#include #include #include #include #include #include #include #include #include #include #include #include static unsigned long total_usage; #if !defined(CONFIG_SPARSEMEM) void __meminit pgdat_page_cgroup_init(struct pglist_data *pgdat) { pgdat->node_page_cgroup = NULL; } struct page_cgroup *lookup_page_cgroup(struct page *page) { unsigned long pfn = page_to_pfn(page); unsigned long offset; struct page_cgroup *base; base = NODE_DATA(page_to_nid(page))->node_page_cgroup; #ifdef CONFIG_DEBUG_VM /* * The sanity checks the page allocator does upon freeing a * page can reach here before the page_cgroup arrays are * allocated when feeding a range of pages to the allocator * for the first time during bootup or memory hotplug. */ if (unlikely(!base)) return NULL; #endif offset = pfn - NODE_DATA(page_to_nid(page))->node_start_pfn; return base + offset; } static int __init alloc_node_page_cgroup(int nid) { struct page_cgroup *base; unsigned long table_size; unsigned long nr_pages; nr_pages = NODE_DATA(nid)->node_spanned_pages; if (!nr_pages) return 0; table_size = sizeof(struct page_cgroup) * nr_pages; base = __alloc_bootmem_node_nopanic(NODE_DATA(nid), table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); if (!base) return -ENOMEM; NODE_DATA(nid)->node_page_cgroup = base; total_usage += table_size; return 0; } void __init page_cgroup_init_flatmem(void) { int nid, fail; if (mem_cgroup_disabled()) return; for_each_online_node(nid) { fail = alloc_node_page_cgroup(nid); if (fail) goto fail; } printk(KERN_INFO "allocated %ld bytes of page_cgroup\n", total_usage); printk(KERN_INFO "please try 'cgroup_disable=memory' option if you" " don't want memory cgroups\n"); return; fail: printk(KERN_CRIT "allocation of page_cgroup failed.\n"); printk(KERN_CRIT "please try 'cgroup_disable=memory' boot option\n"); panic("Out of memory"); } #else /* CONFIG_FLAT_NODE_MEM_MAP */ struct page_cgroup *lookup_page_cgroup(struct page *page) { unsigned long pfn = page_to_pfn(page); struct mem_section *section = __pfn_to_section(pfn); #ifdef CONFIG_DEBUG_VM /* * The sanity checks the page allocator does upon freeing a * page can reach here before the page_cgroup arrays are * allocated when feeding a range of pages to the allocator * for the first time during bootup or memory hotplug. */ if (!section->page_cgroup) return NULL; #endif return section->page_cgroup + pfn; } static void *__meminit alloc_page_cgroup(size_t size, int nid) { gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN; void *addr = NULL; addr = alloc_pages_exact_nid(nid, size, flags); if (addr) { kmemleak_alloc(addr, size, 1, flags); return addr; } if (node_state(nid, N_HIGH_MEMORY)) addr = vzalloc_node(size, nid); else addr = vzalloc(size); return addr; } static int __meminit init_section_page_cgroup(unsigned long pfn, int nid) { struct mem_section *section; struct page_cgroup *base; unsigned long table_size; section = __pfn_to_section(pfn); if (section->page_cgroup) return 0; table_size = sizeof(struct page_cgroup) * PAGES_PER_SECTION; base = alloc_page_cgroup(table_size, nid); /* * The value stored in section->page_cgroup is (base - pfn) * and it does not point to the memory block allocated above, * causing kmemleak false positives. */ kmemleak_not_leak(base); if (!base) { printk(KERN_ERR "page cgroup allocation failure\n"); return -ENOMEM; } /* * The passed "pfn" may not be aligned to SECTION. For the calculation * we need to apply a mask. */ pfn &= PAGE_SECTION_MASK; section->page_cgroup = base - pfn; total_usage += table_size; return 0; } #ifdef CONFIG_MEMORY_HOTPLUG static void free_page_cgroup(void *addr) { if (is_vmalloc_addr(addr)) { vfree(addr); } else { struct page *page = virt_to_page(addr); size_t table_size = sizeof(struct page_cgroup) * PAGES_PER_SECTION; BUG_ON(PageReserved(page)); free_pages_exact(addr, table_size); } } void __free_page_cgroup(unsigned long pfn) { struct mem_section *ms; struct page_cgroup *base; ms = __pfn_to_section(pfn); if (!ms || !ms->page_cgroup) return; base = ms->page_cgroup + pfn; free_page_cgroup(base); ms->page_cgroup = NULL; } int __meminit online_page_cgroup(unsigned long start_pfn, unsigned long nr_pages, int nid) { unsigned long start, end, pfn; int fail = 0; start = SECTION_ALIGN_DOWN(start_pfn); end = SECTION_ALIGN_UP(start_pfn + nr_pages); if (nid == -1) { /* * In this case, "nid" already exists and contains valid memory. * "start_pfn" passed to us is a pfn which is an arg for * online__pages(), and start_pfn should exist. */ nid = pfn_to_nid(start_pfn); VM_BUG_ON(!node_state(nid, N_ONLINE)); } for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) { if (!pfn_present(pfn)) continue; fail = init_section_page_cgroup(pfn, nid); } if (!fail) return 0; /* rollback */ for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) __free_page_cgroup(pfn); return -ENOMEM; } int __meminit offline_page_cgroup(unsigned long start_pfn, unsigned long nr_pages, int nid) { unsigned long start, end, pfn; start = SECTION_ALIGN_DOWN(start_pfn); end = SECTION_ALIGN_UP(start_pfn + nr_pages); for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) __free_page_cgroup(pfn); return 0; } static int __meminit page_cgroup_callback(struct notifier_block *self, unsigned long action, void *arg) { struct memory_notify *mn = arg; int ret = 0; switch (action) { case MEM_GOING_ONLINE: ret = online_page_cgroup(mn->start_pfn, mn->nr_pages, mn->status_change_nid); break; case MEM_OFFLINE: offline_page_cgroup(mn->start_pfn, mn->nr_pages, mn->status_change_nid); break; case MEM_CANCEL_ONLINE: offline_page_cgroup(mn->start_pfn, mn->nr_pages, mn->status_change_nid); break; case MEM_GOING_OFFLINE: break; case MEM_ONLINE: case MEM_CANCEL_OFFLINE: break; } return notifier_from_errno(ret); } #endif void __init page_cgroup_init(void) { unsigned long pfn; int nid; if (mem_cgroup_disabled()) return; for_each_node_state(nid, N_MEMORY) { unsigned long start_pfn, end_pfn; start_pfn = node_start_pfn(nid); end_pfn = node_end_pfn(nid); /* * start_pfn and end_pfn may not be aligned to SECTION and the * page->flags of out of node pages are not initialized. So we * scan [start_pfn, the biggest section's pfn < end_pfn) here. */ for (pfn = start_pfn; pfn < end_pfn; pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) { if (!pfn_valid(pfn)) continue; /* * Nodes's pfns can be overlapping. * We know some arch can have a nodes layout such as * -------------pfn--------------> * N0 | N1 | N2 | N0 | N1 | N2|.... */ if (pfn_to_nid(pfn) != nid) continue; if (init_section_page_cgroup(pfn, nid)) goto oom; } } hotplug_memory_notifier(page_cgroup_callback, 0); printk(KERN_INFO "allocated %ld bytes of page_cgroup\n", total_usage); printk(KERN_INFO "please try 'cgroup_disable=memory' option if you " "don't want memory cgroups\n"); return; oom: printk(KERN_CRIT "try 'cgroup_disable=memory' boot option\n"); panic("Out of memory"); } void __meminit pgdat_page_cgroup_init(struct pglist_data *pgdat) { return; } #endif #ifdef CONFIG_MEMCG_SWAP static DEFINE_MUTEX(swap_cgroup_mutex); struct swap_cgroup_ctrl { struct page **map; unsigned long length; spinlock_t lock; }; static struct swap_cgroup_ctrl swap_cgroup_ctrl[MAX_SWAPFILES]; struct swap_cgroup { unsigned short id; }; #define SC_PER_PAGE (PAGE_SIZE/sizeof(struct swap_cgroup)) /* * SwapCgroup implements "lookup" and "exchange" operations. * In typical usage, this swap_cgroup is accessed via memcg's charge/uncharge * against SwapCache. At swap_free(), this is accessed directly from swap. * * This means, * - we have no race in "exchange" when we're accessed via SwapCache because * SwapCache(and its swp_entry) is under lock. * - When called via swap_free(), there is no user of this entry and no race. * Then, we don't need lock around "exchange". * * TODO: we can push these buffers out to HIGHMEM. */ /* * allocate buffer for swap_cgroup. */ static int swap_cgroup_prepare(int type) { struct page *page; struct swap_cgroup_ctrl *ctrl; unsigned long idx, max; ctrl = &swap_cgroup_ctrl[type]; for (idx = 0; idx < ctrl->length; idx++) { page = alloc_page(GFP_KERNEL | __GFP_ZERO); if (!page) goto not_enough_page; ctrl->map[idx] = page; } return 0; not_enough_page: max = idx; for (idx = 0; idx < max; idx++) __free_page(ctrl->map[idx]); return -ENOMEM; } static struct swap_cgroup *lookup_swap_cgroup(swp_entry_t ent, struct swap_cgroup_ctrl **ctrlp) { pgoff_t offset = swp_offset(ent); struct swap_cgroup_ctrl *ctrl; struct page *mappage; struct swap_cgroup *sc; ctrl = &swap_cgroup_ctrl[swp_type(ent)]; if (ctrlp) *ctrlp = ctrl; mappage = ctrl->map[offset / SC_PER_PAGE]; sc = page_address(mappage); return sc + offset % SC_PER_PAGE; } /** * swap_cgroup_cmpxchg - cmpxchg mem_cgroup's id for this swp_entry. * @ent: swap entry to be cmpxchged * @old: old id * @new: new id * * Returns old id at success, 0 at failure. * (There is no mem_cgroup using 0 as its id) */ unsigned short swap_cgroup_cmpxchg(swp_entry_t ent, unsigned short old, unsigned short new) { struct swap_cgroup_ctrl *ctrl; struct swap_cgroup *sc; unsigned long flags; unsigned short retval; sc = lookup_swap_cgroup(ent, &ctrl); spin_lock_irqsave(&ctrl->lock, flags); retval = sc->id; if (retval == old) sc->id = new; else retval = 0; spin_unlock_irqrestore(&ctrl->lock, flags); return retval; } /** * swap_cgroup_record - record mem_cgroup for this swp_entry. * @ent: swap entry to be recorded into * @id: mem_cgroup to be recorded * * Returns old value at success, 0 at failure. * (Of course, old value can be 0.) */ unsigned short swap_cgroup_record(swp_entry_t ent, unsigned short id) { struct swap_cgroup_ctrl *ctrl; struct swap_cgroup *sc; unsigned short old; unsigned long flags; sc = lookup_swap_cgroup(ent, &ctrl); spin_lock_irqsave(&ctrl->lock, flags); old = sc->id; sc->id = id; spin_unlock_irqrestore(&ctrl->lock, flags); return old; } /** * lookup_swap_cgroup_id - lookup mem_cgroup id tied to swap entry * @ent: swap entry to be looked up. * * Returns CSS ID of mem_cgroup at success. 0 at failure. (0 is invalid ID) */ unsigned short lookup_swap_cgroup_id(swp_entry_t ent) { return lookup_swap_cgroup(ent, NULL)->id; } int swap_cgroup_swapon(int type, unsigned long max_pages) { void *array; unsigned long array_size; unsigned long length; struct swap_cgroup_ctrl *ctrl; if (!do_swap_account) return 0; length = DIV_ROUND_UP(max_pages, SC_PER_PAGE); array_size = length * sizeof(void *); array = vzalloc(array_size); if (!array) goto nomem; ctrl = &swap_cgroup_ctrl[type]; mutex_lock(&swap_cgroup_mutex); ctrl->length = length; ctrl->map = array; spin_lock_init(&ctrl->lock); if (swap_cgroup_prepare(type)) { /* memory shortage */ ctrl->map = NULL; ctrl->length = 0; mutex_unlock(&swap_cgroup_mutex); vfree(array); goto nomem; } mutex_unlock(&swap_cgroup_mutex); return 0; nomem: printk(KERN_INFO "couldn't allocate enough memory for swap_cgroup.\n"); printk(KERN_INFO "swap_cgroup can be disabled by swapaccount=0 boot option\n"); return -ENOMEM; } void swap_cgroup_swapoff(int type) { struct page **map; unsigned long i, length; struct swap_cgroup_ctrl *ctrl; if (!do_swap_account) return; mutex_lock(&swap_cgroup_mutex); ctrl = &swap_cgroup_ctrl[type]; map = ctrl->map; length = ctrl->length; ctrl->map = NULL; ctrl->length = 0; mutex_unlock(&swap_cgroup_mutex); if (map) { for (i = 0; i < length; i++) { struct page *page = map[i]; if (page) __free_page(page); } vfree(map); } } #endif