/* * ip_conntrack_proto_gre.c - Version 3.0 * * Connection tracking protocol helper module for GRE. * * GRE is a generic encapsulation protocol, which is generally not very * suited for NAT, as it has no protocol-specific part as port numbers. * * It has an optional key field, which may help us distinguishing two * connections between the same two hosts. * * GRE is defined in RFC 1701 and RFC 1702, as well as RFC 2784 * * PPTP is built on top of a modified version of GRE, and has a mandatory * field called "CallID", which serves us for the same purpose as the key * field in plain GRE. * * Documentation about PPTP can be found in RFC 2637 * * (C) 2000-2005 by Harald Welte * * Development of this code funded by Astaro AG (http://www.astaro.com/) * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include enum grep_conntrack { GRE_CT_UNREPLIED, GRE_CT_REPLIED, GRE_CT_MAX }; static unsigned int gre_timeouts[GRE_CT_MAX] = { [GRE_CT_UNREPLIED] = 30*HZ, [GRE_CT_REPLIED] = 180*HZ, }; static int proto_gre_net_id __read_mostly; struct netns_proto_gre { struct nf_proto_net nf; rwlock_t keymap_lock; struct list_head keymap_list; unsigned int gre_timeouts[GRE_CT_MAX]; }; static inline struct netns_proto_gre *gre_pernet(struct net *net) { return net_generic(net, proto_gre_net_id); } void nf_ct_gre_keymap_flush(struct net *net) { struct netns_proto_gre *net_gre = gre_pernet(net); struct nf_ct_gre_keymap *km, *tmp; write_lock_bh(&net_gre->keymap_lock); list_for_each_entry_safe(km, tmp, &net_gre->keymap_list, list) { list_del(&km->list); kfree(km); } write_unlock_bh(&net_gre->keymap_lock); } EXPORT_SYMBOL(nf_ct_gre_keymap_flush); static inline int gre_key_cmpfn(const struct nf_ct_gre_keymap *km, const struct nf_conntrack_tuple *t) { return km->tuple.src.l3num == t->src.l3num && !memcmp(&km->tuple.src.u3, &t->src.u3, sizeof(t->src.u3)) && !memcmp(&km->tuple.dst.u3, &t->dst.u3, sizeof(t->dst.u3)) && km->tuple.dst.protonum == t->dst.protonum && km->tuple.dst.u.all == t->dst.u.all; } /* look up the source key for a given tuple */ static __be16 gre_keymap_lookup(struct net *net, struct nf_conntrack_tuple *t) { struct netns_proto_gre *net_gre = gre_pernet(net); struct nf_ct_gre_keymap *km; __be16 key = 0; read_lock_bh(&net_gre->keymap_lock); list_for_each_entry(km, &net_gre->keymap_list, list) { if (gre_key_cmpfn(km, t)) { key = km->tuple.src.u.gre.key; break; } } read_unlock_bh(&net_gre->keymap_lock); pr_debug("lookup src key 0x%x for ", key); nf_ct_dump_tuple(t); return key; } /* add a single keymap entry, associate with specified master ct */ int nf_ct_gre_keymap_add(struct nf_conn *ct, enum ip_conntrack_dir dir, struct nf_conntrack_tuple *t) { struct net *net = nf_ct_net(ct); struct netns_proto_gre *net_gre = gre_pernet(net); struct nf_ct_pptp_master *ct_pptp_info = nfct_help_data(ct); struct nf_ct_gre_keymap **kmp, *km; kmp = &ct_pptp_info->keymap[dir]; if (*kmp) { /* check whether it's a retransmission */ read_lock_bh(&net_gre->keymap_lock); list_for_each_entry(km, &net_gre->keymap_list, list) { if (gre_key_cmpfn(km, t) && km == *kmp) { read_unlock_bh(&net_gre->keymap_lock); return 0; } } read_unlock_bh(&net_gre->keymap_lock); pr_debug("trying to override keymap_%s for ct %p\n", dir == IP_CT_DIR_REPLY ? "reply" : "orig", ct); return -EEXIST; } km = kmalloc(sizeof(*km), GFP_ATOMIC); if (!km) return -ENOMEM; memcpy(&km->tuple, t, sizeof(*t)); *kmp = km; pr_debug("adding new entry %p: ", km); nf_ct_dump_tuple(&km->tuple); write_lock_bh(&net_gre->keymap_lock); list_add_tail(&km->list, &net_gre->keymap_list); write_unlock_bh(&net_gre->keymap_lock); return 0; } EXPORT_SYMBOL_GPL(nf_ct_gre_keymap_add); /* destroy the keymap entries associated with specified master ct */ void nf_ct_gre_keymap_destroy(struct nf_conn *ct) { struct net *net = nf_ct_net(ct); struct netns_proto_gre *net_gre = gre_pernet(net); struct nf_ct_pptp_master *ct_pptp_info = nfct_help_data(ct); enum ip_conntrack_dir dir; pr_debug("entering for ct %p\n", ct); write_lock_bh(&net_gre->keymap_lock); for (dir = IP_CT_DIR_ORIGINAL; dir < IP_CT_DIR_MAX; dir++) { if (ct_pptp_info->keymap[dir]) { pr_debug("removing %p from list\n", ct_pptp_info->keymap[dir]); list_del(&ct_pptp_info->keymap[dir]->list); kfree(ct_pptp_info->keymap[dir]); ct_pptp_info->keymap[dir] = NULL; } } write_unlock_bh(&net_gre->keymap_lock); } EXPORT_SYMBOL_GPL(nf_ct_gre_keymap_destroy); /* PUBLIC CONNTRACK PROTO HELPER FUNCTIONS */ /* invert gre part of tuple */ static bool gre_invert_tuple(struct nf_conntrack_tuple *tuple, const struct nf_conntrack_tuple *orig) { tuple->dst.u.gre.key = orig->src.u.gre.key; tuple->src.u.gre.key = orig->dst.u.gre.key; return true; } /* gre hdr info to tuple */ static bool gre_pkt_to_tuple(const struct sk_buff *skb, unsigned int dataoff, struct nf_conntrack_tuple *tuple) { struct net *net = dev_net(skb->dev ? skb->dev : skb_dst(skb)->dev); const struct gre_hdr_pptp *pgrehdr; struct gre_hdr_pptp _pgrehdr; __be16 srckey; const struct gre_hdr *grehdr; struct gre_hdr _grehdr; /* first only delinearize old RFC1701 GRE header */ grehdr = skb_header_pointer(skb, dataoff, sizeof(_grehdr), &_grehdr); if (!grehdr || grehdr->version != GRE_VERSION_PPTP) { /* try to behave like "nf_conntrack_proto_generic" */ tuple->src.u.all = 0; tuple->dst.u.all = 0; return true; } /* PPTP header is variable length, only need up to the call_id field */ pgrehdr = skb_header_pointer(skb, dataoff, 8, &_pgrehdr); if (!pgrehdr) return true; if (ntohs(grehdr->protocol) != GRE_PROTOCOL_PPTP) { pr_debug("GRE_VERSION_PPTP but unknown proto\n"); return false; } tuple->dst.u.gre.key = pgrehdr->call_id; srckey = gre_keymap_lookup(net, tuple); tuple->src.u.gre.key = srckey; return true; } /* print gre part of tuple */ static int gre_print_tuple(struct seq_file *s, const struct nf_conntrack_tuple *tuple) { return seq_printf(s, "srckey=0x%x dstkey=0x%x ", ntohs(tuple->src.u.gre.key), ntohs(tuple->dst.u.gre.key)); } /* print private data for conntrack */ static int gre_print_conntrack(struct seq_file *s, struct nf_conn *ct) { return seq_printf(s, "timeout=%u, stream_timeout=%u ", (ct->proto.gre.timeout / HZ), (ct->proto.gre.stream_timeout / HZ)); } static unsigned int *gre_get_timeouts(struct net *net) { return gre_pernet(net)->gre_timeouts; } /* Returns verdict for packet, and may modify conntrack */ static int gre_packet(struct nf_conn *ct, const struct sk_buff *skb, unsigned int dataoff, enum ip_conntrack_info ctinfo, u_int8_t pf, unsigned int hooknum, unsigned int *timeouts) { /* If we've seen traffic both ways, this is a GRE connection. * Extend timeout. */ if (ct->status & IPS_SEEN_REPLY) { nf_ct_refresh_acct(ct, ctinfo, skb, ct->proto.gre.stream_timeout); /* Also, more likely to be important, and not a probe. */ if (!test_and_set_bit(IPS_ASSURED_BIT, &ct->status)) nf_conntrack_event_cache(IPCT_ASSURED, ct); } else nf_ct_refresh_acct(ct, ctinfo, skb, ct->proto.gre.timeout); return NF_ACCEPT; } /* Called when a new connection for this protocol found. */ static bool gre_new(struct nf_conn *ct, const struct sk_buff *skb, unsigned int dataoff, unsigned int *timeouts) { pr_debug(": "); nf_ct_dump_tuple(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple); /* initialize to sane value. Ideally a conntrack helper * (e.g. in case of pptp) is increasing them */ ct->proto.gre.stream_timeout = timeouts[GRE_CT_REPLIED]; ct->proto.gre.timeout = timeouts[GRE_CT_UNREPLIED]; return true; } /* Called when a conntrack entry has already been removed from the hashes * and is about to be deleted from memory */ static void gre_destroy(struct nf_conn *ct) { struct nf_conn *master = ct->master; pr_debug(" entering\n"); if (!master) pr_debug("no master !?!\n"); else nf_ct_gre_keymap_destroy(master); } #if IS_ENABLED(CONFIG_NF_CT_NETLINK_TIMEOUT) #include #include static int gre_timeout_nlattr_to_obj(struct nlattr *tb[], struct net *net, void *data) { unsigned int *timeouts = data; struct netns_proto_gre *net_gre = gre_pernet(net); /* set default timeouts for GRE. */ timeouts[GRE_CT_UNREPLIED] = net_gre->gre_timeouts[GRE_CT_UNREPLIED]; timeouts[GRE_CT_REPLIED] = net_gre->gre_timeouts[GRE_CT_REPLIED]; if (tb[CTA_TIMEOUT_GRE_UNREPLIED]) { timeouts[GRE_CT_UNREPLIED] = ntohl(nla_get_be32(tb[CTA_TIMEOUT_GRE_UNREPLIED])) * HZ; } if (tb[CTA_TIMEOUT_GRE_REPLIED]) { timeouts[GRE_CT_REPLIED] = ntohl(nla_get_be32(tb[CTA_TIMEOUT_GRE_REPLIED])) * HZ; } return 0; } static int gre_timeout_obj_to_nlattr(struct sk_buff *skb, const void *data) { const unsigned int *timeouts = data; if (nla_put_be32(skb, CTA_TIMEOUT_GRE_UNREPLIED, htonl(timeouts[GRE_CT_UNREPLIED] / HZ)) || nla_put_be32(skb, CTA_TIMEOUT_GRE_REPLIED, htonl(timeouts[GRE_CT_REPLIED] / HZ))) goto nla_put_failure; return 0; nla_put_failure: return -ENOSPC; } static const struct nla_policy gre_timeout_nla_policy[CTA_TIMEOUT_GRE_MAX+1] = { [CTA_TIMEOUT_GRE_UNREPLIED] = { .type = NLA_U32 }, [CTA_TIMEOUT_GRE_REPLIED] = { .type = NLA_U32 }, }; #endif /* CONFIG_NF_CT_NETLINK_TIMEOUT */ static int gre_init_net(struct net *net, u_int16_t proto) { struct netns_proto_gre *net_gre = gre_pernet(net); int i; rwlock_init(&net_gre->keymap_lock); INIT_LIST_HEAD(&net_gre->keymap_list); for (i = 0; i < GRE_CT_MAX; i++) net_gre->gre_timeouts[i] = gre_timeouts[i]; return 0; } /* protocol helper struct */ static struct nf_conntrack_l4proto nf_conntrack_l4proto_gre4 __read_mostly = { .l3proto = AF_INET, .l4proto = IPPROTO_GRE, .name = "gre", .pkt_to_tuple = gre_pkt_to_tuple, .invert_tuple = gre_invert_tuple, .print_tuple = gre_print_tuple, .print_conntrack = gre_print_conntrack, .get_timeouts = gre_get_timeouts, .packet = gre_packet, .new = gre_new, .destroy = gre_destroy, .me = THIS_MODULE, #if IS_ENABLED(CONFIG_NF_CT_NETLINK) .tuple_to_nlattr = nf_ct_port_tuple_to_nlattr, .nlattr_tuple_size = nf_ct_port_nlattr_tuple_size, .nlattr_to_tuple = nf_ct_port_nlattr_to_tuple, .nla_policy = nf_ct_port_nla_policy, #endif #if IS_ENABLED(CONFIG_NF_CT_NETLINK_TIMEOUT) .ctnl_timeout = { .nlattr_to_obj = gre_timeout_nlattr_to_obj, .obj_to_nlattr = gre_timeout_obj_to_nlattr, .nlattr_max = CTA_TIMEOUT_GRE_MAX, .obj_size = sizeof(unsigned int) * GRE_CT_MAX, .nla_policy = gre_timeout_nla_policy, }, #endif /* CONFIG_NF_CT_NETLINK_TIMEOUT */ .net_id = &proto_gre_net_id, .init_net = gre_init_net, }; static int proto_gre_net_init(struct net *net) { int ret = 0; ret = nf_ct_l4proto_pernet_register(net, &nf_conntrack_l4proto_gre4); if (ret < 0) pr_err("nf_conntrack_gre4: pernet registration failed.\n"); return ret; } static void proto_gre_net_exit(struct net *net) { nf_ct_l4proto_pernet_unregister(net, &nf_conntrack_l4proto_gre4); nf_ct_gre_keymap_flush(net); } static struct pernet_operations proto_gre_net_ops = { .init = proto_gre_net_init, .exit = proto_gre_net_exit, .id = &proto_gre_net_id, .size = sizeof(struct netns_proto_gre), }; static int __init nf_ct_proto_gre_init(void) { int ret; ret = register_pernet_subsys(&proto_gre_net_ops); if (ret < 0) goto out_pernet; ret = nf_ct_l4proto_register(&nf_conntrack_l4proto_gre4); if (ret < 0) goto out_gre4; return 0; out_gre4: unregister_pernet_subsys(&proto_gre_net_ops); out_pernet: return ret; } static void __exit nf_ct_proto_gre_fini(void) { nf_ct_l4proto_unregister(&nf_conntrack_l4proto_gre4); unregister_pernet_subsys(&proto_gre_net_ops); } module_init(nf_ct_proto_gre_init); module_exit(nf_ct_proto_gre_fini); MODULE_LICENSE("GPL");