KVM: Intelligent device lookup on I/O bus
[linux-3.10.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68  * Ordering of locks:
69  *
70  *              kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71  */
72
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84
85 struct dentry *kvm_debugfs_dir;
86
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88                            unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91                                   unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100
101 static bool largepages_enabled = true;
102
103 static struct page *hwpoison_page;
104 static pfn_t hwpoison_pfn;
105
106 struct page *fault_page;
107 pfn_t fault_pfn;
108
109 inline int kvm_is_mmio_pfn(pfn_t pfn)
110 {
111         if (pfn_valid(pfn)) {
112                 int reserved;
113                 struct page *tail = pfn_to_page(pfn);
114                 struct page *head = compound_trans_head(tail);
115                 reserved = PageReserved(head);
116                 if (head != tail) {
117                         /*
118                          * "head" is not a dangling pointer
119                          * (compound_trans_head takes care of that)
120                          * but the hugepage may have been splitted
121                          * from under us (and we may not hold a
122                          * reference count on the head page so it can
123                          * be reused before we run PageReferenced), so
124                          * we've to check PageTail before returning
125                          * what we just read.
126                          */
127                         smp_rmb();
128                         if (PageTail(tail))
129                                 return reserved;
130                 }
131                 return PageReserved(tail);
132         }
133
134         return true;
135 }
136
137 /*
138  * Switches to specified vcpu, until a matching vcpu_put()
139  */
140 void vcpu_load(struct kvm_vcpu *vcpu)
141 {
142         int cpu;
143
144         mutex_lock(&vcpu->mutex);
145         if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
146                 /* The thread running this VCPU changed. */
147                 struct pid *oldpid = vcpu->pid;
148                 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
149                 rcu_assign_pointer(vcpu->pid, newpid);
150                 synchronize_rcu();
151                 put_pid(oldpid);
152         }
153         cpu = get_cpu();
154         preempt_notifier_register(&vcpu->preempt_notifier);
155         kvm_arch_vcpu_load(vcpu, cpu);
156         put_cpu();
157 }
158
159 void vcpu_put(struct kvm_vcpu *vcpu)
160 {
161         preempt_disable();
162         kvm_arch_vcpu_put(vcpu);
163         preempt_notifier_unregister(&vcpu->preempt_notifier);
164         preempt_enable();
165         mutex_unlock(&vcpu->mutex);
166 }
167
168 static void ack_flush(void *_completed)
169 {
170 }
171
172 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
173 {
174         int i, cpu, me;
175         cpumask_var_t cpus;
176         bool called = true;
177         struct kvm_vcpu *vcpu;
178
179         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
180
181         me = get_cpu();
182         kvm_for_each_vcpu(i, vcpu, kvm) {
183                 kvm_make_request(req, vcpu);
184                 cpu = vcpu->cpu;
185
186                 /* Set ->requests bit before we read ->mode */
187                 smp_mb();
188
189                 if (cpus != NULL && cpu != -1 && cpu != me &&
190                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
191                         cpumask_set_cpu(cpu, cpus);
192         }
193         if (unlikely(cpus == NULL))
194                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
195         else if (!cpumask_empty(cpus))
196                 smp_call_function_many(cpus, ack_flush, NULL, 1);
197         else
198                 called = false;
199         put_cpu();
200         free_cpumask_var(cpus);
201         return called;
202 }
203
204 void kvm_flush_remote_tlbs(struct kvm *kvm)
205 {
206         int dirty_count = kvm->tlbs_dirty;
207
208         smp_mb();
209         if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
210                 ++kvm->stat.remote_tlb_flush;
211         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
212 }
213
214 void kvm_reload_remote_mmus(struct kvm *kvm)
215 {
216         make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
217 }
218
219 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
220 {
221         struct page *page;
222         int r;
223
224         mutex_init(&vcpu->mutex);
225         vcpu->cpu = -1;
226         vcpu->kvm = kvm;
227         vcpu->vcpu_id = id;
228         vcpu->pid = NULL;
229         init_waitqueue_head(&vcpu->wq);
230         kvm_async_pf_vcpu_init(vcpu);
231
232         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
233         if (!page) {
234                 r = -ENOMEM;
235                 goto fail;
236         }
237         vcpu->run = page_address(page);
238
239         r = kvm_arch_vcpu_init(vcpu);
240         if (r < 0)
241                 goto fail_free_run;
242         return 0;
243
244 fail_free_run:
245         free_page((unsigned long)vcpu->run);
246 fail:
247         return r;
248 }
249 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
250
251 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
252 {
253         put_pid(vcpu->pid);
254         kvm_arch_vcpu_uninit(vcpu);
255         free_page((unsigned long)vcpu->run);
256 }
257 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
258
259 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
260 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
261 {
262         return container_of(mn, struct kvm, mmu_notifier);
263 }
264
265 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
266                                              struct mm_struct *mm,
267                                              unsigned long address)
268 {
269         struct kvm *kvm = mmu_notifier_to_kvm(mn);
270         int need_tlb_flush, idx;
271
272         /*
273          * When ->invalidate_page runs, the linux pte has been zapped
274          * already but the page is still allocated until
275          * ->invalidate_page returns. So if we increase the sequence
276          * here the kvm page fault will notice if the spte can't be
277          * established because the page is going to be freed. If
278          * instead the kvm page fault establishes the spte before
279          * ->invalidate_page runs, kvm_unmap_hva will release it
280          * before returning.
281          *
282          * The sequence increase only need to be seen at spin_unlock
283          * time, and not at spin_lock time.
284          *
285          * Increasing the sequence after the spin_unlock would be
286          * unsafe because the kvm page fault could then establish the
287          * pte after kvm_unmap_hva returned, without noticing the page
288          * is going to be freed.
289          */
290         idx = srcu_read_lock(&kvm->srcu);
291         spin_lock(&kvm->mmu_lock);
292         kvm->mmu_notifier_seq++;
293         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
294         spin_unlock(&kvm->mmu_lock);
295         srcu_read_unlock(&kvm->srcu, idx);
296
297         /* we've to flush the tlb before the pages can be freed */
298         if (need_tlb_flush)
299                 kvm_flush_remote_tlbs(kvm);
300
301 }
302
303 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
304                                         struct mm_struct *mm,
305                                         unsigned long address,
306                                         pte_t pte)
307 {
308         struct kvm *kvm = mmu_notifier_to_kvm(mn);
309         int idx;
310
311         idx = srcu_read_lock(&kvm->srcu);
312         spin_lock(&kvm->mmu_lock);
313         kvm->mmu_notifier_seq++;
314         kvm_set_spte_hva(kvm, address, pte);
315         spin_unlock(&kvm->mmu_lock);
316         srcu_read_unlock(&kvm->srcu, idx);
317 }
318
319 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
320                                                     struct mm_struct *mm,
321                                                     unsigned long start,
322                                                     unsigned long end)
323 {
324         struct kvm *kvm = mmu_notifier_to_kvm(mn);
325         int need_tlb_flush = 0, idx;
326
327         idx = srcu_read_lock(&kvm->srcu);
328         spin_lock(&kvm->mmu_lock);
329         /*
330          * The count increase must become visible at unlock time as no
331          * spte can be established without taking the mmu_lock and
332          * count is also read inside the mmu_lock critical section.
333          */
334         kvm->mmu_notifier_count++;
335         for (; start < end; start += PAGE_SIZE)
336                 need_tlb_flush |= kvm_unmap_hva(kvm, start);
337         need_tlb_flush |= kvm->tlbs_dirty;
338         spin_unlock(&kvm->mmu_lock);
339         srcu_read_unlock(&kvm->srcu, idx);
340
341         /* we've to flush the tlb before the pages can be freed */
342         if (need_tlb_flush)
343                 kvm_flush_remote_tlbs(kvm);
344 }
345
346 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
347                                                   struct mm_struct *mm,
348                                                   unsigned long start,
349                                                   unsigned long end)
350 {
351         struct kvm *kvm = mmu_notifier_to_kvm(mn);
352
353         spin_lock(&kvm->mmu_lock);
354         /*
355          * This sequence increase will notify the kvm page fault that
356          * the page that is going to be mapped in the spte could have
357          * been freed.
358          */
359         kvm->mmu_notifier_seq++;
360         /*
361          * The above sequence increase must be visible before the
362          * below count decrease but both values are read by the kvm
363          * page fault under mmu_lock spinlock so we don't need to add
364          * a smb_wmb() here in between the two.
365          */
366         kvm->mmu_notifier_count--;
367         spin_unlock(&kvm->mmu_lock);
368
369         BUG_ON(kvm->mmu_notifier_count < 0);
370 }
371
372 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
373                                               struct mm_struct *mm,
374                                               unsigned long address)
375 {
376         struct kvm *kvm = mmu_notifier_to_kvm(mn);
377         int young, idx;
378
379         idx = srcu_read_lock(&kvm->srcu);
380         spin_lock(&kvm->mmu_lock);
381         young = kvm_age_hva(kvm, address);
382         spin_unlock(&kvm->mmu_lock);
383         srcu_read_unlock(&kvm->srcu, idx);
384
385         if (young)
386                 kvm_flush_remote_tlbs(kvm);
387
388         return young;
389 }
390
391 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
392                                        struct mm_struct *mm,
393                                        unsigned long address)
394 {
395         struct kvm *kvm = mmu_notifier_to_kvm(mn);
396         int young, idx;
397
398         idx = srcu_read_lock(&kvm->srcu);
399         spin_lock(&kvm->mmu_lock);
400         young = kvm_test_age_hva(kvm, address);
401         spin_unlock(&kvm->mmu_lock);
402         srcu_read_unlock(&kvm->srcu, idx);
403
404         return young;
405 }
406
407 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
408                                      struct mm_struct *mm)
409 {
410         struct kvm *kvm = mmu_notifier_to_kvm(mn);
411         int idx;
412
413         idx = srcu_read_lock(&kvm->srcu);
414         kvm_arch_flush_shadow(kvm);
415         srcu_read_unlock(&kvm->srcu, idx);
416 }
417
418 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
419         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
420         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
421         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
422         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
423         .test_young             = kvm_mmu_notifier_test_young,
424         .change_pte             = kvm_mmu_notifier_change_pte,
425         .release                = kvm_mmu_notifier_release,
426 };
427
428 static int kvm_init_mmu_notifier(struct kvm *kvm)
429 {
430         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
431         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
432 }
433
434 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
435
436 static int kvm_init_mmu_notifier(struct kvm *kvm)
437 {
438         return 0;
439 }
440
441 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
442
443 static struct kvm *kvm_create_vm(void)
444 {
445         int r, i;
446         struct kvm *kvm = kvm_arch_alloc_vm();
447
448         if (!kvm)
449                 return ERR_PTR(-ENOMEM);
450
451         r = kvm_arch_init_vm(kvm);
452         if (r)
453                 goto out_err_nodisable;
454
455         r = hardware_enable_all();
456         if (r)
457                 goto out_err_nodisable;
458
459 #ifdef CONFIG_HAVE_KVM_IRQCHIP
460         INIT_HLIST_HEAD(&kvm->mask_notifier_list);
461         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
462 #endif
463
464         r = -ENOMEM;
465         kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
466         if (!kvm->memslots)
467                 goto out_err_nosrcu;
468         if (init_srcu_struct(&kvm->srcu))
469                 goto out_err_nosrcu;
470         for (i = 0; i < KVM_NR_BUSES; i++) {
471                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
472                                         GFP_KERNEL);
473                 if (!kvm->buses[i])
474                         goto out_err;
475         }
476
477         spin_lock_init(&kvm->mmu_lock);
478         kvm->mm = current->mm;
479         atomic_inc(&kvm->mm->mm_count);
480         kvm_eventfd_init(kvm);
481         mutex_init(&kvm->lock);
482         mutex_init(&kvm->irq_lock);
483         mutex_init(&kvm->slots_lock);
484         atomic_set(&kvm->users_count, 1);
485
486         r = kvm_init_mmu_notifier(kvm);
487         if (r)
488                 goto out_err;
489
490         raw_spin_lock(&kvm_lock);
491         list_add(&kvm->vm_list, &vm_list);
492         raw_spin_unlock(&kvm_lock);
493
494         return kvm;
495
496 out_err:
497         cleanup_srcu_struct(&kvm->srcu);
498 out_err_nosrcu:
499         hardware_disable_all();
500 out_err_nodisable:
501         for (i = 0; i < KVM_NR_BUSES; i++)
502                 kfree(kvm->buses[i]);
503         kfree(kvm->memslots);
504         kvm_arch_free_vm(kvm);
505         return ERR_PTR(r);
506 }
507
508 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
509 {
510         if (!memslot->dirty_bitmap)
511                 return;
512
513         if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
514                 vfree(memslot->dirty_bitmap_head);
515         else
516                 kfree(memslot->dirty_bitmap_head);
517
518         memslot->dirty_bitmap = NULL;
519         memslot->dirty_bitmap_head = NULL;
520 }
521
522 /*
523  * Free any memory in @free but not in @dont.
524  */
525 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
526                                   struct kvm_memory_slot *dont)
527 {
528         int i;
529
530         if (!dont || free->rmap != dont->rmap)
531                 vfree(free->rmap);
532
533         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
534                 kvm_destroy_dirty_bitmap(free);
535
536
537         for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
538                 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
539                         vfree(free->lpage_info[i]);
540                         free->lpage_info[i] = NULL;
541                 }
542         }
543
544         free->npages = 0;
545         free->rmap = NULL;
546 }
547
548 void kvm_free_physmem(struct kvm *kvm)
549 {
550         int i;
551         struct kvm_memslots *slots = kvm->memslots;
552
553         for (i = 0; i < slots->nmemslots; ++i)
554                 kvm_free_physmem_slot(&slots->memslots[i], NULL);
555
556         kfree(kvm->memslots);
557 }
558
559 static void kvm_destroy_vm(struct kvm *kvm)
560 {
561         int i;
562         struct mm_struct *mm = kvm->mm;
563
564         kvm_arch_sync_events(kvm);
565         raw_spin_lock(&kvm_lock);
566         list_del(&kvm->vm_list);
567         raw_spin_unlock(&kvm_lock);
568         kvm_free_irq_routing(kvm);
569         for (i = 0; i < KVM_NR_BUSES; i++)
570                 kvm_io_bus_destroy(kvm->buses[i]);
571         kvm_coalesced_mmio_free(kvm);
572 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
573         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
574 #else
575         kvm_arch_flush_shadow(kvm);
576 #endif
577         kvm_arch_destroy_vm(kvm);
578         kvm_free_physmem(kvm);
579         cleanup_srcu_struct(&kvm->srcu);
580         kvm_arch_free_vm(kvm);
581         hardware_disable_all();
582         mmdrop(mm);
583 }
584
585 void kvm_get_kvm(struct kvm *kvm)
586 {
587         atomic_inc(&kvm->users_count);
588 }
589 EXPORT_SYMBOL_GPL(kvm_get_kvm);
590
591 void kvm_put_kvm(struct kvm *kvm)
592 {
593         if (atomic_dec_and_test(&kvm->users_count))
594                 kvm_destroy_vm(kvm);
595 }
596 EXPORT_SYMBOL_GPL(kvm_put_kvm);
597
598
599 static int kvm_vm_release(struct inode *inode, struct file *filp)
600 {
601         struct kvm *kvm = filp->private_data;
602
603         kvm_irqfd_release(kvm);
604
605         kvm_put_kvm(kvm);
606         return 0;
607 }
608
609 #ifndef CONFIG_S390
610 /*
611  * Allocation size is twice as large as the actual dirty bitmap size.
612  * This makes it possible to do double buffering: see x86's
613  * kvm_vm_ioctl_get_dirty_log().
614  */
615 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
616 {
617         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
618
619         if (dirty_bytes > PAGE_SIZE)
620                 memslot->dirty_bitmap = vzalloc(dirty_bytes);
621         else
622                 memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
623
624         if (!memslot->dirty_bitmap)
625                 return -ENOMEM;
626
627         memslot->dirty_bitmap_head = memslot->dirty_bitmap;
628         return 0;
629 }
630 #endif /* !CONFIG_S390 */
631
632 /*
633  * Allocate some memory and give it an address in the guest physical address
634  * space.
635  *
636  * Discontiguous memory is allowed, mostly for framebuffers.
637  *
638  * Must be called holding mmap_sem for write.
639  */
640 int __kvm_set_memory_region(struct kvm *kvm,
641                             struct kvm_userspace_memory_region *mem,
642                             int user_alloc)
643 {
644         int r;
645         gfn_t base_gfn;
646         unsigned long npages;
647         unsigned long i;
648         struct kvm_memory_slot *memslot;
649         struct kvm_memory_slot old, new;
650         struct kvm_memslots *slots, *old_memslots;
651
652         r = -EINVAL;
653         /* General sanity checks */
654         if (mem->memory_size & (PAGE_SIZE - 1))
655                 goto out;
656         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
657                 goto out;
658         /* We can read the guest memory with __xxx_user() later on. */
659         if (user_alloc &&
660             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
661              !access_ok(VERIFY_WRITE,
662                         (void __user *)(unsigned long)mem->userspace_addr,
663                         mem->memory_size)))
664                 goto out;
665         if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
666                 goto out;
667         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
668                 goto out;
669
670         memslot = &kvm->memslots->memslots[mem->slot];
671         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
672         npages = mem->memory_size >> PAGE_SHIFT;
673
674         r = -EINVAL;
675         if (npages > KVM_MEM_MAX_NR_PAGES)
676                 goto out;
677
678         if (!npages)
679                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
680
681         new = old = *memslot;
682
683         new.id = mem->slot;
684         new.base_gfn = base_gfn;
685         new.npages = npages;
686         new.flags = mem->flags;
687
688         /* Disallow changing a memory slot's size. */
689         r = -EINVAL;
690         if (npages && old.npages && npages != old.npages)
691                 goto out_free;
692
693         /* Check for overlaps */
694         r = -EEXIST;
695         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
696                 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
697
698                 if (s == memslot || !s->npages)
699                         continue;
700                 if (!((base_gfn + npages <= s->base_gfn) ||
701                       (base_gfn >= s->base_gfn + s->npages)))
702                         goto out_free;
703         }
704
705         /* Free page dirty bitmap if unneeded */
706         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
707                 new.dirty_bitmap = NULL;
708
709         r = -ENOMEM;
710
711         /* Allocate if a slot is being created */
712 #ifndef CONFIG_S390
713         if (npages && !new.rmap) {
714                 new.rmap = vzalloc(npages * sizeof(*new.rmap));
715
716                 if (!new.rmap)
717                         goto out_free;
718
719                 new.user_alloc = user_alloc;
720                 new.userspace_addr = mem->userspace_addr;
721         }
722         if (!npages)
723                 goto skip_lpage;
724
725         for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
726                 unsigned long ugfn;
727                 unsigned long j;
728                 int lpages;
729                 int level = i + 2;
730
731                 /* Avoid unused variable warning if no large pages */
732                 (void)level;
733
734                 if (new.lpage_info[i])
735                         continue;
736
737                 lpages = 1 + ((base_gfn + npages - 1)
738                              >> KVM_HPAGE_GFN_SHIFT(level));
739                 lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
740
741                 new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
742
743                 if (!new.lpage_info[i])
744                         goto out_free;
745
746                 if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
747                         new.lpage_info[i][0].write_count = 1;
748                 if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
749                         new.lpage_info[i][lpages - 1].write_count = 1;
750                 ugfn = new.userspace_addr >> PAGE_SHIFT;
751                 /*
752                  * If the gfn and userspace address are not aligned wrt each
753                  * other, or if explicitly asked to, disable large page
754                  * support for this slot
755                  */
756                 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
757                     !largepages_enabled)
758                         for (j = 0; j < lpages; ++j)
759                                 new.lpage_info[i][j].write_count = 1;
760         }
761
762 skip_lpage:
763
764         /* Allocate page dirty bitmap if needed */
765         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
766                 if (kvm_create_dirty_bitmap(&new) < 0)
767                         goto out_free;
768                 /* destroy any largepage mappings for dirty tracking */
769         }
770 #else  /* not defined CONFIG_S390 */
771         new.user_alloc = user_alloc;
772         if (user_alloc)
773                 new.userspace_addr = mem->userspace_addr;
774 #endif /* not defined CONFIG_S390 */
775
776         if (!npages) {
777                 r = -ENOMEM;
778                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
779                 if (!slots)
780                         goto out_free;
781                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
782                 if (mem->slot >= slots->nmemslots)
783                         slots->nmemslots = mem->slot + 1;
784                 slots->generation++;
785                 slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
786
787                 old_memslots = kvm->memslots;
788                 rcu_assign_pointer(kvm->memslots, slots);
789                 synchronize_srcu_expedited(&kvm->srcu);
790                 /* From this point no new shadow pages pointing to a deleted
791                  * memslot will be created.
792                  *
793                  * validation of sp->gfn happens in:
794                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
795                  *      - kvm_is_visible_gfn (mmu_check_roots)
796                  */
797                 kvm_arch_flush_shadow(kvm);
798                 kfree(old_memslots);
799         }
800
801         r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
802         if (r)
803                 goto out_free;
804
805         /* map the pages in iommu page table */
806         if (npages) {
807                 r = kvm_iommu_map_pages(kvm, &new);
808                 if (r)
809                         goto out_free;
810         }
811
812         r = -ENOMEM;
813         slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
814         if (!slots)
815                 goto out_free;
816         memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
817         if (mem->slot >= slots->nmemslots)
818                 slots->nmemslots = mem->slot + 1;
819         slots->generation++;
820
821         /* actual memory is freed via old in kvm_free_physmem_slot below */
822         if (!npages) {
823                 new.rmap = NULL;
824                 new.dirty_bitmap = NULL;
825                 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
826                         new.lpage_info[i] = NULL;
827         }
828
829         slots->memslots[mem->slot] = new;
830         old_memslots = kvm->memslots;
831         rcu_assign_pointer(kvm->memslots, slots);
832         synchronize_srcu_expedited(&kvm->srcu);
833
834         kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
835
836         /*
837          * If the new memory slot is created, we need to clear all
838          * mmio sptes.
839          */
840         if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
841                 kvm_arch_flush_shadow(kvm);
842
843         kvm_free_physmem_slot(&old, &new);
844         kfree(old_memslots);
845
846         return 0;
847
848 out_free:
849         kvm_free_physmem_slot(&new, &old);
850 out:
851         return r;
852
853 }
854 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
855
856 int kvm_set_memory_region(struct kvm *kvm,
857                           struct kvm_userspace_memory_region *mem,
858                           int user_alloc)
859 {
860         int r;
861
862         mutex_lock(&kvm->slots_lock);
863         r = __kvm_set_memory_region(kvm, mem, user_alloc);
864         mutex_unlock(&kvm->slots_lock);
865         return r;
866 }
867 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
868
869 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
870                                    struct
871                                    kvm_userspace_memory_region *mem,
872                                    int user_alloc)
873 {
874         if (mem->slot >= KVM_MEMORY_SLOTS)
875                 return -EINVAL;
876         return kvm_set_memory_region(kvm, mem, user_alloc);
877 }
878
879 int kvm_get_dirty_log(struct kvm *kvm,
880                         struct kvm_dirty_log *log, int *is_dirty)
881 {
882         struct kvm_memory_slot *memslot;
883         int r, i;
884         unsigned long n;
885         unsigned long any = 0;
886
887         r = -EINVAL;
888         if (log->slot >= KVM_MEMORY_SLOTS)
889                 goto out;
890
891         memslot = &kvm->memslots->memslots[log->slot];
892         r = -ENOENT;
893         if (!memslot->dirty_bitmap)
894                 goto out;
895
896         n = kvm_dirty_bitmap_bytes(memslot);
897
898         for (i = 0; !any && i < n/sizeof(long); ++i)
899                 any = memslot->dirty_bitmap[i];
900
901         r = -EFAULT;
902         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
903                 goto out;
904
905         if (any)
906                 *is_dirty = 1;
907
908         r = 0;
909 out:
910         return r;
911 }
912
913 void kvm_disable_largepages(void)
914 {
915         largepages_enabled = false;
916 }
917 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
918
919 int is_error_page(struct page *page)
920 {
921         return page == bad_page || page == hwpoison_page || page == fault_page;
922 }
923 EXPORT_SYMBOL_GPL(is_error_page);
924
925 int is_error_pfn(pfn_t pfn)
926 {
927         return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
928 }
929 EXPORT_SYMBOL_GPL(is_error_pfn);
930
931 int is_hwpoison_pfn(pfn_t pfn)
932 {
933         return pfn == hwpoison_pfn;
934 }
935 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
936
937 int is_fault_pfn(pfn_t pfn)
938 {
939         return pfn == fault_pfn;
940 }
941 EXPORT_SYMBOL_GPL(is_fault_pfn);
942
943 int is_noslot_pfn(pfn_t pfn)
944 {
945         return pfn == bad_pfn;
946 }
947 EXPORT_SYMBOL_GPL(is_noslot_pfn);
948
949 int is_invalid_pfn(pfn_t pfn)
950 {
951         return pfn == hwpoison_pfn || pfn == fault_pfn;
952 }
953 EXPORT_SYMBOL_GPL(is_invalid_pfn);
954
955 static inline unsigned long bad_hva(void)
956 {
957         return PAGE_OFFSET;
958 }
959
960 int kvm_is_error_hva(unsigned long addr)
961 {
962         return addr == bad_hva();
963 }
964 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
965
966 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
967                                                 gfn_t gfn)
968 {
969         int i;
970
971         for (i = 0; i < slots->nmemslots; ++i) {
972                 struct kvm_memory_slot *memslot = &slots->memslots[i];
973
974                 if (gfn >= memslot->base_gfn
975                     && gfn < memslot->base_gfn + memslot->npages)
976                         return memslot;
977         }
978         return NULL;
979 }
980
981 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
982 {
983         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
984 }
985 EXPORT_SYMBOL_GPL(gfn_to_memslot);
986
987 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
988 {
989         int i;
990         struct kvm_memslots *slots = kvm_memslots(kvm);
991
992         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
993                 struct kvm_memory_slot *memslot = &slots->memslots[i];
994
995                 if (memslot->flags & KVM_MEMSLOT_INVALID)
996                         continue;
997
998                 if (gfn >= memslot->base_gfn
999                     && gfn < memslot->base_gfn + memslot->npages)
1000                         return 1;
1001         }
1002         return 0;
1003 }
1004 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1005
1006 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1007 {
1008         struct vm_area_struct *vma;
1009         unsigned long addr, size;
1010
1011         size = PAGE_SIZE;
1012
1013         addr = gfn_to_hva(kvm, gfn);
1014         if (kvm_is_error_hva(addr))
1015                 return PAGE_SIZE;
1016
1017         down_read(&current->mm->mmap_sem);
1018         vma = find_vma(current->mm, addr);
1019         if (!vma)
1020                 goto out;
1021
1022         size = vma_kernel_pagesize(vma);
1023
1024 out:
1025         up_read(&current->mm->mmap_sem);
1026
1027         return size;
1028 }
1029
1030 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1031                                      gfn_t *nr_pages)
1032 {
1033         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1034                 return bad_hva();
1035
1036         if (nr_pages)
1037                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1038
1039         return gfn_to_hva_memslot(slot, gfn);
1040 }
1041
1042 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1043 {
1044         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1045 }
1046 EXPORT_SYMBOL_GPL(gfn_to_hva);
1047
1048 static pfn_t get_fault_pfn(void)
1049 {
1050         get_page(fault_page);
1051         return fault_pfn;
1052 }
1053
1054 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1055         unsigned long start, int write, struct page **page)
1056 {
1057         int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1058
1059         if (write)
1060                 flags |= FOLL_WRITE;
1061
1062         return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1063 }
1064
1065 static inline int check_user_page_hwpoison(unsigned long addr)
1066 {
1067         int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1068
1069         rc = __get_user_pages(current, current->mm, addr, 1,
1070                               flags, NULL, NULL, NULL);
1071         return rc == -EHWPOISON;
1072 }
1073
1074 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1075                         bool *async, bool write_fault, bool *writable)
1076 {
1077         struct page *page[1];
1078         int npages = 0;
1079         pfn_t pfn;
1080
1081         /* we can do it either atomically or asynchronously, not both */
1082         BUG_ON(atomic && async);
1083
1084         BUG_ON(!write_fault && !writable);
1085
1086         if (writable)
1087                 *writable = true;
1088
1089         if (atomic || async)
1090                 npages = __get_user_pages_fast(addr, 1, 1, page);
1091
1092         if (unlikely(npages != 1) && !atomic) {
1093                 might_sleep();
1094
1095                 if (writable)
1096                         *writable = write_fault;
1097
1098                 if (async) {
1099                         down_read(&current->mm->mmap_sem);
1100                         npages = get_user_page_nowait(current, current->mm,
1101                                                      addr, write_fault, page);
1102                         up_read(&current->mm->mmap_sem);
1103                 } else
1104                         npages = get_user_pages_fast(addr, 1, write_fault,
1105                                                      page);
1106
1107                 /* map read fault as writable if possible */
1108                 if (unlikely(!write_fault) && npages == 1) {
1109                         struct page *wpage[1];
1110
1111                         npages = __get_user_pages_fast(addr, 1, 1, wpage);
1112                         if (npages == 1) {
1113                                 *writable = true;
1114                                 put_page(page[0]);
1115                                 page[0] = wpage[0];
1116                         }
1117                         npages = 1;
1118                 }
1119         }
1120
1121         if (unlikely(npages != 1)) {
1122                 struct vm_area_struct *vma;
1123
1124                 if (atomic)
1125                         return get_fault_pfn();
1126
1127                 down_read(&current->mm->mmap_sem);
1128                 if (npages == -EHWPOISON ||
1129                         (!async && check_user_page_hwpoison(addr))) {
1130                         up_read(&current->mm->mmap_sem);
1131                         get_page(hwpoison_page);
1132                         return page_to_pfn(hwpoison_page);
1133                 }
1134
1135                 vma = find_vma_intersection(current->mm, addr, addr+1);
1136
1137                 if (vma == NULL)
1138                         pfn = get_fault_pfn();
1139                 else if ((vma->vm_flags & VM_PFNMAP)) {
1140                         pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1141                                 vma->vm_pgoff;
1142                         BUG_ON(!kvm_is_mmio_pfn(pfn));
1143                 } else {
1144                         if (async && (vma->vm_flags & VM_WRITE))
1145                                 *async = true;
1146                         pfn = get_fault_pfn();
1147                 }
1148                 up_read(&current->mm->mmap_sem);
1149         } else
1150                 pfn = page_to_pfn(page[0]);
1151
1152         return pfn;
1153 }
1154
1155 pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1156 {
1157         return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1158 }
1159 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1160
1161 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1162                           bool write_fault, bool *writable)
1163 {
1164         unsigned long addr;
1165
1166         if (async)
1167                 *async = false;
1168
1169         addr = gfn_to_hva(kvm, gfn);
1170         if (kvm_is_error_hva(addr)) {
1171                 get_page(bad_page);
1172                 return page_to_pfn(bad_page);
1173         }
1174
1175         return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1176 }
1177
1178 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1179 {
1180         return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1181 }
1182 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1183
1184 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1185                        bool write_fault, bool *writable)
1186 {
1187         return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1188 }
1189 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1190
1191 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1192 {
1193         return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1194 }
1195 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1196
1197 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1198                       bool *writable)
1199 {
1200         return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1201 }
1202 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1203
1204 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1205                          struct kvm_memory_slot *slot, gfn_t gfn)
1206 {
1207         unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1208         return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1209 }
1210
1211 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1212                                                                   int nr_pages)
1213 {
1214         unsigned long addr;
1215         gfn_t entry;
1216
1217         addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1218         if (kvm_is_error_hva(addr))
1219                 return -1;
1220
1221         if (entry < nr_pages)
1222                 return 0;
1223
1224         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1225 }
1226 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1227
1228 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1229 {
1230         pfn_t pfn;
1231
1232         pfn = gfn_to_pfn(kvm, gfn);
1233         if (!kvm_is_mmio_pfn(pfn))
1234                 return pfn_to_page(pfn);
1235
1236         WARN_ON(kvm_is_mmio_pfn(pfn));
1237
1238         get_page(bad_page);
1239         return bad_page;
1240 }
1241
1242 EXPORT_SYMBOL_GPL(gfn_to_page);
1243
1244 void kvm_release_page_clean(struct page *page)
1245 {
1246         kvm_release_pfn_clean(page_to_pfn(page));
1247 }
1248 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1249
1250 void kvm_release_pfn_clean(pfn_t pfn)
1251 {
1252         if (!kvm_is_mmio_pfn(pfn))
1253                 put_page(pfn_to_page(pfn));
1254 }
1255 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1256
1257 void kvm_release_page_dirty(struct page *page)
1258 {
1259         kvm_release_pfn_dirty(page_to_pfn(page));
1260 }
1261 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1262
1263 void kvm_release_pfn_dirty(pfn_t pfn)
1264 {
1265         kvm_set_pfn_dirty(pfn);
1266         kvm_release_pfn_clean(pfn);
1267 }
1268 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1269
1270 void kvm_set_page_dirty(struct page *page)
1271 {
1272         kvm_set_pfn_dirty(page_to_pfn(page));
1273 }
1274 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1275
1276 void kvm_set_pfn_dirty(pfn_t pfn)
1277 {
1278         if (!kvm_is_mmio_pfn(pfn)) {
1279                 struct page *page = pfn_to_page(pfn);
1280                 if (!PageReserved(page))
1281                         SetPageDirty(page);
1282         }
1283 }
1284 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1285
1286 void kvm_set_pfn_accessed(pfn_t pfn)
1287 {
1288         if (!kvm_is_mmio_pfn(pfn))
1289                 mark_page_accessed(pfn_to_page(pfn));
1290 }
1291 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1292
1293 void kvm_get_pfn(pfn_t pfn)
1294 {
1295         if (!kvm_is_mmio_pfn(pfn))
1296                 get_page(pfn_to_page(pfn));
1297 }
1298 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1299
1300 static int next_segment(unsigned long len, int offset)
1301 {
1302         if (len > PAGE_SIZE - offset)
1303                 return PAGE_SIZE - offset;
1304         else
1305                 return len;
1306 }
1307
1308 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1309                         int len)
1310 {
1311         int r;
1312         unsigned long addr;
1313
1314         addr = gfn_to_hva(kvm, gfn);
1315         if (kvm_is_error_hva(addr))
1316                 return -EFAULT;
1317         r = __copy_from_user(data, (void __user *)addr + offset, len);
1318         if (r)
1319                 return -EFAULT;
1320         return 0;
1321 }
1322 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1323
1324 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1325 {
1326         gfn_t gfn = gpa >> PAGE_SHIFT;
1327         int seg;
1328         int offset = offset_in_page(gpa);
1329         int ret;
1330
1331         while ((seg = next_segment(len, offset)) != 0) {
1332                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1333                 if (ret < 0)
1334                         return ret;
1335                 offset = 0;
1336                 len -= seg;
1337                 data += seg;
1338                 ++gfn;
1339         }
1340         return 0;
1341 }
1342 EXPORT_SYMBOL_GPL(kvm_read_guest);
1343
1344 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1345                           unsigned long len)
1346 {
1347         int r;
1348         unsigned long addr;
1349         gfn_t gfn = gpa >> PAGE_SHIFT;
1350         int offset = offset_in_page(gpa);
1351
1352         addr = gfn_to_hva(kvm, gfn);
1353         if (kvm_is_error_hva(addr))
1354                 return -EFAULT;
1355         pagefault_disable();
1356         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1357         pagefault_enable();
1358         if (r)
1359                 return -EFAULT;
1360         return 0;
1361 }
1362 EXPORT_SYMBOL(kvm_read_guest_atomic);
1363
1364 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1365                          int offset, int len)
1366 {
1367         int r;
1368         unsigned long addr;
1369
1370         addr = gfn_to_hva(kvm, gfn);
1371         if (kvm_is_error_hva(addr))
1372                 return -EFAULT;
1373         r = __copy_to_user((void __user *)addr + offset, data, len);
1374         if (r)
1375                 return -EFAULT;
1376         mark_page_dirty(kvm, gfn);
1377         return 0;
1378 }
1379 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1380
1381 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1382                     unsigned long len)
1383 {
1384         gfn_t gfn = gpa >> PAGE_SHIFT;
1385         int seg;
1386         int offset = offset_in_page(gpa);
1387         int ret;
1388
1389         while ((seg = next_segment(len, offset)) != 0) {
1390                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1391                 if (ret < 0)
1392                         return ret;
1393                 offset = 0;
1394                 len -= seg;
1395                 data += seg;
1396                 ++gfn;
1397         }
1398         return 0;
1399 }
1400
1401 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1402                               gpa_t gpa)
1403 {
1404         struct kvm_memslots *slots = kvm_memslots(kvm);
1405         int offset = offset_in_page(gpa);
1406         gfn_t gfn = gpa >> PAGE_SHIFT;
1407
1408         ghc->gpa = gpa;
1409         ghc->generation = slots->generation;
1410         ghc->memslot = __gfn_to_memslot(slots, gfn);
1411         ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1412         if (!kvm_is_error_hva(ghc->hva))
1413                 ghc->hva += offset;
1414         else
1415                 return -EFAULT;
1416
1417         return 0;
1418 }
1419 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1420
1421 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1422                            void *data, unsigned long len)
1423 {
1424         struct kvm_memslots *slots = kvm_memslots(kvm);
1425         int r;
1426
1427         if (slots->generation != ghc->generation)
1428                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1429
1430         if (kvm_is_error_hva(ghc->hva))
1431                 return -EFAULT;
1432
1433         r = __copy_to_user((void __user *)ghc->hva, data, len);
1434         if (r)
1435                 return -EFAULT;
1436         mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1437
1438         return 0;
1439 }
1440 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1441
1442 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1443                            void *data, unsigned long len)
1444 {
1445         struct kvm_memslots *slots = kvm_memslots(kvm);
1446         int r;
1447
1448         if (slots->generation != ghc->generation)
1449                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1450
1451         if (kvm_is_error_hva(ghc->hva))
1452                 return -EFAULT;
1453
1454         r = __copy_from_user(data, (void __user *)ghc->hva, len);
1455         if (r)
1456                 return -EFAULT;
1457
1458         return 0;
1459 }
1460 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1461
1462 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1463 {
1464         return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1465                                     offset, len);
1466 }
1467 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1468
1469 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1470 {
1471         gfn_t gfn = gpa >> PAGE_SHIFT;
1472         int seg;
1473         int offset = offset_in_page(gpa);
1474         int ret;
1475
1476         while ((seg = next_segment(len, offset)) != 0) {
1477                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1478                 if (ret < 0)
1479                         return ret;
1480                 offset = 0;
1481                 len -= seg;
1482                 ++gfn;
1483         }
1484         return 0;
1485 }
1486 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1487
1488 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1489                              gfn_t gfn)
1490 {
1491         if (memslot && memslot->dirty_bitmap) {
1492                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1493
1494                 __set_bit_le(rel_gfn, memslot->dirty_bitmap);
1495         }
1496 }
1497
1498 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1499 {
1500         struct kvm_memory_slot *memslot;
1501
1502         memslot = gfn_to_memslot(kvm, gfn);
1503         mark_page_dirty_in_slot(kvm, memslot, gfn);
1504 }
1505
1506 /*
1507  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1508  */
1509 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1510 {
1511         DEFINE_WAIT(wait);
1512
1513         for (;;) {
1514                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1515
1516                 if (kvm_arch_vcpu_runnable(vcpu)) {
1517                         kvm_make_request(KVM_REQ_UNHALT, vcpu);
1518                         break;
1519                 }
1520                 if (kvm_cpu_has_pending_timer(vcpu))
1521                         break;
1522                 if (signal_pending(current))
1523                         break;
1524
1525                 schedule();
1526         }
1527
1528         finish_wait(&vcpu->wq, &wait);
1529 }
1530
1531 void kvm_resched(struct kvm_vcpu *vcpu)
1532 {
1533         if (!need_resched())
1534                 return;
1535         cond_resched();
1536 }
1537 EXPORT_SYMBOL_GPL(kvm_resched);
1538
1539 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1540 {
1541         struct kvm *kvm = me->kvm;
1542         struct kvm_vcpu *vcpu;
1543         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1544         int yielded = 0;
1545         int pass;
1546         int i;
1547
1548         /*
1549          * We boost the priority of a VCPU that is runnable but not
1550          * currently running, because it got preempted by something
1551          * else and called schedule in __vcpu_run.  Hopefully that
1552          * VCPU is holding the lock that we need and will release it.
1553          * We approximate round-robin by starting at the last boosted VCPU.
1554          */
1555         for (pass = 0; pass < 2 && !yielded; pass++) {
1556                 kvm_for_each_vcpu(i, vcpu, kvm) {
1557                         struct task_struct *task = NULL;
1558                         struct pid *pid;
1559                         if (!pass && i < last_boosted_vcpu) {
1560                                 i = last_boosted_vcpu;
1561                                 continue;
1562                         } else if (pass && i > last_boosted_vcpu)
1563                                 break;
1564                         if (vcpu == me)
1565                                 continue;
1566                         if (waitqueue_active(&vcpu->wq))
1567                                 continue;
1568                         rcu_read_lock();
1569                         pid = rcu_dereference(vcpu->pid);
1570                         if (pid)
1571                                 task = get_pid_task(vcpu->pid, PIDTYPE_PID);
1572                         rcu_read_unlock();
1573                         if (!task)
1574                                 continue;
1575                         if (task->flags & PF_VCPU) {
1576                                 put_task_struct(task);
1577                                 continue;
1578                         }
1579                         if (yield_to(task, 1)) {
1580                                 put_task_struct(task);
1581                                 kvm->last_boosted_vcpu = i;
1582                                 yielded = 1;
1583                                 break;
1584                         }
1585                         put_task_struct(task);
1586                 }
1587         }
1588 }
1589 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1590
1591 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1592 {
1593         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1594         struct page *page;
1595
1596         if (vmf->pgoff == 0)
1597                 page = virt_to_page(vcpu->run);
1598 #ifdef CONFIG_X86
1599         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1600                 page = virt_to_page(vcpu->arch.pio_data);
1601 #endif
1602 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1603         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1604                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1605 #endif
1606         else
1607                 return VM_FAULT_SIGBUS;
1608         get_page(page);
1609         vmf->page = page;
1610         return 0;
1611 }
1612
1613 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1614         .fault = kvm_vcpu_fault,
1615 };
1616
1617 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1618 {
1619         vma->vm_ops = &kvm_vcpu_vm_ops;
1620         return 0;
1621 }
1622
1623 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1624 {
1625         struct kvm_vcpu *vcpu = filp->private_data;
1626
1627         kvm_put_kvm(vcpu->kvm);
1628         return 0;
1629 }
1630
1631 static struct file_operations kvm_vcpu_fops = {
1632         .release        = kvm_vcpu_release,
1633         .unlocked_ioctl = kvm_vcpu_ioctl,
1634 #ifdef CONFIG_COMPAT
1635         .compat_ioctl   = kvm_vcpu_compat_ioctl,
1636 #endif
1637         .mmap           = kvm_vcpu_mmap,
1638         .llseek         = noop_llseek,
1639 };
1640
1641 /*
1642  * Allocates an inode for the vcpu.
1643  */
1644 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1645 {
1646         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1647 }
1648
1649 /*
1650  * Creates some virtual cpus.  Good luck creating more than one.
1651  */
1652 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1653 {
1654         int r;
1655         struct kvm_vcpu *vcpu, *v;
1656
1657         vcpu = kvm_arch_vcpu_create(kvm, id);
1658         if (IS_ERR(vcpu))
1659                 return PTR_ERR(vcpu);
1660
1661         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1662
1663         r = kvm_arch_vcpu_setup(vcpu);
1664         if (r)
1665                 goto vcpu_destroy;
1666
1667         mutex_lock(&kvm->lock);
1668         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1669                 r = -EINVAL;
1670                 goto unlock_vcpu_destroy;
1671         }
1672
1673         kvm_for_each_vcpu(r, v, kvm)
1674                 if (v->vcpu_id == id) {
1675                         r = -EEXIST;
1676                         goto unlock_vcpu_destroy;
1677                 }
1678
1679         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1680
1681         /* Now it's all set up, let userspace reach it */
1682         kvm_get_kvm(kvm);
1683         r = create_vcpu_fd(vcpu);
1684         if (r < 0) {
1685                 kvm_put_kvm(kvm);
1686                 goto unlock_vcpu_destroy;
1687         }
1688
1689         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1690         smp_wmb();
1691         atomic_inc(&kvm->online_vcpus);
1692
1693 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1694         if (kvm->bsp_vcpu_id == id)
1695                 kvm->bsp_vcpu = vcpu;
1696 #endif
1697         mutex_unlock(&kvm->lock);
1698         return r;
1699
1700 unlock_vcpu_destroy:
1701         mutex_unlock(&kvm->lock);
1702 vcpu_destroy:
1703         kvm_arch_vcpu_destroy(vcpu);
1704         return r;
1705 }
1706
1707 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1708 {
1709         if (sigset) {
1710                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1711                 vcpu->sigset_active = 1;
1712                 vcpu->sigset = *sigset;
1713         } else
1714                 vcpu->sigset_active = 0;
1715         return 0;
1716 }
1717
1718 static long kvm_vcpu_ioctl(struct file *filp,
1719                            unsigned int ioctl, unsigned long arg)
1720 {
1721         struct kvm_vcpu *vcpu = filp->private_data;
1722         void __user *argp = (void __user *)arg;
1723         int r;
1724         struct kvm_fpu *fpu = NULL;
1725         struct kvm_sregs *kvm_sregs = NULL;
1726
1727         if (vcpu->kvm->mm != current->mm)
1728                 return -EIO;
1729
1730 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1731         /*
1732          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1733          * so vcpu_load() would break it.
1734          */
1735         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1736                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1737 #endif
1738
1739
1740         vcpu_load(vcpu);
1741         switch (ioctl) {
1742         case KVM_RUN:
1743                 r = -EINVAL;
1744                 if (arg)
1745                         goto out;
1746                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1747                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1748                 break;
1749         case KVM_GET_REGS: {
1750                 struct kvm_regs *kvm_regs;
1751
1752                 r = -ENOMEM;
1753                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1754                 if (!kvm_regs)
1755                         goto out;
1756                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1757                 if (r)
1758                         goto out_free1;
1759                 r = -EFAULT;
1760                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1761                         goto out_free1;
1762                 r = 0;
1763 out_free1:
1764                 kfree(kvm_regs);
1765                 break;
1766         }
1767         case KVM_SET_REGS: {
1768                 struct kvm_regs *kvm_regs;
1769
1770                 r = -ENOMEM;
1771                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1772                 if (!kvm_regs)
1773                         goto out;
1774                 r = -EFAULT;
1775                 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1776                         goto out_free2;
1777                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1778                 if (r)
1779                         goto out_free2;
1780                 r = 0;
1781 out_free2:
1782                 kfree(kvm_regs);
1783                 break;
1784         }
1785         case KVM_GET_SREGS: {
1786                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1787                 r = -ENOMEM;
1788                 if (!kvm_sregs)
1789                         goto out;
1790                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1791                 if (r)
1792                         goto out;
1793                 r = -EFAULT;
1794                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1795                         goto out;
1796                 r = 0;
1797                 break;
1798         }
1799         case KVM_SET_SREGS: {
1800                 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1801                 r = -ENOMEM;
1802                 if (!kvm_sregs)
1803                         goto out;
1804                 r = -EFAULT;
1805                 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1806                         goto out;
1807                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1808                 if (r)
1809                         goto out;
1810                 r = 0;
1811                 break;
1812         }
1813         case KVM_GET_MP_STATE: {
1814                 struct kvm_mp_state mp_state;
1815
1816                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1817                 if (r)
1818                         goto out;
1819                 r = -EFAULT;
1820                 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1821                         goto out;
1822                 r = 0;
1823                 break;
1824         }
1825         case KVM_SET_MP_STATE: {
1826                 struct kvm_mp_state mp_state;
1827
1828                 r = -EFAULT;
1829                 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1830                         goto out;
1831                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1832                 if (r)
1833                         goto out;
1834                 r = 0;
1835                 break;
1836         }
1837         case KVM_TRANSLATE: {
1838                 struct kvm_translation tr;
1839
1840                 r = -EFAULT;
1841                 if (copy_from_user(&tr, argp, sizeof tr))
1842                         goto out;
1843                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1844                 if (r)
1845                         goto out;
1846                 r = -EFAULT;
1847                 if (copy_to_user(argp, &tr, sizeof tr))
1848                         goto out;
1849                 r = 0;
1850                 break;
1851         }
1852         case KVM_SET_GUEST_DEBUG: {
1853                 struct kvm_guest_debug dbg;
1854
1855                 r = -EFAULT;
1856                 if (copy_from_user(&dbg, argp, sizeof dbg))
1857                         goto out;
1858                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1859                 if (r)
1860                         goto out;
1861                 r = 0;
1862                 break;
1863         }
1864         case KVM_SET_SIGNAL_MASK: {
1865                 struct kvm_signal_mask __user *sigmask_arg = argp;
1866                 struct kvm_signal_mask kvm_sigmask;
1867                 sigset_t sigset, *p;
1868
1869                 p = NULL;
1870                 if (argp) {
1871                         r = -EFAULT;
1872                         if (copy_from_user(&kvm_sigmask, argp,
1873                                            sizeof kvm_sigmask))
1874                                 goto out;
1875                         r = -EINVAL;
1876                         if (kvm_sigmask.len != sizeof sigset)
1877                                 goto out;
1878                         r = -EFAULT;
1879                         if (copy_from_user(&sigset, sigmask_arg->sigset,
1880                                            sizeof sigset))
1881                                 goto out;
1882                         p = &sigset;
1883                 }
1884                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1885                 break;
1886         }
1887         case KVM_GET_FPU: {
1888                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1889                 r = -ENOMEM;
1890                 if (!fpu)
1891                         goto out;
1892                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1893                 if (r)
1894                         goto out;
1895                 r = -EFAULT;
1896                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1897                         goto out;
1898                 r = 0;
1899                 break;
1900         }
1901         case KVM_SET_FPU: {
1902                 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1903                 r = -ENOMEM;
1904                 if (!fpu)
1905                         goto out;
1906                 r = -EFAULT;
1907                 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1908                         goto out;
1909                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1910                 if (r)
1911                         goto out;
1912                 r = 0;
1913                 break;
1914         }
1915         default:
1916                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1917         }
1918 out:
1919         vcpu_put(vcpu);
1920         kfree(fpu);
1921         kfree(kvm_sregs);
1922         return r;
1923 }
1924
1925 #ifdef CONFIG_COMPAT
1926 static long kvm_vcpu_compat_ioctl(struct file *filp,
1927                                   unsigned int ioctl, unsigned long arg)
1928 {
1929         struct kvm_vcpu *vcpu = filp->private_data;
1930         void __user *argp = compat_ptr(arg);
1931         int r;
1932
1933         if (vcpu->kvm->mm != current->mm)
1934                 return -EIO;
1935
1936         switch (ioctl) {
1937         case KVM_SET_SIGNAL_MASK: {
1938                 struct kvm_signal_mask __user *sigmask_arg = argp;
1939                 struct kvm_signal_mask kvm_sigmask;
1940                 compat_sigset_t csigset;
1941                 sigset_t sigset;
1942
1943                 if (argp) {
1944                         r = -EFAULT;
1945                         if (copy_from_user(&kvm_sigmask, argp,
1946                                            sizeof kvm_sigmask))
1947                                 goto out;
1948                         r = -EINVAL;
1949                         if (kvm_sigmask.len != sizeof csigset)
1950                                 goto out;
1951                         r = -EFAULT;
1952                         if (copy_from_user(&csigset, sigmask_arg->sigset,
1953                                            sizeof csigset))
1954                                 goto out;
1955                 }
1956                 sigset_from_compat(&sigset, &csigset);
1957                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1958                 break;
1959         }
1960         default:
1961                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
1962         }
1963
1964 out:
1965         return r;
1966 }
1967 #endif
1968
1969 static long kvm_vm_ioctl(struct file *filp,
1970                            unsigned int ioctl, unsigned long arg)
1971 {
1972         struct kvm *kvm = filp->private_data;
1973         void __user *argp = (void __user *)arg;
1974         int r;
1975
1976         if (kvm->mm != current->mm)
1977                 return -EIO;
1978         switch (ioctl) {
1979         case KVM_CREATE_VCPU:
1980                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1981                 if (r < 0)
1982                         goto out;
1983                 break;
1984         case KVM_SET_USER_MEMORY_REGION: {
1985                 struct kvm_userspace_memory_region kvm_userspace_mem;
1986
1987                 r = -EFAULT;
1988                 if (copy_from_user(&kvm_userspace_mem, argp,
1989                                                 sizeof kvm_userspace_mem))
1990                         goto out;
1991
1992                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1993                 if (r)
1994                         goto out;
1995                 break;
1996         }
1997         case KVM_GET_DIRTY_LOG: {
1998                 struct kvm_dirty_log log;
1999
2000                 r = -EFAULT;
2001                 if (copy_from_user(&log, argp, sizeof log))
2002                         goto out;
2003                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2004                 if (r)
2005                         goto out;
2006                 break;
2007         }
2008 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2009         case KVM_REGISTER_COALESCED_MMIO: {
2010                 struct kvm_coalesced_mmio_zone zone;
2011                 r = -EFAULT;
2012                 if (copy_from_user(&zone, argp, sizeof zone))
2013                         goto out;
2014                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2015                 if (r)
2016                         goto out;
2017                 r = 0;
2018                 break;
2019         }
2020         case KVM_UNREGISTER_COALESCED_MMIO: {
2021                 struct kvm_coalesced_mmio_zone zone;
2022                 r = -EFAULT;
2023                 if (copy_from_user(&zone, argp, sizeof zone))
2024                         goto out;
2025                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2026                 if (r)
2027                         goto out;
2028                 r = 0;
2029                 break;
2030         }
2031 #endif
2032         case KVM_IRQFD: {
2033                 struct kvm_irqfd data;
2034
2035                 r = -EFAULT;
2036                 if (copy_from_user(&data, argp, sizeof data))
2037                         goto out;
2038                 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2039                 break;
2040         }
2041         case KVM_IOEVENTFD: {
2042                 struct kvm_ioeventfd data;
2043
2044                 r = -EFAULT;
2045                 if (copy_from_user(&data, argp, sizeof data))
2046                         goto out;
2047                 r = kvm_ioeventfd(kvm, &data);
2048                 break;
2049         }
2050 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2051         case KVM_SET_BOOT_CPU_ID:
2052                 r = 0;
2053                 mutex_lock(&kvm->lock);
2054                 if (atomic_read(&kvm->online_vcpus) != 0)
2055                         r = -EBUSY;
2056                 else
2057                         kvm->bsp_vcpu_id = arg;
2058                 mutex_unlock(&kvm->lock);
2059                 break;
2060 #endif
2061         default:
2062                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2063                 if (r == -ENOTTY)
2064                         r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2065         }
2066 out:
2067         return r;
2068 }
2069
2070 #ifdef CONFIG_COMPAT
2071 struct compat_kvm_dirty_log {
2072         __u32 slot;
2073         __u32 padding1;
2074         union {
2075                 compat_uptr_t dirty_bitmap; /* one bit per page */
2076                 __u64 padding2;
2077         };
2078 };
2079
2080 static long kvm_vm_compat_ioctl(struct file *filp,
2081                            unsigned int ioctl, unsigned long arg)
2082 {
2083         struct kvm *kvm = filp->private_data;
2084         int r;
2085
2086         if (kvm->mm != current->mm)
2087                 return -EIO;
2088         switch (ioctl) {
2089         case KVM_GET_DIRTY_LOG: {
2090                 struct compat_kvm_dirty_log compat_log;
2091                 struct kvm_dirty_log log;
2092
2093                 r = -EFAULT;
2094                 if (copy_from_user(&compat_log, (void __user *)arg,
2095                                    sizeof(compat_log)))
2096                         goto out;
2097                 log.slot         = compat_log.slot;
2098                 log.padding1     = compat_log.padding1;
2099                 log.padding2     = compat_log.padding2;
2100                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2101
2102                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2103                 if (r)
2104                         goto out;
2105                 break;
2106         }
2107         default:
2108                 r = kvm_vm_ioctl(filp, ioctl, arg);
2109         }
2110
2111 out:
2112         return r;
2113 }
2114 #endif
2115
2116 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2117 {
2118         struct page *page[1];
2119         unsigned long addr;
2120         int npages;
2121         gfn_t gfn = vmf->pgoff;
2122         struct kvm *kvm = vma->vm_file->private_data;
2123
2124         addr = gfn_to_hva(kvm, gfn);
2125         if (kvm_is_error_hva(addr))
2126                 return VM_FAULT_SIGBUS;
2127
2128         npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2129                                 NULL);
2130         if (unlikely(npages != 1))
2131                 return VM_FAULT_SIGBUS;
2132
2133         vmf->page = page[0];
2134         return 0;
2135 }
2136
2137 static const struct vm_operations_struct kvm_vm_vm_ops = {
2138         .fault = kvm_vm_fault,
2139 };
2140
2141 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2142 {
2143         vma->vm_ops = &kvm_vm_vm_ops;
2144         return 0;
2145 }
2146
2147 static struct file_operations kvm_vm_fops = {
2148         .release        = kvm_vm_release,
2149         .unlocked_ioctl = kvm_vm_ioctl,
2150 #ifdef CONFIG_COMPAT
2151         .compat_ioctl   = kvm_vm_compat_ioctl,
2152 #endif
2153         .mmap           = kvm_vm_mmap,
2154         .llseek         = noop_llseek,
2155 };
2156
2157 static int kvm_dev_ioctl_create_vm(void)
2158 {
2159         int r;
2160         struct kvm *kvm;
2161
2162         kvm = kvm_create_vm();
2163         if (IS_ERR(kvm))
2164                 return PTR_ERR(kvm);
2165 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2166         r = kvm_coalesced_mmio_init(kvm);
2167         if (r < 0) {
2168                 kvm_put_kvm(kvm);
2169                 return r;
2170         }
2171 #endif
2172         r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2173         if (r < 0)
2174                 kvm_put_kvm(kvm);
2175
2176         return r;
2177 }
2178
2179 static long kvm_dev_ioctl_check_extension_generic(long arg)
2180 {
2181         switch (arg) {
2182         case KVM_CAP_USER_MEMORY:
2183         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2184         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2185 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2186         case KVM_CAP_SET_BOOT_CPU_ID:
2187 #endif
2188         case KVM_CAP_INTERNAL_ERROR_DATA:
2189                 return 1;
2190 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2191         case KVM_CAP_IRQ_ROUTING:
2192                 return KVM_MAX_IRQ_ROUTES;
2193 #endif
2194         default:
2195                 break;
2196         }
2197         return kvm_dev_ioctl_check_extension(arg);
2198 }
2199
2200 static long kvm_dev_ioctl(struct file *filp,
2201                           unsigned int ioctl, unsigned long arg)
2202 {
2203         long r = -EINVAL;
2204
2205         switch (ioctl) {
2206         case KVM_GET_API_VERSION:
2207                 r = -EINVAL;
2208                 if (arg)
2209                         goto out;
2210                 r = KVM_API_VERSION;
2211                 break;
2212         case KVM_CREATE_VM:
2213                 r = -EINVAL;
2214                 if (arg)
2215                         goto out;
2216                 r = kvm_dev_ioctl_create_vm();
2217                 break;
2218         case KVM_CHECK_EXTENSION:
2219                 r = kvm_dev_ioctl_check_extension_generic(arg);
2220                 break;
2221         case KVM_GET_VCPU_MMAP_SIZE:
2222                 r = -EINVAL;
2223                 if (arg)
2224                         goto out;
2225                 r = PAGE_SIZE;     /* struct kvm_run */
2226 #ifdef CONFIG_X86
2227                 r += PAGE_SIZE;    /* pio data page */
2228 #endif
2229 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2230                 r += PAGE_SIZE;    /* coalesced mmio ring page */
2231 #endif
2232                 break;
2233         case KVM_TRACE_ENABLE:
2234         case KVM_TRACE_PAUSE:
2235         case KVM_TRACE_DISABLE:
2236                 r = -EOPNOTSUPP;
2237                 break;
2238         default:
2239                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2240         }
2241 out:
2242         return r;
2243 }
2244
2245 static struct file_operations kvm_chardev_ops = {
2246         .unlocked_ioctl = kvm_dev_ioctl,
2247         .compat_ioctl   = kvm_dev_ioctl,
2248         .llseek         = noop_llseek,
2249 };
2250
2251 static struct miscdevice kvm_dev = {
2252         KVM_MINOR,
2253         "kvm",
2254         &kvm_chardev_ops,
2255 };
2256
2257 static void hardware_enable_nolock(void *junk)
2258 {
2259         int cpu = raw_smp_processor_id();
2260         int r;
2261
2262         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2263                 return;
2264
2265         cpumask_set_cpu(cpu, cpus_hardware_enabled);
2266
2267         r = kvm_arch_hardware_enable(NULL);
2268
2269         if (r) {
2270                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2271                 atomic_inc(&hardware_enable_failed);
2272                 printk(KERN_INFO "kvm: enabling virtualization on "
2273                                  "CPU%d failed\n", cpu);
2274         }
2275 }
2276
2277 static void hardware_enable(void *junk)
2278 {
2279         raw_spin_lock(&kvm_lock);
2280         hardware_enable_nolock(junk);
2281         raw_spin_unlock(&kvm_lock);
2282 }
2283
2284 static void hardware_disable_nolock(void *junk)
2285 {
2286         int cpu = raw_smp_processor_id();
2287
2288         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2289                 return;
2290         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2291         kvm_arch_hardware_disable(NULL);
2292 }
2293
2294 static void hardware_disable(void *junk)
2295 {
2296         raw_spin_lock(&kvm_lock);
2297         hardware_disable_nolock(junk);
2298         raw_spin_unlock(&kvm_lock);
2299 }
2300
2301 static void hardware_disable_all_nolock(void)
2302 {
2303         BUG_ON(!kvm_usage_count);
2304
2305         kvm_usage_count--;
2306         if (!kvm_usage_count)
2307                 on_each_cpu(hardware_disable_nolock, NULL, 1);
2308 }
2309
2310 static void hardware_disable_all(void)
2311 {
2312         raw_spin_lock(&kvm_lock);
2313         hardware_disable_all_nolock();
2314         raw_spin_unlock(&kvm_lock);
2315 }
2316
2317 static int hardware_enable_all(void)
2318 {
2319         int r = 0;
2320
2321         raw_spin_lock(&kvm_lock);
2322
2323         kvm_usage_count++;
2324         if (kvm_usage_count == 1) {
2325                 atomic_set(&hardware_enable_failed, 0);
2326                 on_each_cpu(hardware_enable_nolock, NULL, 1);
2327
2328                 if (atomic_read(&hardware_enable_failed)) {
2329                         hardware_disable_all_nolock();
2330                         r = -EBUSY;
2331                 }
2332         }
2333
2334         raw_spin_unlock(&kvm_lock);
2335
2336         return r;
2337 }
2338
2339 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2340                            void *v)
2341 {
2342         int cpu = (long)v;
2343
2344         if (!kvm_usage_count)
2345                 return NOTIFY_OK;
2346
2347         val &= ~CPU_TASKS_FROZEN;
2348         switch (val) {
2349         case CPU_DYING:
2350                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2351                        cpu);
2352                 hardware_disable(NULL);
2353                 break;
2354         case CPU_STARTING:
2355                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2356                        cpu);
2357                 hardware_enable(NULL);
2358                 break;
2359         }
2360         return NOTIFY_OK;
2361 }
2362
2363
2364 asmlinkage void kvm_spurious_fault(void)
2365 {
2366         /* Fault while not rebooting.  We want the trace. */
2367         BUG();
2368 }
2369 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2370
2371 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2372                       void *v)
2373 {
2374         /*
2375          * Some (well, at least mine) BIOSes hang on reboot if
2376          * in vmx root mode.
2377          *
2378          * And Intel TXT required VMX off for all cpu when system shutdown.
2379          */
2380         printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2381         kvm_rebooting = true;
2382         on_each_cpu(hardware_disable_nolock, NULL, 1);
2383         return NOTIFY_OK;
2384 }
2385
2386 static struct notifier_block kvm_reboot_notifier = {
2387         .notifier_call = kvm_reboot,
2388         .priority = 0,
2389 };
2390
2391 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2392 {
2393         int i;
2394
2395         for (i = 0; i < bus->dev_count; i++) {
2396                 struct kvm_io_device *pos = bus->range[i].dev;
2397
2398                 kvm_iodevice_destructor(pos);
2399         }
2400         kfree(bus);
2401 }
2402
2403 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2404 {
2405         const struct kvm_io_range *r1 = p1;
2406         const struct kvm_io_range *r2 = p2;
2407
2408         if (r1->addr < r2->addr)
2409                 return -1;
2410         if (r1->addr + r1->len > r2->addr + r2->len)
2411                 return 1;
2412         return 0;
2413 }
2414
2415 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2416                           gpa_t addr, int len)
2417 {
2418         if (bus->dev_count == NR_IOBUS_DEVS)
2419                 return -ENOSPC;
2420
2421         bus->range[bus->dev_count++] = (struct kvm_io_range) {
2422                 .addr = addr,
2423                 .len = len,
2424                 .dev = dev,
2425         };
2426
2427         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2428                 kvm_io_bus_sort_cmp, NULL);
2429
2430         return 0;
2431 }
2432
2433 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2434                              gpa_t addr, int len)
2435 {
2436         struct kvm_io_range *range, key;
2437         int off;
2438
2439         key = (struct kvm_io_range) {
2440                 .addr = addr,
2441                 .len = len,
2442         };
2443
2444         range = bsearch(&key, bus->range, bus->dev_count,
2445                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2446         if (range == NULL)
2447                 return -ENOENT;
2448
2449         off = range - bus->range;
2450
2451         while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2452                 off--;
2453
2454         return off;
2455 }
2456
2457 /* kvm_io_bus_write - called under kvm->slots_lock */
2458 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2459                      int len, const void *val)
2460 {
2461         int idx;
2462         struct kvm_io_bus *bus;
2463         struct kvm_io_range range;
2464
2465         range = (struct kvm_io_range) {
2466                 .addr = addr,
2467                 .len = len,
2468         };
2469
2470         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2471         idx = kvm_io_bus_get_first_dev(bus, addr, len);
2472         if (idx < 0)
2473                 return -EOPNOTSUPP;
2474
2475         while (idx < bus->dev_count &&
2476                 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2477                 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2478                         return 0;
2479                 idx++;
2480         }
2481
2482         return -EOPNOTSUPP;
2483 }
2484
2485 /* kvm_io_bus_read - called under kvm->slots_lock */
2486 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2487                     int len, void *val)
2488 {
2489         int idx;
2490         struct kvm_io_bus *bus;
2491         struct kvm_io_range range;
2492
2493         range = (struct kvm_io_range) {
2494                 .addr = addr,
2495                 .len = len,
2496         };
2497
2498         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2499         idx = kvm_io_bus_get_first_dev(bus, addr, len);
2500         if (idx < 0)
2501                 return -EOPNOTSUPP;
2502
2503         while (idx < bus->dev_count &&
2504                 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2505                 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2506                         return 0;
2507                 idx++;
2508         }
2509
2510         return -EOPNOTSUPP;
2511 }
2512
2513 /* Caller must hold slots_lock. */
2514 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2515                             int len, struct kvm_io_device *dev)
2516 {
2517         struct kvm_io_bus *new_bus, *bus;
2518
2519         bus = kvm->buses[bus_idx];
2520         if (bus->dev_count > NR_IOBUS_DEVS-1)
2521                 return -ENOSPC;
2522
2523         new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2524         if (!new_bus)
2525                 return -ENOMEM;
2526         memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2527         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2528         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2529         synchronize_srcu_expedited(&kvm->srcu);
2530         kfree(bus);
2531
2532         return 0;
2533 }
2534
2535 /* Caller must hold slots_lock. */
2536 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2537                               struct kvm_io_device *dev)
2538 {
2539         int i, r;
2540         struct kvm_io_bus *new_bus, *bus;
2541
2542         new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2543         if (!new_bus)
2544                 return -ENOMEM;
2545
2546         bus = kvm->buses[bus_idx];
2547         memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2548
2549         r = -ENOENT;
2550         for (i = 0; i < new_bus->dev_count; i++)
2551                 if (new_bus->range[i].dev == dev) {
2552                         r = 0;
2553                         new_bus->dev_count--;
2554                         new_bus->range[i] = new_bus->range[new_bus->dev_count];
2555                         sort(new_bus->range, new_bus->dev_count,
2556                              sizeof(struct kvm_io_range),
2557                              kvm_io_bus_sort_cmp, NULL);
2558                         break;
2559                 }
2560
2561         if (r) {
2562                 kfree(new_bus);
2563                 return r;
2564         }
2565
2566         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2567         synchronize_srcu_expedited(&kvm->srcu);
2568         kfree(bus);
2569         return r;
2570 }
2571
2572 static struct notifier_block kvm_cpu_notifier = {
2573         .notifier_call = kvm_cpu_hotplug,
2574 };
2575
2576 static int vm_stat_get(void *_offset, u64 *val)
2577 {
2578         unsigned offset = (long)_offset;
2579         struct kvm *kvm;
2580
2581         *val = 0;
2582         raw_spin_lock(&kvm_lock);
2583         list_for_each_entry(kvm, &vm_list, vm_list)
2584                 *val += *(u32 *)((void *)kvm + offset);
2585         raw_spin_unlock(&kvm_lock);
2586         return 0;
2587 }
2588
2589 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2590
2591 static int vcpu_stat_get(void *_offset, u64 *val)
2592 {
2593         unsigned offset = (long)_offset;
2594         struct kvm *kvm;
2595         struct kvm_vcpu *vcpu;
2596         int i;
2597
2598         *val = 0;
2599         raw_spin_lock(&kvm_lock);
2600         list_for_each_entry(kvm, &vm_list, vm_list)
2601                 kvm_for_each_vcpu(i, vcpu, kvm)
2602                         *val += *(u32 *)((void *)vcpu + offset);
2603
2604         raw_spin_unlock(&kvm_lock);
2605         return 0;
2606 }
2607
2608 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2609
2610 static const struct file_operations *stat_fops[] = {
2611         [KVM_STAT_VCPU] = &vcpu_stat_fops,
2612         [KVM_STAT_VM]   = &vm_stat_fops,
2613 };
2614
2615 static void kvm_init_debug(void)
2616 {
2617         struct kvm_stats_debugfs_item *p;
2618
2619         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2620         for (p = debugfs_entries; p->name; ++p)
2621                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2622                                                 (void *)(long)p->offset,
2623                                                 stat_fops[p->kind]);
2624 }
2625
2626 static void kvm_exit_debug(void)
2627 {
2628         struct kvm_stats_debugfs_item *p;
2629
2630         for (p = debugfs_entries; p->name; ++p)
2631                 debugfs_remove(p->dentry);
2632         debugfs_remove(kvm_debugfs_dir);
2633 }
2634
2635 static int kvm_suspend(void)
2636 {
2637         if (kvm_usage_count)
2638                 hardware_disable_nolock(NULL);
2639         return 0;
2640 }
2641
2642 static void kvm_resume(void)
2643 {
2644         if (kvm_usage_count) {
2645                 WARN_ON(raw_spin_is_locked(&kvm_lock));
2646                 hardware_enable_nolock(NULL);
2647         }
2648 }
2649
2650 static struct syscore_ops kvm_syscore_ops = {
2651         .suspend = kvm_suspend,
2652         .resume = kvm_resume,
2653 };
2654
2655 struct page *bad_page;
2656 pfn_t bad_pfn;
2657
2658 static inline
2659 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2660 {
2661         return container_of(pn, struct kvm_vcpu, preempt_notifier);
2662 }
2663
2664 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2665 {
2666         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2667
2668         kvm_arch_vcpu_load(vcpu, cpu);
2669 }
2670
2671 static void kvm_sched_out(struct preempt_notifier *pn,
2672                           struct task_struct *next)
2673 {
2674         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2675
2676         kvm_arch_vcpu_put(vcpu);
2677 }
2678
2679 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2680                   struct module *module)
2681 {
2682         int r;
2683         int cpu;
2684
2685         r = kvm_arch_init(opaque);
2686         if (r)
2687                 goto out_fail;
2688
2689         bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2690
2691         if (bad_page == NULL) {
2692                 r = -ENOMEM;
2693                 goto out;
2694         }
2695
2696         bad_pfn = page_to_pfn(bad_page);
2697
2698         hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2699
2700         if (hwpoison_page == NULL) {
2701                 r = -ENOMEM;
2702                 goto out_free_0;
2703         }
2704
2705         hwpoison_pfn = page_to_pfn(hwpoison_page);
2706
2707         fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2708
2709         if (fault_page == NULL) {
2710                 r = -ENOMEM;
2711                 goto out_free_0;
2712         }
2713
2714         fault_pfn = page_to_pfn(fault_page);
2715
2716         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2717                 r = -ENOMEM;
2718                 goto out_free_0;
2719         }
2720
2721         r = kvm_arch_hardware_setup();
2722         if (r < 0)
2723                 goto out_free_0a;
2724
2725         for_each_online_cpu(cpu) {
2726                 smp_call_function_single(cpu,
2727                                 kvm_arch_check_processor_compat,
2728                                 &r, 1);
2729                 if (r < 0)
2730                         goto out_free_1;
2731         }
2732
2733         r = register_cpu_notifier(&kvm_cpu_notifier);
2734         if (r)
2735                 goto out_free_2;
2736         register_reboot_notifier(&kvm_reboot_notifier);
2737
2738         /* A kmem cache lets us meet the alignment requirements of fx_save. */
2739         if (!vcpu_align)
2740                 vcpu_align = __alignof__(struct kvm_vcpu);
2741         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2742                                            0, NULL);
2743         if (!kvm_vcpu_cache) {
2744                 r = -ENOMEM;
2745                 goto out_free_3;
2746         }
2747
2748         r = kvm_async_pf_init();
2749         if (r)
2750                 goto out_free;
2751
2752         kvm_chardev_ops.owner = module;
2753         kvm_vm_fops.owner = module;
2754         kvm_vcpu_fops.owner = module;
2755
2756         r = misc_register(&kvm_dev);
2757         if (r) {
2758                 printk(KERN_ERR "kvm: misc device register failed\n");
2759                 goto out_unreg;
2760         }
2761
2762         register_syscore_ops(&kvm_syscore_ops);
2763
2764         kvm_preempt_ops.sched_in = kvm_sched_in;
2765         kvm_preempt_ops.sched_out = kvm_sched_out;
2766
2767         kvm_init_debug();
2768
2769         return 0;
2770
2771 out_unreg:
2772         kvm_async_pf_deinit();
2773 out_free:
2774         kmem_cache_destroy(kvm_vcpu_cache);
2775 out_free_3:
2776         unregister_reboot_notifier(&kvm_reboot_notifier);
2777         unregister_cpu_notifier(&kvm_cpu_notifier);
2778 out_free_2:
2779 out_free_1:
2780         kvm_arch_hardware_unsetup();
2781 out_free_0a:
2782         free_cpumask_var(cpus_hardware_enabled);
2783 out_free_0:
2784         if (fault_page)
2785                 __free_page(fault_page);
2786         if (hwpoison_page)
2787                 __free_page(hwpoison_page);
2788         __free_page(bad_page);
2789 out:
2790         kvm_arch_exit();
2791 out_fail:
2792         return r;
2793 }
2794 EXPORT_SYMBOL_GPL(kvm_init);
2795
2796 void kvm_exit(void)
2797 {
2798         kvm_exit_debug();
2799         misc_deregister(&kvm_dev);
2800         kmem_cache_destroy(kvm_vcpu_cache);
2801         kvm_async_pf_deinit();
2802         unregister_syscore_ops(&kvm_syscore_ops);
2803         unregister_reboot_notifier(&kvm_reboot_notifier);
2804         unregister_cpu_notifier(&kvm_cpu_notifier);
2805         on_each_cpu(hardware_disable_nolock, NULL, 1);
2806         kvm_arch_hardware_unsetup();
2807         kvm_arch_exit();
2808         free_cpumask_var(cpus_hardware_enabled);
2809         __free_page(hwpoison_page);
2810         __free_page(bad_page);
2811 }
2812 EXPORT_SYMBOL_GPL(kvm_exit);