serial: convert early_uart to earlycon for 8250
[linux-2.6.git] / arch / ia64 / kernel / setup.c
1 /*
2  * Architecture-specific setup.
3  *
4  * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5  *      David Mosberger-Tang <davidm@hpl.hp.com>
6  *      Stephane Eranian <eranian@hpl.hp.com>
7  * Copyright (C) 2000, 2004 Intel Corp
8  *      Rohit Seth <rohit.seth@intel.com>
9  *      Suresh Siddha <suresh.b.siddha@intel.com>
10  *      Gordon Jin <gordon.jin@intel.com>
11  * Copyright (C) 1999 VA Linux Systems
12  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13  *
14  * 12/26/04 S.Siddha, G.Jin, R.Seth
15  *                      Add multi-threading and multi-core detection
16  * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17  * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18  * 03/31/00 R.Seth      cpu_initialized and current->processor fixes
19  * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
20  * 02/01/00 R.Seth      fixed get_cpuinfo for SMP
21  * 01/07/99 S.Eranian   added the support for command line argument
22  * 06/24/99 W.Drummond  added boot_cpu_data.
23  * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
24  */
25 #include <linux/module.h>
26 #include <linux/init.h>
27
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <linux/threads.h>
38 #include <linux/screen_info.h>
39 #include <linux/dmi.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
44 #include <linux/pm.h>
45 #include <linux/cpufreq.h>
46 #include <linux/kexec.h>
47 #include <linux/crash_dump.h>
48
49 #include <asm/ia32.h>
50 #include <asm/machvec.h>
51 #include <asm/mca.h>
52 #include <asm/meminit.h>
53 #include <asm/page.h>
54 #include <asm/patch.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57 #include <asm/sal.h>
58 #include <asm/sections.h>
59 #include <asm/setup.h>
60 #include <asm/smp.h>
61 #include <asm/system.h>
62 #include <asm/unistd.h>
63 #include <asm/system.h>
64
65 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
66 # error "struct cpuinfo_ia64 too big!"
67 #endif
68
69 #ifdef CONFIG_SMP
70 unsigned long __per_cpu_offset[NR_CPUS];
71 EXPORT_SYMBOL(__per_cpu_offset);
72 #endif
73
74 extern void ia64_setup_printk_clock(void);
75
76 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
77 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
78 unsigned long ia64_cycles_per_usec;
79 struct ia64_boot_param *ia64_boot_param;
80 struct screen_info screen_info;
81 unsigned long vga_console_iobase;
82 unsigned long vga_console_membase;
83
84 static struct resource data_resource = {
85         .name   = "Kernel data",
86         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
87 };
88
89 static struct resource code_resource = {
90         .name   = "Kernel code",
91         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
92 };
93 extern char _text[], _end[], _etext[];
94
95 unsigned long ia64_max_cacheline_size;
96
97 int dma_get_cache_alignment(void)
98 {
99         return ia64_max_cacheline_size;
100 }
101 EXPORT_SYMBOL(dma_get_cache_alignment);
102
103 unsigned long ia64_iobase;      /* virtual address for I/O accesses */
104 EXPORT_SYMBOL(ia64_iobase);
105 struct io_space io_space[MAX_IO_SPACES];
106 EXPORT_SYMBOL(io_space);
107 unsigned int num_io_spaces;
108
109 /*
110  * "flush_icache_range()" needs to know what processor dependent stride size to use
111  * when it makes i-cache(s) coherent with d-caches.
112  */
113 #define I_CACHE_STRIDE_SHIFT    5       /* Safest way to go: 32 bytes by 32 bytes */
114 unsigned long ia64_i_cache_stride_shift = ~0;
115
116 /*
117  * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1).  This
118  * mask specifies a mask of address bits that must be 0 in order for two buffers to be
119  * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
120  * address of the second buffer must be aligned to (merge_mask+1) in order to be
121  * mergeable).  By default, we assume there is no I/O MMU which can merge physically
122  * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
123  * page-size of 2^64.
124  */
125 unsigned long ia64_max_iommu_merge_mask = ~0UL;
126 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
127
128 /*
129  * We use a special marker for the end of memory and it uses the extra (+1) slot
130  */
131 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
132 int num_rsvd_regions __initdata;
133
134
135 /*
136  * Filter incoming memory segments based on the primitive map created from the boot
137  * parameters. Segments contained in the map are removed from the memory ranges. A
138  * caller-specified function is called with the memory ranges that remain after filtering.
139  * This routine does not assume the incoming segments are sorted.
140  */
141 int __init
142 filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
143 {
144         unsigned long range_start, range_end, prev_start;
145         void (*func)(unsigned long, unsigned long, int);
146         int i;
147
148 #if IGNORE_PFN0
149         if (start == PAGE_OFFSET) {
150                 printk(KERN_WARNING "warning: skipping physical page 0\n");
151                 start += PAGE_SIZE;
152                 if (start >= end) return 0;
153         }
154 #endif
155         /*
156          * lowest possible address(walker uses virtual)
157          */
158         prev_start = PAGE_OFFSET;
159         func = arg;
160
161         for (i = 0; i < num_rsvd_regions; ++i) {
162                 range_start = max(start, prev_start);
163                 range_end   = min(end, rsvd_region[i].start);
164
165                 if (range_start < range_end)
166                         call_pernode_memory(__pa(range_start), range_end - range_start, func);
167
168                 /* nothing more available in this segment */
169                 if (range_end == end) return 0;
170
171                 prev_start = rsvd_region[i].end;
172         }
173         /* end of memory marker allows full processing inside loop body */
174         return 0;
175 }
176
177 static void __init
178 sort_regions (struct rsvd_region *rsvd_region, int max)
179 {
180         int j;
181
182         /* simple bubble sorting */
183         while (max--) {
184                 for (j = 0; j < max; ++j) {
185                         if (rsvd_region[j].start > rsvd_region[j+1].start) {
186                                 struct rsvd_region tmp;
187                                 tmp = rsvd_region[j];
188                                 rsvd_region[j] = rsvd_region[j + 1];
189                                 rsvd_region[j + 1] = tmp;
190                         }
191                 }
192         }
193 }
194
195 /*
196  * Request address space for all standard resources
197  */
198 static int __init register_memory(void)
199 {
200         code_resource.start = ia64_tpa(_text);
201         code_resource.end   = ia64_tpa(_etext) - 1;
202         data_resource.start = ia64_tpa(_etext);
203         data_resource.end   = ia64_tpa(_end) - 1;
204         efi_initialize_iomem_resources(&code_resource, &data_resource);
205
206         return 0;
207 }
208
209 __initcall(register_memory);
210
211 /**
212  * reserve_memory - setup reserved memory areas
213  *
214  * Setup the reserved memory areas set aside for the boot parameters,
215  * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
216  * see include/asm-ia64/meminit.h if you need to define more.
217  */
218 void __init
219 reserve_memory (void)
220 {
221         int n = 0;
222
223         /*
224          * none of the entries in this table overlap
225          */
226         rsvd_region[n].start = (unsigned long) ia64_boot_param;
227         rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
228         n++;
229
230         rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
231         rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
232         n++;
233
234         rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
235         rsvd_region[n].end   = (rsvd_region[n].start
236                                 + strlen(__va(ia64_boot_param->command_line)) + 1);
237         n++;
238
239         rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
240         rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
241         n++;
242
243 #ifdef CONFIG_BLK_DEV_INITRD
244         if (ia64_boot_param->initrd_start) {
245                 rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
246                 rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
247                 n++;
248         }
249 #endif
250
251 #ifdef CONFIG_PROC_VMCORE
252         if (reserve_elfcorehdr(&rsvd_region[n].start,
253                                &rsvd_region[n].end) == 0)
254                 n++;
255 #endif
256
257         efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
258         n++;
259
260 #ifdef CONFIG_KEXEC
261         /* crashkernel=size@offset specifies the size to reserve for a crash
262          * kernel. If offset is 0, then it is determined automatically.
263          * By reserving this memory we guarantee that linux never set's it
264          * up as a DMA target.Useful for holding code to do something
265          * appropriate after a kernel panic.
266          */
267         {
268                 char *from = strstr(boot_command_line, "crashkernel=");
269                 unsigned long base, size;
270                 if (from) {
271                         size = memparse(from + 12, &from);
272                         if (*from == '@')
273                                 base = memparse(from+1, &from);
274                         else
275                                 base = 0;
276                         if (size) {
277                                 if (!base) {
278                                         sort_regions(rsvd_region, n);
279                                         base = kdump_find_rsvd_region(size,
280                                                                 rsvd_region, n);
281                                         }
282                                 if (base != ~0UL) {
283                                         rsvd_region[n].start =
284                                                 (unsigned long)__va(base);
285                                         rsvd_region[n].end =
286                                                 (unsigned long)__va(base + size);
287                                         n++;
288                                         crashk_res.start = base;
289                                         crashk_res.end = base + size - 1;
290                                 }
291                         }
292                 }
293                 efi_memmap_res.start = ia64_boot_param->efi_memmap;
294                 efi_memmap_res.end = efi_memmap_res.start +
295                         ia64_boot_param->efi_memmap_size;
296                 boot_param_res.start = __pa(ia64_boot_param);
297                 boot_param_res.end = boot_param_res.start +
298                         sizeof(*ia64_boot_param);
299         }
300 #endif
301         /* end of memory marker */
302         rsvd_region[n].start = ~0UL;
303         rsvd_region[n].end   = ~0UL;
304         n++;
305
306         num_rsvd_regions = n;
307         BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
308
309         sort_regions(rsvd_region, num_rsvd_regions);
310 }
311
312
313 /**
314  * find_initrd - get initrd parameters from the boot parameter structure
315  *
316  * Grab the initrd start and end from the boot parameter struct given us by
317  * the boot loader.
318  */
319 void __init
320 find_initrd (void)
321 {
322 #ifdef CONFIG_BLK_DEV_INITRD
323         if (ia64_boot_param->initrd_start) {
324                 initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
325                 initrd_end   = initrd_start+ia64_boot_param->initrd_size;
326
327                 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
328                        initrd_start, ia64_boot_param->initrd_size);
329         }
330 #endif
331 }
332
333 static void __init
334 io_port_init (void)
335 {
336         unsigned long phys_iobase;
337
338         /*
339          * Set `iobase' based on the EFI memory map or, failing that, the
340          * value firmware left in ar.k0.
341          *
342          * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
343          * the port's virtual address, so ia32_load_state() loads it with a
344          * user virtual address.  But in ia64 mode, glibc uses the
345          * *physical* address in ar.k0 to mmap the appropriate area from
346          * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
347          * cases, user-mode can only use the legacy 0-64K I/O port space.
348          *
349          * ar.k0 is not involved in kernel I/O port accesses, which can use
350          * any of the I/O port spaces and are done via MMIO using the
351          * virtual mmio_base from the appropriate io_space[].
352          */
353         phys_iobase = efi_get_iobase();
354         if (!phys_iobase) {
355                 phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
356                 printk(KERN_INFO "No I/O port range found in EFI memory map, "
357                         "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
358         }
359         ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
360         ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
361
362         /* setup legacy IO port space */
363         io_space[0].mmio_base = ia64_iobase;
364         io_space[0].sparse = 1;
365         num_io_spaces = 1;
366 }
367
368 /**
369  * early_console_setup - setup debugging console
370  *
371  * Consoles started here require little enough setup that we can start using
372  * them very early in the boot process, either right after the machine
373  * vector initialization, or even before if the drivers can detect their hw.
374  *
375  * Returns non-zero if a console couldn't be setup.
376  */
377 static inline int __init
378 early_console_setup (char *cmdline)
379 {
380         int earlycons = 0;
381
382 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
383         {
384                 extern int sn_serial_console_early_setup(void);
385                 if (!sn_serial_console_early_setup())
386                         earlycons++;
387         }
388 #endif
389 #ifdef CONFIG_EFI_PCDP
390         if (!efi_setup_pcdp_console(cmdline))
391                 earlycons++;
392 #endif
393
394         return (earlycons) ? 0 : -1;
395 }
396
397 static inline void
398 mark_bsp_online (void)
399 {
400 #ifdef CONFIG_SMP
401         /* If we register an early console, allow CPU 0 to printk */
402         cpu_set(smp_processor_id(), cpu_online_map);
403 #endif
404 }
405
406 #ifdef CONFIG_SMP
407 static void __init
408 check_for_logical_procs (void)
409 {
410         pal_logical_to_physical_t info;
411         s64 status;
412
413         status = ia64_pal_logical_to_phys(0, &info);
414         if (status == -1) {
415                 printk(KERN_INFO "No logical to physical processor mapping "
416                        "available\n");
417                 return;
418         }
419         if (status) {
420                 printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
421                        status);
422                 return;
423         }
424         /*
425          * Total number of siblings that BSP has.  Though not all of them 
426          * may have booted successfully. The correct number of siblings 
427          * booted is in info.overview_num_log.
428          */
429         smp_num_siblings = info.overview_tpc;
430         smp_num_cpucores = info.overview_cpp;
431 }
432 #endif
433
434 static __initdata int nomca;
435 static __init int setup_nomca(char *s)
436 {
437         nomca = 1;
438         return 0;
439 }
440 early_param("nomca", setup_nomca);
441
442 #ifdef CONFIG_PROC_VMCORE
443 /* elfcorehdr= specifies the location of elf core header
444  * stored by the crashed kernel.
445  */
446 static int __init parse_elfcorehdr(char *arg)
447 {
448         if (!arg)
449                 return -EINVAL;
450
451         elfcorehdr_addr = memparse(arg, &arg);
452         return 0;
453 }
454 early_param("elfcorehdr", parse_elfcorehdr);
455
456 int __init reserve_elfcorehdr(unsigned long *start, unsigned long *end)
457 {
458         unsigned long length;
459
460         /* We get the address using the kernel command line,
461          * but the size is extracted from the EFI tables.
462          * Both address and size are required for reservation
463          * to work properly.
464          */
465
466         if (elfcorehdr_addr >= ELFCORE_ADDR_MAX)
467                 return -EINVAL;
468
469         if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
470                 elfcorehdr_addr = ELFCORE_ADDR_MAX;
471                 return -EINVAL;
472         }
473
474         *start = (unsigned long)__va(elfcorehdr_addr);
475         *end = *start + length;
476         return 0;
477 }
478
479 #endif /* CONFIG_PROC_VMCORE */
480
481 void __init
482 setup_arch (char **cmdline_p)
483 {
484         unw_init();
485
486         ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
487
488         *cmdline_p = __va(ia64_boot_param->command_line);
489         strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
490
491         efi_init();
492         io_port_init();
493
494         parse_early_param();
495
496 #ifdef CONFIG_IA64_GENERIC
497         machvec_init(NULL);
498 #endif
499
500         if (early_console_setup(*cmdline_p) == 0)
501                 mark_bsp_online();
502
503 #ifdef CONFIG_ACPI
504         /* Initialize the ACPI boot-time table parser */
505         acpi_table_init();
506 # ifdef CONFIG_ACPI_NUMA
507         acpi_numa_init();
508 # endif
509 #else
510 # ifdef CONFIG_SMP
511         smp_build_cpu_map();    /* happens, e.g., with the Ski simulator */
512 # endif
513 #endif /* CONFIG_APCI_BOOT */
514
515         find_memory();
516
517         /* process SAL system table: */
518         ia64_sal_init(__va(efi.sal_systab));
519
520         ia64_setup_printk_clock();
521
522 #ifdef CONFIG_SMP
523         cpu_physical_id(0) = hard_smp_processor_id();
524
525         cpu_set(0, cpu_sibling_map[0]);
526         cpu_set(0, cpu_core_map[0]);
527
528         check_for_logical_procs();
529         if (smp_num_cpucores > 1)
530                 printk(KERN_INFO
531                        "cpu package is Multi-Core capable: number of cores=%d\n",
532                        smp_num_cpucores);
533         if (smp_num_siblings > 1)
534                 printk(KERN_INFO
535                        "cpu package is Multi-Threading capable: number of siblings=%d\n",
536                        smp_num_siblings);
537 #endif
538
539         cpu_init();     /* initialize the bootstrap CPU */
540         mmu_context_init();     /* initialize context_id bitmap */
541
542         check_sal_cache_flush();
543
544 #ifdef CONFIG_ACPI
545         acpi_boot_init();
546 #endif
547
548 #ifdef CONFIG_VT
549         if (!conswitchp) {
550 # if defined(CONFIG_DUMMY_CONSOLE)
551                 conswitchp = &dummy_con;
552 # endif
553 # if defined(CONFIG_VGA_CONSOLE)
554                 /*
555                  * Non-legacy systems may route legacy VGA MMIO range to system
556                  * memory.  vga_con probes the MMIO hole, so memory looks like
557                  * a VGA device to it.  The EFI memory map can tell us if it's
558                  * memory so we can avoid this problem.
559                  */
560                 if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
561                         conswitchp = &vga_con;
562 # endif
563         }
564 #endif
565
566         /* enable IA-64 Machine Check Abort Handling unless disabled */
567         if (!nomca)
568                 ia64_mca_init();
569
570         platform_setup(cmdline_p);
571         paging_init();
572 }
573
574 /*
575  * Display cpu info for all CPUs.
576  */
577 static int
578 show_cpuinfo (struct seq_file *m, void *v)
579 {
580 #ifdef CONFIG_SMP
581 #       define lpj      c->loops_per_jiffy
582 #       define cpunum   c->cpu
583 #else
584 #       define lpj      loops_per_jiffy
585 #       define cpunum   0
586 #endif
587         static struct {
588                 unsigned long mask;
589                 const char *feature_name;
590         } feature_bits[] = {
591                 { 1UL << 0, "branchlong" },
592                 { 1UL << 1, "spontaneous deferral"},
593                 { 1UL << 2, "16-byte atomic ops" }
594         };
595         char features[128], *cp, *sep;
596         struct cpuinfo_ia64 *c = v;
597         unsigned long mask;
598         unsigned long proc_freq;
599         int i, size;
600
601         mask = c->features;
602
603         /* build the feature string: */
604         memcpy(features, "standard", 9);
605         cp = features;
606         size = sizeof(features);
607         sep = "";
608         for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
609                 if (mask & feature_bits[i].mask) {
610                         cp += snprintf(cp, size, "%s%s", sep,
611                                        feature_bits[i].feature_name),
612                         sep = ", ";
613                         mask &= ~feature_bits[i].mask;
614                         size = sizeof(features) - (cp - features);
615                 }
616         }
617         if (mask && size > 1) {
618                 /* print unknown features as a hex value */
619                 snprintf(cp, size, "%s0x%lx", sep, mask);
620         }
621
622         proc_freq = cpufreq_quick_get(cpunum);
623         if (!proc_freq)
624                 proc_freq = c->proc_freq / 1000;
625
626         seq_printf(m,
627                    "processor  : %d\n"
628                    "vendor     : %s\n"
629                    "arch       : IA-64\n"
630                    "family     : %u\n"
631                    "model      : %u\n"
632                    "model name : %s\n"
633                    "revision   : %u\n"
634                    "archrev    : %u\n"
635                    "features   : %s\n"
636                    "cpu number : %lu\n"
637                    "cpu regs   : %u\n"
638                    "cpu MHz    : %lu.%03lu\n"
639                    "itc MHz    : %lu.%06lu\n"
640                    "BogoMIPS   : %lu.%02lu\n",
641                    cpunum, c->vendor, c->family, c->model,
642                    c->model_name, c->revision, c->archrev,
643                    features, c->ppn, c->number,
644                    proc_freq / 1000, proc_freq % 1000,
645                    c->itc_freq / 1000000, c->itc_freq % 1000000,
646                    lpj*HZ/500000, (lpj*HZ/5000) % 100);
647 #ifdef CONFIG_SMP
648         seq_printf(m, "siblings   : %u\n", cpus_weight(cpu_core_map[cpunum]));
649         if (c->threads_per_core > 1 || c->cores_per_socket > 1)
650                 seq_printf(m,
651                            "physical id: %u\n"
652                            "core id    : %u\n"
653                            "thread id  : %u\n",
654                            c->socket_id, c->core_id, c->thread_id);
655 #endif
656         seq_printf(m,"\n");
657
658         return 0;
659 }
660
661 static void *
662 c_start (struct seq_file *m, loff_t *pos)
663 {
664 #ifdef CONFIG_SMP
665         while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
666                 ++*pos;
667 #endif
668         return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
669 }
670
671 static void *
672 c_next (struct seq_file *m, void *v, loff_t *pos)
673 {
674         ++*pos;
675         return c_start(m, pos);
676 }
677
678 static void
679 c_stop (struct seq_file *m, void *v)
680 {
681 }
682
683 struct seq_operations cpuinfo_op = {
684         .start =        c_start,
685         .next =         c_next,
686         .stop =         c_stop,
687         .show =         show_cpuinfo
688 };
689
690 #define MAX_BRANDS      8
691 static char brandname[MAX_BRANDS][128];
692
693 static char * __cpuinit
694 get_model_name(__u8 family, __u8 model)
695 {
696         static int overflow;
697         char brand[128];
698         int i;
699
700         memcpy(brand, "Unknown", 8);
701         if (ia64_pal_get_brand_info(brand)) {
702                 if (family == 0x7)
703                         memcpy(brand, "Merced", 7);
704                 else if (family == 0x1f) switch (model) {
705                         case 0: memcpy(brand, "McKinley", 9); break;
706                         case 1: memcpy(brand, "Madison", 8); break;
707                         case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
708                 }
709         }
710         for (i = 0; i < MAX_BRANDS; i++)
711                 if (strcmp(brandname[i], brand) == 0)
712                         return brandname[i];
713         for (i = 0; i < MAX_BRANDS; i++)
714                 if (brandname[i][0] == '\0')
715                         return strcpy(brandname[i], brand);
716         if (overflow++ == 0)
717                 printk(KERN_ERR
718                        "%s: Table overflow. Some processor model information will be missing\n",
719                        __FUNCTION__);
720         return "Unknown";
721 }
722
723 static void __cpuinit
724 identify_cpu (struct cpuinfo_ia64 *c)
725 {
726         union {
727                 unsigned long bits[5];
728                 struct {
729                         /* id 0 & 1: */
730                         char vendor[16];
731
732                         /* id 2 */
733                         u64 ppn;                /* processor serial number */
734
735                         /* id 3: */
736                         unsigned number         :  8;
737                         unsigned revision       :  8;
738                         unsigned model          :  8;
739                         unsigned family         :  8;
740                         unsigned archrev        :  8;
741                         unsigned reserved       : 24;
742
743                         /* id 4: */
744                         u64 features;
745                 } field;
746         } cpuid;
747         pal_vm_info_1_u_t vm1;
748         pal_vm_info_2_u_t vm2;
749         pal_status_t status;
750         unsigned long impl_va_msb = 50, phys_addr_size = 44;    /* Itanium defaults */
751         int i;
752         for (i = 0; i < 5; ++i)
753                 cpuid.bits[i] = ia64_get_cpuid(i);
754
755         memcpy(c->vendor, cpuid.field.vendor, 16);
756 #ifdef CONFIG_SMP
757         c->cpu = smp_processor_id();
758
759         /* below default values will be overwritten  by identify_siblings() 
760          * for Multi-Threading/Multi-Core capable CPUs
761          */
762         c->threads_per_core = c->cores_per_socket = c->num_log = 1;
763         c->socket_id = -1;
764
765         identify_siblings(c);
766 #endif
767         c->ppn = cpuid.field.ppn;
768         c->number = cpuid.field.number;
769         c->revision = cpuid.field.revision;
770         c->model = cpuid.field.model;
771         c->family = cpuid.field.family;
772         c->archrev = cpuid.field.archrev;
773         c->features = cpuid.field.features;
774         c->model_name = get_model_name(c->family, c->model);
775
776         status = ia64_pal_vm_summary(&vm1, &vm2);
777         if (status == PAL_STATUS_SUCCESS) {
778                 impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
779                 phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
780         }
781         c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
782         c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
783 }
784
785 void __init
786 setup_per_cpu_areas (void)
787 {
788         /* start_kernel() requires this... */
789 #ifdef CONFIG_ACPI_HOTPLUG_CPU
790         prefill_possible_map();
791 #endif
792 }
793
794 /*
795  * Calculate the max. cache line size.
796  *
797  * In addition, the minimum of the i-cache stride sizes is calculated for
798  * "flush_icache_range()".
799  */
800 static void __cpuinit
801 get_max_cacheline_size (void)
802 {
803         unsigned long line_size, max = 1;
804         u64 l, levels, unique_caches;
805         pal_cache_config_info_t cci;
806         s64 status;
807
808         status = ia64_pal_cache_summary(&levels, &unique_caches);
809         if (status != 0) {
810                 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
811                        __FUNCTION__, status);
812                 max = SMP_CACHE_BYTES;
813                 /* Safest setup for "flush_icache_range()" */
814                 ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
815                 goto out;
816         }
817
818         for (l = 0; l < levels; ++l) {
819                 status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
820                                                     &cci);
821                 if (status != 0) {
822                         printk(KERN_ERR
823                                "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
824                                __FUNCTION__, l, status);
825                         max = SMP_CACHE_BYTES;
826                         /* The safest setup for "flush_icache_range()" */
827                         cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
828                         cci.pcci_unified = 1;
829                 }
830                 line_size = 1 << cci.pcci_line_size;
831                 if (line_size > max)
832                         max = line_size;
833                 if (!cci.pcci_unified) {
834                         status = ia64_pal_cache_config_info(l,
835                                                     /* cache_type (instruction)= */ 1,
836                                                     &cci);
837                         if (status != 0) {
838                                 printk(KERN_ERR
839                                 "%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
840                                         __FUNCTION__, l, status);
841                                 /* The safest setup for "flush_icache_range()" */
842                                 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
843                         }
844                 }
845                 if (cci.pcci_stride < ia64_i_cache_stride_shift)
846                         ia64_i_cache_stride_shift = cci.pcci_stride;
847         }
848   out:
849         if (max > ia64_max_cacheline_size)
850                 ia64_max_cacheline_size = max;
851 }
852
853 /*
854  * cpu_init() initializes state that is per-CPU.  This function acts
855  * as a 'CPU state barrier', nothing should get across.
856  */
857 void __cpuinit
858 cpu_init (void)
859 {
860         extern void __cpuinit ia64_mmu_init (void *);
861         static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
862         unsigned long num_phys_stacked;
863         pal_vm_info_2_u_t vmi;
864         unsigned int max_ctx;
865         struct cpuinfo_ia64 *cpu_info;
866         void *cpu_data;
867
868         cpu_data = per_cpu_init();
869
870         /*
871          * We set ar.k3 so that assembly code in MCA handler can compute
872          * physical addresses of per cpu variables with a simple:
873          *   phys = ar.k3 + &per_cpu_var
874          */
875         ia64_set_kr(IA64_KR_PER_CPU_DATA,
876                     ia64_tpa(cpu_data) - (long) __per_cpu_start);
877
878         get_max_cacheline_size();
879
880         /*
881          * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
882          * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
883          * depends on the data returned by identify_cpu().  We break the dependency by
884          * accessing cpu_data() through the canonical per-CPU address.
885          */
886         cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
887         identify_cpu(cpu_info);
888
889 #ifdef CONFIG_MCKINLEY
890         {
891 #               define FEATURE_SET 16
892                 struct ia64_pal_retval iprv;
893
894                 if (cpu_info->family == 0x1f) {
895                         PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
896                         if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
897                                 PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
898                                               (iprv.v1 | 0x80), FEATURE_SET, 0);
899                 }
900         }
901 #endif
902
903         /* Clear the stack memory reserved for pt_regs: */
904         memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
905
906         ia64_set_kr(IA64_KR_FPU_OWNER, 0);
907
908         /*
909          * Initialize the page-table base register to a global
910          * directory with all zeroes.  This ensure that we can handle
911          * TLB-misses to user address-space even before we created the
912          * first user address-space.  This may happen, e.g., due to
913          * aggressive use of lfetch.fault.
914          */
915         ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
916
917         /*
918          * Initialize default control register to defer speculative faults except
919          * for those arising from TLB misses, which are not deferred.  The
920          * kernel MUST NOT depend on a particular setting of these bits (in other words,
921          * the kernel must have recovery code for all speculative accesses).  Turn on
922          * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
923          * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
924          * be fine).
925          */
926         ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
927                                         | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
928         atomic_inc(&init_mm.mm_count);
929         current->active_mm = &init_mm;
930         if (current->mm)
931                 BUG();
932
933         ia64_mmu_init(ia64_imva(cpu_data));
934         ia64_mca_cpu_init(ia64_imva(cpu_data));
935
936 #ifdef CONFIG_IA32_SUPPORT
937         ia32_cpu_init();
938 #endif
939
940         /* Clear ITC to eliminate sched_clock() overflows in human time.  */
941         ia64_set_itc(0);
942
943         /* disable all local interrupt sources: */
944         ia64_set_itv(1 << 16);
945         ia64_set_lrr0(1 << 16);
946         ia64_set_lrr1(1 << 16);
947         ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
948         ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
949
950         /* clear TPR & XTP to enable all interrupt classes: */
951         ia64_setreg(_IA64_REG_CR_TPR, 0);
952 #ifdef CONFIG_SMP
953         normal_xtp();
954 #endif
955
956         /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
957         if (ia64_pal_vm_summary(NULL, &vmi) == 0)
958                 max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
959         else {
960                 printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
961                 max_ctx = (1U << 15) - 1;       /* use architected minimum */
962         }
963         while (max_ctx < ia64_ctx.max_ctx) {
964                 unsigned int old = ia64_ctx.max_ctx;
965                 if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
966                         break;
967         }
968
969         if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
970                 printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
971                        "stacked regs\n");
972                 num_phys_stacked = 96;
973         }
974         /* size of physical stacked register partition plus 8 bytes: */
975         if (num_phys_stacked > max_num_phys_stacked) {
976                 ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
977                 max_num_phys_stacked = num_phys_stacked;
978         }
979         platform_cpu_init();
980         pm_idle = default_idle;
981 }
982
983 /*
984  * On SMP systems, when the scheduler does migration-cost autodetection,
985  * it needs a way to flush as much of the CPU's caches as possible.
986  */
987 void sched_cacheflush(void)
988 {
989         ia64_sal_cache_flush(3);
990 }
991
992 void __init
993 check_bugs (void)
994 {
995         ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
996                                (unsigned long) __end___mckinley_e9_bundles);
997 }
998
999 static int __init run_dmi_scan(void)
1000 {
1001         dmi_scan_machine();
1002         return 0;
1003 }
1004 core_initcall(run_dmi_scan);