/* * arch/arm/mach-tegra/tegra11_emc.c * * Copyright (c) 2011-2013, NVIDIA CORPORATION. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "clock.h" #include "dvfs.h" #include "board.h" #include "iomap.h" #include "tegra11_emc.h" #include "tegra_emc_dt_parse.h" #ifdef CONFIG_TEGRA_EMC_SCALING_ENABLE static bool emc_enable = true; #else static bool emc_enable; #endif module_param(emc_enable, bool, 0644); static int pasr_enable; static u32 bw_calc_freqs[] = { 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300 }; static u32 tegra11_lpddr3_emc_usage_share_default[] = { 35, 38, 40, 41, 42, 43, 43, 45, 45, 45, 46, 47, 48, 48, 50 }; static u32 tegra11_lpddr3_emc_usage_share_dc[] = { 47, 52, 55, 57, 58, 59, 60, 62, 62, 63, 64, 66, 67, 68, 70 }; static u8 iso_share_calc_t114_lpddr3_default(unsigned long iso_bw); static u8 iso_share_calc_t114_lpddr3_dc(unsigned long iso_bw); u8 tegra_emc_bw_efficiency = 80; static struct emc_iso_usage tegra11_ddr3_emc_iso_usage[] = { { BIT(EMC_USER_DC1), 80}, { BIT(EMC_USER_DC2), 80}, { BIT(EMC_USER_DC1) | BIT(EMC_USER_DC2), 45}, { BIT(EMC_USER_DC1) | BIT(EMC_USER_VI), 45}, { BIT(EMC_USER_DC2) | BIT(EMC_USER_VI), 45}, }; static struct emc_iso_usage tegra11_lpddr3_emc_iso_usage[] = { { BIT(EMC_USER_DC1), 80, iso_share_calc_t114_lpddr3_dc }, { BIT(EMC_USER_DC2), 80, iso_share_calc_t114_lpddr3_dc }, { BIT(EMC_USER_DC1) | BIT(EMC_USER_DC2), 45, iso_share_calc_t114_lpddr3_default }, { BIT(EMC_USER_DC1) | BIT(EMC_USER_VI), 45, iso_share_calc_t114_lpddr3_default }, { BIT(EMC_USER_DC1) | BIT(EMC_USER_MSENC), 50, iso_share_calc_t114_lpddr3_default }, { BIT(EMC_USER_DC1) | BIT(EMC_USER_3D), 50, iso_share_calc_t114_lpddr3_default }, { BIT(EMC_USER_DC1) | BIT(EMC_USER_VDE), 45, iso_share_calc_t114_lpddr3_default }, { BIT(EMC_USER_DC2) | BIT(EMC_USER_VI), 45, iso_share_calc_t114_lpddr3_default }, { BIT(EMC_USER_DC2) | BIT(EMC_USER_MSENC), 50, iso_share_calc_t114_lpddr3_default }, { BIT(EMC_USER_DC2) | BIT(EMC_USER_3D), 50, iso_share_calc_t114_lpddr3_default }, { BIT(EMC_USER_DC2) | BIT(EMC_USER_VDE), 45, iso_share_calc_t114_lpddr3_default }, }; #define MHZ 1000000 #define TEGRA_EMC_ISO_USE_FREQ_MAX_NUM 14 #define PLL_C_DIRECT_FLOOR 333500000 #define EMC_STATUS_UPDATE_TIMEOUT 100 #define TEGRA_EMC_TABLE_MAX_SIZE 16 #define TEGRA_EMC_MODE_REG_17 0x00110000 #define TEGRA_EMC_MRW_DEV_SHIFT 30 #define TEGRA_EMC_MRW_DEV1 2 #define TEGRA_EMC_MRW_DEV2 1 enum { DLL_CHANGE_NONE = 0, DLL_CHANGE_ON, DLL_CHANGE_OFF, }; #define EMC_CLK_DIV_SHIFT 0 #define EMC_CLK_DIV_MASK (0xFF << EMC_CLK_DIV_SHIFT) #define EMC_CLK_SOURCE_SHIFT 29 #define EMC_CLK_SOURCE_MASK (0x7 << EMC_CLK_SOURCE_SHIFT) #define EMC_CLK_LOW_JITTER_ENABLE (0x1 << 31) #define EMC_CLK_MC_SAME_FREQ (0x1 << 16) /* FIXME: actual Tegar11 list */ #define BURST_REG_LIST \ DEFINE_REG(TEGRA_EMC_BASE, EMC_RC), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_RFC), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_RFC_SLR), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_RAS), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_RP), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_R2W), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_W2R), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_R2P), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_W2P), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_RD_RCD), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_WR_RCD), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_RRD), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_REXT), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_WEXT), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_WDV), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_WDV_MASK), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_IBDLY), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_PUTERM_EXTRA), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_CDB_CNTL_2), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_QRST), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_RDV_MASK), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_REFRESH), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_BURST_REFRESH_NUM), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_PRE_REFRESH_REQ_CNT), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_PDEX2WR), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_PDEX2RD), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_PCHG2PDEN), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_ACT2PDEN), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_AR2PDEN), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_RW2PDEN), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_TXSR), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_TXSRDLL), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_TCKE), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_TCKESR), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_TPD), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_TFAW), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_TRPAB), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_TCLKSTABLE), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_TCLKSTOP), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_TREFBW), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_QUSE_EXTRA), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_ODT_WRITE), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_ODT_READ), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_FBIO_CFG5), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_CFG_DIG_DLL), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_CFG_DIG_DLL_PERIOD), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_DLL_XFORM_DQS4), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_DLL_XFORM_DQS5), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_DLL_XFORM_DQS6), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_DLL_XFORM_DQS7), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_DLL_XFORM_QUSE4), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_DLL_XFORM_QUSE5), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_DLL_XFORM_QUSE6), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_DLL_XFORM_QUSE7), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_DLI_TRIM_TXDQS4), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_DLI_TRIM_TXDQS5), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_DLI_TRIM_TXDQS6), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_DLI_TRIM_TXDQS7), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_XM2CMDPADCTRL), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_XM2CMDPADCTRL4), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_XM2DQSPADCTRL2), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_XM2DQPADCTRL2), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_XM2CLKPADCTRL), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_XM2COMPPADCTRL), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_XM2VTTGENPADCTRL), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_XM2VTTGENPADCTRL2), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_DSR_VTTGEN_DRV), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_TXDSRVTTGEN), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_FBIO_SPARE), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_CTT_TERM_CTRL), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_ZCAL_INTERVAL), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_ZCAL_WAIT_CNT), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_MRS_WAIT_CNT), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_MRS_WAIT_CNT2), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_AUTO_CAL_CONFIG2), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_AUTO_CAL_CONFIG3), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_CTT), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_CTT_DURATION), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_DYN_SELF_REF_CONTROL), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_CA_TRAINING_TIMING_CNTL1), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_CA_TRAINING_TIMING_CNTL2), \ \ DEFINE_REG(TEGRA_MC_BASE, MC_EMEM_ARB_CFG), \ DEFINE_REG(TEGRA_MC_BASE, MC_EMEM_ARB_OUTSTANDING_REQ), \ DEFINE_REG(TEGRA_MC_BASE, MC_EMEM_ARB_TIMING_RCD), \ DEFINE_REG(TEGRA_MC_BASE, MC_EMEM_ARB_TIMING_RP), \ DEFINE_REG(TEGRA_MC_BASE, MC_EMEM_ARB_TIMING_RC), \ DEFINE_REG(TEGRA_MC_BASE, MC_EMEM_ARB_TIMING_RAS), \ DEFINE_REG(TEGRA_MC_BASE, MC_EMEM_ARB_TIMING_FAW), \ DEFINE_REG(TEGRA_MC_BASE, MC_EMEM_ARB_TIMING_RRD), \ DEFINE_REG(TEGRA_MC_BASE, MC_EMEM_ARB_TIMING_RAP2PRE), \ DEFINE_REG(TEGRA_MC_BASE, MC_EMEM_ARB_TIMING_WAP2PRE), \ DEFINE_REG(TEGRA_MC_BASE, MC_EMEM_ARB_TIMING_R2R), \ DEFINE_REG(TEGRA_MC_BASE, MC_EMEM_ARB_TIMING_W2W), \ DEFINE_REG(TEGRA_MC_BASE, MC_EMEM_ARB_TIMING_R2W), \ DEFINE_REG(TEGRA_MC_BASE, MC_EMEM_ARB_TIMING_W2R), \ DEFINE_REG(TEGRA_MC_BASE, MC_EMEM_ARB_DA_TURNS), \ DEFINE_REG(TEGRA_MC_BASE, MC_EMEM_ARB_DA_COVERS), \ DEFINE_REG(TEGRA_MC_BASE, MC_EMEM_ARB_MISC0), \ DEFINE_REG(TEGRA_MC_BASE, MC_EMEM_ARB_RING1_THROTTLE), \ DEFINE_REG(TEGRA_EMC_BASE, EMC_SEL_DPD_CTRL), #define BURST_UP_DOWN_REG_LIST \ DEFINE_REG(TEGRA_MC_BASE, MC_PTSA_GRANT_DECREMENT), \ DEFINE_REG(TEGRA_MC_BASE, MC_LATENCY_ALLOWANCE_G2_0), \ DEFINE_REG(TEGRA_MC_BASE, MC_LATENCY_ALLOWANCE_G2_1), \ DEFINE_REG(TEGRA_MC_BASE, MC_LATENCY_ALLOWANCE_NV_0), \ DEFINE_REG(TEGRA_MC_BASE, MC_LATENCY_ALLOWANCE_NV2_0), \ DEFINE_REG(TEGRA_MC_BASE, MC_LATENCY_ALLOWANCE_NV_2), \ DEFINE_REG(TEGRA_MC_BASE, MC_LATENCY_ALLOWANCE_NV_1), \ DEFINE_REG(TEGRA_MC_BASE, MC_LATENCY_ALLOWANCE_NV2_1), \ DEFINE_REG(TEGRA_MC_BASE, MC_LATENCY_ALLOWANCE_NV_3), \ DEFINE_REG(TEGRA_MC_BASE, MC_LATENCY_ALLOWANCE_EPP_0), \ DEFINE_REG(TEGRA_MC_BASE, MC_LATENCY_ALLOWANCE_EPP_1), #define EMC_TRIMMERS_REG_LIST \ DEFINE_REG(0, EMC_CDB_CNTL_1), \ DEFINE_REG(0, EMC_FBIO_CFG6), \ DEFINE_REG(0, EMC_QUSE), \ DEFINE_REG(0, EMC_EINPUT), \ DEFINE_REG(0, EMC_EINPUT_DURATION), \ DEFINE_REG(0, EMC_DLL_XFORM_DQS0), \ DEFINE_REG(0, EMC_QSAFE), \ DEFINE_REG(0, EMC_DLL_XFORM_QUSE0), \ DEFINE_REG(0, EMC_RDV), \ DEFINE_REG(0, EMC_XM2DQSPADCTRL4), \ DEFINE_REG(0, EMC_XM2DQSPADCTRL3), \ DEFINE_REG(0, EMC_DLL_XFORM_DQ0), \ DEFINE_REG(0, EMC_AUTO_CAL_CONFIG), \ DEFINE_REG(0, EMC_DLL_XFORM_ADDR0), \ DEFINE_REG(0, EMC_XM2CLKPADCTRL2), \ DEFINE_REG(0, EMC_DLI_TRIM_TXDQS0), \ DEFINE_REG(0, EMC_DLL_XFORM_ADDR1), \ DEFINE_REG(0, EMC_DLL_XFORM_ADDR2), \ DEFINE_REG(0, EMC_DLL_XFORM_DQS1), \ DEFINE_REG(0, EMC_DLL_XFORM_DQS2), \ DEFINE_REG(0, EMC_DLL_XFORM_DQS3), \ DEFINE_REG(0, EMC_DLL_XFORM_DQ1), \ DEFINE_REG(0, EMC_DLL_XFORM_DQ2), \ DEFINE_REG(0, EMC_DLL_XFORM_DQ3), \ DEFINE_REG(0, EMC_DLI_TRIM_TXDQS1), \ DEFINE_REG(0, EMC_DLI_TRIM_TXDQS2), \ DEFINE_REG(0, EMC_DLI_TRIM_TXDQS3), \ DEFINE_REG(0, EMC_DLL_XFORM_QUSE1), \ DEFINE_REG(0, EMC_DLL_XFORM_QUSE2), \ DEFINE_REG(0, EMC_DLL_XFORM_QUSE3), #define DEFINE_REG(base, reg) ((base) ? (IO_ADDRESS((base)) + (reg)) : 0) static void __iomem *burst_reg_addr[TEGRA11_EMC_MAX_NUM_REGS] = { BURST_REG_LIST }; #ifndef EMULATE_CLOCK_SWITCH static void __iomem *burst_up_down_reg_addr[TEGRA11_EMC_MAX_NUM_REGS] = { BURST_UP_DOWN_REG_LIST }; #endif #undef DEFINE_REG #define DEFINE_REG(base, reg) (reg) #ifndef EMULATE_CLOCK_SWITCH static u32 emc_trimmer_offs[TEGRA11_EMC_MAX_NUM_REGS] = { EMC_TRIMMERS_REG_LIST }; #endif #undef DEFINE_REG #define DEFINE_REG(base, reg) reg##_INDEX enum { BURST_REG_LIST }; #undef DEFINE_REG #define DEFINE_REG(base, reg) reg##_TRIM_INDEX enum { EMC_TRIMMERS_REG_LIST }; #undef DEFINE_REG struct emc_sel { struct clk *input; u32 value; unsigned long input_rate; }; static struct emc_sel tegra_emc_clk_sel[TEGRA_EMC_TABLE_MAX_SIZE]; static struct tegra11_emc_table start_timing; static const struct tegra11_emc_table *emc_timing; static unsigned long dram_over_temp_state = DRAM_OVER_TEMP_NONE; static ktime_t clkchange_time; static int clkchange_delay = 100; static const struct tegra11_emc_table *tegra_emc_table; static int tegra_emc_table_size; static u32 dram_dev_num; static u32 dram_type = -1; static struct clk *emc; static struct { cputime64_t time_at_clock[TEGRA_EMC_TABLE_MAX_SIZE]; int last_sel; u64 last_update; u64 clkchange_count; spinlock_t spinlock; } emc_stats; static DEFINE_SPINLOCK(emc_access_lock); static void __iomem *emc_base = IO_ADDRESS(TEGRA_EMC_BASE); static void __iomem *emc0_base = IO_ADDRESS(TEGRA_EMC0_BASE); static void __iomem *emc1_base = IO_ADDRESS(TEGRA_EMC1_BASE); static void __iomem *mc_base = IO_ADDRESS(TEGRA_MC_BASE); static void __iomem *clk_base = IO_ADDRESS(TEGRA_CLK_RESET_BASE); static inline void emc_writel(u32 val, unsigned long addr) { writel(val, emc_base + addr); } static inline void emc0_writel(u32 val, unsigned long addr) { writel(val, emc0_base + addr); } static inline void emc1_writel(u32 val, unsigned long addr) { writel(val, emc1_base + addr); } static inline u32 emc_readl(unsigned long addr) { return readl(emc_base + addr); } static inline void mc_writel(u32 val, unsigned long addr) { writel(val, mc_base + addr); } static inline u32 mc_readl(unsigned long addr) { return readl(mc_base + addr); } static inline void ccfifo_writel(u32 val, unsigned long addr) { writel(val, emc_base + EMC_CCFIFO_DATA); writel(addr, emc_base + EMC_CCFIFO_ADDR); } static int last_round_idx; static inline int get_start_idx(unsigned long rate) { if (tegra_emc_table[last_round_idx].rate == rate) return last_round_idx; return 0; } static void emc_last_stats_update(int last_sel) { unsigned long flags; u64 cur_jiffies = get_jiffies_64(); spin_lock_irqsave(&emc_stats.spinlock, flags); if (emc_stats.last_sel < TEGRA_EMC_TABLE_MAX_SIZE) emc_stats.time_at_clock[emc_stats.last_sel] = emc_stats.time_at_clock[emc_stats.last_sel] + (cur_jiffies - emc_stats.last_update); emc_stats.last_update = cur_jiffies; if (last_sel < TEGRA_EMC_TABLE_MAX_SIZE) { emc_stats.clkchange_count++; emc_stats.last_sel = last_sel; } spin_unlock_irqrestore(&emc_stats.spinlock, flags); } static int wait_for_update(u32 status_reg, u32 bit_mask, bool updated_state) { int i; for (i = 0; i < EMC_STATUS_UPDATE_TIMEOUT; i++) { if (!!(emc_readl(status_reg) & bit_mask) == updated_state) return 0; udelay(1); } return -ETIMEDOUT; } static inline void emc_timing_update(void) { int err; emc_writel(0x1, EMC_TIMING_CONTROL); err = wait_for_update(EMC_STATUS, EMC_STATUS_TIMING_UPDATE_STALLED, false); if (err) { pr_err("%s: timing update error: %d", __func__, err); BUG(); } } static inline void auto_cal_disable(void) { int err; emc_writel(0, EMC_AUTO_CAL_INTERVAL); err = wait_for_update(EMC_AUTO_CAL_STATUS, EMC_AUTO_CAL_STATUS_ACTIVE, false); if (err) { pr_err("%s: disable auto-cal error: %d", __func__, err); BUG(); } } static inline void set_over_temp_timing( const struct tegra11_emc_table *next_timing, unsigned long state) { #define REFRESH_SPEEDUP(val) \ do { \ val = ((val) & 0xFFFF0000) | (((val) & 0xFFFF) >> 2); \ } while (0) u32 ref = next_timing->burst_regs[EMC_REFRESH_INDEX]; u32 pre_ref = next_timing->burst_regs[EMC_PRE_REFRESH_REQ_CNT_INDEX]; u32 dsr_cntrl = next_timing->burst_regs[EMC_DYN_SELF_REF_CONTROL_INDEX]; switch (state) { case DRAM_OVER_TEMP_NONE: break; case DRAM_OVER_TEMP_REFRESH_X2: case DRAM_OVER_TEMP_REFRESH_X4: case DRAM_OVER_TEMP_THROTTLE: REFRESH_SPEEDUP(ref); REFRESH_SPEEDUP(pre_ref); REFRESH_SPEEDUP(dsr_cntrl); break; default: WARN(1, "%s: Failed to set dram over temp state %lu\n", __func__, state); return; } __raw_writel(ref, burst_reg_addr[EMC_REFRESH_INDEX]); __raw_writel(pre_ref, burst_reg_addr[EMC_PRE_REFRESH_REQ_CNT_INDEX]); __raw_writel(dsr_cntrl, burst_reg_addr[EMC_DYN_SELF_REF_CONTROL_INDEX]); } static inline bool dqs_preset(const struct tegra11_emc_table *next_timing, const struct tegra11_emc_table *last_timing) { bool ret = false; #define DQS_SET(reg, bit) \ do { \ if ((next_timing->burst_regs[EMC_##reg##_INDEX] & \ EMC_##reg##_##bit##_ENABLE) && \ (!(last_timing->burst_regs[EMC_##reg##_INDEX] & \ EMC_##reg##_##bit##_ENABLE))) { \ emc_writel(last_timing->burst_regs[EMC_##reg##_INDEX] \ | EMC_##reg##_##bit##_ENABLE, EMC_##reg); \ ret = true; \ } \ } while (0) #define DQS_SET_TRIM(reg, bit, ch) \ do { \ if ((next_timing->emc_trimmers_##ch[EMC_##reg##_TRIM_INDEX] \ & EMC_##reg##_##bit##_ENABLE) && \ (!(last_timing->emc_trimmers_##ch[EMC_##reg##_TRIM_INDEX] \ & EMC_##reg##_##bit##_ENABLE))) { \ emc##ch##_writel(last_timing->emc_trimmers_##ch[EMC_##reg##_TRIM_INDEX] \ | EMC_##reg##_##bit##_ENABLE, EMC_##reg); \ ret = true; \ } \ } while (0) DQS_SET(XM2DQSPADCTRL2, VREF); return ret; } static inline void overwrite_mrs_wait_cnt( const struct tegra11_emc_table *next_timing, bool zcal_long) { u32 reg; u32 cnt = 512; /* For ddr3 when DLL is re-started: overwrite EMC DFS table settings for MRS_WAIT_LONG with maximum of MRS_WAIT_SHORT settings and expected operation length. Reduce the latter by the overlapping zq-calibration, if any */ if (zcal_long) cnt -= dram_dev_num * 256; reg = (next_timing->burst_regs[EMC_MRS_WAIT_CNT_INDEX] & EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK) >> EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT; if (cnt < reg) cnt = reg; reg = (next_timing->burst_regs[EMC_MRS_WAIT_CNT_INDEX] & (~EMC_MRS_WAIT_CNT_LONG_WAIT_MASK)); reg |= (cnt << EMC_MRS_WAIT_CNT_LONG_WAIT_SHIFT) & EMC_MRS_WAIT_CNT_LONG_WAIT_MASK; emc_writel(reg, EMC_MRS_WAIT_CNT); } static inline int get_dll_change(const struct tegra11_emc_table *next_timing, const struct tegra11_emc_table *last_timing) { bool next_dll_enabled = !(next_timing->emc_mode_1 & 0x1); bool last_dll_enabled = !(last_timing->emc_mode_1 & 0x1); if (next_dll_enabled == last_dll_enabled) return DLL_CHANGE_NONE; else if (next_dll_enabled) return DLL_CHANGE_ON; else return DLL_CHANGE_OFF; } static inline void set_dram_mode(const struct tegra11_emc_table *next_timing, const struct tegra11_emc_table *last_timing, int dll_change) { if (dram_type == DRAM_TYPE_DDR3) { /* first mode_1, then mode_2, then mode_reset*/ if (next_timing->emc_mode_1 != last_timing->emc_mode_1) ccfifo_writel(next_timing->emc_mode_1, EMC_EMRS); if (next_timing->emc_mode_2 != last_timing->emc_mode_2) ccfifo_writel(next_timing->emc_mode_2, EMC_EMRS2); if ((next_timing->emc_mode_reset != last_timing->emc_mode_reset) || (dll_change == DLL_CHANGE_ON)) { u32 reg = next_timing->emc_mode_reset & (~EMC_MODE_SET_DLL_RESET); if (dll_change == DLL_CHANGE_ON) { reg |= EMC_MODE_SET_DLL_RESET; reg |= EMC_MODE_SET_LONG_CNT; } ccfifo_writel(reg, EMC_MRS); } } else { /* first mode_2, then mode_1; mode_reset is not applicable */ if (next_timing->emc_mode_2 != last_timing->emc_mode_2) ccfifo_writel(next_timing->emc_mode_2, EMC_MRW2); if (next_timing->emc_mode_1 != last_timing->emc_mode_1) ccfifo_writel(next_timing->emc_mode_1, EMC_MRW); if (next_timing->emc_mode_4 != last_timing->emc_mode_4) ccfifo_writel(next_timing->emc_mode_4, EMC_MRW4); } } static inline void do_clock_change(u32 clk_setting) { int err; mc_readl(MC_EMEM_ADR_CFG); /* completes prev writes */ writel(clk_setting, clk_base + emc->reg); readl(clk_base + emc->reg);/* completes prev write */ err = wait_for_update(EMC_INTSTATUS, EMC_INTSTATUS_CLKCHANGE_COMPLETE, true); if (err) { pr_err("%s: clock change completion error: %d", __func__, err); BUG(); } } static noinline void emc_set_clock(const struct tegra11_emc_table *next_timing, const struct tegra11_emc_table *last_timing, u32 clk_setting) { #ifndef EMULATE_CLOCK_SWITCH int i, dll_change, pre_wait; bool dyn_sref_enabled, zcal_long; u32 emc_cfg_reg = emc_readl(EMC_CFG); dyn_sref_enabled = emc_cfg_reg & EMC_CFG_DYN_SREF_ENABLE; dll_change = get_dll_change(next_timing, last_timing); zcal_long = (next_timing->burst_regs[EMC_ZCAL_INTERVAL_INDEX] != 0) && (last_timing->burst_regs[EMC_ZCAL_INTERVAL_INDEX] == 0); /* FIXME: remove steps enumeration below? */ /* 1. clear clkchange_complete interrupts */ emc_writel(EMC_INTSTATUS_CLKCHANGE_COMPLETE, EMC_INTSTATUS); /* 2. disable dynamic self-refresh and preset dqs vref, then wait for possible self-refresh entry/exit and/or dqs vref settled - waiting before the clock change decreases worst case change stall time */ pre_wait = 0; if (dyn_sref_enabled) { emc_cfg_reg &= ~EMC_CFG_DYN_SREF_ENABLE; emc_writel(emc_cfg_reg, EMC_CFG); pre_wait = 5; /* 5us+ for self-refresh entry/exit */ } /* 2.5 check dq/dqs vref delay */ if (dqs_preset(next_timing, last_timing)) { if (pre_wait < 3) pre_wait = 3; /* 3us+ for dqs vref settled */ } if (pre_wait) { emc_timing_update(); udelay(pre_wait); } /* 3. disable auto-cal if vref mode is switching - removed */ /* 4. program burst shadow registers */ for (i = 0; i < next_timing->burst_regs_num; i++) { if (!burst_reg_addr[i]) continue; __raw_writel(next_timing->burst_regs[i], burst_reg_addr[i]); } for (i = 0; i < next_timing->emc_trimmers_num; i++) { __raw_writel(next_timing->emc_trimmers_0[i], emc0_base + emc_trimmer_offs[i]); __raw_writel(next_timing->emc_trimmers_1[i], emc1_base + emc_trimmer_offs[i]); } if ((dram_type == DRAM_TYPE_LPDDR2) && (dram_over_temp_state != DRAM_OVER_TEMP_NONE)) set_over_temp_timing(next_timing, dram_over_temp_state); emc_cfg_reg &= ~EMC_CFG_UPDATE_MASK; emc_cfg_reg |= next_timing->emc_cfg & EMC_CFG_UPDATE_MASK; emc_writel(emc_cfg_reg, EMC_CFG); wmb(); barrier(); /* 4.1 On ddr3 when DLL is re-started predict MRS long wait count and overwrite DFS table setting */ if ((dram_type == DRAM_TYPE_DDR3) && (dll_change == DLL_CHANGE_ON)) overwrite_mrs_wait_cnt(next_timing, zcal_long); /* 5.2 disable auto-refresh to save time after clock change */ ccfifo_writel(EMC_REFCTRL_DISABLE_ALL(dram_dev_num), EMC_REFCTRL); /* 6. turn Off dll and enter self-refresh on DDR3 */ if (dram_type == DRAM_TYPE_DDR3) { if (dll_change == DLL_CHANGE_OFF) ccfifo_writel(next_timing->emc_mode_1, EMC_EMRS); ccfifo_writel(DRAM_BROADCAST(dram_dev_num) | EMC_SELF_REF_CMD_ENABLED, EMC_SELF_REF); } /* 7. flow control marker 2 */ ccfifo_writel(1, EMC_STALL_THEN_EXE_AFTER_CLKCHANGE); /* 8. exit self-refresh on DDR3 */ if (dram_type == DRAM_TYPE_DDR3) ccfifo_writel(DRAM_BROADCAST(dram_dev_num), EMC_SELF_REF); /* 8.1 re-enable auto-refresh */ ccfifo_writel(EMC_REFCTRL_ENABLE_ALL(dram_dev_num), EMC_REFCTRL); /* 9. set dram mode registers */ set_dram_mode(next_timing, last_timing, dll_change); /* 10. issue zcal command if turning zcal On */ if (zcal_long) { ccfifo_writel(EMC_ZQ_CAL_LONG_CMD_DEV0, EMC_ZQ_CAL); if (dram_dev_num > 1) ccfifo_writel(EMC_ZQ_CAL_LONG_CMD_DEV1, EMC_ZQ_CAL); } /* 10.1 dummy write to RO register to remove stall after change */ ccfifo_writel(0, EMC_CCFIFO_STATUS); /* 11.5 program burst_up_down registers if emc rate is going down */ if (next_timing->rate < last_timing->rate) { for (i = 0; i < next_timing->burst_up_down_regs_num; i++) __raw_writel(next_timing->burst_up_down_regs[i], burst_up_down_reg_addr[i]); wmb(); } /* 12-14. read any MC register to ensure the programming is done change EMC clock source register wait for clk change completion */ do_clock_change(clk_setting); /* 14.1 re-enable auto-refresh - moved to ccfifo in 8.1 */ /* 14.2 program burst_up_down registers if emc rate is going up */ if (next_timing->rate > last_timing->rate) { for (i = 0; i < next_timing->burst_up_down_regs_num; i++) __raw_writel(next_timing->burst_up_down_regs[i], burst_up_down_reg_addr[i]); wmb(); } /* 15. set auto-cal interval */ if (next_timing->rev >= 0x42) emc_writel(next_timing->emc_acal_interval, EMC_AUTO_CAL_INTERVAL); /* 16. restore dynamic self-refresh */ if (next_timing->emc_cfg & EMC_CFG_DYN_SREF_ENABLE) { emc_cfg_reg |= EMC_CFG_DYN_SREF_ENABLE; emc_writel(emc_cfg_reg, EMC_CFG); } /* 17. set zcal wait count */ emc_writel(next_timing->emc_zcal_cnt_long, EMC_ZCAL_WAIT_CNT); /* 18. update restored timing */ udelay(2); emc_timing_update(); #else /* FIXME: implement */ pr_info("tegra11_emc: Configuring EMC rate %lu (setting: 0x%x)\n", next_timing->rate, clk_setting); #endif } static inline void emc_get_timing(struct tegra11_emc_table *timing) { int i; /* burst and trimmers updates depends on previous state; burst_up_down are stateless */ for (i = 0; i < timing->burst_regs_num; i++) { if (burst_reg_addr[i]) timing->burst_regs[i] = __raw_readl(burst_reg_addr[i]); else timing->burst_regs[i] = 0; } for (i = 0; i < timing->emc_trimmers_num; i++) { timing->emc_trimmers_0[i] = __raw_readl(emc0_base + emc_trimmer_offs[i]); timing->emc_trimmers_1[i] = __raw_readl(emc1_base + emc_trimmer_offs[i]); } timing->emc_acal_interval = 0; timing->emc_zcal_cnt_long = 0; timing->emc_mode_reset = 0; timing->emc_mode_1 = 0; timing->emc_mode_2 = 0; timing->emc_mode_4 = 0; timing->emc_cfg = emc_readl(EMC_CFG); timing->rate = clk_get_rate_locked(emc) / 1000; } /* The EMC registers have shadow registers. When the EMC clock is updated * in the clock controller, the shadow registers are copied to the active * registers, allowing glitchless memory bus frequency changes. * This function updates the shadow registers for a new clock frequency, * and relies on the clock lock on the emc clock to avoid races between * multiple frequency changes. In addition access lock prevents concurrent * access to EMC registers from reading MRR registers */ int tegra_emc_set_rate(unsigned long rate) { int i; u32 clk_setting; const struct tegra11_emc_table *last_timing; unsigned long flags; s64 last_change_delay; if (!tegra_emc_table) return -EINVAL; /* Table entries specify rate in kHz */ rate = rate / 1000; i = get_start_idx(rate); for (; i < tegra_emc_table_size; i++) { if (tegra_emc_clk_sel[i].input == NULL) continue; /* invalid entry */ if (tegra_emc_table[i].rate == rate) break; } if (i >= tegra_emc_table_size) return -EINVAL; if (!emc_timing) { /* can not assume that boot timing matches dfs table even if boot frequency matches one of the table nodes */ emc_get_timing(&start_timing); last_timing = &start_timing; } else last_timing = emc_timing; clk_setting = tegra_emc_clk_sel[i].value; last_change_delay = ktime_us_delta(ktime_get(), clkchange_time); if ((last_change_delay >= 0) && (last_change_delay < clkchange_delay)) udelay(clkchange_delay - (int)last_change_delay); spin_lock_irqsave(&emc_access_lock, flags); emc_set_clock(&tegra_emc_table[i], last_timing, clk_setting); clkchange_time = ktime_get(); emc_timing = &tegra_emc_table[i]; spin_unlock_irqrestore(&emc_access_lock, flags); emc_last_stats_update(i); pr_debug("%s: rate %lu setting 0x%x\n", __func__, rate, clk_setting); return 0; } long tegra_emc_round_rate_updown(unsigned long rate, bool up) { int i; unsigned long table_rate; if (!tegra_emc_table) return clk_get_rate_locked(emc); /* no table - no rate change */ if (!emc_enable) return -EINVAL; pr_debug("%s: %lu\n", __func__, rate); /* Table entries specify rate in kHz */ rate = rate / 1000; i = get_start_idx(rate); for (; i < tegra_emc_table_size; i++) { if (tegra_emc_clk_sel[i].input == NULL) continue; /* invalid entry */ table_rate = tegra_emc_table[i].rate; if (table_rate >= rate) { if (!up && i && (table_rate > rate)) { i--; table_rate = tegra_emc_table[i].rate; } pr_debug("%s: using %lu\n", __func__, table_rate); last_round_idx = i; return table_rate * 1000; } } return -EINVAL; } struct clk *tegra_emc_predict_parent(unsigned long rate, u32 *div_value) { int i; if (!tegra_emc_table) { if (rate == clk_get_rate_locked(emc)) { *div_value = emc->div - 2; return emc->parent; } return NULL; } pr_debug("%s: %lu\n", __func__, rate); /* Table entries specify rate in kHz */ rate = rate / 1000; i = get_start_idx(rate); for (; i < tegra_emc_table_size; i++) { if (tegra_emc_table[i].rate == rate) { struct clk *p = tegra_emc_clk_sel[i].input; if (p && (tegra_emc_clk_sel[i].input_rate == clk_get_rate(p))) { *div_value = (tegra_emc_clk_sel[i].value & EMC_CLK_DIV_MASK) >> EMC_CLK_DIV_SHIFT; return p; } } } return NULL; } bool tegra_emc_is_parent_ready(unsigned long rate, struct clk **parent, unsigned long *parent_rate, unsigned long *backup_rate) { int i; struct clk *p = NULL; unsigned long p_rate = 0; if (!tegra_emc_table) return true; pr_debug("%s: %lu\n", __func__, rate); /* Table entries specify rate in kHz */ rate = rate / 1000; i = get_start_idx(rate); for (; i < tegra_emc_table_size; i++) { if (tegra_emc_table[i].rate == rate) { p = tegra_emc_clk_sel[i].input; if (!p) continue; /* invalid entry */ p_rate = tegra_emc_clk_sel[i].input_rate; if (p_rate == clk_get_rate(p)) return true; break; } } /* Table match not found - "non existing parent" is ready */ if (!p) return true; #ifdef CONFIG_TEGRA_PLLM_SCALED /* * Table match found, but parent is not ready - check if backup entry * was found during initialization, and return the respective backup * rate */ if (emc->shared_bus_backup.input && (emc->shared_bus_backup.input != p)) { *parent = p; *parent_rate = p_rate; *backup_rate = emc->shared_bus_backup.bus_rate; return false; } #else /* * Table match found, but parent is not ready - continue search * for backup rate: min rate above requested that has different * parent source (since only pll_c is scaled and may not be ready, * any other parent can provide backup) */ *parent = p; *parent_rate = p_rate; for (i++; i < tegra_emc_table_size; i++) { p = tegra_emc_clk_sel[i].input; if (!p) continue; /* invalid entry */ if (p != (*parent)) { *backup_rate = tegra_emc_table[i].rate * 1000; return false; } } #endif /* Parent is not ready, and no backup found */ *backup_rate = -EINVAL; return false; } static inline const struct clk_mux_sel *get_emc_input(u32 val) { const struct clk_mux_sel *sel; for (sel = emc->inputs; sel->input != NULL; sel++) { if (sel->value == val) break; } return sel; } static int find_matching_input(const struct tegra11_emc_table *table, struct clk *pll_c, struct emc_sel *emc_clk_sel) { u32 div_value = (table->src_sel_reg & EMC_CLK_DIV_MASK) >> EMC_CLK_DIV_SHIFT; u32 src_value = (table->src_sel_reg & EMC_CLK_SOURCE_MASK) >> EMC_CLK_SOURCE_SHIFT; unsigned long input_rate = 0; unsigned long table_rate = table->rate * 1000; /* table rate in kHz */ const struct clk_mux_sel *sel = get_emc_input(src_value); #ifdef CONFIG_TEGRA_PLLM_SCALED struct clk *scalable_pll = emc->parent; /* pll_m is a boot parent */ #else struct clk *scalable_pll = pll_c; #endif pr_info_once("tegra: %s is selected as scalable EMC clock source\n", scalable_pll->name); if (div_value & 0x1) { pr_warn("tegra: invalid odd divider for EMC rate %lu\n", table_rate); return -EINVAL; } if (!sel->input) { pr_warn("tegra: no matching input found for EMC rate %lu\n", table_rate); return -EINVAL; } if (div_value && (table->src_sel_reg & EMC_CLK_LOW_JITTER_ENABLE)) { pr_warn("tegra: invalid LJ path for EMC rate %lu\n", table_rate); return -EINVAL; } if (!(table->src_sel_reg & EMC_CLK_MC_SAME_FREQ) != !(MC_EMEM_ARB_MISC0_EMC_SAME_FREQ & table->burst_regs[MC_EMEM_ARB_MISC0_INDEX])) { pr_warn("tegra: ambiguous EMC to MC ratio for EMC rate %lu\n", table_rate); return -EINVAL; } #ifndef CONFIG_TEGRA_DUAL_CBUS if (sel->input == pll_c) { pr_warn("tegra: %s is cbus source: no EMC rate %lu support\n", sel->input->name, table_rate); return -EINVAL; } #endif if (sel->input == scalable_pll) { input_rate = table_rate * (1 + div_value / 2); } else { /* all other sources are fixed, must exactly match the rate */ input_rate = clk_get_rate(sel->input); if (input_rate != (table_rate * (1 + div_value / 2))) { pr_warn("tegra: EMC rate %lu does not match %s rate %lu\n", table_rate, sel->input->name, input_rate); return -EINVAL; } } #ifdef CONFIG_TEGRA_PLLM_SCALED if (sel->input == pll_c) { /* maybe overwritten in a loop - end up at max rate from pll_c */ emc->shared_bus_backup.input = pll_c; emc->shared_bus_backup.bus_rate = table_rate; } #endif /* Get ready emc clock selection settings for this table rate */ emc_clk_sel->input = sel->input; emc_clk_sel->input_rate = input_rate; emc_clk_sel->value = table->src_sel_reg; return 0; } static void adjust_emc_dvfs_table(const struct tegra11_emc_table *table, int table_size) { int i, j; unsigned long rate; for (i = 0; i < MAX_DVFS_FREQS; i++) { int mv = emc->dvfs->millivolts[i]; if (!mv) break; /* For each dvfs voltage find maximum supported rate; use 1MHz placeholder if not found */ for (rate = 1000, j = 0; j < table_size; j++) { if (tegra_emc_clk_sel[j].input == NULL) continue; /* invalid entry */ if ((mv >= table[j].emc_min_mv) && (rate < table[j].rate)) rate = table[j].rate; } /* Table entries specify rate in kHz */ emc->dvfs->freqs[i] = rate * 1000; } } #ifdef CONFIG_TEGRA_PLLM_SCALED /* When pll_m is scaled, pll_c must provide backup rate; if not - remove rates that require pll_m scaling */ static int purge_emc_table(unsigned long max_rate) { int i; int ret = 0; if (emc->shared_bus_backup.input) return ret; pr_warn("tegra: selected pll_m scaling option but no backup source:\n"); pr_warn(" removed not supported entries from the table:\n"); /* made all entries with non matching rate invalid */ for (i = 0; i < tegra_emc_table_size; i++) { struct emc_sel *sel = &tegra_emc_clk_sel[i]; if (sel->input) { if (clk_get_rate(sel->input) != sel->input_rate) { pr_warn(" EMC rate %lu\n", tegra_emc_table[i].rate * 1000); sel->input = NULL; sel->input_rate = 0; sel->value = 0; if (max_rate == tegra_emc_table[i].rate) ret = -EINVAL; } } } return ret; } #else /* When pll_m is fixed @ max EMC rate, it always provides backup for pll_c */ #define purge_emc_table(max_rate) (0) #endif static int init_emc_table(const struct tegra11_emc_table *table, int table_size) { int i, mv; u32 reg; bool max_entry = false; bool emc_max_dvfs_sel = get_emc_max_dvfs(); unsigned long boot_rate, max_rate; struct clk *pll_c = tegra_get_clock_by_name("pll_c"); emc_stats.clkchange_count = 0; spin_lock_init(&emc_stats.spinlock); emc_stats.last_update = get_jiffies_64(); emc_stats.last_sel = TEGRA_EMC_TABLE_MAX_SIZE; if ((dram_type != DRAM_TYPE_DDR3) && (dram_type != DRAM_TYPE_LPDDR2)) { pr_err("tegra: not supported DRAM type %u\n", dram_type); return -ENODATA; } if (emc->parent != tegra_get_clock_by_name("pll_m")) { pr_err("tegra: boot parent %s is not supported by EMC DFS\n", emc->parent->name); return -ENODATA; } if (!table || !table_size) { pr_err("tegra: EMC DFS table is empty\n"); return -ENODATA; } boot_rate = clk_get_rate(emc) / 1000; max_rate = clk_get_rate(emc->parent) / 1000; tegra_emc_table_size = min(table_size, TEGRA_EMC_TABLE_MAX_SIZE); switch (table[0].rev) { case 0x40: case 0x41: case 0x42: start_timing.burst_regs_num = table[0].burst_regs_num; start_timing.emc_trimmers_num = table[0].emc_trimmers_num; break; default: pr_err("tegra: invalid EMC DFS table: unknown rev 0x%x\n", table[0].rev); return -ENODATA; } /* Match EMC source/divider settings with table entries */ for (i = 0; i < tegra_emc_table_size; i++) { unsigned long table_rate = table[i].rate; /* Skip "no-rate" entry, or entry violating ascending order */ if (!table_rate || (i && (table_rate <= table[i-1].rate))) continue; BUG_ON(table[i].rev != table[0].rev); if (find_matching_input(&table[i], pll_c, &tegra_emc_clk_sel[i])) continue; if (table_rate == boot_rate) emc_stats.last_sel = i; if (emc_max_dvfs_sel) { /* EMC max rate = max table entry above boot pll_m */ if (table_rate >= max_rate) { max_rate = table_rate; max_entry = true; } } else if (table_rate == max_rate) { /* EMC max rate = boot pll_m rate */ max_entry = true; break; } } /* Validate EMC rate and voltage limits */ if (!max_entry) { pr_err("tegra: invalid EMC DFS table: entry for max rate" " %lu kHz is not found\n", max_rate); return -ENODATA; } tegra_emc_table = table; /* * Purge rates that cannot be reached because table does not specify * proper backup source. If maximum rate was purged, fall back on boot * pll_m rate as maximum limit. In any case propagate new maximum limit * down stream to shared users, and check it against nominal voltage. */ if (purge_emc_table(max_rate)) max_rate = clk_get_rate(emc->parent) / 1000; tegra_init_max_rate(emc, max_rate * 1000); if (emc->dvfs) { adjust_emc_dvfs_table(tegra_emc_table, tegra_emc_table_size); mv = tegra_dvfs_predict_peak_millivolts(emc, max_rate * 1000); if ((mv <= 0) || (mv > emc->dvfs->max_millivolts)) { tegra_emc_table = NULL; pr_err("tegra: invalid EMC DFS table: maximum rate %lu" " kHz does not match nominal voltage %d\n", max_rate, emc->dvfs->max_millivolts); return -ENODATA; } } pr_info("tegra: validated EMC DFS table\n"); /* Configure clock change mode according to dram type */ reg = emc_readl(EMC_CFG_2) & (~EMC_CFG_2_MODE_MASK); reg |= ((dram_type == DRAM_TYPE_LPDDR2) ? EMC_CFG_2_PD_MODE : EMC_CFG_2_SREF_MODE) << EMC_CFG_2_MODE_SHIFT; emc_writel(reg, EMC_CFG_2); return 0; } #ifdef CONFIG_PASR /* Check if the attached memory device uses LPDDR3 protocol. * Bit 8 (enable LPDDR3 write preamble toggle) of EMC_FBIO_SPARE is enabled * for LPDDR3. */ static bool tegra11_is_lpddr3(void) { return emc_readl(EMC_FBIO_SPARE) & BIT(8); } static void tegra11_pasr_apply_mask(u16 *mem_reg, void *cookie) { u32 val = 0; int device = (int)cookie; val = TEGRA_EMC_MODE_REG_17 | *mem_reg; val |= device << TEGRA_EMC_MRW_DEV_SHIFT; emc0_writel(val, EMC_MRW); emc1_writel(val, EMC_MRW); pr_debug("%s: cookie = %d mem_reg = 0x%04x val = 0x%08x\n", __func__, (int)cookie, *mem_reg, val); } static int tegra11_pasr_enable(const char *arg, const struct kernel_param *kp) { unsigned int old_pasr_enable; void *cookie; u16 mem_reg; if (!tegra11_is_lpddr3()) return -ENOSYS; old_pasr_enable = pasr_enable; param_set_int(arg, kp); if (old_pasr_enable == pasr_enable) return 0; /* Cookie represents the device number to write to MRW register. * 0x2 to for only dev0, 0x1 for dev1. */ if (pasr_enable == 0) { mem_reg = 0; cookie = (void *)(int)TEGRA_EMC_MRW_DEV1; if (!pasr_register_mask_function(TEGRA_DRAM_BASE, NULL, cookie)) tegra11_pasr_apply_mask(&mem_reg, cookie); cookie = (void *)(int)TEGRA_EMC_MRW_DEV2; if (!pasr_register_mask_function(TEGRA_DRAM_BASE + SZ_1G, NULL, cookie)) tegra11_pasr_apply_mask(&mem_reg, cookie); } else { cookie = (void *)(int)2; pasr_register_mask_function(0x80000000, &tegra11_pasr_apply_mask, cookie); cookie = (void *)(int)1; pasr_register_mask_function(0xC0000000, &tegra11_pasr_apply_mask, cookie); } return 0; } static struct kernel_param_ops tegra11_pasr_enable_ops = { .set = tegra11_pasr_enable, .get = param_get_int, }; module_param_cb(pasr_enable, &tegra11_pasr_enable_ops, &pasr_enable, 0644); #endif static int tegra11_emc_probe(struct platform_device *pdev) { struct tegra11_emc_pdata *pdata; struct resource *res; pasr_enable = 0; if (tegra_emc_table) return -EINVAL; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(&pdev->dev, "missing register base\n"); return -ENOMEM; } pdata = pdev->dev.platform_data; if (!pdata) pdata = tegra_emc_dt_parse_pdata(pdev); if (!pdata) { dev_err(&pdev->dev, "missing platform data\n"); return -ENODATA; } return init_emc_table(pdata->tables, pdata->num_tables); } static struct of_device_id tegra11_emc_of_match[] = { { .compatible = "nvidia,tegra11-emc", }, { }, }; static struct platform_driver tegra11_emc_driver = { .driver = { .name = "tegra-emc", .owner = THIS_MODULE, .of_match_table = tegra11_emc_of_match, }, .probe = tegra11_emc_probe, }; int __init tegra11_emc_init(void) { int ret = platform_driver_register(&tegra11_emc_driver); if (!ret) { if (dram_type == DRAM_TYPE_LPDDR2) tegra_emc_iso_usage_table_init( tegra11_lpddr3_emc_iso_usage, ARRAY_SIZE(tegra11_lpddr3_emc_iso_usage)); else if (dram_type == DRAM_TYPE_DDR3) tegra_emc_iso_usage_table_init( tegra11_ddr3_emc_iso_usage, ARRAY_SIZE(tegra11_ddr3_emc_iso_usage)); if (emc_enable) { unsigned long rate = tegra_emc_round_rate_updown( emc->boot_rate, false); if (!IS_ERR_VALUE(rate)) tegra_clk_preset_emc_monitor(rate); } } return ret; } void tegra_emc_timing_invalidate(void) { emc_timing = NULL; } void tegra_emc_dram_type_init(struct clk *c) { emc = c; dram_type = (emc_readl(EMC_FBIO_CFG5) & EMC_CFG5_TYPE_MASK) >> EMC_CFG5_TYPE_SHIFT; dram_dev_num = (mc_readl(MC_EMEM_ADR_CFG) & 0x1) + 1; /* 2 dev max */ } int tegra_emc_get_dram_type(void) { return dram_type; } static int emc_read_mrr(int dev, int addr) { int ret; u32 val; if (dram_type != DRAM_TYPE_LPDDR2) return -ENODEV; ret = wait_for_update(EMC_STATUS, EMC_STATUS_MRR_DIVLD, false); if (ret) return ret; val = dev ? DRAM_DEV_SEL_1 : DRAM_DEV_SEL_0; val |= (addr << EMC_MRR_MA_SHIFT) & EMC_MRR_MA_MASK; emc_writel(val, EMC_MRR); ret = wait_for_update(EMC_STATUS, EMC_STATUS_MRR_DIVLD, true); if (ret) return ret; val = emc_readl(EMC_MRR) & EMC_MRR_DATA_MASK; return val; } int tegra_emc_get_dram_temperature(void) { int mr4; unsigned long flags; spin_lock_irqsave(&emc_access_lock, flags); mr4 = emc_read_mrr(0, 4); if (IS_ERR_VALUE(mr4)) { spin_unlock_irqrestore(&emc_access_lock, flags); return mr4; } spin_unlock_irqrestore(&emc_access_lock, flags); mr4 = (mr4 & LPDDR2_MR4_TEMP_MASK) >> LPDDR2_MR4_TEMP_SHIFT; return mr4; } int tegra_emc_set_over_temp_state(unsigned long state) { unsigned long flags; if (dram_type != DRAM_TYPE_LPDDR2) return -ENODEV; if (state > DRAM_OVER_TEMP_THROTTLE) return -EINVAL; spin_lock_irqsave(&emc_access_lock, flags); /* Update refresh timing if state changed */ if (emc_timing && (dram_over_temp_state != state)) { set_over_temp_timing(emc_timing, state); emc_timing_update(); if (state != DRAM_OVER_TEMP_NONE) emc_writel(EMC_REF_FORCE_CMD, EMC_REF); dram_over_temp_state = state; } spin_unlock_irqrestore(&emc_access_lock, flags); return 0; } static inline int bw_calc_get_freq_idx(unsigned long bw) { int idx = 0; if (bw > bw_calc_freqs[TEGRA_EMC_ISO_USE_FREQ_MAX_NUM-1] * MHZ) idx = TEGRA_EMC_ISO_USE_FREQ_MAX_NUM; for (; idx < TEGRA_EMC_ISO_USE_FREQ_MAX_NUM; idx++) { u32 freq = bw_calc_freqs[idx] * MHZ; if (bw < freq) { if (idx) idx--; break; } else if (bw == freq) break; } return idx; } static u8 iso_share_calc_t114_lpddr3_default(unsigned long iso_bw) { int freq_idx = bw_calc_get_freq_idx(iso_bw); return tegra11_lpddr3_emc_usage_share_default[freq_idx]; } static u8 iso_share_calc_t114_lpddr3_dc(unsigned long iso_bw) { int freq_idx = bw_calc_get_freq_idx(iso_bw); return tegra11_lpddr3_emc_usage_share_dc[freq_idx]; } #ifdef CONFIG_DEBUG_FS static struct dentry *emc_debugfs_root; #define INFO_CALC_REV_OFFSET 1 #define INFO_SCRIPT_REV_OFFSET 2 #define INFO_FREQ_OFFSET 3 static int emc_table_info_show(struct seq_file *s, void *data) { int i; const u32 *info; u32 freq, calc_rev, script_rev; const struct tegra11_emc_table *entry; bool found = false; if (!tegra_emc_table) { seq_printf(s, "EMC DFS table is not installed\n"); return 0; } for (i = 0; i < tegra_emc_table_size; i++) { entry = &tegra_emc_table[i]; info = &entry->burst_up_down_regs[entry->burst_up_down_regs_num]; seq_printf(s, "%s: ", tegra_emc_clk_sel[i].input != NULL ? "accepted" : "rejected"); /* system validation tag for metadata */ if (*info != 0x4E564441) { seq_printf(s, "emc dvfs frequency %6lu\n", entry->rate); continue; } found = true; calc_rev = *(info + INFO_CALC_REV_OFFSET); script_rev = *(info + INFO_SCRIPT_REV_OFFSET); freq = *(info + INFO_FREQ_OFFSET); seq_printf(s, "emc dvfs frequency %6u: ", freq); seq_printf(s, "calc_rev: %02u.%02u.%02u.%02u ", (calc_rev >> 24) & 0xff, (calc_rev >> 16) & 0xff, (calc_rev >> 8) & 0xff, (calc_rev >> 0) & 0xff); seq_printf(s, "script_rev: %02u.%02u.%02u.%02u\n", (script_rev >> 24) & 0xff, (script_rev >> 16) & 0xff, (script_rev >> 8) & 0xff, (script_rev >> 0) & 0xff); } if (!found) seq_printf(s, "no metdata in EMC DFS table\n"); return 0; } static int emc_table_info_open(struct inode *inode, struct file *file) { return single_open(file, emc_table_info_show, inode->i_private); } static const struct file_operations emc_table_info_fops = { .open = emc_table_info_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int emc_stats_show(struct seq_file *s, void *data) { int i; emc_last_stats_update(TEGRA_EMC_TABLE_MAX_SIZE); seq_printf(s, "%-10s %-10s \n", "rate kHz", "time"); for (i = 0; i < tegra_emc_table_size; i++) { if (tegra_emc_clk_sel[i].input == NULL) continue; /* invalid entry */ seq_printf(s, "%-10lu %-10llu \n", tegra_emc_table[i].rate, cputime64_to_clock_t(emc_stats.time_at_clock[i])); } seq_printf(s, "%-15s %llu\n", "transitions:", emc_stats.clkchange_count); seq_printf(s, "%-15s %llu\n", "time-stamp:", cputime64_to_clock_t(emc_stats.last_update)); return 0; } static int emc_stats_open(struct inode *inode, struct file *file) { return single_open(file, emc_stats_show, inode->i_private); } static const struct file_operations emc_stats_fops = { .open = emc_stats_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int dram_temperature_get(void *data, u64 *val) { *val = tegra_emc_get_dram_temperature(); return 0; } DEFINE_SIMPLE_ATTRIBUTE(dram_temperature_fops, dram_temperature_get, NULL, "%lld\n"); static int over_temp_state_get(void *data, u64 *val) { *val = dram_over_temp_state; return 0; } static int over_temp_state_set(void *data, u64 val) { tegra_emc_set_over_temp_state(val); return 0; } DEFINE_SIMPLE_ATTRIBUTE(over_temp_state_fops, over_temp_state_get, over_temp_state_set, "%llu\n"); static int efficiency_get(void *data, u64 *val) { *val = tegra_emc_bw_efficiency; return 0; } static int efficiency_set(void *data, u64 val) { tegra_emc_bw_efficiency = (val > 100) ? 100 : val; if (emc) tegra_clk_shared_bus_update(emc); return 0; } DEFINE_SIMPLE_ATTRIBUTE(efficiency_fops, efficiency_get, efficiency_set, "%llu\n"); static int __init tegra_emc_debug_init(void) { emc_debugfs_root = debugfs_create_dir("tegra_emc", NULL); if (!emc_debugfs_root) return -ENOMEM; if (!debugfs_create_file( "table_info", S_IRUGO, emc_debugfs_root, NULL, &emc_table_info_fops)) goto err_out; if (!tegra_emc_table) return 0; if (!debugfs_create_file( "stats", S_IRUGO, emc_debugfs_root, NULL, &emc_stats_fops)) goto err_out; if (!debugfs_create_u32("clkchange_delay", S_IRUGO | S_IWUSR, emc_debugfs_root, (u32 *)&clkchange_delay)) goto err_out; if (!debugfs_create_file("dram_temperature", S_IRUGO, emc_debugfs_root, NULL, &dram_temperature_fops)) goto err_out; if (!debugfs_create_file("over_temp_state", S_IRUGO | S_IWUSR, emc_debugfs_root, NULL, &over_temp_state_fops)) goto err_out; if (!debugfs_create_file("efficiency", S_IRUGO | S_IWUSR, emc_debugfs_root, NULL, &efficiency_fops)) goto err_out; if (tegra_emc_iso_usage_debugfs_init(emc_debugfs_root)) goto err_out; return 0; err_out: debugfs_remove_recursive(emc_debugfs_root); return -ENOMEM; } late_initcall(tegra_emc_debug_init); #endif