metaphysical_saved_rr0);
1459         SAVE_REGS(metaphysical_saved_rr4);
1460         SAVE_REGS(fp_psr);
1461         SAVE_REGS(saved_gp);
1462
1463         vcpu_put(vcpu);
1464         return 0;
1465 }
1466
1467 int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
1468                                   struct kvm_ia64_vcpu_stack *stack)
1469 {
1470         memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
1471         return 0;
1472 }
1473
1474 int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
1475                                   struct kvm_ia64_vcpu_stack *stack)
1476 {
1477         memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
1478                sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
1479
1480         vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
1481         return 0;
1482 }
1483
1484 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1485 {
1486
1487         hrtimer_cancel(&vcpu->arch.hlt_timer);
1488         kfree(vcpu->arch.apic);
1489 }
1490
1491
1492 long kvm_arch_vcpu_ioctl(struct file *filp,
1493                          unsigned int ioctl, unsigned long arg)
1494 {
1495         struct kvm_vcpu *vcpu = filp->private_data;
1496         void __user *argp = (void __user *)arg;
1497         struct kvm_ia64_vcpu_stack *stack = NULL;
1498         long r;
1499
1500         switch (ioctl) {
1501         case KVM_IA64_VCPU_GET_STACK: {
1502                 struct kvm_ia64_vcpu_stack __user *user_stack;
1503                 void __user *first_p = argp;
1504
1505                 r = -EFAULT;
1506                 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1507                         goto out;
1508
1509                 if (!access_ok(VERIFY_WRITE, user_stack,
1510                                sizeof(struct kvm_ia64_vcpu_stack))) {
1511                         printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
1512                                "Illegal user destination address for stack\n");
1513                         goto out;
1514                 }
1515                 stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1516                 if (!stack) {
1517                         r = -ENOMEM;
1518                         goto out;
1519                 }
1520
1521                 r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
1522                 if (r)
1523                         goto out;
1524
1525                 if (copy_to_user(user_stack, stack,
1526                                  sizeof(struct kvm_ia64_vcpu_stack))) {
1527                         r = -EFAULT;
1528                         goto out;
1529                 }
1530
1531                 break;
1532         }
1533         case KVM_IA64_VCPU_SET_STACK: {
1534                 struct kvm_ia64_vcpu_stack __user *user_stack;
1535                 void __user *first_p = argp;
1536
1537                 r = -EFAULT;
1538                 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1539                         goto out;
1540
1541                 if (!access_ok(VERIFY_READ, user_stack,
1542                             sizeof(struct kvm_ia64_vcpu_stack))) {
1543                         printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
1544                                "Illegal user address for stack\n");
1545                         goto out;
1546                 }
1547                 stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1548                 if (!stack) {
1549                         r = -ENOMEM;
1550                         goto out;
1551                 }
1552                 if (copy_from_user(stack, user_stack,
1553                                    sizeof(struct kvm_ia64_vcpu_stack)))
1554                         goto out;
1555
1556                 r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
1557                 break;
1558         }
1559
1560         default:
1561                 r = -EINVAL;
1562         }
1563
1564 out:
1565         kfree(stack);
1566         return r;
1567 }
1568
1569 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1570 {
1571         return VM_FAULT_SIGBUS;
1572 }
1573
1574 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1575                 struct kvm_memory_slot *memslot,
1576                 struct kvm_memory_slot old,
1577                 struct kvm_userspace_memory_region *mem,
1578                 int user_alloc)
1579 {
1580         unsigned long i;
1581         unsigned long pfn;
1582         int npages = memslot->npages;
1583         unsigned long base_gfn = memslot->base_gfn;
1584
1585         if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
1586                 return -ENOMEM;
1587
1588         for (i = 0; i < npages; i++) {
1589                 pfn = gfn_to_pfn(kvm, base_gfn + i);
1590                 if (!kvm_is_mmio_pfn(pfn)) {
1591                         kvm_set_pmt_entry(kvm, base_gfn + i,
1592                                         pfn << PAGE_SHIFT,
1593                                 _PAGE_AR_RWX | _PAGE_MA_WB);
1594                         memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
1595                 } else {
1596                         kvm_set_pmt_entry(kvm, base_gfn + i,
1597                                         GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
1598                                         _PAGE_MA_UC);
1599                         memslot->rmap[i] = 0;
1600                         }
1601         }
1602
1603         return 0;
1604 }
1605
1606 void kvm_arch_commit_memory_region(struct kvm *kvm,
1607                 struct kvm_userspace_memory_region *mem,
1608                 struct kvm_memory_slot old,
1609                 int user_alloc)
1610 {
1611         return;
1612 }
1613
1614 void kvm_arch_flush_shadow(struct kvm *kvm)
1615 {
1616         kvm_flush_remote_tlbs(kvm);
1617 }
1618
1619 long kvm_arch_dev_ioctl(struct file *filp,
1620                         unsigned int ioctl, unsigned long arg)
1621 {
1622         return -EINVAL;
1623 }
1624
1625 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1626 {
1627         kvm_vcpu_uninit(vcpu);
1628 }
1629
1630 static int vti_cpu_has_kvm_support(void)
1631 {
1632         long  avail = 1, status = 1, control = 1;
1633         long ret;
1634
1635         ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
1636         if (ret)
1637                 goto out;
1638
1639         if (!(avail & PAL_PROC_VM_BIT))
1640                 goto out;
1641
1642         printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
1643
1644         ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
1645         if (ret)
1646                 goto out;
1647         printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
1648
1649         if (!(vp_env_info & VP_OPCODE)) {
1650                 printk(KERN_WARNING"kvm: No opcode ability on hardware, "
1651                                 "vm_env_info:0x%lx\n", vp_env_info);
1652         }
1653
1654         return 1;
1655 out:
1656         return 0;
1657 }
1658
1659
1660 /*
1661  * On SN2, the ITC isn't stable, so copy in fast path code to use the
1662  * SN2 RTC, replacing the ITC based default verion.
1663  */
1664 static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
1665                           struct module *module)
1666 {
1667         unsigned long new_ar, new_ar_sn2;
1668         unsigned long module_base;
1669
1670         if (!ia64_platform_is("sn2"))
1671                 return;
1672
1673         module_base = (unsigned long)module->module_core;
1674
1675         new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
1676         new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
1677
1678         printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
1679                "as source\n");
1680
1681         /*
1682          * Copy the SN2 version of mov_ar into place. They are both
1683          * the same size, so 6 bundles is sufficient (6 * 0x10).
1684          */
1685         memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
1686 }
1687
1688 static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1689                             struct module *module)
1690 {
1691         unsigned long module_base;
1692         unsigned long vmm_size;
1693
1694         unsigned long vmm_offset, func_offset, fdesc_offset;
1695         struct fdesc *p_fdesc;
1696
1697         BUG_ON(!module);
1698
1699         if (!kvm_vmm_base) {
1700                 printk("kvm: kvm area hasn't been initialized yet!!\n");
1701                 return -EFAULT;
1702         }
1703
1704         /*Calculate new position of relocated vmm module.*/
1705         module_base = (unsigned long)module->module_core;
1706         vmm_size = module->core_size;
1707         if (unlikely(vmm_size > KVM_VMM_SIZE))
1708                 return -EFAULT;
1709
1710         memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1711         kvm_patch_vmm(vmm_info, module);
1712         kvm_flush_icache(kvm_vmm_base, vmm_size);
1713
1714         /*Recalculate kvm_vmm_info based on new VMM*/
1715         vmm_offset = vmm_info->vmm_ivt - module_base;
1716         kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
1717         printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
1718                         kvm_vmm_info->vmm_ivt);
1719
1720         fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
1721         kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
1722                                                         fdesc_offset);
1723         func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
1724         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1725         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1726         p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
1727
1728         printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
1729                         KVM_VMM_BASE+func_offset);
1730
1731         fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
1732         kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
1733                         fdesc_offset);
1734         func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
1735         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1736         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1737         p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
1738
1739         kvm_vmm_gp = p_fdesc->gp;
1740
1741         printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
1742                                                 kvm_vmm_info->vmm_entry);
1743         printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
1744                                                 KVM_VMM_BASE + func_offset);
1745
1746         return 0;
1747 }
1748
1749 int kvm_arch_init(void *opaque)
1750 {
1751         int r;
1752         struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
1753
1754         if (!vti_cpu_has_kvm_support()) {
1755                 printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
1756                 r = -EOPNOTSUPP;
1757                 goto out;
1758         }
1759
1760         if (kvm_vmm_info) {
1761                 printk(KERN_ERR "kvm: Already loaded VMM module!\n");
1762                 r = -EEXIST;
1763                 goto out;
1764         }
1765
1766         r = -ENOMEM;
1767         kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
1768         if (!kvm_vmm_info)
1769                 goto out;
1770
1771         if (kvm_alloc_vmm_area())
1772                 goto out_free0;
1773
1774         r = kvm_relocate_vmm(vmm_info, vmm_info->module);
1775         if (r)
1776                 goto out_free1;
1777
1778         return 0;
1779
1780 out_free1:
1781         kvm_free_vmm_area();
1782 out_free0:
1783         kfree(kvm_vmm_info);
1784 out:
1785         return r;
1786 }
1787
1788 void kvm_arch_exit(void)
1789 {
1790         kvm_free_vmm_area();
1791         kfree(kvm_vmm_info);
1792         kvm_vmm_info = NULL;
1793 }
1794
1795 static void kvm_ia64_sync_dirty_log(struct kvm *kvm,
1796                                     struct kvm_memory_slot *memslot)
1797 {
1798         int i;
1799         long base;
1800         unsigned long n;
1801         unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
1802                         offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
1803
1804         n = kvm_dirty_bitmap_bytes(memslot);
1805         base = memslot->base_gfn / BITS_PER_LONG;
1806
1807         spin_lock(&kvm->arch.dirty_log_lock);
1808         for (i = 0; i < n/sizeof(long); ++i) {
1809                 memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
1810                 dirty_bitmap[base + i] = 0;
1811         }
1812         spin_unlock(&kvm->arch.dirty_log_lock);
1813 }
1814
1815 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1816                 struct kvm_dirty_log *log)
1817 {
1818         int r;
1819         unsigned long n;
1820         struct kvm_memory_slot *memslot;
1821         int is_dirty = 0;
1822
1823         mutex_lock(&kvm->slots_lock);
1824
1825         r = -EINVAL;
1826         if (log->slot >= KVM_MEMORY_SLOTS)
1827                 goto out;
1828
1829         memslot = id_to_memslot(kvm->memslots, log->slot);
1830         r = -ENOENT;
1831         if (!memslot->dirty_bitmap)
1832                 goto out;
1833
1834         kvm_ia64_sync_dirty_log(kvm, memslot);
1835         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1836         if (r)
1837                 goto out;
1838
1839         /* If nothing is dirty, don't bother messing with page tables. */
1840         if (is_dirty) {
1841                 kvm_flush_remote_tlbs(kvm);
1842                 n = kvm_dirty_bitmap_bytes(memslot);
1843                 memset(memslot->dirty_bitmap, 0, n);
1844         }
1845         r = 0;
1846 out:
1847         mutex_unlock(&kvm->slots_lock);
1848         return r;
1849 }
1850
1851 int kvm_arch_hardware_setup(void)
1852 {
1853         return 0;
1854 }
1855
1856 void kvm_arch_hardware_unsetup(void)
1857 {
1858 }
1859
1860 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1861 {
1862         int me;
1863         int cpu = vcpu->cpu;
1864
1865         if (waitqueue_active(&vcpu->wq))
1866                 wake_up_interruptible(&vcpu->wq);
1867
1868         me = get_cpu();
1869         if (cpu != me && (unsigned) cpu < nr_cpu_ids && cpu_online(cpu))
1870                 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
1871                         smp_send_reschedule(cpu);
1872         put_cpu();
1873 }
1874
1875 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
1876 {
1877         return __apic_accept_irq(vcpu, irq->vector);
1878 }
1879
1880 int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
1881 {
1882         return apic->vcpu->vcpu_id == dest;
1883 }
1884
1885 int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
1886 {
1887         return 0;
1888 }
1889
1890 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1891 {
1892         return vcpu1->arch.xtp - vcpu2->arch.xtp;
1893 }
1894
1895 int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1896                 int short_hand, int dest, int dest_mode)
1897 {
1898         struct kvm_lapic *target = vcpu->arch.apic;
1899         return (dest_mode == 0) ?
1900                 kvm_apic_match_physical_addr(target, dest) :
1901                 kvm_apic_match_logical_addr(target, dest);
1902 }
1903
1904 static int find_highest_bits(int *dat)
1905 {
1906         u32  bits, bitnum;
1907         int i;
1908
1909         /* loop for all 256 bits */
1910         for (i = 7; i >= 0 ; i--) {
1911                 bits = dat[i];
1912                 if (bits) {
1913                         bitnum = fls(bits);
1914                         return i * 32 + bitnum - 1;
1915                 }
1916         }
1917
1918         return -1;
1919 }
1920
1921 int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
1922 {
1923     struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1924
1925     if (vpd->irr[0] & (1UL << NMI_VECTOR))
1926                 return NMI_VECTOR;
1927     if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
1928                 return ExtINT_VECTOR;
1929
1930     return find_highest_bits((int *)&vpd->irr[0]);
1931 }
1932
1933 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1934 {
1935         return vcpu->arch.timer_fired;
1936 }
1937
1938 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1939 {
1940         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE) ||
1941                 (kvm_highest_pending_irq(vcpu) != -1);
1942 }
1943
1944 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1945                                     struct kvm_mp_state *mp_state)
1946 {
1947         mp_state->mp_state = vcpu->arch.mp_state;
1948         return 0;
1949 }
1950
1951 static int vcpu_reset(struct kvm_vcpu *vcpu)
1952 {
1953         int r;
1954         long psr;
1955         local_irq_save(psr);
1956         r = kvm_insert_vmm_mapping(vcpu);
1957         local_irq_restore(psr);
1958         if (r)
1959                 goto fail;
1960
1961         vcpu->arch.launched = 0;
1962         kvm_arch_vcpu_uninit(vcpu);
1963         r = kvm_arch_vcpu_init(vcpu);
1964         if (r)
1965                 goto fail;
1966
1967         kvm_purge_vmm_mapping(vcpu);
1968         r = 0;
1969 fail:
1970         return r;
1971 }
1972
1973 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1974                                     struct kvm_mp_state *mp_state)
1975 {
1976         int r = 0;
1977
1978         vcpu->arch.mp_state = mp_state->mp_state;
1979         if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
1980                 r = vcpu_reset(vcpu);
1981         return r;
1982 }