]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - arch/alpha/kernel/smp.c
Merge branch 'topic/drop-l3' into for-linus
[linux-2.6.git] / arch / alpha / kernel / smp.c
1 /*
2  *      linux/arch/alpha/kernel/smp.c
3  *
4  *      2001-07-09 Phil Ezolt (Phillip.Ezolt@compaq.com)
5  *            Renamed modified smp_call_function to smp_call_function_on_cpu()
6  *            Created an function that conforms to the old calling convention
7  *            of smp_call_function().
8  *
9  *            This is helpful for DCPI.
10  *
11  */
12
13 #include <linux/errno.h>
14 #include <linux/kernel.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/mm.h>
19 #include <linux/err.h>
20 #include <linux/threads.h>
21 #include <linux/smp.h>
22 #include <linux/interrupt.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/spinlock.h>
26 #include <linux/irq.h>
27 #include <linux/cache.h>
28 #include <linux/profile.h>
29 #include <linux/bitops.h>
30 #include <linux/cpu.h>
31
32 #include <asm/hwrpb.h>
33 #include <asm/ptrace.h>
34 #include <asm/atomic.h>
35
36 #include <asm/io.h>
37 #include <asm/irq.h>
38 #include <asm/pgtable.h>
39 #include <asm/pgalloc.h>
40 #include <asm/mmu_context.h>
41 #include <asm/tlbflush.h>
42
43 #include "proto.h"
44 #include "irq_impl.h"
45
46
47 #define DEBUG_SMP 0
48 #if DEBUG_SMP
49 #define DBGS(args)      printk args
50 #else
51 #define DBGS(args)
52 #endif
53
54 /* A collection of per-processor data.  */
55 struct cpuinfo_alpha cpu_data[NR_CPUS];
56 EXPORT_SYMBOL(cpu_data);
57
58 /* A collection of single bit ipi messages.  */
59 static struct {
60         unsigned long bits ____cacheline_aligned;
61 } ipi_data[NR_CPUS] __cacheline_aligned;
62
63 enum ipi_message_type {
64         IPI_RESCHEDULE,
65         IPI_CALL_FUNC,
66         IPI_CALL_FUNC_SINGLE,
67         IPI_CPU_STOP,
68 };
69
70 /* Set to a secondary's cpuid when it comes online.  */
71 static int smp_secondary_alive __devinitdata = 0;
72
73 int smp_num_probed;             /* Internal processor count */
74 int smp_num_cpus = 1;           /* Number that came online.  */
75 EXPORT_SYMBOL(smp_num_cpus);
76
77 /*
78  * Called by both boot and secondaries to move global data into
79  *  per-processor storage.
80  */
81 static inline void __init
82 smp_store_cpu_info(int cpuid)
83 {
84         cpu_data[cpuid].loops_per_jiffy = loops_per_jiffy;
85         cpu_data[cpuid].last_asn = ASN_FIRST_VERSION;
86         cpu_data[cpuid].need_new_asn = 0;
87         cpu_data[cpuid].asn_lock = 0;
88 }
89
90 /*
91  * Ideally sets up per-cpu profiling hooks.  Doesn't do much now...
92  */
93 static inline void __init
94 smp_setup_percpu_timer(int cpuid)
95 {
96         cpu_data[cpuid].prof_counter = 1;
97         cpu_data[cpuid].prof_multiplier = 1;
98 }
99
100 static void __init
101 wait_boot_cpu_to_stop(int cpuid)
102 {
103         unsigned long stop = jiffies + 10*HZ;
104
105         while (time_before(jiffies, stop)) {
106                 if (!smp_secondary_alive)
107                         return;
108                 barrier();
109         }
110
111         printk("wait_boot_cpu_to_stop: FAILED on CPU %d, hanging now\n", cpuid);
112         for (;;)
113                 barrier();
114 }
115
116 /*
117  * Where secondaries begin a life of C.
118  */
119 void __cpuinit
120 smp_callin(void)
121 {
122         int cpuid = hard_smp_processor_id();
123
124         if (cpu_online(cpuid)) {
125                 printk("??, cpu 0x%x already present??\n", cpuid);
126                 BUG();
127         }
128         set_cpu_online(cpuid, true);
129
130         /* Turn on machine checks.  */
131         wrmces(7);
132
133         /* Set trap vectors.  */
134         trap_init();
135
136         /* Set interrupt vector.  */
137         wrent(entInt, 0);
138
139         /* Get our local ticker going. */
140         smp_setup_percpu_timer(cpuid);
141
142         /* Call platform-specific callin, if specified */
143         if (alpha_mv.smp_callin) alpha_mv.smp_callin();
144
145         /* All kernel threads share the same mm context.  */
146         atomic_inc(&init_mm.mm_count);
147         current->active_mm = &init_mm;
148
149         /* inform the notifiers about the new cpu */
150         notify_cpu_starting(cpuid);
151
152         /* Must have completely accurate bogos.  */
153         local_irq_enable();
154
155         /* Wait boot CPU to stop with irq enabled before running
156            calibrate_delay. */
157         wait_boot_cpu_to_stop(cpuid);
158         mb();
159         calibrate_delay();
160
161         smp_store_cpu_info(cpuid);
162         /* Allow master to continue only after we written loops_per_jiffy.  */
163         wmb();
164         smp_secondary_alive = 1;
165
166         DBGS(("smp_callin: commencing CPU %d current %p active_mm %p\n",
167               cpuid, current, current->active_mm));
168
169         /* Do nothing.  */
170         cpu_idle();
171 }
172
173 /* Wait until hwrpb->txrdy is clear for cpu.  Return -1 on timeout.  */
174 static int __devinit
175 wait_for_txrdy (unsigned long cpumask)
176 {
177         unsigned long timeout;
178
179         if (!(hwrpb->txrdy & cpumask))
180                 return 0;
181
182         timeout = jiffies + 10*HZ;
183         while (time_before(jiffies, timeout)) {
184                 if (!(hwrpb->txrdy & cpumask))
185                         return 0;
186                 udelay(10);
187                 barrier();
188         }
189
190         return -1;
191 }
192
193 /*
194  * Send a message to a secondary's console.  "START" is one such
195  * interesting message.  ;-)
196  */
197 static void __cpuinit
198 send_secondary_console_msg(char *str, int cpuid)
199 {
200         struct percpu_struct *cpu;
201         register char *cp1, *cp2;
202         unsigned long cpumask;
203         size_t len;
204
205         cpu = (struct percpu_struct *)
206                 ((char*)hwrpb
207                  + hwrpb->processor_offset
208                  + cpuid * hwrpb->processor_size);
209
210         cpumask = (1UL << cpuid);
211         if (wait_for_txrdy(cpumask))
212                 goto timeout;
213
214         cp2 = str;
215         len = strlen(cp2);
216         *(unsigned int *)&cpu->ipc_buffer[0] = len;
217         cp1 = (char *) &cpu->ipc_buffer[1];
218         memcpy(cp1, cp2, len);
219
220         /* atomic test and set */
221         wmb();
222         set_bit(cpuid, &hwrpb->rxrdy);
223
224         if (wait_for_txrdy(cpumask))
225                 goto timeout;
226         return;
227
228  timeout:
229         printk("Processor %x not ready\n", cpuid);
230 }
231
232 /*
233  * A secondary console wants to send a message.  Receive it.
234  */
235 static void
236 recv_secondary_console_msg(void)
237 {
238         int mycpu, i, cnt;
239         unsigned long txrdy = hwrpb->txrdy;
240         char *cp1, *cp2, buf[80];
241         struct percpu_struct *cpu;
242
243         DBGS(("recv_secondary_console_msg: TXRDY 0x%lx.\n", txrdy));
244
245         mycpu = hard_smp_processor_id();
246
247         for (i = 0; i < NR_CPUS; i++) {
248                 if (!(txrdy & (1UL << i)))
249                         continue;
250
251                 DBGS(("recv_secondary_console_msg: "
252                       "TXRDY contains CPU %d.\n", i));
253
254                 cpu = (struct percpu_struct *)
255                   ((char*)hwrpb
256                    + hwrpb->processor_offset
257                    + i * hwrpb->processor_size);
258
259                 DBGS(("recv_secondary_console_msg: on %d from %d"
260                       " HALT_REASON 0x%lx FLAGS 0x%lx\n",
261                       mycpu, i, cpu->halt_reason, cpu->flags));
262
263                 cnt = cpu->ipc_buffer[0] >> 32;
264                 if (cnt <= 0 || cnt >= 80)
265                         strcpy(buf, "<<< BOGUS MSG >>>");
266                 else {
267                         cp1 = (char *) &cpu->ipc_buffer[11];
268                         cp2 = buf;
269                         strcpy(cp2, cp1);
270                         
271                         while ((cp2 = strchr(cp2, '\r')) != 0) {
272                                 *cp2 = ' ';
273                                 if (cp2[1] == '\n')
274                                         cp2[1] = ' ';
275                         }
276                 }
277
278                 DBGS((KERN_INFO "recv_secondary_console_msg: on %d "
279                       "message is '%s'\n", mycpu, buf));
280         }
281
282         hwrpb->txrdy = 0;
283 }
284
285 /*
286  * Convince the console to have a secondary cpu begin execution.
287  */
288 static int __cpuinit
289 secondary_cpu_start(int cpuid, struct task_struct *idle)
290 {
291         struct percpu_struct *cpu;
292         struct pcb_struct *hwpcb, *ipcb;
293         unsigned long timeout;
294           
295         cpu = (struct percpu_struct *)
296                 ((char*)hwrpb
297                  + hwrpb->processor_offset
298                  + cpuid * hwrpb->processor_size);
299         hwpcb = (struct pcb_struct *) cpu->hwpcb;
300         ipcb = &task_thread_info(idle)->pcb;
301
302         /* Initialize the CPU's HWPCB to something just good enough for
303            us to get started.  Immediately after starting, we'll swpctx
304            to the target idle task's pcb.  Reuse the stack in the mean
305            time.  Precalculate the target PCBB.  */
306         hwpcb->ksp = (unsigned long)ipcb + sizeof(union thread_union) - 16;
307         hwpcb->usp = 0;
308         hwpcb->ptbr = ipcb->ptbr;
309         hwpcb->pcc = 0;
310         hwpcb->asn = 0;
311         hwpcb->unique = virt_to_phys(ipcb);
312         hwpcb->flags = ipcb->flags;
313         hwpcb->res1 = hwpcb->res2 = 0;
314
315 #if 0
316         DBGS(("KSP 0x%lx PTBR 0x%lx VPTBR 0x%lx UNIQUE 0x%lx\n",
317               hwpcb->ksp, hwpcb->ptbr, hwrpb->vptb, hwpcb->unique));
318 #endif
319         DBGS(("Starting secondary cpu %d: state 0x%lx pal_flags 0x%lx\n",
320               cpuid, idle->state, ipcb->flags));
321
322         /* Setup HWRPB fields that SRM uses to activate secondary CPU */
323         hwrpb->CPU_restart = __smp_callin;
324         hwrpb->CPU_restart_data = (unsigned long) __smp_callin;
325
326         /* Recalculate and update the HWRPB checksum */
327         hwrpb_update_checksum(hwrpb);
328
329         /*
330          * Send a "start" command to the specified processor.
331          */
332
333         /* SRM III 3.4.1.3 */
334         cpu->flags |= 0x22;     /* turn on Context Valid and Restart Capable */
335         cpu->flags &= ~1;       /* turn off Bootstrap In Progress */
336         wmb();
337
338         send_secondary_console_msg("START\r\n", cpuid);
339
340         /* Wait 10 seconds for an ACK from the console.  */
341         timeout = jiffies + 10*HZ;
342         while (time_before(jiffies, timeout)) {
343                 if (cpu->flags & 1)
344                         goto started;
345                 udelay(10);
346                 barrier();
347         }
348         printk(KERN_ERR "SMP: Processor %d failed to start.\n", cpuid);
349         return -1;
350
351  started:
352         DBGS(("secondary_cpu_start: SUCCESS for CPU %d!!!\n", cpuid));
353         return 0;
354 }
355
356 /*
357  * Bring one cpu online.
358  */
359 static int __cpuinit
360 smp_boot_one_cpu(int cpuid)
361 {
362         struct task_struct *idle;
363         unsigned long timeout;
364
365         /* Cook up an idler for this guy.  Note that the address we
366            give to kernel_thread is irrelevant -- it's going to start
367            where HWRPB.CPU_restart says to start.  But this gets all
368            the other task-y sort of data structures set up like we
369            wish.  We can't use kernel_thread since we must avoid
370            rescheduling the child.  */
371         idle = fork_idle(cpuid);
372         if (IS_ERR(idle))
373                 panic("failed fork for CPU %d", cpuid);
374
375         DBGS(("smp_boot_one_cpu: CPU %d state 0x%lx flags 0x%lx\n",
376               cpuid, idle->state, idle->flags));
377
378         /* Signal the secondary to wait a moment.  */
379         smp_secondary_alive = -1;
380
381         /* Whirrr, whirrr, whirrrrrrrrr... */
382         if (secondary_cpu_start(cpuid, idle))
383                 return -1;
384
385         /* Notify the secondary CPU it can run calibrate_delay.  */
386         mb();
387         smp_secondary_alive = 0;
388
389         /* We've been acked by the console; wait one second for
390            the task to start up for real.  */
391         timeout = jiffies + 1*HZ;
392         while (time_before(jiffies, timeout)) {
393                 if (smp_secondary_alive == 1)
394                         goto alive;
395                 udelay(10);
396                 barrier();
397         }
398
399         /* We failed to boot the CPU.  */
400
401         printk(KERN_ERR "SMP: Processor %d is stuck.\n", cpuid);
402         return -1;
403
404  alive:
405         /* Another "Red Snapper". */
406         return 0;
407 }
408
409 /*
410  * Called from setup_arch.  Detect an SMP system and which processors
411  * are present.
412  */
413 void __init
414 setup_smp(void)
415 {
416         struct percpu_struct *cpubase, *cpu;
417         unsigned long i;
418
419         if (boot_cpuid != 0) {
420                 printk(KERN_WARNING "SMP: Booting off cpu %d instead of 0?\n",
421                        boot_cpuid);
422         }
423
424         if (hwrpb->nr_processors > 1) {
425                 int boot_cpu_palrev;
426
427                 DBGS(("setup_smp: nr_processors %ld\n",
428                       hwrpb->nr_processors));
429
430                 cpubase = (struct percpu_struct *)
431                         ((char*)hwrpb + hwrpb->processor_offset);
432                 boot_cpu_palrev = cpubase->pal_revision;
433
434                 for (i = 0; i < hwrpb->nr_processors; i++) {
435                         cpu = (struct percpu_struct *)
436                                 ((char *)cpubase + i*hwrpb->processor_size);
437                         if ((cpu->flags & 0x1cc) == 0x1cc) {
438                                 smp_num_probed++;
439                                 set_cpu_possible(i, true);
440                                 set_cpu_present(i, true);
441                                 cpu->pal_revision = boot_cpu_palrev;
442                         }
443
444                         DBGS(("setup_smp: CPU %d: flags 0x%lx type 0x%lx\n",
445                               i, cpu->flags, cpu->type));
446                         DBGS(("setup_smp: CPU %d: PAL rev 0x%lx\n",
447                               i, cpu->pal_revision));
448                 }
449         } else {
450                 smp_num_probed = 1;
451         }
452
453         printk(KERN_INFO "SMP: %d CPUs probed -- cpu_present_map = %lx\n",
454                smp_num_probed, cpu_present_map.bits[0]);
455 }
456
457 /*
458  * Called by smp_init prepare the secondaries
459  */
460 void __init
461 smp_prepare_cpus(unsigned int max_cpus)
462 {
463         /* Take care of some initial bookkeeping.  */
464         memset(ipi_data, 0, sizeof(ipi_data));
465
466         current_thread_info()->cpu = boot_cpuid;
467
468         smp_store_cpu_info(boot_cpuid);
469         smp_setup_percpu_timer(boot_cpuid);
470
471         /* Nothing to do on a UP box, or when told not to.  */
472         if (smp_num_probed == 1 || max_cpus == 0) {
473                 init_cpu_possible(cpumask_of(boot_cpuid));
474                 init_cpu_present(cpumask_of(boot_cpuid));
475                 printk(KERN_INFO "SMP mode deactivated.\n");
476                 return;
477         }
478
479         printk(KERN_INFO "SMP starting up secondaries.\n");
480
481         smp_num_cpus = smp_num_probed;
482 }
483
484 void __devinit
485 smp_prepare_boot_cpu(void)
486 {
487 }
488
489 int __cpuinit
490 __cpu_up(unsigned int cpu)
491 {
492         smp_boot_one_cpu(cpu);
493
494         return cpu_online(cpu) ? 0 : -ENOSYS;
495 }
496
497 void __init
498 smp_cpus_done(unsigned int max_cpus)
499 {
500         int cpu;
501         unsigned long bogosum = 0;
502
503         for(cpu = 0; cpu < NR_CPUS; cpu++) 
504                 if (cpu_online(cpu))
505                         bogosum += cpu_data[cpu].loops_per_jiffy;
506         
507         printk(KERN_INFO "SMP: Total of %d processors activated "
508                "(%lu.%02lu BogoMIPS).\n",
509                num_online_cpus(), 
510                (bogosum + 2500) / (500000/HZ),
511                ((bogosum + 2500) / (5000/HZ)) % 100);
512 }
513
514 \f
515 void
516 smp_percpu_timer_interrupt(struct pt_regs *regs)
517 {
518         struct pt_regs *old_regs;
519         int cpu = smp_processor_id();
520         unsigned long user = user_mode(regs);
521         struct cpuinfo_alpha *data = &cpu_data[cpu];
522
523         old_regs = set_irq_regs(regs);
524
525         /* Record kernel PC.  */
526         profile_tick(CPU_PROFILING);
527
528         if (!--data->prof_counter) {
529                 /* We need to make like a normal interrupt -- otherwise
530                    timer interrupts ignore the global interrupt lock,
531                    which would be a Bad Thing.  */
532                 irq_enter();
533
534                 update_process_times(user);
535
536                 data->prof_counter = data->prof_multiplier;
537
538                 irq_exit();
539         }
540         set_irq_regs(old_regs);
541 }
542
543 int
544 setup_profiling_timer(unsigned int multiplier)
545 {
546         return -EINVAL;
547 }
548
549 \f
550 static void
551 send_ipi_message(cpumask_t to_whom, enum ipi_message_type operation)
552 {
553         int i;
554
555         mb();
556         for_each_cpu_mask(i, to_whom)
557                 set_bit(operation, &ipi_data[i].bits);
558
559         mb();
560         for_each_cpu_mask(i, to_whom)
561                 wripir(i);
562 }
563
564 void
565 handle_ipi(struct pt_regs *regs)
566 {
567         int this_cpu = smp_processor_id();
568         unsigned long *pending_ipis = &ipi_data[this_cpu].bits;
569         unsigned long ops;
570
571 #if 0
572         DBGS(("handle_ipi: on CPU %d ops 0x%lx PC 0x%lx\n",
573               this_cpu, *pending_ipis, regs->pc));
574 #endif
575
576         mb();   /* Order interrupt and bit testing. */
577         while ((ops = xchg(pending_ipis, 0)) != 0) {
578           mb(); /* Order bit clearing and data access. */
579           do {
580                 unsigned long which;
581
582                 which = ops & -ops;
583                 ops &= ~which;
584                 which = __ffs(which);
585
586                 switch (which) {
587                 case IPI_RESCHEDULE:
588                         /* Reschedule callback.  Everything to be done
589                            is done by the interrupt return path.  */
590                         break;
591
592                 case IPI_CALL_FUNC:
593                         generic_smp_call_function_interrupt();
594                         break;
595
596                 case IPI_CALL_FUNC_SINGLE:
597                         generic_smp_call_function_single_interrupt();
598                         break;
599
600                 case IPI_CPU_STOP:
601                         halt();
602
603                 default:
604                         printk(KERN_CRIT "Unknown IPI on CPU %d: %lu\n",
605                                this_cpu, which);
606                         break;
607                 }
608           } while (ops);
609
610           mb(); /* Order data access and bit testing. */
611         }
612
613         cpu_data[this_cpu].ipi_count++;
614
615         if (hwrpb->txrdy)
616                 recv_secondary_console_msg();
617 }
618
619 void
620 smp_send_reschedule(int cpu)
621 {
622 #ifdef DEBUG_IPI_MSG
623         if (cpu == hard_smp_processor_id())
624                 printk(KERN_WARNING
625                        "smp_send_reschedule: Sending IPI to self.\n");
626 #endif
627         send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE);
628 }
629
630 void
631 smp_send_stop(void)
632 {
633         cpumask_t to_whom = cpu_possible_map;
634         cpu_clear(smp_processor_id(), to_whom);
635 #ifdef DEBUG_IPI_MSG
636         if (hard_smp_processor_id() != boot_cpu_id)
637                 printk(KERN_WARNING "smp_send_stop: Not on boot cpu.\n");
638 #endif
639         send_ipi_message(to_whom, IPI_CPU_STOP);
640 }
641
642 void arch_send_call_function_ipi(cpumask_t mask)
643 {
644         send_ipi_message(mask, IPI_CALL_FUNC);
645 }
646
647 void arch_send_call_function_single_ipi(int cpu)
648 {
649         send_ipi_message(cpumask_of_cpu(cpu), IPI_CALL_FUNC_SINGLE);
650 }
651
652 static void
653 ipi_imb(void *ignored)
654 {
655         imb();
656 }
657
658 void
659 smp_imb(void)
660 {
661         /* Must wait other processors to flush their icache before continue. */
662         if (on_each_cpu(ipi_imb, NULL, 1))
663                 printk(KERN_CRIT "smp_imb: timed out\n");
664 }
665 EXPORT_SYMBOL(smp_imb);
666
667 static void
668 ipi_flush_tlb_all(void *ignored)
669 {
670         tbia();
671 }
672
673 void
674 flush_tlb_all(void)
675 {
676         /* Although we don't have any data to pass, we do want to
677            synchronize with the other processors.  */
678         if (on_each_cpu(ipi_flush_tlb_all, NULL, 1)) {
679                 printk(KERN_CRIT "flush_tlb_all: timed out\n");
680         }
681 }
682
683 #define asn_locked() (cpu_data[smp_processor_id()].asn_lock)
684
685 static void
686 ipi_flush_tlb_mm(void *x)
687 {
688         struct mm_struct *mm = (struct mm_struct *) x;
689         if (mm == current->active_mm && !asn_locked())
690                 flush_tlb_current(mm);
691         else
692                 flush_tlb_other(mm);
693 }
694
695 void
696 flush_tlb_mm(struct mm_struct *mm)
697 {
698         preempt_disable();
699
700         if (mm == current->active_mm) {
701                 flush_tlb_current(mm);
702                 if (atomic_read(&mm->mm_users) <= 1) {
703                         int cpu, this_cpu = smp_processor_id();
704                         for (cpu = 0; cpu < NR_CPUS; cpu++) {
705                                 if (!cpu_online(cpu) || cpu == this_cpu)
706                                         continue;
707                                 if (mm->context[cpu])
708                                         mm->context[cpu] = 0;
709                         }
710                         preempt_enable();
711                         return;
712                 }
713         }
714
715         if (smp_call_function(ipi_flush_tlb_mm, mm, 1)) {
716                 printk(KERN_CRIT "flush_tlb_mm: timed out\n");
717         }
718
719         preempt_enable();
720 }
721 EXPORT_SYMBOL(flush_tlb_mm);
722
723 struct flush_tlb_page_struct {
724         struct vm_area_struct *vma;
725         struct mm_struct *mm;
726         unsigned long addr;
727 };
728
729 static void
730 ipi_flush_tlb_page(void *x)
731 {
732         struct flush_tlb_page_struct *data = (struct flush_tlb_page_struct *)x;
733         struct mm_struct * mm = data->mm;
734
735         if (mm == current->active_mm && !asn_locked())
736                 flush_tlb_current_page(mm, data->vma, data->addr);
737         else
738                 flush_tlb_other(mm);
739 }
740
741 void
742 flush_tlb_page(struct vm_area_struct *vma, unsigned long addr)
743 {
744         struct flush_tlb_page_struct data;
745         struct mm_struct *mm = vma->vm_mm;
746
747         preempt_disable();
748
749         if (mm == current->active_mm) {
750                 flush_tlb_current_page(mm, vma, addr);
751                 if (atomic_read(&mm->mm_users) <= 1) {
752                         int cpu, this_cpu = smp_processor_id();
753                         for (cpu = 0; cpu < NR_CPUS; cpu++) {
754                                 if (!cpu_online(cpu) || cpu == this_cpu)
755                                         continue;
756                                 if (mm->context[cpu])
757                                         mm->context[cpu] = 0;
758                         }
759                         preempt_enable();
760                         return;
761                 }
762         }
763
764         data.vma = vma;
765         data.mm = mm;
766         data.addr = addr;
767
768         if (smp_call_function(ipi_flush_tlb_page, &data, 1)) {
769                 printk(KERN_CRIT "flush_tlb_page: timed out\n");
770         }
771
772         preempt_enable();
773 }
774 EXPORT_SYMBOL(flush_tlb_page);
775
776 void
777 flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
778 {
779         /* On the Alpha we always flush the whole user tlb.  */
780         flush_tlb_mm(vma->vm_mm);
781 }
782 EXPORT_SYMBOL(flush_tlb_range);
783
784 static void
785 ipi_flush_icache_page(void *x)
786 {
787         struct mm_struct *mm = (struct mm_struct *) x;
788         if (mm == current->active_mm && !asn_locked())
789                 __load_new_mm_context(mm);
790         else
791                 flush_tlb_other(mm);
792 }
793
794 void
795 flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
796                         unsigned long addr, int len)
797 {
798         struct mm_struct *mm = vma->vm_mm;
799
800         if ((vma->vm_flags & VM_EXEC) == 0)
801                 return;
802
803         preempt_disable();
804
805         if (mm == current->active_mm) {
806                 __load_new_mm_context(mm);
807                 if (atomic_read(&mm->mm_users) <= 1) {
808                         int cpu, this_cpu = smp_processor_id();
809                         for (cpu = 0; cpu < NR_CPUS; cpu++) {
810                                 if (!cpu_online(cpu) || cpu == this_cpu)
811                                         continue;
812                                 if (mm->context[cpu])
813                                         mm->context[cpu] = 0;
814                         }
815                         preempt_enable();
816                         return;
817                 }
818         }
819
820         if (smp_call_function(ipi_flush_icache_page, mm, 1)) {
821                 printk(KERN_CRIT "flush_icache_page: timed out\n");
822         }
823
824         preempt_enable();
825 }