]> nv-tegra.nvidia Code Review - linux-3.10.git/blobdiff - fs/bio.c
ext4: fix potential use after free in __ext4_journal_stop
[linux-3.10.git] / fs / bio.c
index 84da88539046fa21a6db865454db135df40be080..5e7507d7929743de0acfb7b129be4855d2ea468a 100644 (file)
--- a/fs/bio.c
+++ b/fs/bio.c
 #include <linux/swap.h>
 #include <linux/bio.h>
 #include <linux/blkdev.h>
+#include <linux/uio.h>
+#include <linux/iocontext.h>
 #include <linux/slab.h>
 #include <linux/init.h>
 #include <linux/kernel.h>
 #include <linux/export.h>
 #include <linux/mempool.h>
 #include <linux/workqueue.h>
+#include <linux/cgroup.h>
 #include <scsi/sg.h>           /* for struct sg_iovec */
 
 #include <trace/events/block.h>
@@ -53,6 +56,7 @@ static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
  * IO code that does not need private memory pools.
  */
 struct bio_set *fs_bio_set;
+EXPORT_SYMBOL(fs_bio_set);
 
 /*
  * Our slab pool management
@@ -71,7 +75,8 @@ static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
 {
        unsigned int sz = sizeof(struct bio) + extra_size;
        struct kmem_cache *slab = NULL;
-       struct bio_slab *bslab;
+       struct bio_slab *bslab, *new_bio_slabs;
+       unsigned int new_bio_slab_max;
        unsigned int i, entry = -1;
 
        mutex_lock(&bio_slab_lock);
@@ -94,12 +99,14 @@ static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
                goto out_unlock;
 
        if (bio_slab_nr == bio_slab_max && entry == -1) {
-               bio_slab_max <<= 1;
-               bio_slabs = krealloc(bio_slabs,
-                                    bio_slab_max * sizeof(struct bio_slab),
-                                    GFP_KERNEL);
-               if (!bio_slabs)
+               new_bio_slab_max = bio_slab_max << 1;
+               new_bio_slabs = krealloc(bio_slabs,
+                                        new_bio_slab_max * sizeof(struct bio_slab),
+                                        GFP_KERNEL);
+               if (!new_bio_slabs)
                        goto out_unlock;
+               bio_slab_max = new_bio_slab_max;
+               bio_slabs = new_bio_slabs;
        }
        if (entry == -1)
                entry = bio_slab_nr++;
@@ -154,12 +161,12 @@ unsigned int bvec_nr_vecs(unsigned short idx)
        return bvec_slabs[idx].nr_vecs;
 }
 
-void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
+void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
 {
        BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
 
        if (idx == BIOVEC_MAX_IDX)
-               mempool_free(bv, bs->bvec_pool);
+               mempool_free(bv, pool);
        else {
                struct biovec_slab *bvs = bvec_slabs + idx;
 
@@ -167,8 +174,8 @@ void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
        }
 }
 
-struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
-                             struct bio_set *bs)
+struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
+                          mempool_t *pool)
 {
        struct bio_vec *bvl;
 
@@ -204,7 +211,7 @@ struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
         */
        if (*idx == BIOVEC_MAX_IDX) {
 fallback:
-               bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
+               bvl = mempool_alloc(pool, gfp_mask);
        } else {
                struct biovec_slab *bvs = bvec_slabs + *idx;
                gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
@@ -230,26 +237,37 @@ fallback:
        return bvl;
 }
 
-void bio_free(struct bio *bio, struct bio_set *bs)
+static void __bio_free(struct bio *bio)
 {
+       bio_disassociate_task(bio);
+
+       if (bio_integrity(bio))
+               bio_integrity_free(bio);
+}
+
+static void bio_free(struct bio *bio)
+{
+       struct bio_set *bs = bio->bi_pool;
        void *p;
 
-       if (bio_has_allocated_vec(bio))
-               bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
+       __bio_free(bio);
 
-       if (bio_integrity(bio))
-               bio_integrity_free(bio, bs);
+       if (bs) {
+               if (bio_flagged(bio, BIO_OWNS_VEC))
+                       bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
 
-       /*
-        * If we have front padding, adjust the bio pointer before freeing
-        */
-       p = bio;
-       if (bs->front_pad)
+               /*
+                * If we have front padding, adjust the bio pointer before freeing
+                */
+               p = bio;
                p -= bs->front_pad;
 
-       mempool_free(p, bs->bio_pool);
+               mempool_free(p, bs->bio_pool);
+       } else {
+               /* Bio was allocated by bio_kmalloc() */
+               kfree(bio);
+       }
 }
-EXPORT_SYMBOL(bio_free);
 
 void bio_init(struct bio *bio)
 {
@@ -260,132 +278,197 @@ void bio_init(struct bio *bio)
 EXPORT_SYMBOL(bio_init);
 
 /**
- * bio_alloc_bioset - allocate a bio for I/O
- * @gfp_mask:   the GFP_ mask given to the slab allocator
- * @nr_iovecs: number of iovecs to pre-allocate
- * @bs:                the bio_set to allocate from.
+ * bio_reset - reinitialize a bio
+ * @bio:       bio to reset
  *
  * Description:
- *   bio_alloc_bioset will try its own mempool to satisfy the allocation.
- *   If %__GFP_WAIT is set then we will block on the internal pool waiting
- *   for a &struct bio to become free.
- *
- *   Note that the caller must set ->bi_destructor on successful return
- *   of a bio, to do the appropriate freeing of the bio once the reference
- *   count drops to zero.
- **/
-struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
+ *   After calling bio_reset(), @bio will be in the same state as a freshly
+ *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
+ *   preserved are the ones that are initialized by bio_alloc_bioset(). See
+ *   comment in struct bio.
+ */
+void bio_reset(struct bio *bio)
 {
-       unsigned long idx = BIO_POOL_NONE;
-       struct bio_vec *bvl = NULL;
-       struct bio *bio;
-       void *p;
+       unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
 
-       p = mempool_alloc(bs->bio_pool, gfp_mask);
-       if (unlikely(!p))
-               return NULL;
-       bio = p + bs->front_pad;
+       __bio_free(bio);
 
-       bio_init(bio);
+       memset(bio, 0, BIO_RESET_BYTES);
+       bio->bi_flags = flags|(1 << BIO_UPTODATE);
+}
+EXPORT_SYMBOL(bio_reset);
 
-       if (unlikely(!nr_iovecs))
-               goto out_set;
+static void bio_alloc_rescue(struct work_struct *work)
+{
+       struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
+       struct bio *bio;
 
-       if (nr_iovecs <= BIO_INLINE_VECS) {
-               bvl = bio->bi_inline_vecs;
-               nr_iovecs = BIO_INLINE_VECS;
-       } else {
-               bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
-               if (unlikely(!bvl))
-                       goto err_free;
+       while (1) {
+               spin_lock(&bs->rescue_lock);
+               bio = bio_list_pop(&bs->rescue_list);
+               spin_unlock(&bs->rescue_lock);
 
-               nr_iovecs = bvec_nr_vecs(idx);
-       }
-out_set:
-       bio->bi_flags |= idx << BIO_POOL_OFFSET;
-       bio->bi_max_vecs = nr_iovecs;
-       bio->bi_io_vec = bvl;
-       return bio;
+               if (!bio)
+                       break;
 
-err_free:
-       mempool_free(p, bs->bio_pool);
-       return NULL;
+               generic_make_request(bio);
+       }
 }
-EXPORT_SYMBOL(bio_alloc_bioset);
 
-static void bio_fs_destructor(struct bio *bio)
+static void punt_bios_to_rescuer(struct bio_set *bs)
 {
-       bio_free(bio, fs_bio_set);
-}
+       struct bio_list punt, nopunt;
+       struct bio *bio;
 
-/**
- *     bio_alloc - allocate a new bio, memory pool backed
- *     @gfp_mask: allocation mask to use
- *     @nr_iovecs: number of iovecs
- *
- *     bio_alloc will allocate a bio and associated bio_vec array that can hold
- *     at least @nr_iovecs entries. Allocations will be done from the
- *     fs_bio_set. Also see @bio_alloc_bioset and @bio_kmalloc.
- *
- *     If %__GFP_WAIT is set, then bio_alloc will always be able to allocate
- *     a bio. This is due to the mempool guarantees. To make this work, callers
- *     must never allocate more than 1 bio at a time from this pool. Callers
- *     that need to allocate more than 1 bio must always submit the previously
- *     allocated bio for IO before attempting to allocate a new one. Failure to
- *     do so can cause livelocks under memory pressure.
- *
- *     RETURNS:
- *     Pointer to new bio on success, NULL on failure.
- */
-struct bio *bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
-{
-       struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
+       /*
+        * In order to guarantee forward progress we must punt only bios that
+        * were allocated from this bio_set; otherwise, if there was a bio on
+        * there for a stacking driver higher up in the stack, processing it
+        * could require allocating bios from this bio_set, and doing that from
+        * our own rescuer would be bad.
+        *
+        * Since bio lists are singly linked, pop them all instead of trying to
+        * remove from the middle of the list:
+        */
 
-       if (bio)
-               bio->bi_destructor = bio_fs_destructor;
+       bio_list_init(&punt);
+       bio_list_init(&nopunt);
 
-       return bio;
-}
-EXPORT_SYMBOL(bio_alloc);
+       while ((bio = bio_list_pop(current->bio_list)))
+               bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
 
-static void bio_kmalloc_destructor(struct bio *bio)
-{
-       if (bio_integrity(bio))
-               bio_integrity_free(bio, fs_bio_set);
-       kfree(bio);
+       *current->bio_list = nopunt;
+
+       spin_lock(&bs->rescue_lock);
+       bio_list_merge(&bs->rescue_list, &punt);
+       spin_unlock(&bs->rescue_lock);
+
+       queue_work(bs->rescue_workqueue, &bs->rescue_work);
 }
 
 /**
- * bio_kmalloc - allocate a bio for I/O using kmalloc()
+ * bio_alloc_bioset - allocate a bio for I/O
  * @gfp_mask:   the GFP_ mask given to the slab allocator
  * @nr_iovecs: number of iovecs to pre-allocate
+ * @bs:                the bio_set to allocate from.
  *
  * Description:
- *   Allocate a new bio with @nr_iovecs bvecs.  If @gfp_mask contains
- *   %__GFP_WAIT, the allocation is guaranteed to succeed.
+ *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
+ *   backed by the @bs's mempool.
  *
- **/
-struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned int nr_iovecs)
+ *   When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
+ *   able to allocate a bio. This is due to the mempool guarantees. To make this
+ *   work, callers must never allocate more than 1 bio at a time from this pool.
+ *   Callers that need to allocate more than 1 bio must always submit the
+ *   previously allocated bio for IO before attempting to allocate a new one.
+ *   Failure to do so can cause deadlocks under memory pressure.
+ *
+ *   Note that when running under generic_make_request() (i.e. any block
+ *   driver), bios are not submitted until after you return - see the code in
+ *   generic_make_request() that converts recursion into iteration, to prevent
+ *   stack overflows.
+ *
+ *   This would normally mean allocating multiple bios under
+ *   generic_make_request() would be susceptible to deadlocks, but we have
+ *   deadlock avoidance code that resubmits any blocked bios from a rescuer
+ *   thread.
+ *
+ *   However, we do not guarantee forward progress for allocations from other
+ *   mempools. Doing multiple allocations from the same mempool under
+ *   generic_make_request() should be avoided - instead, use bio_set's front_pad
+ *   for per bio allocations.
+ *
+ *   RETURNS:
+ *   Pointer to new bio on success, NULL on failure.
+ */
+struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
 {
+       gfp_t saved_gfp = gfp_mask;
+       unsigned front_pad;
+       unsigned inline_vecs;
+       unsigned long idx = BIO_POOL_NONE;
+       struct bio_vec *bvl = NULL;
        struct bio *bio;
+       void *p;
 
-       if (nr_iovecs > UIO_MAXIOV)
-               return NULL;
+       if (!bs) {
+               if (nr_iovecs > UIO_MAXIOV)
+                       return NULL;
+
+               p = kmalloc(sizeof(struct bio) +
+                           nr_iovecs * sizeof(struct bio_vec),
+                           gfp_mask);
+               front_pad = 0;
+               inline_vecs = nr_iovecs;
+       } else {
+               /*
+                * generic_make_request() converts recursion to iteration; this
+                * means if we're running beneath it, any bios we allocate and
+                * submit will not be submitted (and thus freed) until after we
+                * return.
+                *
+                * This exposes us to a potential deadlock if we allocate
+                * multiple bios from the same bio_set() while running
+                * underneath generic_make_request(). If we were to allocate
+                * multiple bios (say a stacking block driver that was splitting
+                * bios), we would deadlock if we exhausted the mempool's
+                * reserve.
+                *
+                * We solve this, and guarantee forward progress, with a rescuer
+                * workqueue per bio_set. If we go to allocate and there are
+                * bios on current->bio_list, we first try the allocation
+                * without __GFP_WAIT; if that fails, we punt those bios we
+                * would be blocking to the rescuer workqueue before we retry
+                * with the original gfp_flags.
+                */
+
+               if (current->bio_list && !bio_list_empty(current->bio_list))
+                       gfp_mask &= ~__GFP_WAIT;
+
+               p = mempool_alloc(bs->bio_pool, gfp_mask);
+               if (!p && gfp_mask != saved_gfp) {
+                       punt_bios_to_rescuer(bs);
+                       gfp_mask = saved_gfp;
+                       p = mempool_alloc(bs->bio_pool, gfp_mask);
+               }
 
-       bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec),
-                     gfp_mask);
-       if (unlikely(!bio))
+               front_pad = bs->front_pad;
+               inline_vecs = BIO_INLINE_VECS;
+       }
+
+       if (unlikely(!p))
                return NULL;
 
+       bio = p + front_pad;
        bio_init(bio);
-       bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
-       bio->bi_max_vecs = nr_iovecs;
-       bio->bi_io_vec = bio->bi_inline_vecs;
-       bio->bi_destructor = bio_kmalloc_destructor;
 
+       if (nr_iovecs > inline_vecs) {
+               bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
+               if (!bvl && gfp_mask != saved_gfp) {
+                       punt_bios_to_rescuer(bs);
+                       gfp_mask = saved_gfp;
+                       bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
+               }
+
+               if (unlikely(!bvl))
+                       goto err_free;
+
+               bio->bi_flags |= 1 << BIO_OWNS_VEC;
+       } else if (nr_iovecs) {
+               bvl = bio->bi_inline_vecs;
+       }
+
+       bio->bi_pool = bs;
+       bio->bi_flags |= idx << BIO_POOL_OFFSET;
+       bio->bi_max_vecs = nr_iovecs;
+       bio->bi_io_vec = bvl;
        return bio;
+
+err_free:
+       mempool_free(p, bs->bio_pool);
+       return NULL;
 }
-EXPORT_SYMBOL(bio_kmalloc);
+EXPORT_SYMBOL(bio_alloc_bioset);
 
 void zero_fill_bio(struct bio *bio)
 {
@@ -417,10 +500,8 @@ void bio_put(struct bio *bio)
        /*
         * last put frees it
         */
-       if (atomic_dec_and_test(&bio->bi_cnt)) {
-               bio->bi_next = NULL;
-               bio->bi_destructor(bio);
-       }
+       if (atomic_dec_and_test(&bio->bi_cnt))
+               bio_free(bio);
 }
 EXPORT_SYMBOL(bio_put);
 
@@ -462,26 +543,28 @@ void __bio_clone(struct bio *bio, struct bio *bio_src)
 EXPORT_SYMBOL(__bio_clone);
 
 /**
- *     bio_clone       -       clone a bio
+ *     bio_clone_bioset -      clone a bio
  *     @bio: bio to clone
  *     @gfp_mask: allocation priority
+ *     @bs: bio_set to allocate from
  *
  *     Like __bio_clone, only also allocates the returned bio
  */
-struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
+struct bio *bio_clone_bioset(struct bio *bio, gfp_t gfp_mask,
+                            struct bio_set *bs)
 {
-       struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
+       struct bio *b;
 
+       b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, bs);
        if (!b)
                return NULL;
 
-       b->bi_destructor = bio_fs_destructor;
        __bio_clone(b, bio);
 
        if (bio_integrity(bio)) {
                int ret;
 
-               ret = bio_integrity_clone(b, bio, gfp_mask, fs_bio_set);
+               ret = bio_integrity_clone(b, bio, gfp_mask);
 
                if (ret < 0) {
                        bio_put(b);
@@ -491,7 +574,7 @@ struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
 
        return b;
 }
-EXPORT_SYMBOL(bio_clone);
+EXPORT_SYMBOL(bio_clone_bioset);
 
 /**
  *     bio_get_nr_vecs         - return approx number of vecs
@@ -672,6 +755,181 @@ int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
 }
 EXPORT_SYMBOL(bio_add_page);
 
+struct submit_bio_ret {
+       struct completion event;
+       int error;
+};
+
+static void submit_bio_wait_endio(struct bio *bio, int error)
+{
+       struct submit_bio_ret *ret = bio->bi_private;
+
+       ret->error = error;
+       complete(&ret->event);
+}
+
+/**
+ * submit_bio_wait - submit a bio, and wait until it completes
+ * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
+ * @bio: The &struct bio which describes the I/O
+ *
+ * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
+ * bio_endio() on failure.
+ */
+int submit_bio_wait(int rw, struct bio *bio)
+{
+       struct submit_bio_ret ret;
+
+       rw |= REQ_SYNC;
+       init_completion(&ret.event);
+       bio->bi_private = &ret;
+       bio->bi_end_io = submit_bio_wait_endio;
+       submit_bio(rw, bio);
+       wait_for_completion(&ret.event);
+
+       return ret.error;
+}
+EXPORT_SYMBOL(submit_bio_wait);
+
+/**
+ * bio_advance - increment/complete a bio by some number of bytes
+ * @bio:       bio to advance
+ * @bytes:     number of bytes to complete
+ *
+ * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
+ * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
+ * be updated on the last bvec as well.
+ *
+ * @bio will then represent the remaining, uncompleted portion of the io.
+ */
+void bio_advance(struct bio *bio, unsigned bytes)
+{
+       if (bio_integrity(bio))
+               bio_integrity_advance(bio, bytes);
+
+       bio->bi_sector += bytes >> 9;
+       bio->bi_size -= bytes;
+
+       if (bio->bi_rw & BIO_NO_ADVANCE_ITER_MASK)
+               return;
+
+       while (bytes) {
+               if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
+                       WARN_ONCE(1, "bio idx %d >= vcnt %d\n",
+                                 bio->bi_idx, bio->bi_vcnt);
+                       break;
+               }
+
+               if (bytes >= bio_iovec(bio)->bv_len) {
+                       bytes -= bio_iovec(bio)->bv_len;
+                       bio->bi_idx++;
+               } else {
+                       bio_iovec(bio)->bv_len -= bytes;
+                       bio_iovec(bio)->bv_offset += bytes;
+                       bytes = 0;
+               }
+       }
+}
+EXPORT_SYMBOL(bio_advance);
+
+/**
+ * bio_alloc_pages - allocates a single page for each bvec in a bio
+ * @bio: bio to allocate pages for
+ * @gfp_mask: flags for allocation
+ *
+ * Allocates pages up to @bio->bi_vcnt.
+ *
+ * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
+ * freed.
+ */
+int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
+{
+       int i;
+       struct bio_vec *bv;
+
+       bio_for_each_segment_all(bv, bio, i) {
+               bv->bv_page = alloc_page(gfp_mask);
+               if (!bv->bv_page) {
+                       while (--bv >= bio->bi_io_vec)
+                               __free_page(bv->bv_page);
+                       return -ENOMEM;
+               }
+       }
+
+       return 0;
+}
+EXPORT_SYMBOL(bio_alloc_pages);
+
+/**
+ * bio_copy_data - copy contents of data buffers from one chain of bios to
+ * another
+ * @src: source bio list
+ * @dst: destination bio list
+ *
+ * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
+ * @src and @dst as linked lists of bios.
+ *
+ * Stops when it reaches the end of either @src or @dst - that is, copies
+ * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
+ */
+void bio_copy_data(struct bio *dst, struct bio *src)
+{
+       struct bio_vec *src_bv, *dst_bv;
+       unsigned src_offset, dst_offset, bytes;
+       void *src_p, *dst_p;
+
+       src_bv = bio_iovec(src);
+       dst_bv = bio_iovec(dst);
+
+       src_offset = src_bv->bv_offset;
+       dst_offset = dst_bv->bv_offset;
+
+       while (1) {
+               if (src_offset == src_bv->bv_offset + src_bv->bv_len) {
+                       src_bv++;
+                       if (src_bv == bio_iovec_idx(src, src->bi_vcnt)) {
+                               src = src->bi_next;
+                               if (!src)
+                                       break;
+
+                               src_bv = bio_iovec(src);
+                       }
+
+                       src_offset = src_bv->bv_offset;
+               }
+
+               if (dst_offset == dst_bv->bv_offset + dst_bv->bv_len) {
+                       dst_bv++;
+                       if (dst_bv == bio_iovec_idx(dst, dst->bi_vcnt)) {
+                               dst = dst->bi_next;
+                               if (!dst)
+                                       break;
+
+                               dst_bv = bio_iovec(dst);
+                       }
+
+                       dst_offset = dst_bv->bv_offset;
+               }
+
+               bytes = min(dst_bv->bv_offset + dst_bv->bv_len - dst_offset,
+                           src_bv->bv_offset + src_bv->bv_len - src_offset);
+
+               src_p = kmap_atomic(src_bv->bv_page);
+               dst_p = kmap_atomic(dst_bv->bv_page);
+
+               memcpy(dst_p + dst_offset,
+                      src_p + src_offset,
+                      bytes);
+
+               kunmap_atomic(dst_p);
+               kunmap_atomic(src_p);
+
+               src_offset += bytes;
+               dst_offset += bytes;
+       }
+}
+EXPORT_SYMBOL(bio_copy_data);
+
 struct bio_map_data {
        struct bio_vec *iovecs;
        struct sg_iovec *sgvecs;
@@ -734,7 +992,7 @@ static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
        int iov_idx = 0;
        unsigned int iov_off = 0;
 
-       __bio_for_each_segment(bvec, bio, i, 0) {
+       bio_for_each_segment_all(bvec, bio, i) {
                char *bv_addr = page_address(bvec->bv_page);
                unsigned int bv_len = iovecs[i].bv_len;
 
@@ -787,12 +1045,22 @@ static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
 int bio_uncopy_user(struct bio *bio)
 {
        struct bio_map_data *bmd = bio->bi_private;
-       int ret = 0;
+       struct bio_vec *bvec;
+       int ret = 0, i;
 
-       if (!bio_flagged(bio, BIO_NULL_MAPPED))
-               ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
-                                    bmd->nr_sgvecs, bio_data_dir(bio) == READ,
-                                    0, bmd->is_our_pages);
+       if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
+               /*
+                * if we're in a workqueue, the request is orphaned, so
+                * don't copy into a random user address space, just free.
+                */
+               if (current->mm)
+                       ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
+                                            bmd->nr_sgvecs, bio_data_dir(bio) == READ,
+                                            0, bmd->is_our_pages);
+               else if (bmd->is_our_pages)
+                       bio_for_each_segment_all(bvec, bio, i)
+                               __free_page(bvec->bv_page);
+       }
        bio_free_map_data(bmd);
        bio_put(bio);
        return ret;
@@ -916,7 +1184,7 @@ struct bio *bio_copy_user_iov(struct request_queue *q,
        return bio;
 cleanup:
        if (!map_data)
-               bio_for_each_segment(bvec, bio, i)
+               bio_for_each_segment_all(bvec, bio, i)
                        __free_page(bvec->bv_page);
 
        bio_put(bio);
@@ -1130,7 +1398,7 @@ static void __bio_unmap_user(struct bio *bio)
        /*
         * make sure we dirty pages we wrote to
         */
-       __bio_for_each_segment(bvec, bio, i, 0) {
+       bio_for_each_segment_all(bvec, bio, i) {
                if (bio_data_dir(bio) == READ)
                        set_page_dirty_lock(bvec->bv_page);
 
@@ -1236,7 +1504,7 @@ static void bio_copy_kern_endio(struct bio *bio, int err)
        int i;
        char *p = bmd->sgvecs[0].iov_base;
 
-       __bio_for_each_segment(bvec, bio, i, 0) {
+       bio_for_each_segment_all(bvec, bio, i) {
                char *addr = page_address(bvec->bv_page);
                int len = bmd->iovecs[i].bv_len;
 
@@ -1276,7 +1544,7 @@ struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
        if (!reading) {
                void *p = data;
 
-               bio_for_each_segment(bvec, bio, i) {
+               bio_for_each_segment_all(bvec, bio, i) {
                        char *addr = page_address(bvec->bv_page);
 
                        memcpy(addr, p, bvec->bv_len);
@@ -1309,7 +1577,7 @@ EXPORT_SYMBOL(bio_copy_kern);
  * Note that this code is very hard to test under normal circumstances because
  * direct-io pins the pages with get_user_pages().  This makes
  * is_page_cache_freeable return false, and the VM will not clean the pages.
- * But other code (eg, pdflush) could clean the pages if they are mapped
+ * But other code (eg, flusher threads) could clean the pages if they are mapped
  * pagecache.
  *
  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
@@ -1321,11 +1589,11 @@ EXPORT_SYMBOL(bio_copy_kern);
  */
 void bio_set_pages_dirty(struct bio *bio)
 {
-       struct bio_vec *bvec = bio->bi_io_vec;
+       struct bio_vec *bvec;
        int i;
 
-       for (i = 0; i < bio->bi_vcnt; i++) {
-               struct page *page = bvec[i].bv_page;
+       bio_for_each_segment_all(bvec, bio, i) {
+               struct page *page = bvec->bv_page;
 
                if (page && !PageCompound(page))
                        set_page_dirty_lock(page);
@@ -1334,11 +1602,11 @@ void bio_set_pages_dirty(struct bio *bio)
 
 static void bio_release_pages(struct bio *bio)
 {
-       struct bio_vec *bvec = bio->bi_io_vec;
+       struct bio_vec *bvec;
        int i;
 
-       for (i = 0; i < bio->bi_vcnt; i++) {
-               struct page *page = bvec[i].bv_page;
+       bio_for_each_segment_all(bvec, bio, i) {
+               struct page *page = bvec->bv_page;
 
                if (page)
                        put_page(page);
@@ -1387,16 +1655,16 @@ static void bio_dirty_fn(struct work_struct *work)
 
 void bio_check_pages_dirty(struct bio *bio)
 {
-       struct bio_vec *bvec = bio->bi_io_vec;
+       struct bio_vec *bvec;
        int nr_clean_pages = 0;
        int i;
 
-       for (i = 0; i < bio->bi_vcnt; i++) {
-               struct page *page = bvec[i].bv_page;
+       bio_for_each_segment_all(bvec, bio, i) {
+               struct page *page = bvec->bv_page;
 
                if (PageDirty(page) || PageCompound(page)) {
                        page_cache_release(page);
-                       bvec[i].bv_page = NULL;
+                       bvec->bv_page = NULL;
                } else {
                        nr_clean_pages++;
                }
@@ -1497,8 +1765,7 @@ struct bio_pair *bio_split(struct bio *bi, int first_sectors)
        trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
                                bi->bi_sector + first_sectors);
 
-       BUG_ON(bi->bi_vcnt != 1);
-       BUG_ON(bi->bi_idx != 0);
+       BUG_ON(bio_segments(bi) > 1);
        atomic_set(&bp->cnt, 3);
        bp->error = 0;
        bp->bio1 = *bi;
@@ -1507,17 +1774,22 @@ struct bio_pair *bio_split(struct bio *bi, int first_sectors)
        bp->bio2.bi_size -= first_sectors << 9;
        bp->bio1.bi_size = first_sectors << 9;
 
-       bp->bv1 = bi->bi_io_vec[0];
-       bp->bv2 = bi->bi_io_vec[0];
-       bp->bv2.bv_offset += first_sectors << 9;
-       bp->bv2.bv_len -= first_sectors << 9;
-       bp->bv1.bv_len = first_sectors << 9;
+       if (bi->bi_vcnt != 0) {
+               bp->bv1 = *bio_iovec(bi);
+               bp->bv2 = *bio_iovec(bi);
 
-       bp->bio1.bi_io_vec = &bp->bv1;
-       bp->bio2.bi_io_vec = &bp->bv2;
+               if (bio_is_rw(bi)) {
+                       bp->bv2.bv_offset += first_sectors << 9;
+                       bp->bv2.bv_len -= first_sectors << 9;
+                       bp->bv1.bv_len = first_sectors << 9;
+               }
+
+               bp->bio1.bi_io_vec = &bp->bv1;
+               bp->bio2.bi_io_vec = &bp->bv2;
 
-       bp->bio1.bi_max_vecs = 1;
-       bp->bio2.bi_max_vecs = 1;
+               bp->bio1.bi_max_vecs = 1;
+               bp->bio2.bi_max_vecs = 1;
+       }
 
        bp->bio1.bi_end_io = bio_pair_end_1;
        bp->bio2.bi_end_io = bio_pair_end_2;
@@ -1556,7 +1828,7 @@ sector_t bio_sector_offset(struct bio *bio, unsigned short index,
        if (index >= bio->bi_idx)
                index = bio->bi_vcnt - 1;
 
-       __bio_for_each_segment(bv, bio, i, 0) {
+       bio_for_each_segment_all(bv, bio, i) {
                if (i == index) {
                        if (offset > bv->bv_offset)
                                sectors += (offset - bv->bv_offset) / sector_sz;
@@ -1574,29 +1846,25 @@ EXPORT_SYMBOL(bio_sector_offset);
  * create memory pools for biovec's in a bio_set.
  * use the global biovec slabs created for general use.
  */
-static int biovec_create_pools(struct bio_set *bs, int pool_entries)
+mempool_t *biovec_create_pool(struct bio_set *bs, int pool_entries)
 {
        struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
 
-       bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
-       if (!bs->bvec_pool)
-               return -ENOMEM;
-
-       return 0;
-}
-
-static void biovec_free_pools(struct bio_set *bs)
-{
-       mempool_destroy(bs->bvec_pool);
+       return mempool_create_slab_pool(pool_entries, bp->slab);
 }
 
 void bioset_free(struct bio_set *bs)
 {
+       if (bs->rescue_workqueue)
+               destroy_workqueue(bs->rescue_workqueue);
+
        if (bs->bio_pool)
                mempool_destroy(bs->bio_pool);
 
+       if (bs->bvec_pool)
+               mempool_destroy(bs->bvec_pool);
+
        bioset_integrity_free(bs);
-       biovec_free_pools(bs);
        bio_put_slab(bs);
 
        kfree(bs);
@@ -1627,6 +1895,10 @@ struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
 
        bs->front_pad = front_pad;
 
+       spin_lock_init(&bs->rescue_lock);
+       bio_list_init(&bs->rescue_list);
+       INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
+
        bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
        if (!bs->bio_slab) {
                kfree(bs);
@@ -1637,15 +1909,79 @@ struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
        if (!bs->bio_pool)
                goto bad;
 
-       if (!biovec_create_pools(bs, pool_size))
-               return bs;
+       bs->bvec_pool = biovec_create_pool(bs, pool_size);
+       if (!bs->bvec_pool)
+               goto bad;
 
+       bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
+       if (!bs->rescue_workqueue)
+               goto bad;
+
+       return bs;
 bad:
        bioset_free(bs);
        return NULL;
 }
 EXPORT_SYMBOL(bioset_create);
 
+#ifdef CONFIG_BLK_CGROUP
+/**
+ * bio_associate_current - associate a bio with %current
+ * @bio: target bio
+ *
+ * Associate @bio with %current if it hasn't been associated yet.  Block
+ * layer will treat @bio as if it were issued by %current no matter which
+ * task actually issues it.
+ *
+ * This function takes an extra reference of @task's io_context and blkcg
+ * which will be put when @bio is released.  The caller must own @bio,
+ * ensure %current->io_context exists, and is responsible for synchronizing
+ * calls to this function.
+ */
+int bio_associate_current(struct bio *bio)
+{
+       struct io_context *ioc;
+       struct cgroup_subsys_state *css;
+
+       if (bio->bi_ioc)
+               return -EBUSY;
+
+       ioc = current->io_context;
+       if (!ioc)
+               return -ENOENT;
+
+       /* acquire active ref on @ioc and associate */
+       get_io_context_active(ioc);
+       bio->bi_ioc = ioc;
+
+       /* associate blkcg if exists */
+       rcu_read_lock();
+       css = task_subsys_state(current, blkio_subsys_id);
+       if (css && css_tryget(css))
+               bio->bi_css = css;
+       rcu_read_unlock();
+
+       return 0;
+}
+
+/**
+ * bio_disassociate_task - undo bio_associate_current()
+ * @bio: target bio
+ */
+void bio_disassociate_task(struct bio *bio)
+{
+       if (bio->bi_ioc) {
+               put_io_context(bio->bi_ioc);
+               bio->bi_ioc = NULL;
+       }
+       if (bio->bi_css) {
+               css_put(bio->bi_css);
+               bio->bi_css = NULL;
+       }
+}
+
+#endif /* CONFIG_BLK_CGROUP */
+
 static void __init biovec_init_slabs(void)
 {
        int i;