]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - arch/ia64/kernel/setup.c
Pull percpu-dtc into release branch
[linux-2.6.git] / arch / ia64 / kernel / setup.c
1 /*
2  * Architecture-specific setup.
3  *
4  * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5  *      David Mosberger-Tang <davidm@hpl.hp.com>
6  *      Stephane Eranian <eranian@hpl.hp.com>
7  * Copyright (C) 2000, 2004 Intel Corp
8  *      Rohit Seth <rohit.seth@intel.com>
9  *      Suresh Siddha <suresh.b.siddha@intel.com>
10  *      Gordon Jin <gordon.jin@intel.com>
11  * Copyright (C) 1999 VA Linux Systems
12  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13  *
14  * 12/26/04 S.Siddha, G.Jin, R.Seth
15  *                      Add multi-threading and multi-core detection
16  * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17  * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18  * 03/31/00 R.Seth      cpu_initialized and current->processor fixes
19  * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
20  * 02/01/00 R.Seth      fixed get_cpuinfo for SMP
21  * 01/07/99 S.Eranian   added the support for command line argument
22  * 06/24/99 W.Drummond  added boot_cpu_data.
23  * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
24  */
25 #include <linux/module.h>
26 #include <linux/init.h>
27
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <linux/threads.h>
38 #include <linux/screen_info.h>
39 #include <linux/dmi.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
44 #include <linux/pm.h>
45 #include <linux/cpufreq.h>
46 #include <linux/kexec.h>
47 #include <linux/crash_dump.h>
48
49 #include <asm/ia32.h>
50 #include <asm/machvec.h>
51 #include <asm/mca.h>
52 #include <asm/meminit.h>
53 #include <asm/page.h>
54 #include <asm/patch.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57 #include <asm/sal.h>
58 #include <asm/sections.h>
59 #include <asm/setup.h>
60 #include <asm/smp.h>
61 #include <asm/system.h>
62 #include <asm/unistd.h>
63 #include <asm/system.h>
64
65 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
66 # error "struct cpuinfo_ia64 too big!"
67 #endif
68
69 #ifdef CONFIG_SMP
70 unsigned long __per_cpu_offset[NR_CPUS];
71 EXPORT_SYMBOL(__per_cpu_offset);
72 #endif
73
74 extern void ia64_setup_printk_clock(void);
75
76 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
77 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
78 unsigned long ia64_cycles_per_usec;
79 struct ia64_boot_param *ia64_boot_param;
80 struct screen_info screen_info;
81 unsigned long vga_console_iobase;
82 unsigned long vga_console_membase;
83
84 static struct resource data_resource = {
85         .name   = "Kernel data",
86         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
87 };
88
89 static struct resource code_resource = {
90         .name   = "Kernel code",
91         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
92 };
93 extern char _text[], _end[], _etext[];
94
95 unsigned long ia64_max_cacheline_size;
96
97 int dma_get_cache_alignment(void)
98 {
99         return ia64_max_cacheline_size;
100 }
101 EXPORT_SYMBOL(dma_get_cache_alignment);
102
103 unsigned long ia64_iobase;      /* virtual address for I/O accesses */
104 EXPORT_SYMBOL(ia64_iobase);
105 struct io_space io_space[MAX_IO_SPACES];
106 EXPORT_SYMBOL(io_space);
107 unsigned int num_io_spaces;
108
109 /*
110  * "flush_icache_range()" needs to know what processor dependent stride size to use
111  * when it makes i-cache(s) coherent with d-caches.
112  */
113 #define I_CACHE_STRIDE_SHIFT    5       /* Safest way to go: 32 bytes by 32 bytes */
114 unsigned long ia64_i_cache_stride_shift = ~0;
115
116 /*
117  * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1).  This
118  * mask specifies a mask of address bits that must be 0 in order for two buffers to be
119  * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
120  * address of the second buffer must be aligned to (merge_mask+1) in order to be
121  * mergeable).  By default, we assume there is no I/O MMU which can merge physically
122  * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
123  * page-size of 2^64.
124  */
125 unsigned long ia64_max_iommu_merge_mask = ~0UL;
126 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
127
128 /*
129  * We use a special marker for the end of memory and it uses the extra (+1) slot
130  */
131 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
132 int num_rsvd_regions __initdata;
133
134
135 /*
136  * Filter incoming memory segments based on the primitive map created from the boot
137  * parameters. Segments contained in the map are removed from the memory ranges. A
138  * caller-specified function is called with the memory ranges that remain after filtering.
139  * This routine does not assume the incoming segments are sorted.
140  */
141 int __init
142 filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
143 {
144         unsigned long range_start, range_end, prev_start;
145         void (*func)(unsigned long, unsigned long, int);
146         int i;
147
148 #if IGNORE_PFN0
149         if (start == PAGE_OFFSET) {
150                 printk(KERN_WARNING "warning: skipping physical page 0\n");
151                 start += PAGE_SIZE;
152                 if (start >= end) return 0;
153         }
154 #endif
155         /*
156          * lowest possible address(walker uses virtual)
157          */
158         prev_start = PAGE_OFFSET;
159         func = arg;
160
161         for (i = 0; i < num_rsvd_regions; ++i) {
162                 range_start = max(start, prev_start);
163                 range_end   = min(end, rsvd_region[i].start);
164
165                 if (range_start < range_end)
166                         call_pernode_memory(__pa(range_start), range_end - range_start, func);
167
168                 /* nothing more available in this segment */
169                 if (range_end == end) return 0;
170
171                 prev_start = rsvd_region[i].end;
172         }
173         /* end of memory marker allows full processing inside loop body */
174         return 0;
175 }
176
177 static void __init
178 sort_regions (struct rsvd_region *rsvd_region, int max)
179 {
180         int j;
181
182         /* simple bubble sorting */
183         while (max--) {
184                 for (j = 0; j < max; ++j) {
185                         if (rsvd_region[j].start > rsvd_region[j+1].start) {
186                                 struct rsvd_region tmp;
187                                 tmp = rsvd_region[j];
188                                 rsvd_region[j] = rsvd_region[j + 1];
189                                 rsvd_region[j + 1] = tmp;
190                         }
191                 }
192         }
193 }
194
195 /*
196  * Request address space for all standard resources
197  */
198 static int __init register_memory(void)
199 {
200         code_resource.start = ia64_tpa(_text);
201         code_resource.end   = ia64_tpa(_etext) - 1;
202         data_resource.start = ia64_tpa(_etext);
203         data_resource.end   = ia64_tpa(_end) - 1;
204         efi_initialize_iomem_resources(&code_resource, &data_resource);
205
206         return 0;
207 }
208
209 __initcall(register_memory);
210
211 /**
212  * reserve_memory - setup reserved memory areas
213  *
214  * Setup the reserved memory areas set aside for the boot parameters,
215  * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
216  * see include/asm-ia64/meminit.h if you need to define more.
217  */
218 void __init
219 reserve_memory (void)
220 {
221         int n = 0;
222
223         /*
224          * none of the entries in this table overlap
225          */
226         rsvd_region[n].start = (unsigned long) ia64_boot_param;
227         rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
228         n++;
229
230         rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
231         rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
232         n++;
233
234         rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
235         rsvd_region[n].end   = (rsvd_region[n].start
236                                 + strlen(__va(ia64_boot_param->command_line)) + 1);
237         n++;
238
239         rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
240         rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
241         n++;
242
243 #ifdef CONFIG_BLK_DEV_INITRD
244         if (ia64_boot_param->initrd_start) {
245                 rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
246                 rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
247                 n++;
248         }
249 #endif
250
251 #ifdef CONFIG_PROC_VMCORE
252         if (reserve_elfcorehdr(&rsvd_region[n].start,
253                                &rsvd_region[n].end) == 0)
254                 n++;
255 #endif
256
257         efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
258         n++;
259
260 #ifdef CONFIG_KEXEC
261         /* crashkernel=size@offset specifies the size to reserve for a crash
262          * kernel. If offset is 0, then it is determined automatically.
263          * By reserving this memory we guarantee that linux never set's it
264          * up as a DMA target.Useful for holding code to do something
265          * appropriate after a kernel panic.
266          */
267         {
268                 char *from = strstr(boot_command_line, "crashkernel=");
269                 unsigned long base, size;
270                 if (from) {
271                         size = memparse(from + 12, &from);
272                         if (*from == '@')
273                                 base = memparse(from+1, &from);
274                         else
275                                 base = 0;
276                         if (size) {
277                                 if (!base) {
278                                         sort_regions(rsvd_region, n);
279                                         base = kdump_find_rsvd_region(size,
280                                                                 rsvd_region, n);
281                                         }
282                                 if (base != ~0UL) {
283                                         rsvd_region[n].start =
284                                                 (unsigned long)__va(base);
285                                         rsvd_region[n].end =
286                                                 (unsigned long)__va(base + size);
287                                         n++;
288                                         crashk_res.start = base;
289                                         crashk_res.end = base + size - 1;
290                                 }
291                         }
292                 }
293                 efi_memmap_res.start = ia64_boot_param->efi_memmap;
294                 efi_memmap_res.end = efi_memmap_res.start +
295                         ia64_boot_param->efi_memmap_size;
296                 boot_param_res.start = __pa(ia64_boot_param);
297                 boot_param_res.end = boot_param_res.start +
298                         sizeof(*ia64_boot_param);
299         }
300 #endif
301         /* end of memory marker */
302         rsvd_region[n].start = ~0UL;
303         rsvd_region[n].end   = ~0UL;
304         n++;
305
306         num_rsvd_regions = n;
307         BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
308
309         sort_regions(rsvd_region, num_rsvd_regions);
310 }
311
312
313 /**
314  * find_initrd - get initrd parameters from the boot parameter structure
315  *
316  * Grab the initrd start and end from the boot parameter struct given us by
317  * the boot loader.
318  */
319 void __init
320 find_initrd (void)
321 {
322 #ifdef CONFIG_BLK_DEV_INITRD
323         if (ia64_boot_param->initrd_start) {
324                 initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
325                 initrd_end   = initrd_start+ia64_boot_param->initrd_size;
326
327                 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
328                        initrd_start, ia64_boot_param->initrd_size);
329         }
330 #endif
331 }
332
333 static void __init
334 io_port_init (void)
335 {
336         unsigned long phys_iobase;
337
338         /*
339          * Set `iobase' based on the EFI memory map or, failing that, the
340          * value firmware left in ar.k0.
341          *
342          * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
343          * the port's virtual address, so ia32_load_state() loads it with a
344          * user virtual address.  But in ia64 mode, glibc uses the
345          * *physical* address in ar.k0 to mmap the appropriate area from
346          * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
347          * cases, user-mode can only use the legacy 0-64K I/O port space.
348          *
349          * ar.k0 is not involved in kernel I/O port accesses, which can use
350          * any of the I/O port spaces and are done via MMIO using the
351          * virtual mmio_base from the appropriate io_space[].
352          */
353         phys_iobase = efi_get_iobase();
354         if (!phys_iobase) {
355                 phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
356                 printk(KERN_INFO "No I/O port range found in EFI memory map, "
357                         "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
358         }
359         ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
360         ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
361
362         /* setup legacy IO port space */
363         io_space[0].mmio_base = ia64_iobase;
364         io_space[0].sparse = 1;
365         num_io_spaces = 1;
366 }
367
368 /**
369  * early_console_setup - setup debugging console
370  *
371  * Consoles started here require little enough setup that we can start using
372  * them very early in the boot process, either right after the machine
373  * vector initialization, or even before if the drivers can detect their hw.
374  *
375  * Returns non-zero if a console couldn't be setup.
376  */
377 static inline int __init
378 early_console_setup (char *cmdline)
379 {
380         int earlycons = 0;
381
382 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
383         {
384                 extern int sn_serial_console_early_setup(void);
385                 if (!sn_serial_console_early_setup())
386                         earlycons++;
387         }
388 #endif
389 #ifdef CONFIG_EFI_PCDP
390         if (!efi_setup_pcdp_console(cmdline))
391                 earlycons++;
392 #endif
393 #ifdef CONFIG_SERIAL_8250_CONSOLE
394         if (!early_serial_console_init(cmdline))
395                 earlycons++;
396 #endif
397
398         return (earlycons) ? 0 : -1;
399 }
400
401 static inline void
402 mark_bsp_online (void)
403 {
404 #ifdef CONFIG_SMP
405         /* If we register an early console, allow CPU 0 to printk */
406         cpu_set(smp_processor_id(), cpu_online_map);
407 #endif
408 }
409
410 #ifdef CONFIG_SMP
411 static void __init
412 check_for_logical_procs (void)
413 {
414         pal_logical_to_physical_t info;
415         s64 status;
416
417         status = ia64_pal_logical_to_phys(0, &info);
418         if (status == -1) {
419                 printk(KERN_INFO "No logical to physical processor mapping "
420                        "available\n");
421                 return;
422         }
423         if (status) {
424                 printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
425                        status);
426                 return;
427         }
428         /*
429          * Total number of siblings that BSP has.  Though not all of them 
430          * may have booted successfully. The correct number of siblings 
431          * booted is in info.overview_num_log.
432          */
433         smp_num_siblings = info.overview_tpc;
434         smp_num_cpucores = info.overview_cpp;
435 }
436 #endif
437
438 static __initdata int nomca;
439 static __init int setup_nomca(char *s)
440 {
441         nomca = 1;
442         return 0;
443 }
444 early_param("nomca", setup_nomca);
445
446 #ifdef CONFIG_PROC_VMCORE
447 /* elfcorehdr= specifies the location of elf core header
448  * stored by the crashed kernel.
449  */
450 static int __init parse_elfcorehdr(char *arg)
451 {
452         if (!arg)
453                 return -EINVAL;
454
455         elfcorehdr_addr = memparse(arg, &arg);
456         return 0;
457 }
458 early_param("elfcorehdr", parse_elfcorehdr);
459
460 int __init reserve_elfcorehdr(unsigned long *start, unsigned long *end)
461 {
462         unsigned long length;
463
464         /* We get the address using the kernel command line,
465          * but the size is extracted from the EFI tables.
466          * Both address and size are required for reservation
467          * to work properly.
468          */
469
470         if (elfcorehdr_addr >= ELFCORE_ADDR_MAX)
471                 return -EINVAL;
472
473         if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
474                 elfcorehdr_addr = ELFCORE_ADDR_MAX;
475                 return -EINVAL;
476         }
477
478         *start = (unsigned long)__va(elfcorehdr_addr);
479         *end = *start + length;
480         return 0;
481 }
482
483 #endif /* CONFIG_PROC_VMCORE */
484
485 void __init
486 setup_arch (char **cmdline_p)
487 {
488         unw_init();
489
490         ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
491
492         *cmdline_p = __va(ia64_boot_param->command_line);
493         strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
494
495         efi_init();
496         io_port_init();
497
498         parse_early_param();
499
500 #ifdef CONFIG_IA64_GENERIC
501         machvec_init(NULL);
502 #endif
503
504         if (early_console_setup(*cmdline_p) == 0)
505                 mark_bsp_online();
506
507 #ifdef CONFIG_ACPI
508         /* Initialize the ACPI boot-time table parser */
509         acpi_table_init();
510 # ifdef CONFIG_ACPI_NUMA
511         acpi_numa_init();
512 # endif
513 #else
514 # ifdef CONFIG_SMP
515         smp_build_cpu_map();    /* happens, e.g., with the Ski simulator */
516 # endif
517 #endif /* CONFIG_APCI_BOOT */
518
519         find_memory();
520
521         /* process SAL system table: */
522         ia64_sal_init(__va(efi.sal_systab));
523
524         ia64_setup_printk_clock();
525
526 #ifdef CONFIG_SMP
527         cpu_physical_id(0) = hard_smp_processor_id();
528
529         cpu_set(0, cpu_sibling_map[0]);
530         cpu_set(0, cpu_core_map[0]);
531
532         check_for_logical_procs();
533         if (smp_num_cpucores > 1)
534                 printk(KERN_INFO
535                        "cpu package is Multi-Core capable: number of cores=%d\n",
536                        smp_num_cpucores);
537         if (smp_num_siblings > 1)
538                 printk(KERN_INFO
539                        "cpu package is Multi-Threading capable: number of siblings=%d\n",
540                        smp_num_siblings);
541 #endif
542
543         cpu_init();     /* initialize the bootstrap CPU */
544         mmu_context_init();     /* initialize context_id bitmap */
545
546         check_sal_cache_flush();
547
548 #ifdef CONFIG_ACPI
549         acpi_boot_init();
550 #endif
551
552 #ifdef CONFIG_VT
553         if (!conswitchp) {
554 # if defined(CONFIG_DUMMY_CONSOLE)
555                 conswitchp = &dummy_con;
556 # endif
557 # if defined(CONFIG_VGA_CONSOLE)
558                 /*
559                  * Non-legacy systems may route legacy VGA MMIO range to system
560                  * memory.  vga_con probes the MMIO hole, so memory looks like
561                  * a VGA device to it.  The EFI memory map can tell us if it's
562                  * memory so we can avoid this problem.
563                  */
564                 if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
565                         conswitchp = &vga_con;
566 # endif
567         }
568 #endif
569
570         /* enable IA-64 Machine Check Abort Handling unless disabled */
571         if (!nomca)
572                 ia64_mca_init();
573
574         platform_setup(cmdline_p);
575         paging_init();
576 }
577
578 /*
579  * Display cpu info for all cpu's.
580  */
581 static int
582 show_cpuinfo (struct seq_file *m, void *v)
583 {
584 #ifdef CONFIG_SMP
585 #       define lpj      c->loops_per_jiffy
586 #       define cpunum   c->cpu
587 #else
588 #       define lpj      loops_per_jiffy
589 #       define cpunum   0
590 #endif
591         static struct {
592                 unsigned long mask;
593                 const char *feature_name;
594         } feature_bits[] = {
595                 { 1UL << 0, "branchlong" },
596                 { 1UL << 1, "spontaneous deferral"},
597                 { 1UL << 2, "16-byte atomic ops" }
598         };
599         char features[128], *cp, *sep;
600         struct cpuinfo_ia64 *c = v;
601         unsigned long mask;
602         unsigned long proc_freq;
603         int i, size;
604
605         mask = c->features;
606
607         /* build the feature string: */
608         memcpy(features, "standard", 9);
609         cp = features;
610         size = sizeof(features);
611         sep = "";
612         for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
613                 if (mask & feature_bits[i].mask) {
614                         cp += snprintf(cp, size, "%s%s", sep,
615                                        feature_bits[i].feature_name),
616                         sep = ", ";
617                         mask &= ~feature_bits[i].mask;
618                         size = sizeof(features) - (cp - features);
619                 }
620         }
621         if (mask && size > 1) {
622                 /* print unknown features as a hex value */
623                 snprintf(cp, size, "%s0x%lx", sep, mask);
624         }
625
626         proc_freq = cpufreq_quick_get(cpunum);
627         if (!proc_freq)
628                 proc_freq = c->proc_freq / 1000;
629
630         seq_printf(m,
631                    "processor  : %d\n"
632                    "vendor     : %s\n"
633                    "arch       : IA-64\n"
634                    "family     : %u\n"
635                    "model      : %u\n"
636                    "model name : %s\n"
637                    "revision   : %u\n"
638                    "archrev    : %u\n"
639                    "features   : %s\n"
640                    "cpu number : %lu\n"
641                    "cpu regs   : %u\n"
642                    "cpu MHz    : %lu.%03lu\n"
643                    "itc MHz    : %lu.%06lu\n"
644                    "BogoMIPS   : %lu.%02lu\n",
645                    cpunum, c->vendor, c->family, c->model,
646                    c->model_name, c->revision, c->archrev,
647                    features, c->ppn, c->number,
648                    proc_freq / 1000, proc_freq % 1000,
649                    c->itc_freq / 1000000, c->itc_freq % 1000000,
650                    lpj*HZ/500000, (lpj*HZ/5000) % 100);
651 #ifdef CONFIG_SMP
652         seq_printf(m, "siblings   : %u\n", cpus_weight(cpu_core_map[cpunum]));
653         if (c->threads_per_core > 1 || c->cores_per_socket > 1)
654                 seq_printf(m,
655                            "physical id: %u\n"
656                            "core id    : %u\n"
657                            "thread id  : %u\n",
658                            c->socket_id, c->core_id, c->thread_id);
659 #endif
660         seq_printf(m,"\n");
661
662         return 0;
663 }
664
665 static void *
666 c_start (struct seq_file *m, loff_t *pos)
667 {
668 #ifdef CONFIG_SMP
669         while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
670                 ++*pos;
671 #endif
672         return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
673 }
674
675 static void *
676 c_next (struct seq_file *m, void *v, loff_t *pos)
677 {
678         ++*pos;
679         return c_start(m, pos);
680 }
681
682 static void
683 c_stop (struct seq_file *m, void *v)
684 {
685 }
686
687 struct seq_operations cpuinfo_op = {
688         .start =        c_start,
689         .next =         c_next,
690         .stop =         c_stop,
691         .show =         show_cpuinfo
692 };
693
694 #define MAX_BRANDS      8
695 static char brandname[MAX_BRANDS][128];
696
697 static char * __cpuinit
698 get_model_name(__u8 family, __u8 model)
699 {
700         static int overflow;
701         char brand[128];
702         int i;
703
704         memcpy(brand, "Unknown", 8);
705         if (ia64_pal_get_brand_info(brand)) {
706                 if (family == 0x7)
707                         memcpy(brand, "Merced", 7);
708                 else if (family == 0x1f) switch (model) {
709                         case 0: memcpy(brand, "McKinley", 9); break;
710                         case 1: memcpy(brand, "Madison", 8); break;
711                         case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
712                 }
713         }
714         for (i = 0; i < MAX_BRANDS; i++)
715                 if (strcmp(brandname[i], brand) == 0)
716                         return brandname[i];
717         for (i = 0; i < MAX_BRANDS; i++)
718                 if (brandname[i][0] == '\0')
719                         return strcpy(brandname[i], brand);
720         if (overflow++ == 0)
721                 printk(KERN_ERR
722                        "%s: Table overflow. Some processor model information will be missing\n",
723                        __FUNCTION__);
724         return "Unknown";
725 }
726
727 static void __cpuinit
728 identify_cpu (struct cpuinfo_ia64 *c)
729 {
730         union {
731                 unsigned long bits[5];
732                 struct {
733                         /* id 0 & 1: */
734                         char vendor[16];
735
736                         /* id 2 */
737                         u64 ppn;                /* processor serial number */
738
739                         /* id 3: */
740                         unsigned number         :  8;
741                         unsigned revision       :  8;
742                         unsigned model          :  8;
743                         unsigned family         :  8;
744                         unsigned archrev        :  8;
745                         unsigned reserved       : 24;
746
747                         /* id 4: */
748                         u64 features;
749                 } field;
750         } cpuid;
751         pal_vm_info_1_u_t vm1;
752         pal_vm_info_2_u_t vm2;
753         pal_status_t status;
754         unsigned long impl_va_msb = 50, phys_addr_size = 44;    /* Itanium defaults */
755         int i;
756         for (i = 0; i < 5; ++i)
757                 cpuid.bits[i] = ia64_get_cpuid(i);
758
759         memcpy(c->vendor, cpuid.field.vendor, 16);
760 #ifdef CONFIG_SMP
761         c->cpu = smp_processor_id();
762
763         /* below default values will be overwritten  by identify_siblings() 
764          * for Multi-Threading/Multi-Core capable cpu's
765          */
766         c->threads_per_core = c->cores_per_socket = c->num_log = 1;
767         c->socket_id = -1;
768
769         identify_siblings(c);
770 #endif
771         c->ppn = cpuid.field.ppn;
772         c->number = cpuid.field.number;
773         c->revision = cpuid.field.revision;
774         c->model = cpuid.field.model;
775         c->family = cpuid.field.family;
776         c->archrev = cpuid.field.archrev;
777         c->features = cpuid.field.features;
778         c->model_name = get_model_name(c->family, c->model);
779
780         status = ia64_pal_vm_summary(&vm1, &vm2);
781         if (status == PAL_STATUS_SUCCESS) {
782                 impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
783                 phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
784         }
785         c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
786         c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
787 }
788
789 void
790 setup_per_cpu_areas (void)
791 {
792         /* start_kernel() requires this... */
793 #ifdef CONFIG_ACPI_HOTPLUG_CPU
794         prefill_possible_map();
795 #endif
796 }
797
798 /*
799  * Calculate the max. cache line size.
800  *
801  * In addition, the minimum of the i-cache stride sizes is calculated for
802  * "flush_icache_range()".
803  */
804 static void __cpuinit
805 get_max_cacheline_size (void)
806 {
807         unsigned long line_size, max = 1;
808         unsigned int cache_size = 0;
809         u64 l, levels, unique_caches;
810         pal_cache_config_info_t cci;
811         s64 status;
812
813         status = ia64_pal_cache_summary(&levels, &unique_caches);
814         if (status != 0) {
815                 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
816                        __FUNCTION__, status);
817                 max = SMP_CACHE_BYTES;
818                 /* Safest setup for "flush_icache_range()" */
819                 ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
820                 goto out;
821         }
822
823         for (l = 0; l < levels; ++l) {
824                 status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
825                                                     &cci);
826                 if (status != 0) {
827                         printk(KERN_ERR
828                                "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
829                                __FUNCTION__, l, status);
830                         max = SMP_CACHE_BYTES;
831                         /* The safest setup for "flush_icache_range()" */
832                         cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
833                         cci.pcci_unified = 1;
834                 }
835                 line_size = 1 << cci.pcci_line_size;
836                 if (line_size > max)
837                         max = line_size;
838                 if (cache_size < cci.pcci_cache_size)
839                         cache_size = cci.pcci_cache_size;
840                 if (!cci.pcci_unified) {
841                         status = ia64_pal_cache_config_info(l,
842                                                     /* cache_type (instruction)= */ 1,
843                                                     &cci);
844                         if (status != 0) {
845                                 printk(KERN_ERR
846                                 "%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
847                                         __FUNCTION__, l, status);
848                                 /* The safest setup for "flush_icache_range()" */
849                                 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
850                         }
851                 }
852                 if (cci.pcci_stride < ia64_i_cache_stride_shift)
853                         ia64_i_cache_stride_shift = cci.pcci_stride;
854         }
855   out:
856 #ifdef CONFIG_SMP
857         max_cache_size = max(max_cache_size, cache_size);
858 #endif
859         if (max > ia64_max_cacheline_size)
860                 ia64_max_cacheline_size = max;
861 }
862
863 /*
864  * cpu_init() initializes state that is per-CPU.  This function acts
865  * as a 'CPU state barrier', nothing should get across.
866  */
867 void __cpuinit
868 cpu_init (void)
869 {
870         extern void __cpuinit ia64_mmu_init (void *);
871         static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
872         unsigned long num_phys_stacked;
873         pal_vm_info_2_u_t vmi;
874         unsigned int max_ctx;
875         struct cpuinfo_ia64 *cpu_info;
876         void *cpu_data;
877
878         cpu_data = per_cpu_init();
879
880         /*
881          * We set ar.k3 so that assembly code in MCA handler can compute
882          * physical addresses of per cpu variables with a simple:
883          *   phys = ar.k3 + &per_cpu_var
884          */
885         ia64_set_kr(IA64_KR_PER_CPU_DATA,
886                     ia64_tpa(cpu_data) - (long) __per_cpu_start);
887
888         get_max_cacheline_size();
889
890         /*
891          * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
892          * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
893          * depends on the data returned by identify_cpu().  We break the dependency by
894          * accessing cpu_data() through the canonical per-CPU address.
895          */
896         cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
897         identify_cpu(cpu_info);
898
899 #ifdef CONFIG_MCKINLEY
900         {
901 #               define FEATURE_SET 16
902                 struct ia64_pal_retval iprv;
903
904                 if (cpu_info->family == 0x1f) {
905                         PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
906                         if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
907                                 PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
908                                               (iprv.v1 | 0x80), FEATURE_SET, 0);
909                 }
910         }
911 #endif
912
913         /* Clear the stack memory reserved for pt_regs: */
914         memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
915
916         ia64_set_kr(IA64_KR_FPU_OWNER, 0);
917
918         /*
919          * Initialize the page-table base register to a global
920          * directory with all zeroes.  This ensure that we can handle
921          * TLB-misses to user address-space even before we created the
922          * first user address-space.  This may happen, e.g., due to
923          * aggressive use of lfetch.fault.
924          */
925         ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
926
927         /*
928          * Initialize default control register to defer speculative faults except
929          * for those arising from TLB misses, which are not deferred.  The
930          * kernel MUST NOT depend on a particular setting of these bits (in other words,
931          * the kernel must have recovery code for all speculative accesses).  Turn on
932          * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
933          * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
934          * be fine).
935          */
936         ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
937                                         | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
938         atomic_inc(&init_mm.mm_count);
939         current->active_mm = &init_mm;
940         if (current->mm)
941                 BUG();
942
943         ia64_mmu_init(ia64_imva(cpu_data));
944         ia64_mca_cpu_init(ia64_imva(cpu_data));
945
946 #ifdef CONFIG_IA32_SUPPORT
947         ia32_cpu_init();
948 #endif
949
950         /* Clear ITC to eliminiate sched_clock() overflows in human time.  */
951         ia64_set_itc(0);
952
953         /* disable all local interrupt sources: */
954         ia64_set_itv(1 << 16);
955         ia64_set_lrr0(1 << 16);
956         ia64_set_lrr1(1 << 16);
957         ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
958         ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
959
960         /* clear TPR & XTP to enable all interrupt classes: */
961         ia64_setreg(_IA64_REG_CR_TPR, 0);
962 #ifdef CONFIG_SMP
963         normal_xtp();
964 #endif
965
966         /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
967         if (ia64_pal_vm_summary(NULL, &vmi) == 0)
968                 max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
969         else {
970                 printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
971                 max_ctx = (1U << 15) - 1;       /* use architected minimum */
972         }
973         while (max_ctx < ia64_ctx.max_ctx) {
974                 unsigned int old = ia64_ctx.max_ctx;
975                 if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
976                         break;
977         }
978
979         if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
980                 printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
981                        "stacked regs\n");
982                 num_phys_stacked = 96;
983         }
984         /* size of physical stacked register partition plus 8 bytes: */
985         if (num_phys_stacked > max_num_phys_stacked) {
986                 ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
987                 max_num_phys_stacked = num_phys_stacked;
988         }
989         platform_cpu_init();
990         pm_idle = default_idle;
991 }
992
993 /*
994  * On SMP systems, when the scheduler does migration-cost autodetection,
995  * it needs a way to flush as much of the CPU's caches as possible.
996  */
997 void sched_cacheflush(void)
998 {
999         ia64_sal_cache_flush(3);
1000 }
1001
1002 void __init
1003 check_bugs (void)
1004 {
1005         ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1006                                (unsigned long) __end___mckinley_e9_bundles);
1007 }
1008
1009 static int __init run_dmi_scan(void)
1010 {
1011         dmi_scan_machine();
1012         return 0;
1013 }
1014 core_initcall(run_dmi_scan);