Merge tag 'kvm-3.10-2' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[linux-3.10.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68  * Ordering of locks:
69  *
70  *              kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71  */
72
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84
85 struct dentry *kvm_debugfs_dir;
86
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88                            unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91                                   unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100
101 static bool largepages_enabled = true;
102
103 bool kvm_is_mmio_pfn(pfn_t pfn)
104 {
105         if (pfn_valid(pfn)) {
106                 int reserved;
107                 struct page *tail = pfn_to_page(pfn);
108                 struct page *head = compound_trans_head(tail);
109                 reserved = PageReserved(head);
110                 if (head != tail) {
111                         /*
112                          * "head" is not a dangling pointer
113                          * (compound_trans_head takes care of that)
114                          * but the hugepage may have been splitted
115                          * from under us (and we may not hold a
116                          * reference count on the head page so it can
117                          * be reused before we run PageReferenced), so
118                          * we've to check PageTail before returning
119                          * what we just read.
120                          */
121                         smp_rmb();
122                         if (PageTail(tail))
123                                 return reserved;
124                 }
125                 return PageReserved(tail);
126         }
127
128         return true;
129 }
130
131 /*
132  * Switches to specified vcpu, until a matching vcpu_put()
133  */
134 int vcpu_load(struct kvm_vcpu *vcpu)
135 {
136         int cpu;
137
138         if (mutex_lock_killable(&vcpu->mutex))
139                 return -EINTR;
140         if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
141                 /* The thread running this VCPU changed. */
142                 struct pid *oldpid = vcpu->pid;
143                 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
144                 rcu_assign_pointer(vcpu->pid, newpid);
145                 synchronize_rcu();
146                 put_pid(oldpid);
147         }
148         cpu = get_cpu();
149         preempt_notifier_register(&vcpu->preempt_notifier);
150         kvm_arch_vcpu_load(vcpu, cpu);
151         put_cpu();
152         return 0;
153 }
154
155 void vcpu_put(struct kvm_vcpu *vcpu)
156 {
157         preempt_disable();
158         kvm_arch_vcpu_put(vcpu);
159         preempt_notifier_unregister(&vcpu->preempt_notifier);
160         preempt_enable();
161         mutex_unlock(&vcpu->mutex);
162 }
163
164 static void ack_flush(void *_completed)
165 {
166 }
167
168 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
169 {
170         int i, cpu, me;
171         cpumask_var_t cpus;
172         bool called = true;
173         struct kvm_vcpu *vcpu;
174
175         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
176
177         me = get_cpu();
178         kvm_for_each_vcpu(i, vcpu, kvm) {
179                 kvm_make_request(req, vcpu);
180                 cpu = vcpu->cpu;
181
182                 /* Set ->requests bit before we read ->mode */
183                 smp_mb();
184
185                 if (cpus != NULL && cpu != -1 && cpu != me &&
186                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
187                         cpumask_set_cpu(cpu, cpus);
188         }
189         if (unlikely(cpus == NULL))
190                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
191         else if (!cpumask_empty(cpus))
192                 smp_call_function_many(cpus, ack_flush, NULL, 1);
193         else
194                 called = false;
195         put_cpu();
196         free_cpumask_var(cpus);
197         return called;
198 }
199
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202         long dirty_count = kvm->tlbs_dirty;
203
204         smp_mb();
205         if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
206                 ++kvm->stat.remote_tlb_flush;
207         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
208 }
209
210 void kvm_reload_remote_mmus(struct kvm *kvm)
211 {
212         make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
213 }
214
215 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
216 {
217         make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
218 }
219
220 void kvm_make_scan_ioapic_request(struct kvm *kvm)
221 {
222         make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
223 }
224
225 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
226 {
227         struct page *page;
228         int r;
229
230         mutex_init(&vcpu->mutex);
231         vcpu->cpu = -1;
232         vcpu->kvm = kvm;
233         vcpu->vcpu_id = id;
234         vcpu->pid = NULL;
235         init_waitqueue_head(&vcpu->wq);
236         kvm_async_pf_vcpu_init(vcpu);
237
238         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
239         if (!page) {
240                 r = -ENOMEM;
241                 goto fail;
242         }
243         vcpu->run = page_address(page);
244
245         kvm_vcpu_set_in_spin_loop(vcpu, false);
246         kvm_vcpu_set_dy_eligible(vcpu, false);
247         vcpu->preempted = false;
248
249         r = kvm_arch_vcpu_init(vcpu);
250         if (r < 0)
251                 goto fail_free_run;
252         return 0;
253
254 fail_free_run:
255         free_page((unsigned long)vcpu->run);
256 fail:
257         return r;
258 }
259 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
260
261 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
262 {
263         put_pid(vcpu->pid);
264         kvm_arch_vcpu_uninit(vcpu);
265         free_page((unsigned long)vcpu->run);
266 }
267 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
268
269 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
270 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
271 {
272         return container_of(mn, struct kvm, mmu_notifier);
273 }
274
275 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
276                                              struct mm_struct *mm,
277                                              unsigned long address)
278 {
279         struct kvm *kvm = mmu_notifier_to_kvm(mn);
280         int need_tlb_flush, idx;
281
282         /*
283          * When ->invalidate_page runs, the linux pte has been zapped
284          * already but the page is still allocated until
285          * ->invalidate_page returns. So if we increase the sequence
286          * here the kvm page fault will notice if the spte can't be
287          * established because the page is going to be freed. If
288          * instead the kvm page fault establishes the spte before
289          * ->invalidate_page runs, kvm_unmap_hva will release it
290          * before returning.
291          *
292          * The sequence increase only need to be seen at spin_unlock
293          * time, and not at spin_lock time.
294          *
295          * Increasing the sequence after the spin_unlock would be
296          * unsafe because the kvm page fault could then establish the
297          * pte after kvm_unmap_hva returned, without noticing the page
298          * is going to be freed.
299          */
300         idx = srcu_read_lock(&kvm->srcu);
301         spin_lock(&kvm->mmu_lock);
302
303         kvm->mmu_notifier_seq++;
304         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
305         /* we've to flush the tlb before the pages can be freed */
306         if (need_tlb_flush)
307                 kvm_flush_remote_tlbs(kvm);
308
309         spin_unlock(&kvm->mmu_lock);
310         srcu_read_unlock(&kvm->srcu, idx);
311 }
312
313 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
314                                         struct mm_struct *mm,
315                                         unsigned long address,
316                                         pte_t pte)
317 {
318         struct kvm *kvm = mmu_notifier_to_kvm(mn);
319         int idx;
320
321         idx = srcu_read_lock(&kvm->srcu);
322         spin_lock(&kvm->mmu_lock);
323         kvm->mmu_notifier_seq++;
324         kvm_set_spte_hva(kvm, address, pte);
325         spin_unlock(&kvm->mmu_lock);
326         srcu_read_unlock(&kvm->srcu, idx);
327 }
328
329 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
330                                                     struct mm_struct *mm,
331                                                     unsigned long start,
332                                                     unsigned long end)
333 {
334         struct kvm *kvm = mmu_notifier_to_kvm(mn);
335         int need_tlb_flush = 0, idx;
336
337         idx = srcu_read_lock(&kvm->srcu);
338         spin_lock(&kvm->mmu_lock);
339         /*
340          * The count increase must become visible at unlock time as no
341          * spte can be established without taking the mmu_lock and
342          * count is also read inside the mmu_lock critical section.
343          */
344         kvm->mmu_notifier_count++;
345         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
346         need_tlb_flush |= kvm->tlbs_dirty;
347         /* we've to flush the tlb before the pages can be freed */
348         if (need_tlb_flush)
349                 kvm_flush_remote_tlbs(kvm);
350
351         spin_unlock(&kvm->mmu_lock);
352         srcu_read_unlock(&kvm->srcu, idx);
353 }
354
355 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
356                                                   struct mm_struct *mm,
357                                                   unsigned long start,
358                                                   unsigned long end)
359 {
360         struct kvm *kvm = mmu_notifier_to_kvm(mn);
361
362         spin_lock(&kvm->mmu_lock);
363         /*
364          * This sequence increase will notify the kvm page fault that
365          * the page that is going to be mapped in the spte could have
366          * been freed.
367          */
368         kvm->mmu_notifier_seq++;
369         smp_wmb();
370         /*
371          * The above sequence increase must be visible before the
372          * below count decrease, which is ensured by the smp_wmb above
373          * in conjunction with the smp_rmb in mmu_notifier_retry().
374          */
375         kvm->mmu_notifier_count--;
376         spin_unlock(&kvm->mmu_lock);
377
378         BUG_ON(kvm->mmu_notifier_count < 0);
379 }
380
381 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
382                                               struct mm_struct *mm,
383                                               unsigned long address)
384 {
385         struct kvm *kvm = mmu_notifier_to_kvm(mn);
386         int young, idx;
387
388         idx = srcu_read_lock(&kvm->srcu);
389         spin_lock(&kvm->mmu_lock);
390
391         young = kvm_age_hva(kvm, address);
392         if (young)
393                 kvm_flush_remote_tlbs(kvm);
394
395         spin_unlock(&kvm->mmu_lock);
396         srcu_read_unlock(&kvm->srcu, idx);
397
398         return young;
399 }
400
401 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
402                                        struct mm_struct *mm,
403                                        unsigned long address)
404 {
405         struct kvm *kvm = mmu_notifier_to_kvm(mn);
406         int young, idx;
407
408         idx = srcu_read_lock(&kvm->srcu);
409         spin_lock(&kvm->mmu_lock);
410         young = kvm_test_age_hva(kvm, address);
411         spin_unlock(&kvm->mmu_lock);
412         srcu_read_unlock(&kvm->srcu, idx);
413
414         return young;
415 }
416
417 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
418                                      struct mm_struct *mm)
419 {
420         struct kvm *kvm = mmu_notifier_to_kvm(mn);
421         int idx;
422
423         idx = srcu_read_lock(&kvm->srcu);
424         kvm_arch_flush_shadow_all(kvm);
425         srcu_read_unlock(&kvm->srcu, idx);
426 }
427
428 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
429         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
430         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
431         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
432         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
433         .test_young             = kvm_mmu_notifier_test_young,
434         .change_pte             = kvm_mmu_notifier_change_pte,
435         .release                = kvm_mmu_notifier_release,
436 };
437
438 static int kvm_init_mmu_notifier(struct kvm *kvm)
439 {
440         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
441         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
442 }
443
444 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
445
446 static int kvm_init_mmu_notifier(struct kvm *kvm)
447 {
448         return 0;
449 }
450
451 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
452
453 static void kvm_init_memslots_id(struct kvm *kvm)
454 {
455         int i;
456         struct kvm_memslots *slots = kvm->memslots;
457
458         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
459                 slots->id_to_index[i] = slots->memslots[i].id = i;
460 }
461
462 static struct kvm *kvm_create_vm(unsigned long type)
463 {
464         int r, i;
465         struct kvm *kvm = kvm_arch_alloc_vm();
466
467         if (!kvm)
468                 return ERR_PTR(-ENOMEM);
469
470         r = kvm_arch_init_vm(kvm, type);
471         if (r)
472                 goto out_err_nodisable;
473
474         r = hardware_enable_all();
475         if (r)
476                 goto out_err_nodisable;
477
478 #ifdef CONFIG_HAVE_KVM_IRQCHIP
479         INIT_HLIST_HEAD(&kvm->mask_notifier_list);
480         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
481 #endif
482
483         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
484
485         r = -ENOMEM;
486         kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
487         if (!kvm->memslots)
488                 goto out_err_nosrcu;
489         kvm_init_memslots_id(kvm);
490         if (init_srcu_struct(&kvm->srcu))
491                 goto out_err_nosrcu;
492         for (i = 0; i < KVM_NR_BUSES; i++) {
493                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
494                                         GFP_KERNEL);
495                 if (!kvm->buses[i])
496                         goto out_err;
497         }
498
499         spin_lock_init(&kvm->mmu_lock);
500         kvm->mm = current->mm;
501         atomic_inc(&kvm->mm->mm_count);
502         kvm_eventfd_init(kvm);
503         mutex_init(&kvm->lock);
504         mutex_init(&kvm->irq_lock);
505         mutex_init(&kvm->slots_lock);
506         atomic_set(&kvm->users_count, 1);
507         INIT_LIST_HEAD(&kvm->devices);
508
509         r = kvm_init_mmu_notifier(kvm);
510         if (r)
511                 goto out_err;
512
513         raw_spin_lock(&kvm_lock);
514         list_add(&kvm->vm_list, &vm_list);
515         raw_spin_unlock(&kvm_lock);
516
517         return kvm;
518
519 out_err:
520         cleanup_srcu_struct(&kvm->srcu);
521 out_err_nosrcu:
522         hardware_disable_all();
523 out_err_nodisable:
524         for (i = 0; i < KVM_NR_BUSES; i++)
525                 kfree(kvm->buses[i]);
526         kfree(kvm->memslots);
527         kvm_arch_free_vm(kvm);
528         return ERR_PTR(r);
529 }
530
531 /*
532  * Avoid using vmalloc for a small buffer.
533  * Should not be used when the size is statically known.
534  */
535 void *kvm_kvzalloc(unsigned long size)
536 {
537         if (size > PAGE_SIZE)
538                 return vzalloc(size);
539         else
540                 return kzalloc(size, GFP_KERNEL);
541 }
542
543 void kvm_kvfree(const void *addr)
544 {
545         if (is_vmalloc_addr(addr))
546                 vfree(addr);
547         else
548                 kfree(addr);
549 }
550
551 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
552 {
553         if (!memslot->dirty_bitmap)
554                 return;
555
556         kvm_kvfree(memslot->dirty_bitmap);
557         memslot->dirty_bitmap = NULL;
558 }
559
560 /*
561  * Free any memory in @free but not in @dont.
562  */
563 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
564                                   struct kvm_memory_slot *dont)
565 {
566         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
567                 kvm_destroy_dirty_bitmap(free);
568
569         kvm_arch_free_memslot(free, dont);
570
571         free->npages = 0;
572 }
573
574 void kvm_free_physmem(struct kvm *kvm)
575 {
576         struct kvm_memslots *slots = kvm->memslots;
577         struct kvm_memory_slot *memslot;
578
579         kvm_for_each_memslot(memslot, slots)
580                 kvm_free_physmem_slot(memslot, NULL);
581
582         kfree(kvm->memslots);
583 }
584
585 static void kvm_destroy_devices(struct kvm *kvm)
586 {
587         struct list_head *node, *tmp;
588
589         list_for_each_safe(node, tmp, &kvm->devices) {
590                 struct kvm_device *dev =
591                         list_entry(node, struct kvm_device, vm_node);
592
593                 list_del(node);
594                 dev->ops->destroy(dev);
595         }
596 }
597
598 static void kvm_destroy_vm(struct kvm *kvm)
599 {
600         int i;
601         struct mm_struct *mm = kvm->mm;
602
603         kvm_arch_sync_events(kvm);
604         raw_spin_lock(&kvm_lock);
605         list_del(&kvm->vm_list);
606         raw_spin_unlock(&kvm_lock);
607         kvm_free_irq_routing(kvm);
608         for (i = 0; i < KVM_NR_BUSES; i++)
609                 kvm_io_bus_destroy(kvm->buses[i]);
610         kvm_coalesced_mmio_free(kvm);
611 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
612         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
613 #else
614         kvm_arch_flush_shadow_all(kvm);
615 #endif
616         kvm_arch_destroy_vm(kvm);
617         kvm_destroy_devices(kvm);
618         kvm_free_physmem(kvm);
619         cleanup_srcu_struct(&kvm->srcu);
620         kvm_arch_free_vm(kvm);
621         hardware_disable_all();
622         mmdrop(mm);
623 }
624
625 void kvm_get_kvm(struct kvm *kvm)
626 {
627         atomic_inc(&kvm->users_count);
628 }
629 EXPORT_SYMBOL_GPL(kvm_get_kvm);
630
631 void kvm_put_kvm(struct kvm *kvm)
632 {
633         if (atomic_dec_and_test(&kvm->users_count))
634                 kvm_destroy_vm(kvm);
635 }
636 EXPORT_SYMBOL_GPL(kvm_put_kvm);
637
638
639 static int kvm_vm_release(struct inode *inode, struct file *filp)
640 {
641         struct kvm *kvm = filp->private_data;
642
643         kvm_irqfd_release(kvm);
644
645         kvm_put_kvm(kvm);
646         return 0;
647 }
648
649 /*
650  * Allocation size is twice as large as the actual dirty bitmap size.
651  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
652  */
653 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
654 {
655 #ifndef CONFIG_S390
656         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
657
658         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
659         if (!memslot->dirty_bitmap)
660                 return -ENOMEM;
661
662 #endif /* !CONFIG_S390 */
663         return 0;
664 }
665
666 static int cmp_memslot(const void *slot1, const void *slot2)
667 {
668         struct kvm_memory_slot *s1, *s2;
669
670         s1 = (struct kvm_memory_slot *)slot1;
671         s2 = (struct kvm_memory_slot *)slot2;
672
673         if (s1->npages < s2->npages)
674                 return 1;
675         if (s1->npages > s2->npages)
676                 return -1;
677
678         return 0;
679 }
680
681 /*
682  * Sort the memslots base on its size, so the larger slots
683  * will get better fit.
684  */
685 static void sort_memslots(struct kvm_memslots *slots)
686 {
687         int i;
688
689         sort(slots->memslots, KVM_MEM_SLOTS_NUM,
690               sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
691
692         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
693                 slots->id_to_index[slots->memslots[i].id] = i;
694 }
695
696 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new,
697                      u64 last_generation)
698 {
699         if (new) {
700                 int id = new->id;
701                 struct kvm_memory_slot *old = id_to_memslot(slots, id);
702                 unsigned long npages = old->npages;
703
704                 *old = *new;
705                 if (new->npages != npages)
706                         sort_memslots(slots);
707         }
708
709         slots->generation = last_generation + 1;
710 }
711
712 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
713 {
714         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
715
716 #ifdef KVM_CAP_READONLY_MEM
717         valid_flags |= KVM_MEM_READONLY;
718 #endif
719
720         if (mem->flags & ~valid_flags)
721                 return -EINVAL;
722
723         return 0;
724 }
725
726 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
727                 struct kvm_memslots *slots, struct kvm_memory_slot *new)
728 {
729         struct kvm_memslots *old_memslots = kvm->memslots;
730
731         update_memslots(slots, new, kvm->memslots->generation);
732         rcu_assign_pointer(kvm->memslots, slots);
733         synchronize_srcu_expedited(&kvm->srcu);
734         return old_memslots; 
735 }
736
737 /*
738  * Allocate some memory and give it an address in the guest physical address
739  * space.
740  *
741  * Discontiguous memory is allowed, mostly for framebuffers.
742  *
743  * Must be called holding mmap_sem for write.
744  */
745 int __kvm_set_memory_region(struct kvm *kvm,
746                             struct kvm_userspace_memory_region *mem)
747 {
748         int r;
749         gfn_t base_gfn;
750         unsigned long npages;
751         struct kvm_memory_slot *slot;
752         struct kvm_memory_slot old, new;
753         struct kvm_memslots *slots = NULL, *old_memslots;
754         enum kvm_mr_change change;
755
756         r = check_memory_region_flags(mem);
757         if (r)
758                 goto out;
759
760         r = -EINVAL;
761         /* General sanity checks */
762         if (mem->memory_size & (PAGE_SIZE - 1))
763                 goto out;
764         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
765                 goto out;
766         /* We can read the guest memory with __xxx_user() later on. */
767         if ((mem->slot < KVM_USER_MEM_SLOTS) &&
768             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
769              !access_ok(VERIFY_WRITE,
770                         (void __user *)(unsigned long)mem->userspace_addr,
771                         mem->memory_size)))
772                 goto out;
773         if (mem->slot >= KVM_MEM_SLOTS_NUM)
774                 goto out;
775         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
776                 goto out;
777
778         slot = id_to_memslot(kvm->memslots, mem->slot);
779         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
780         npages = mem->memory_size >> PAGE_SHIFT;
781
782         r = -EINVAL;
783         if (npages > KVM_MEM_MAX_NR_PAGES)
784                 goto out;
785
786         if (!npages)
787                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
788
789         new = old = *slot;
790
791         new.id = mem->slot;
792         new.base_gfn = base_gfn;
793         new.npages = npages;
794         new.flags = mem->flags;
795
796         r = -EINVAL;
797         if (npages) {
798                 if (!old.npages)
799                         change = KVM_MR_CREATE;
800                 else { /* Modify an existing slot. */
801                         if ((mem->userspace_addr != old.userspace_addr) ||
802                             (npages != old.npages) ||
803                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
804                                 goto out;
805
806                         if (base_gfn != old.base_gfn)
807                                 change = KVM_MR_MOVE;
808                         else if (new.flags != old.flags)
809                                 change = KVM_MR_FLAGS_ONLY;
810                         else { /* Nothing to change. */
811                                 r = 0;
812                                 goto out;
813                         }
814                 }
815         } else if (old.npages) {
816                 change = KVM_MR_DELETE;
817         } else /* Modify a non-existent slot: disallowed. */
818                 goto out;
819
820         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
821                 /* Check for overlaps */
822                 r = -EEXIST;
823                 kvm_for_each_memslot(slot, kvm->memslots) {
824                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
825                             (slot->id == mem->slot))
826                                 continue;
827                         if (!((base_gfn + npages <= slot->base_gfn) ||
828                               (base_gfn >= slot->base_gfn + slot->npages)))
829                                 goto out;
830                 }
831         }
832
833         /* Free page dirty bitmap if unneeded */
834         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
835                 new.dirty_bitmap = NULL;
836
837         r = -ENOMEM;
838         if (change == KVM_MR_CREATE) {
839                 new.userspace_addr = mem->userspace_addr;
840
841                 if (kvm_arch_create_memslot(&new, npages))
842                         goto out_free;
843         }
844
845         /* Allocate page dirty bitmap if needed */
846         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
847                 if (kvm_create_dirty_bitmap(&new) < 0)
848                         goto out_free;
849         }
850
851         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
852                 r = -ENOMEM;
853                 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
854                                 GFP_KERNEL);
855                 if (!slots)
856                         goto out_free;
857                 slot = id_to_memslot(slots, mem->slot);
858                 slot->flags |= KVM_MEMSLOT_INVALID;
859
860                 old_memslots = install_new_memslots(kvm, slots, NULL);
861
862                 /* slot was deleted or moved, clear iommu mapping */
863                 kvm_iommu_unmap_pages(kvm, &old);
864                 /* From this point no new shadow pages pointing to a deleted,
865                  * or moved, memslot will be created.
866                  *
867                  * validation of sp->gfn happens in:
868                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
869                  *      - kvm_is_visible_gfn (mmu_check_roots)
870                  */
871                 kvm_arch_flush_shadow_memslot(kvm, slot);
872                 slots = old_memslots;
873         }
874
875         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
876         if (r)
877                 goto out_slots;
878
879         r = -ENOMEM;
880         /*
881          * We can re-use the old_memslots from above, the only difference
882          * from the currently installed memslots is the invalid flag.  This
883          * will get overwritten by update_memslots anyway.
884          */
885         if (!slots) {
886                 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
887                                 GFP_KERNEL);
888                 if (!slots)
889                         goto out_free;
890         }
891
892         /*
893          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
894          * un-mapped and re-mapped if their base changes.  Since base change
895          * unmapping is handled above with slot deletion, mapping alone is
896          * needed here.  Anything else the iommu might care about for existing
897          * slots (size changes, userspace addr changes and read-only flag
898          * changes) is disallowed above, so any other attribute changes getting
899          * here can be skipped.
900          */
901         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
902                 r = kvm_iommu_map_pages(kvm, &new);
903                 if (r)
904                         goto out_slots;
905         }
906
907         /* actual memory is freed via old in kvm_free_physmem_slot below */
908         if (change == KVM_MR_DELETE) {
909                 new.dirty_bitmap = NULL;
910                 memset(&new.arch, 0, sizeof(new.arch));
911         }
912
913         old_memslots = install_new_memslots(kvm, slots, &new);
914
915         kvm_arch_commit_memory_region(kvm, mem, &old, change);
916
917         kvm_free_physmem_slot(&old, &new);
918         kfree(old_memslots);
919
920         return 0;
921
922 out_slots:
923         kfree(slots);
924 out_free:
925         kvm_free_physmem_slot(&new, &old);
926 out:
927         return r;
928 }
929 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
930
931 int kvm_set_memory_region(struct kvm *kvm,
932                           struct kvm_userspace_memory_region *mem)
933 {
934         int r;
935
936         mutex_lock(&kvm->slots_lock);
937         r = __kvm_set_memory_region(kvm, mem);
938         mutex_unlock(&kvm->slots_lock);
939         return r;
940 }
941 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
942
943 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
944                                    struct kvm_userspace_memory_region *mem)
945 {
946         if (mem->slot >= KVM_USER_MEM_SLOTS)
947                 return -EINVAL;
948         return kvm_set_memory_region(kvm, mem);
949 }
950
951 int kvm_get_dirty_log(struct kvm *kvm,
952                         struct kvm_dirty_log *log, int *is_dirty)
953 {
954         struct kvm_memory_slot *memslot;
955         int r, i;
956         unsigned long n;
957         unsigned long any = 0;
958
959         r = -EINVAL;
960         if (log->slot >= KVM_USER_MEM_SLOTS)
961                 goto out;
962
963         memslot = id_to_memslot(kvm->memslots, log->slot);
964         r = -ENOENT;
965         if (!memslot->dirty_bitmap)
966                 goto out;
967
968         n = kvm_dirty_bitmap_bytes(memslot);
969
970         for (i = 0; !any && i < n/sizeof(long); ++i)
971                 any = memslot->dirty_bitmap[i];
972
973         r = -EFAULT;
974         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
975                 goto out;
976
977         if (any)
978                 *is_dirty = 1;
979
980         r = 0;
981 out:
982         return r;
983 }
984
985 bool kvm_largepages_enabled(void)
986 {
987         return largepages_enabled;
988 }
989
990 void kvm_disable_largepages(void)
991 {
992         largepages_enabled = false;
993 }
994 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
995
996 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
997 {
998         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
999 }
1000 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1001
1002 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1003 {
1004         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1005
1006         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1007               memslot->flags & KVM_MEMSLOT_INVALID)
1008                 return 0;
1009
1010         return 1;
1011 }
1012 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1013
1014 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1015 {
1016         struct vm_area_struct *vma;
1017         unsigned long addr, size;
1018
1019         size = PAGE_SIZE;
1020
1021         addr = gfn_to_hva(kvm, gfn);
1022         if (kvm_is_error_hva(addr))
1023                 return PAGE_SIZE;
1024
1025         down_read(&current->mm->mmap_sem);
1026         vma = find_vma(current->mm, addr);
1027         if (!vma)
1028                 goto out;
1029
1030         size = vma_kernel_pagesize(vma);
1031
1032 out:
1033         up_read(&current->mm->mmap_sem);
1034
1035         return size;
1036 }
1037
1038 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1039 {
1040         return slot->flags & KVM_MEM_READONLY;
1041 }
1042
1043 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1044                                        gfn_t *nr_pages, bool write)
1045 {
1046         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1047                 return KVM_HVA_ERR_BAD;
1048
1049         if (memslot_is_readonly(slot) && write)
1050                 return KVM_HVA_ERR_RO_BAD;
1051
1052         if (nr_pages)
1053                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1054
1055         return __gfn_to_hva_memslot(slot, gfn);
1056 }
1057
1058 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1059                                      gfn_t *nr_pages)
1060 {
1061         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1062 }
1063
1064 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1065                                  gfn_t gfn)
1066 {
1067         return gfn_to_hva_many(slot, gfn, NULL);
1068 }
1069 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1070
1071 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1072 {
1073         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1074 }
1075 EXPORT_SYMBOL_GPL(gfn_to_hva);
1076
1077 /*
1078  * The hva returned by this function is only allowed to be read.
1079  * It should pair with kvm_read_hva() or kvm_read_hva_atomic().
1080  */
1081 static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn)
1082 {
1083         return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
1084 }
1085
1086 static int kvm_read_hva(void *data, void __user *hva, int len)
1087 {
1088         return __copy_from_user(data, hva, len);
1089 }
1090
1091 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1092 {
1093         return __copy_from_user_inatomic(data, hva, len);
1094 }
1095
1096 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1097         unsigned long start, int write, struct page **page)
1098 {
1099         int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1100
1101         if (write)
1102                 flags |= FOLL_WRITE;
1103
1104         return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1105 }
1106
1107 static inline int check_user_page_hwpoison(unsigned long addr)
1108 {
1109         int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1110
1111         rc = __get_user_pages(current, current->mm, addr, 1,
1112                               flags, NULL, NULL, NULL);
1113         return rc == -EHWPOISON;
1114 }
1115
1116 /*
1117  * The atomic path to get the writable pfn which will be stored in @pfn,
1118  * true indicates success, otherwise false is returned.
1119  */
1120 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1121                             bool write_fault, bool *writable, pfn_t *pfn)
1122 {
1123         struct page *page[1];
1124         int npages;
1125
1126         if (!(async || atomic))
1127                 return false;
1128
1129         /*
1130          * Fast pin a writable pfn only if it is a write fault request
1131          * or the caller allows to map a writable pfn for a read fault
1132          * request.
1133          */
1134         if (!(write_fault || writable))
1135                 return false;
1136
1137         npages = __get_user_pages_fast(addr, 1, 1, page);
1138         if (npages == 1) {
1139                 *pfn = page_to_pfn(page[0]);
1140
1141                 if (writable)
1142                         *writable = true;
1143                 return true;
1144         }
1145
1146         return false;
1147 }
1148
1149 /*
1150  * The slow path to get the pfn of the specified host virtual address,
1151  * 1 indicates success, -errno is returned if error is detected.
1152  */
1153 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1154                            bool *writable, pfn_t *pfn)
1155 {
1156         struct page *page[1];
1157         int npages = 0;
1158
1159         might_sleep();
1160
1161         if (writable)
1162                 *writable = write_fault;
1163
1164         if (async) {
1165                 down_read(&current->mm->mmap_sem);
1166                 npages = get_user_page_nowait(current, current->mm,
1167                                               addr, write_fault, page);
1168                 up_read(&current->mm->mmap_sem);
1169         } else
1170                 npages = get_user_pages_fast(addr, 1, write_fault,
1171                                              page);
1172         if (npages != 1)
1173                 return npages;
1174
1175         /* map read fault as writable if possible */
1176         if (unlikely(!write_fault) && writable) {
1177                 struct page *wpage[1];
1178
1179                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1180                 if (npages == 1) {
1181                         *writable = true;
1182                         put_page(page[0]);
1183                         page[0] = wpage[0];
1184                 }
1185
1186                 npages = 1;
1187         }
1188         *pfn = page_to_pfn(page[0]);
1189         return npages;
1190 }
1191
1192 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1193 {
1194         if (unlikely(!(vma->vm_flags & VM_READ)))
1195                 return false;
1196
1197         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1198                 return false;
1199
1200         return true;
1201 }
1202
1203 /*
1204  * Pin guest page in memory and return its pfn.
1205  * @addr: host virtual address which maps memory to the guest
1206  * @atomic: whether this function can sleep
1207  * @async: whether this function need to wait IO complete if the
1208  *         host page is not in the memory
1209  * @write_fault: whether we should get a writable host page
1210  * @writable: whether it allows to map a writable host page for !@write_fault
1211  *
1212  * The function will map a writable host page for these two cases:
1213  * 1): @write_fault = true
1214  * 2): @write_fault = false && @writable, @writable will tell the caller
1215  *     whether the mapping is writable.
1216  */
1217 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1218                         bool write_fault, bool *writable)
1219 {
1220         struct vm_area_struct *vma;
1221         pfn_t pfn = 0;
1222         int npages;
1223
1224         /* we can do it either atomically or asynchronously, not both */
1225         BUG_ON(atomic && async);
1226
1227         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1228                 return pfn;
1229
1230         if (atomic)
1231                 return KVM_PFN_ERR_FAULT;
1232
1233         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1234         if (npages == 1)
1235                 return pfn;
1236
1237         down_read(&current->mm->mmap_sem);
1238         if (npages == -EHWPOISON ||
1239               (!async && check_user_page_hwpoison(addr))) {
1240                 pfn = KVM_PFN_ERR_HWPOISON;
1241                 goto exit;
1242         }
1243
1244         vma = find_vma_intersection(current->mm, addr, addr + 1);
1245
1246         if (vma == NULL)
1247                 pfn = KVM_PFN_ERR_FAULT;
1248         else if ((vma->vm_flags & VM_PFNMAP)) {
1249                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1250                         vma->vm_pgoff;
1251                 BUG_ON(!kvm_is_mmio_pfn(pfn));
1252         } else {
1253                 if (async && vma_is_valid(vma, write_fault))
1254                         *async = true;
1255                 pfn = KVM_PFN_ERR_FAULT;
1256         }
1257 exit:
1258         up_read(&current->mm->mmap_sem);
1259         return pfn;
1260 }
1261
1262 static pfn_t
1263 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1264                      bool *async, bool write_fault, bool *writable)
1265 {
1266         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1267
1268         if (addr == KVM_HVA_ERR_RO_BAD)
1269                 return KVM_PFN_ERR_RO_FAULT;
1270
1271         if (kvm_is_error_hva(addr))
1272                 return KVM_PFN_NOSLOT;
1273
1274         /* Do not map writable pfn in the readonly memslot. */
1275         if (writable && memslot_is_readonly(slot)) {
1276                 *writable = false;
1277                 writable = NULL;
1278         }
1279
1280         return hva_to_pfn(addr, atomic, async, write_fault,
1281                           writable);
1282 }
1283
1284 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1285                           bool write_fault, bool *writable)
1286 {
1287         struct kvm_memory_slot *slot;
1288
1289         if (async)
1290                 *async = false;
1291
1292         slot = gfn_to_memslot(kvm, gfn);
1293
1294         return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1295                                     writable);
1296 }
1297
1298 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1299 {
1300         return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1301 }
1302 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1303
1304 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1305                        bool write_fault, bool *writable)
1306 {
1307         return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1308 }
1309 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1310
1311 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1312 {
1313         return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1314 }
1315 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1316
1317 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1318                       bool *writable)
1319 {
1320         return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1321 }
1322 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1323
1324 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1325 {
1326         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1327 }
1328
1329 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1330 {
1331         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1332 }
1333 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1334
1335 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1336                                                                   int nr_pages)
1337 {
1338         unsigned long addr;
1339         gfn_t entry;
1340
1341         addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1342         if (kvm_is_error_hva(addr))
1343                 return -1;
1344
1345         if (entry < nr_pages)
1346                 return 0;
1347
1348         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1349 }
1350 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1351
1352 static struct page *kvm_pfn_to_page(pfn_t pfn)
1353 {
1354         if (is_error_noslot_pfn(pfn))
1355                 return KVM_ERR_PTR_BAD_PAGE;
1356
1357         if (kvm_is_mmio_pfn(pfn)) {
1358                 WARN_ON(1);
1359                 return KVM_ERR_PTR_BAD_PAGE;
1360         }
1361
1362         return pfn_to_page(pfn);
1363 }
1364
1365 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1366 {
1367         pfn_t pfn;
1368
1369         pfn = gfn_to_pfn(kvm, gfn);
1370
1371         return kvm_pfn_to_page(pfn);
1372 }
1373
1374 EXPORT_SYMBOL_GPL(gfn_to_page);
1375
1376 void kvm_release_page_clean(struct page *page)
1377 {
1378         WARN_ON(is_error_page(page));
1379
1380         kvm_release_pfn_clean(page_to_pfn(page));
1381 }
1382 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1383
1384 void kvm_release_pfn_clean(pfn_t pfn)
1385 {
1386         if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1387                 put_page(pfn_to_page(pfn));
1388 }
1389 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1390
1391 void kvm_release_page_dirty(struct page *page)
1392 {
1393         WARN_ON(is_error_page(page));
1394
1395         kvm_release_pfn_dirty(page_to_pfn(page));
1396 }
1397 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1398
1399 void kvm_release_pfn_dirty(pfn_t pfn)
1400 {
1401         kvm_set_pfn_dirty(pfn);
1402         kvm_release_pfn_clean(pfn);
1403 }
1404 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1405
1406 void kvm_set_page_dirty(struct page *page)
1407 {
1408         kvm_set_pfn_dirty(page_to_pfn(page));
1409 }
1410 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1411
1412 void kvm_set_pfn_dirty(pfn_t pfn)
1413 {
1414         if (!kvm_is_mmio_pfn(pfn)) {
1415                 struct page *page = pfn_to_page(pfn);
1416                 if (!PageReserved(page))
1417                         SetPageDirty(page);
1418         }
1419 }
1420 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1421
1422 void kvm_set_pfn_accessed(pfn_t pfn)
1423 {
1424         if (!kvm_is_mmio_pfn(pfn))
1425                 mark_page_accessed(pfn_to_page(pfn));
1426 }
1427 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1428
1429 void kvm_get_pfn(pfn_t pfn)
1430 {
1431         if (!kvm_is_mmio_pfn(pfn))
1432                 get_page(pfn_to_page(pfn));
1433 }
1434 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1435
1436 static int next_segment(unsigned long len, int offset)
1437 {
1438         if (len > PAGE_SIZE - offset)
1439                 return PAGE_SIZE - offset;
1440         else
1441                 return len;
1442 }
1443
1444 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1445                         int len)
1446 {
1447         int r;
1448         unsigned long addr;
1449
1450         addr = gfn_to_hva_read(kvm, gfn);
1451         if (kvm_is_error_hva(addr))
1452                 return -EFAULT;
1453         r = kvm_read_hva(data, (void __user *)addr + offset, len);
1454         if (r)
1455                 return -EFAULT;
1456         return 0;
1457 }
1458 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1459
1460 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1461 {
1462         gfn_t gfn = gpa >> PAGE_SHIFT;
1463         int seg;
1464         int offset = offset_in_page(gpa);
1465         int ret;
1466
1467         while ((seg = next_segment(len, offset)) != 0) {
1468                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1469                 if (ret < 0)
1470                         return ret;
1471                 offset = 0;
1472                 len -= seg;
1473                 data += seg;
1474                 ++gfn;
1475         }
1476         return 0;
1477 }
1478 EXPORT_SYMBOL_GPL(kvm_read_guest);
1479
1480 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1481                           unsigned long len)
1482 {
1483         int r;
1484         unsigned long addr;
1485         gfn_t gfn = gpa >> PAGE_SHIFT;
1486         int offset = offset_in_page(gpa);
1487
1488         addr = gfn_to_hva_read(kvm, gfn);
1489         if (kvm_is_error_hva(addr))
1490                 return -EFAULT;
1491         pagefault_disable();
1492         r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1493         pagefault_enable();
1494         if (r)
1495                 return -EFAULT;
1496         return 0;
1497 }
1498 EXPORT_SYMBOL(kvm_read_guest_atomic);
1499
1500 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1501                          int offset, int len)
1502 {
1503         int r;
1504         unsigned long addr;
1505
1506         addr = gfn_to_hva(kvm, gfn);
1507         if (kvm_is_error_hva(addr))
1508                 return -EFAULT;
1509         r = __copy_to_user((void __user *)addr + offset, data, len);
1510         if (r)
1511                 return -EFAULT;
1512         mark_page_dirty(kvm, gfn);
1513         return 0;
1514 }
1515 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1516
1517 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1518                     unsigned long len)
1519 {
1520         gfn_t gfn = gpa >> PAGE_SHIFT;
1521         int seg;
1522         int offset = offset_in_page(gpa);
1523         int ret;
1524
1525         while ((seg = next_segment(len, offset)) != 0) {
1526                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1527                 if (ret < 0)
1528                         return ret;
1529                 offset = 0;
1530                 len -= seg;
1531                 data += seg;
1532                 ++gfn;
1533         }
1534         return 0;
1535 }
1536
1537 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1538                               gpa_t gpa, unsigned long len)
1539 {
1540         struct kvm_memslots *slots = kvm_memslots(kvm);
1541         int offset = offset_in_page(gpa);
1542         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1543         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1544         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1545         gfn_t nr_pages_avail;
1546
1547         ghc->gpa = gpa;
1548         ghc->generation = slots->generation;
1549         ghc->len = len;
1550         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1551         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1552         if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1553                 ghc->hva += offset;
1554         } else {
1555                 /*
1556                  * If the requested region crosses two memslots, we still
1557                  * verify that the entire region is valid here.
1558                  */
1559                 while (start_gfn <= end_gfn) {
1560                         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1561                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1562                                                    &nr_pages_avail);
1563                         if (kvm_is_error_hva(ghc->hva))
1564                                 return -EFAULT;
1565                         start_gfn += nr_pages_avail;
1566                 }
1567                 /* Use the slow path for cross page reads and writes. */
1568                 ghc->memslot = NULL;
1569         }
1570         return 0;
1571 }
1572 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1573
1574 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1575                            void *data, unsigned long len)
1576 {
1577         struct kvm_memslots *slots = kvm_memslots(kvm);
1578         int r;
1579
1580         BUG_ON(len > ghc->len);
1581
1582         if (slots->generation != ghc->generation)
1583                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1584
1585         if (unlikely(!ghc->memslot))
1586                 return kvm_write_guest(kvm, ghc->gpa, data, len);
1587
1588         if (kvm_is_error_hva(ghc->hva))
1589                 return -EFAULT;
1590
1591         r = __copy_to_user((void __user *)ghc->hva, data, len);
1592         if (r)
1593                 return -EFAULT;
1594         mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1595
1596         return 0;
1597 }
1598 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1599
1600 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1601                            void *data, unsigned long len)
1602 {
1603         struct kvm_memslots *slots = kvm_memslots(kvm);
1604         int r;
1605
1606         BUG_ON(len > ghc->len);
1607
1608         if (slots->generation != ghc->generation)
1609                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1610
1611         if (unlikely(!ghc->memslot))
1612                 return kvm_read_guest(kvm, ghc->gpa, data, len);
1613
1614         if (kvm_is_error_hva(ghc->hva))
1615                 return -EFAULT;
1616
1617         r = __copy_from_user(data, (void __user *)ghc->hva, len);
1618         if (r)
1619                 return -EFAULT;
1620
1621         return 0;
1622 }
1623 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1624
1625 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1626 {
1627         return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1628                                     offset, len);
1629 }
1630 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1631
1632 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1633 {
1634         gfn_t gfn = gpa >> PAGE_SHIFT;
1635         int seg;
1636         int offset = offset_in_page(gpa);
1637         int ret;
1638
1639         while ((seg = next_segment(len, offset)) != 0) {
1640                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1641                 if (ret < 0)
1642                         return ret;
1643                 offset = 0;
1644                 len -= seg;
1645                 ++gfn;
1646         }
1647         return 0;
1648 }
1649 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1650
1651 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1652                              gfn_t gfn)
1653 {
1654         if (memslot && memslot->dirty_bitmap) {
1655                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1656
1657                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1658         }
1659 }
1660
1661 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1662 {
1663         struct kvm_memory_slot *memslot;
1664
1665         memslot = gfn_to_memslot(kvm, gfn);
1666         mark_page_dirty_in_slot(kvm, memslot, gfn);
1667 }
1668
1669 /*
1670  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1671  */
1672 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1673 {
1674         DEFINE_WAIT(wait);
1675
1676         for (;;) {
1677                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1678
1679                 if (kvm_arch_vcpu_runnable(vcpu)) {
1680                         kvm_make_request(KVM_REQ_UNHALT, vcpu);
1681                         break;
1682                 }
1683                 if (kvm_cpu_has_pending_timer(vcpu))
1684                         break;
1685                 if (signal_pending(current))
1686                         break;
1687
1688                 schedule();
1689         }
1690
1691         finish_wait(&vcpu->wq, &wait);
1692 }
1693
1694 #ifndef CONFIG_S390
1695 /*
1696  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1697  */
1698 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1699 {
1700         int me;
1701         int cpu = vcpu->cpu;
1702         wait_queue_head_t *wqp;
1703
1704         wqp = kvm_arch_vcpu_wq(vcpu);
1705         if (waitqueue_active(wqp)) {
1706                 wake_up_interruptible(wqp);
1707                 ++vcpu->stat.halt_wakeup;
1708         }
1709
1710         me = get_cpu();
1711         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1712                 if (kvm_arch_vcpu_should_kick(vcpu))
1713                         smp_send_reschedule(cpu);
1714         put_cpu();
1715 }
1716 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1717 #endif /* !CONFIG_S390 */
1718
1719 void kvm_resched(struct kvm_vcpu *vcpu)
1720 {
1721         if (!need_resched())
1722                 return;
1723         cond_resched();
1724 }
1725 EXPORT_SYMBOL_GPL(kvm_resched);
1726
1727 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1728 {
1729         struct pid *pid;
1730         struct task_struct *task = NULL;
1731         bool ret = false;
1732
1733         rcu_read_lock();
1734         pid = rcu_dereference(target->pid);
1735         if (pid)
1736                 task = get_pid_task(target->pid, PIDTYPE_PID);
1737         rcu_read_unlock();
1738         if (!task)
1739                 return ret;
1740         if (task->flags & PF_VCPU) {
1741                 put_task_struct(task);
1742                 return ret;
1743         }
1744         ret = yield_to(task, 1);
1745         put_task_struct(task);
1746
1747         return ret;
1748 }
1749 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1750
1751 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1752 /*
1753  * Helper that checks whether a VCPU is eligible for directed yield.
1754  * Most eligible candidate to yield is decided by following heuristics:
1755  *
1756  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1757  *  (preempted lock holder), indicated by @in_spin_loop.
1758  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1759  *
1760  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1761  *  chance last time (mostly it has become eligible now since we have probably
1762  *  yielded to lockholder in last iteration. This is done by toggling
1763  *  @dy_eligible each time a VCPU checked for eligibility.)
1764  *
1765  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1766  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1767  *  burning. Giving priority for a potential lock-holder increases lock
1768  *  progress.
1769  *
1770  *  Since algorithm is based on heuristics, accessing another VCPU data without
1771  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1772  *  and continue with next VCPU and so on.
1773  */
1774 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1775 {
1776         bool eligible;
1777
1778         eligible = !vcpu->spin_loop.in_spin_loop ||
1779                         (vcpu->spin_loop.in_spin_loop &&
1780                          vcpu->spin_loop.dy_eligible);
1781
1782         if (vcpu->spin_loop.in_spin_loop)
1783                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1784
1785         return eligible;
1786 }
1787 #endif
1788
1789 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1790 {
1791         struct kvm *kvm = me->kvm;
1792         struct kvm_vcpu *vcpu;
1793         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1794         int yielded = 0;
1795         int try = 3;
1796         int pass;
1797         int i;
1798
1799         kvm_vcpu_set_in_spin_loop(me, true);
1800         /*
1801          * We boost the priority of a VCPU that is runnable but not
1802          * currently running, because it got preempted by something
1803          * else and called schedule in __vcpu_run.  Hopefully that
1804          * VCPU is holding the lock that we need and will release it.
1805          * We approximate round-robin by starting at the last boosted VCPU.
1806          */
1807         for (pass = 0; pass < 2 && !yielded && try; pass++) {
1808                 kvm_for_each_vcpu(i, vcpu, kvm) {
1809                         if (!pass && i <= last_boosted_vcpu) {
1810                                 i = last_boosted_vcpu;
1811                                 continue;
1812                         } else if (pass && i > last_boosted_vcpu)
1813                                 break;
1814                         if (!ACCESS_ONCE(vcpu->preempted))
1815                                 continue;
1816                         if (vcpu == me)
1817                                 continue;
1818                         if (waitqueue_active(&vcpu->wq))
1819                                 continue;
1820                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1821                                 continue;
1822
1823                         yielded = kvm_vcpu_yield_to(vcpu);
1824                         if (yielded > 0) {
1825                                 kvm->last_boosted_vcpu = i;
1826                                 break;
1827                         } else if (yielded < 0) {
1828                                 try--;
1829                                 if (!try)
1830                                         break;
1831                         }
1832                 }
1833         }
1834         kvm_vcpu_set_in_spin_loop(me, false);
1835
1836         /* Ensure vcpu is not eligible during next spinloop */
1837         kvm_vcpu_set_dy_eligible(me, false);
1838 }
1839 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1840
1841 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1842 {
1843         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1844         struct page *page;
1845
1846         if (vmf->pgoff == 0)
1847                 page = virt_to_page(vcpu->run);
1848 #ifdef CONFIG_X86
1849         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1850                 page = virt_to_page(vcpu->arch.pio_data);
1851 #endif
1852 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1853         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1854                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1855 #endif
1856         else
1857                 return kvm_arch_vcpu_fault(vcpu, vmf);
1858         get_page(page);
1859         vmf->page = page;
1860         return 0;
1861 }
1862
1863 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1864         .fault = kvm_vcpu_fault,
1865 };
1866
1867 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1868 {
1869         vma->vm_ops = &kvm_vcpu_vm_ops;
1870         return 0;
1871 }
1872
1873 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1874 {
1875         struct kvm_vcpu *vcpu = filp->private_data;
1876
1877         kvm_put_kvm(vcpu->kvm);
1878         return 0;
1879 }
1880
1881 static struct file_operations kvm_vcpu_fops = {
1882         .release        = kvm_vcpu_release,
1883         .unlocked_ioctl = kvm_vcpu_ioctl,
1884 #ifdef CONFIG_COMPAT
1885         .compat_ioctl   = kvm_vcpu_compat_ioctl,
1886 #endif
1887         .mmap           = kvm_vcpu_mmap,
1888         .llseek         = noop_llseek,
1889 };
1890
1891 /*
1892  * Allocates an inode for the vcpu.
1893  */
1894 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1895 {
1896         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1897 }
1898
1899 /*
1900  * Creates some virtual cpus.  Good luck creating more than one.
1901  */
1902 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1903 {
1904         int r;
1905         struct kvm_vcpu *vcpu, *v;
1906
1907         vcpu = kvm_arch_vcpu_create(kvm, id);
1908         if (IS_ERR(vcpu))
1909                 return PTR_ERR(vcpu);
1910
1911         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1912
1913         r = kvm_arch_vcpu_setup(vcpu);
1914         if (r)
1915                 goto vcpu_destroy;
1916
1917         mutex_lock(&kvm->lock);
1918         if (!kvm_vcpu_compatible(vcpu)) {
1919                 r = -EINVAL;
1920                 goto unlock_vcpu_destroy;
1921         }
1922         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1923                 r = -EINVAL;
1924                 goto unlock_vcpu_destroy;
1925         }
1926
1927         kvm_for_each_vcpu(r, v, kvm)
1928                 if (v->vcpu_id == id) {
1929                         r = -EEXIST;
1930                         goto unlock_vcpu_destroy;
1931                 }
1932
1933         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1934
1935         /* Now it's all set up, let userspace reach it */
1936         kvm_get_kvm(kvm);
1937         r = create_vcpu_fd(vcpu);
1938         if (r < 0) {
1939                 kvm_put_kvm(kvm);
1940                 goto unlock_vcpu_destroy;
1941         }
1942
1943         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1944         smp_wmb();
1945         atomic_inc(&kvm->online_vcpus);
1946
1947         mutex_unlock(&kvm->lock);
1948         kvm_arch_vcpu_postcreate(vcpu);
1949         return r;
1950
1951 unlock_vcpu_destroy:
1952         mutex_unlock(&kvm->lock);
1953 vcpu_destroy:
1954         kvm_arch_vcpu_destroy(vcpu);
1955         return r;
1956 }
1957
1958 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1959 {
1960         if (sigset) {
1961                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1962                 vcpu->sigset_active = 1;
1963                 vcpu->sigset = *sigset;
1964         } else
1965                 vcpu->sigset_active = 0;
1966         return 0;
1967 }
1968
1969 static long kvm_vcpu_ioctl(struct file *filp,
1970                            unsigned int ioctl, unsigned long arg)
1971 {
1972         struct kvm_vcpu *vcpu = filp->private_data;
1973         void __user *argp = (void __user *)arg;
1974         int r;
1975         struct kvm_fpu *fpu = NULL;
1976         struct kvm_sregs *kvm_sregs = NULL;
1977
1978         if (vcpu->kvm->mm != current->mm)
1979                 return -EIO;
1980
1981 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1982         /*
1983          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1984          * so vcpu_load() would break it.
1985          */
1986         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1987                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1988 #endif
1989
1990
1991         r = vcpu_load(vcpu);
1992         if (r)
1993                 return r;
1994         switch (ioctl) {
1995         case KVM_RUN:
1996                 r = -EINVAL;
1997                 if (arg)
1998                         goto out;
1999                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2000                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2001                 break;
2002         case KVM_GET_REGS: {
2003                 struct kvm_regs *kvm_regs;
2004
2005                 r = -ENOMEM;
2006                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2007                 if (!kvm_regs)
2008                         goto out;
2009                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2010                 if (r)
2011                         goto out_free1;
2012                 r = -EFAULT;
2013                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2014                         goto out_free1;
2015                 r = 0;
2016 out_free1:
2017                 kfree(kvm_regs);
2018                 break;
2019         }
2020         case KVM_SET_REGS: {
2021                 struct kvm_regs *kvm_regs;
2022
2023                 r = -ENOMEM;
2024                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2025                 if (IS_ERR(kvm_regs)) {
2026                         r = PTR_ERR(kvm_regs);
2027                         goto out;
2028                 }
2029                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2030                 kfree(kvm_regs);
2031                 break;
2032         }
2033         case KVM_GET_SREGS: {
2034                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2035                 r = -ENOMEM;
2036                 if (!kvm_sregs)
2037                         goto out;
2038                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2039                 if (r)
2040                         goto out;
2041                 r = -EFAULT;
2042                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2043                         goto out;
2044                 r = 0;
2045                 break;
2046         }
2047         case KVM_SET_SREGS: {
2048                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2049                 if (IS_ERR(kvm_sregs)) {
2050                         r = PTR_ERR(kvm_sregs);
2051                         kvm_sregs = NULL;
2052                         goto out;
2053                 }
2054                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2055                 break;
2056         }
2057         case KVM_GET_MP_STATE: {
2058                 struct kvm_mp_state mp_state;
2059
2060                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2061                 if (r)
2062                         goto out;
2063                 r = -EFAULT;
2064                 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2065                         goto out;
2066                 r = 0;
2067                 break;
2068         }
2069         case KVM_SET_MP_STATE: {
2070                 struct kvm_mp_state mp_state;
2071
2072                 r = -EFAULT;
2073                 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2074                         goto out;
2075                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2076                 break;
2077         }
2078         case KVM_TRANSLATE: {
2079                 struct kvm_translation tr;
2080
2081                 r = -EFAULT;
2082                 if (copy_from_user(&tr, argp, sizeof tr))
2083                         goto out;
2084                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2085                 if (r)
2086                         goto out;
2087                 r = -EFAULT;
2088                 if (copy_to_user(argp, &tr, sizeof tr))
2089                         goto out;
2090                 r = 0;
2091                 break;
2092         }
2093         case KVM_SET_GUEST_DEBUG: {
2094                 struct kvm_guest_debug dbg;
2095
2096                 r = -EFAULT;
2097                 if (copy_from_user(&dbg, argp, sizeof dbg))
2098                         goto out;
2099                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2100                 break;
2101         }
2102         case KVM_SET_SIGNAL_MASK: {
2103                 struct kvm_signal_mask __user *sigmask_arg = argp;
2104                 struct kvm_signal_mask kvm_sigmask;
2105                 sigset_t sigset, *p;
2106
2107                 p = NULL;
2108                 if (argp) {
2109                         r = -EFAULT;
2110                         if (copy_from_user(&kvm_sigmask, argp,
2111                                            sizeof kvm_sigmask))
2112                                 goto out;
2113                         r = -EINVAL;
2114                         if (kvm_sigmask.len != sizeof sigset)
2115                                 goto out;
2116                         r = -EFAULT;
2117                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2118                                            sizeof sigset))
2119                                 goto out;
2120                         p = &sigset;
2121                 }
2122                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2123                 break;
2124         }
2125         case KVM_GET_FPU: {
2126                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2127                 r = -ENOMEM;
2128                 if (!fpu)
2129                         goto out;
2130                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2131                 if (r)
2132                         goto out;
2133                 r = -EFAULT;
2134                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2135                         goto out;
2136                 r = 0;
2137                 break;
2138         }
2139         case KVM_SET_FPU: {
2140                 fpu = memdup_user(argp, sizeof(*fpu));
2141                 if (IS_ERR(fpu)) {
2142                         r = PTR_ERR(fpu);
2143                         fpu = NULL;
2144                         goto out;
2145                 }
2146                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2147                 break;
2148         }
2149         default:
2150                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2151         }
2152 out:
2153         vcpu_put(vcpu);
2154         kfree(fpu);
2155         kfree(kvm_sregs);
2156         return r;
2157 }
2158
2159 #ifdef CONFIG_COMPAT
2160 static long kvm_vcpu_compat_ioctl(struct file *filp,
2161                                   unsigned int ioctl, unsigned long arg)
2162 {
2163         struct kvm_vcpu *vcpu = filp->private_data;
2164         void __user *argp = compat_ptr(arg);
2165         int r;
2166
2167         if (vcpu->kvm->mm != current->mm)
2168                 return -EIO;
2169
2170         switch (ioctl) {
2171         case KVM_SET_SIGNAL_MASK: {
2172                 struct kvm_signal_mask __user *sigmask_arg = argp;
2173                 struct kvm_signal_mask kvm_sigmask;
2174                 compat_sigset_t csigset;
2175                 sigset_t sigset;
2176
2177                 if (argp) {
2178                         r = -EFAULT;
2179                         if (copy_from_user(&kvm_sigmask, argp,
2180                                            sizeof kvm_sigmask))
2181                                 goto out;
2182                         r = -EINVAL;
2183                         if (kvm_sigmask.len != sizeof csigset)
2184                                 goto out;
2185                         r = -EFAULT;
2186                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2187                                            sizeof csigset))
2188                                 goto out;
2189                         sigset_from_compat(&sigset, &csigset);
2190                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2191                 } else
2192                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2193                 break;
2194         }
2195         default:
2196                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2197         }
2198
2199 out:
2200         return r;
2201 }
2202 #endif
2203
2204 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2205                                  int (*accessor)(struct kvm_device *dev,
2206                                                  struct kvm_device_attr *attr),
2207                                  unsigned long arg)
2208 {
2209         struct kvm_device_attr attr;
2210
2211         if (!accessor)
2212                 return -EPERM;
2213
2214         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2215                 return -EFAULT;
2216
2217         return accessor(dev, &attr);
2218 }
2219
2220 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2221                              unsigned long arg)
2222 {
2223         struct kvm_device *dev = filp->private_data;
2224
2225         switch (ioctl) {
2226         case KVM_SET_DEVICE_ATTR:
2227                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2228         case KVM_GET_DEVICE_ATTR:
2229                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2230         case KVM_HAS_DEVICE_ATTR:
2231                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2232         default:
2233                 if (dev->ops->ioctl)
2234                         return dev->ops->ioctl(dev, ioctl, arg);
2235
2236                 return -ENOTTY;
2237         }
2238 }
2239
2240 static int kvm_device_release(struct inode *inode, struct file *filp)
2241 {
2242         struct kvm_device *dev = filp->private_data;
2243         struct kvm *kvm = dev->kvm;
2244
2245         kvm_put_kvm(kvm);
2246         return 0;
2247 }
2248
2249 static const struct file_operations kvm_device_fops = {
2250         .unlocked_ioctl = kvm_device_ioctl,
2251 #ifdef CONFIG_COMPAT
2252         .compat_ioctl = kvm_device_ioctl,
2253 #endif
2254         .release = kvm_device_release,
2255 };
2256
2257 struct kvm_device *kvm_device_from_filp(struct file *filp)
2258 {
2259         if (filp->f_op != &kvm_device_fops)
2260                 return NULL;
2261
2262         return filp->private_data;
2263 }
2264
2265 static int kvm_ioctl_create_device(struct kvm *kvm,
2266                                    struct kvm_create_device *cd)
2267 {
2268         struct kvm_device_ops *ops = NULL;
2269         struct kvm_device *dev;
2270         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2271         int ret;
2272
2273         switch (cd->type) {
2274 #ifdef CONFIG_KVM_MPIC
2275         case KVM_DEV_TYPE_FSL_MPIC_20:
2276         case KVM_DEV_TYPE_FSL_MPIC_42:
2277                 ops = &kvm_mpic_ops;
2278                 break;
2279 #endif
2280 #ifdef CONFIG_KVM_XICS
2281         case KVM_DEV_TYPE_XICS:
2282                 ops = &kvm_xics_ops;
2283                 break;
2284 #endif
2285         default:
2286                 return -ENODEV;
2287         }
2288
2289         if (test)
2290                 return 0;
2291
2292         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2293         if (!dev)
2294                 return -ENOMEM;
2295
2296         dev->ops = ops;
2297         dev->kvm = kvm;
2298
2299         ret = ops->create(dev, cd->type);
2300         if (ret < 0) {
2301                 kfree(dev);
2302                 return ret;
2303         }
2304
2305         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR);
2306         if (ret < 0) {
2307                 ops->destroy(dev);
2308                 return ret;
2309         }
2310
2311         list_add(&dev->vm_node, &kvm->devices);
2312         kvm_get_kvm(kvm);
2313         cd->fd = ret;
2314         return 0;
2315 }
2316
2317 static long kvm_vm_ioctl(struct file *filp,
2318                            unsigned int ioctl, unsigned long arg)
2319 {
2320         struct kvm *kvm = filp->private_data;
2321         void __user *argp = (void __user *)arg;
2322         int r;
2323
2324         if (kvm->mm != current->mm)
2325                 return -EIO;
2326         switch (ioctl) {
2327         case KVM_CREATE_VCPU:
2328                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2329                 break;
2330         case KVM_SET_USER_MEMORY_REGION: {
2331                 struct kvm_userspace_memory_region kvm_userspace_mem;
2332
2333                 r = -EFAULT;
2334                 if (copy_from_user(&kvm_userspace_mem, argp,
2335                                                 sizeof kvm_userspace_mem))
2336                         goto out;
2337
2338                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2339                 break;
2340         }
2341         case KVM_GET_DIRTY_LOG: {
2342                 struct kvm_dirty_log log;
2343
2344                 r = -EFAULT;
2345                 if (copy_from_user(&log, argp, sizeof log))
2346                         goto out;
2347                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2348                 break;
2349         }
2350 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2351         case KVM_REGISTER_COALESCED_MMIO: {
2352                 struct kvm_coalesced_mmio_zone zone;
2353                 r = -EFAULT;
2354                 if (copy_from_user(&zone, argp, sizeof zone))
2355                         goto out;
2356                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2357                 break;
2358         }
2359         case KVM_UNREGISTER_COALESCED_MMIO: {
2360                 struct kvm_coalesced_mmio_zone zone;
2361                 r = -EFAULT;
2362                 if (copy_from_user(&zone, argp, sizeof zone))
2363                         goto out;
2364                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2365                 break;
2366         }
2367 #endif
2368         case KVM_IRQFD: {
2369                 struct kvm_irqfd data;
2370
2371                 r = -EFAULT;
2372                 if (copy_from_user(&data, argp, sizeof data))
2373                         goto out;
2374                 r = kvm_irqfd(kvm, &data);
2375                 break;
2376         }
2377         case KVM_IOEVENTFD: {
2378                 struct kvm_ioeventfd data;
2379
2380                 r = -EFAULT;
2381                 if (copy_from_user(&data, argp, sizeof data))
2382                         goto out;
2383                 r = kvm_ioeventfd(kvm, &data);
2384                 break;
2385         }
2386 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2387         case KVM_SET_BOOT_CPU_ID:
2388                 r = 0;
2389                 mutex_lock(&kvm->lock);
2390                 if (atomic_read(&kvm->online_vcpus) != 0)
2391                         r = -EBUSY;
2392                 else
2393                         kvm->bsp_vcpu_id = arg;
2394                 mutex_unlock(&kvm->lock);
2395                 break;
2396 #endif
2397 #ifdef CONFIG_HAVE_KVM_MSI
2398         case KVM_SIGNAL_MSI: {
2399                 struct kvm_msi msi;
2400
2401                 r = -EFAULT;
2402                 if (copy_from_user(&msi, argp, sizeof msi))
2403                         goto out;
2404                 r = kvm_send_userspace_msi(kvm, &msi);
2405                 break;
2406         }
2407 #endif
2408 #ifdef __KVM_HAVE_IRQ_LINE
2409         case KVM_IRQ_LINE_STATUS:
2410         case KVM_IRQ_LINE: {
2411                 struct kvm_irq_level irq_event;
2412
2413                 r = -EFAULT;
2414                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2415                         goto out;
2416
2417                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2418                                         ioctl == KVM_IRQ_LINE_STATUS);
2419                 if (r)
2420                         goto out;
2421
2422                 r = -EFAULT;
2423                 if (ioctl == KVM_IRQ_LINE_STATUS) {
2424                         if (copy_to_user(argp, &irq_event, sizeof irq_event))
2425                                 goto out;
2426                 }
2427
2428                 r = 0;
2429                 break;
2430         }
2431 #endif
2432 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2433         case KVM_SET_GSI_ROUTING: {
2434                 struct kvm_irq_routing routing;
2435                 struct kvm_irq_routing __user *urouting;
2436                 struct kvm_irq_routing_entry *entries;
2437
2438                 r = -EFAULT;
2439                 if (copy_from_user(&routing, argp, sizeof(routing)))
2440                         goto out;
2441                 r = -EINVAL;
2442                 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2443                         goto out;
2444                 if (routing.flags)
2445                         goto out;
2446                 r = -ENOMEM;
2447                 entries = vmalloc(routing.nr * sizeof(*entries));
2448                 if (!entries)
2449                         goto out;
2450                 r = -EFAULT;
2451                 urouting = argp;
2452                 if (copy_from_user(entries, urouting->entries,
2453                                    routing.nr * sizeof(*entries)))
2454                         goto out_free_irq_routing;
2455                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2456                                         routing.flags);
2457         out_free_irq_routing:
2458                 vfree(entries);
2459                 break;
2460         }
2461 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2462         case KVM_CREATE_DEVICE: {
2463                 struct kvm_create_device cd;
2464
2465                 r = -EFAULT;
2466                 if (copy_from_user(&cd, argp, sizeof(cd)))
2467                         goto out;
2468
2469                 r = kvm_ioctl_create_device(kvm, &cd);
2470                 if (r)
2471                         goto out;
2472
2473                 r = -EFAULT;
2474                 if (copy_to_user(argp, &cd, sizeof(cd)))
2475                         goto out;
2476
2477                 r = 0;
2478                 break;
2479         }
2480         default:
2481                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2482                 if (r == -ENOTTY)
2483                         r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2484         }
2485 out:
2486         return r;
2487 }
2488
2489 #ifdef CONFIG_COMPAT
2490 struct compat_kvm_dirty_log {
2491         __u32 slot;
2492         __u32 padding1;
2493         union {
2494                 compat_uptr_t dirty_bitmap; /* one bit per page */
2495                 __u64 padding2;
2496         };
2497 };
2498
2499 static long kvm_vm_compat_ioctl(struct file *filp,
2500                            unsigned int ioctl, unsigned long arg)
2501 {
2502         struct kvm *kvm = filp->private_data;
2503         int r;
2504
2505         if (kvm->mm != current->mm)
2506                 return -EIO;
2507         switch (ioctl) {
2508         case KVM_GET_DIRTY_LOG: {
2509                 struct compat_kvm_dirty_log compat_log;
2510                 struct kvm_dirty_log log;
2511
2512                 r = -EFAULT;
2513                 if (copy_from_user(&compat_log, (void __user *)arg,
2514                                    sizeof(compat_log)))
2515                         goto out;
2516                 log.slot         = compat_log.slot;
2517                 log.padding1     = compat_log.padding1;
2518                 log.padding2     = compat_log.padding2;
2519                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2520
2521                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2522                 break;
2523         }
2524         default:
2525                 r = kvm_vm_ioctl(filp, ioctl, arg);
2526         }
2527
2528 out:
2529         return r;
2530 }
2531 #endif
2532
2533 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2534 {
2535         struct page *page[1];
2536         unsigned long addr;
2537         int npages;
2538         gfn_t gfn = vmf->pgoff;
2539         struct kvm *kvm = vma->vm_file->private_data;
2540
2541         addr = gfn_to_hva(kvm, gfn);
2542         if (kvm_is_error_hva(addr))
2543                 return VM_FAULT_SIGBUS;
2544
2545         npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2546                                 NULL);
2547         if (unlikely(npages != 1))
2548                 return VM_FAULT_SIGBUS;
2549
2550         vmf->page = page[0];
2551         return 0;
2552 }
2553
2554 static const struct vm_operations_struct kvm_vm_vm_ops = {
2555         .fault = kvm_vm_fault,
2556 };
2557
2558 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2559 {
2560         vma->vm_ops = &kvm_vm_vm_ops;
2561         return 0;
2562 }
2563
2564 static struct file_operations kvm_vm_fops = {
2565         .release        = kvm_vm_release,
2566         .unlocked_ioctl = kvm_vm_ioctl,
2567 #ifdef CONFIG_COMPAT
2568         .compat_ioctl   = kvm_vm_compat_ioctl,
2569 #endif
2570         .mmap           = kvm_vm_mmap,
2571         .llseek         = noop_llseek,
2572 };
2573
2574 static int kvm_dev_ioctl_create_vm(unsigned long type)
2575 {
2576         int r;
2577         struct kvm *kvm;
2578
2579         kvm = kvm_create_vm(type);
2580         if (IS_ERR(kvm))
2581                 return PTR_ERR(kvm);
2582 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2583         r = kvm_coalesced_mmio_init(kvm);
2584         if (r < 0) {
2585                 kvm_put_kvm(kvm);
2586                 return r;
2587         }
2588 #endif
2589         r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2590         if (r < 0)
2591                 kvm_put_kvm(kvm);
2592
2593         return r;
2594 }
2595
2596 static long kvm_dev_ioctl_check_extension_generic(long arg)
2597 {
2598         switch (arg) {
2599         case KVM_CAP_USER_MEMORY:
2600         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2601         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2602 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2603         case KVM_CAP_SET_BOOT_CPU_ID:
2604 #endif
2605         case KVM_CAP_INTERNAL_ERROR_DATA:
2606 #ifdef CONFIG_HAVE_KVM_MSI
2607         case KVM_CAP_SIGNAL_MSI:
2608 #endif
2609 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2610         case KVM_CAP_IRQFD_RESAMPLE:
2611 #endif
2612                 return 1;
2613 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2614         case KVM_CAP_IRQ_ROUTING:
2615                 return KVM_MAX_IRQ_ROUTES;
2616 #endif
2617         default:
2618                 break;
2619         }
2620         return kvm_dev_ioctl_check_extension(arg);
2621 }
2622
2623 static long kvm_dev_ioctl(struct file *filp,
2624                           unsigned int ioctl, unsigned long arg)
2625 {
2626         long r = -EINVAL;
2627
2628         switch (ioctl) {
2629         case KVM_GET_API_VERSION:
2630                 r = -EINVAL;
2631                 if (arg)
2632                         goto out;
2633                 r = KVM_API_VERSION;
2634                 break;
2635         case KVM_CREATE_VM:
2636                 r = kvm_dev_ioctl_create_vm(arg);
2637                 break;
2638         case KVM_CHECK_EXTENSION:
2639                 r = kvm_dev_ioctl_check_extension_generic(arg);
2640                 break;
2641         case KVM_GET_VCPU_MMAP_SIZE:
2642                 r = -EINVAL;
2643                 if (arg)
2644                         goto out;
2645                 r = PAGE_SIZE;     /* struct kvm_run */
2646 #ifdef CONFIG_X86
2647                 r += PAGE_SIZE;    /* pio data page */
2648 #endif
2649 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2650                 r += PAGE_SIZE;    /* coalesced mmio ring page */
2651 #endif
2652                 break;
2653         case KVM_TRACE_ENABLE:
2654         case KVM_TRACE_PAUSE:
2655         case KVM_TRACE_DISABLE:
2656                 r = -EOPNOTSUPP;
2657                 break;
2658         default:
2659                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2660         }
2661 out:
2662         return r;
2663 }
2664
2665 static struct file_operations kvm_chardev_ops = {
2666         .unlocked_ioctl = kvm_dev_ioctl,
2667         .compat_ioctl   = kvm_dev_ioctl,
2668         .llseek         = noop_llseek,
2669 };
2670
2671 static struct miscdevice kvm_dev = {
2672         KVM_MINOR,
2673         "kvm",
2674         &kvm_chardev_ops,
2675 };
2676
2677 static void hardware_enable_nolock(void *junk)
2678 {
2679         int cpu = raw_smp_processor_id();
2680         int r;
2681
2682         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2683                 return;
2684
2685         cpumask_set_cpu(cpu, cpus_hardware_enabled);
2686
2687         r = kvm_arch_hardware_enable(NULL);
2688
2689         if (r) {
2690                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2691                 atomic_inc(&hardware_enable_failed);
2692                 printk(KERN_INFO "kvm: enabling virtualization on "
2693                                  "CPU%d failed\n", cpu);
2694         }
2695 }
2696
2697 static void hardware_enable(void *junk)
2698 {
2699         raw_spin_lock(&kvm_lock);
2700         hardware_enable_nolock(junk);
2701         raw_spin_unlock(&kvm_lock);
2702 }
2703
2704 static void hardware_disable_nolock(void *junk)
2705 {
2706         int cpu = raw_smp_processor_id();
2707
2708         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2709                 return;
2710         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2711         kvm_arch_hardware_disable(NULL);
2712 }
2713
2714 static void hardware_disable(void *junk)
2715 {
2716         raw_spin_lock(&kvm_lock);
2717         hardware_disable_nolock(junk);
2718         raw_spin_unlock(&kvm_lock);
2719 }
2720
2721 static void hardware_disable_all_nolock(void)
2722 {
2723         BUG_ON(!kvm_usage_count);
2724
2725         kvm_usage_count--;
2726         if (!kvm_usage_count)
2727                 on_each_cpu(hardware_disable_nolock, NULL, 1);
2728 }
2729
2730 static void hardware_disable_all(void)
2731 {
2732         raw_spin_lock(&kvm_lock);
2733         hardware_disable_all_nolock();
2734         raw_spin_unlock(&kvm_lock);
2735 }
2736
2737 static int hardware_enable_all(void)
2738 {
2739         int r = 0;
2740
2741         raw_spin_lock(&kvm_lock);
2742
2743         kvm_usage_count++;
2744         if (kvm_usage_count == 1) {
2745                 atomic_set(&hardware_enable_failed, 0);
2746                 on_each_cpu(hardware_enable_nolock, NULL, 1);
2747
2748                 if (atomic_read(&hardware_enable_failed)) {
2749                         hardware_disable_all_nolock();
2750                         r = -EBUSY;
2751                 }
2752         }
2753
2754         raw_spin_unlock(&kvm_lock);
2755
2756         return r;
2757 }
2758
2759 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2760                            void *v)
2761 {
2762         int cpu = (long)v;
2763
2764         if (!kvm_usage_count)
2765                 return NOTIFY_OK;
2766
2767         val &= ~CPU_TASKS_FROZEN;
2768         switch (val) {
2769         case CPU_DYING:
2770                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2771                        cpu);
2772                 hardware_disable(NULL);
2773                 break;
2774         case CPU_STARTING:
2775                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2776                        cpu);
2777                 hardware_enable(NULL);
2778                 break;
2779         }
2780         return NOTIFY_OK;
2781 }
2782
2783 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2784                       void *v)
2785 {
2786         /*
2787          * Some (well, at least mine) BIOSes hang on reboot if
2788          * in vmx root mode.
2789          *
2790          * And Intel TXT required VMX off for all cpu when system shutdown.
2791          */
2792         printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2793         kvm_rebooting = true;
2794         on_each_cpu(hardware_disable_nolock, NULL, 1);
2795         return NOTIFY_OK;
2796 }
2797
2798 static struct notifier_block kvm_reboot_notifier = {
2799         .notifier_call = kvm_reboot,
2800         .priority = 0,
2801 };
2802
2803 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2804 {
2805         int i;
2806
2807         for (i = 0; i < bus->dev_count; i++) {
2808                 struct kvm_io_device *pos = bus->range[i].dev;
2809
2810                 kvm_iodevice_destructor(pos);
2811         }
2812         kfree(bus);
2813 }
2814
2815 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2816 {
2817         const struct kvm_io_range *r1 = p1;
2818         const struct kvm_io_range *r2 = p2;
2819
2820         if (r1->addr < r2->addr)
2821                 return -1;
2822         if (r1->addr + r1->len > r2->addr + r2->len)
2823                 return 1;
2824         return 0;
2825 }
2826
2827 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2828                           gpa_t addr, int len)
2829 {
2830         bus->range[bus->dev_count++] = (struct kvm_io_range) {
2831                 .addr = addr,
2832                 .len = len,
2833                 .dev = dev,
2834         };
2835
2836         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2837                 kvm_io_bus_sort_cmp, NULL);
2838
2839         return 0;
2840 }
2841
2842 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2843                              gpa_t addr, int len)
2844 {
2845         struct kvm_io_range *range, key;
2846         int off;
2847
2848         key = (struct kvm_io_range) {
2849                 .addr = addr,
2850                 .len = len,
2851         };
2852
2853         range = bsearch(&key, bus->range, bus->dev_count,
2854                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2855         if (range == NULL)
2856                 return -ENOENT;
2857
2858         off = range - bus->range;
2859
2860         while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2861                 off--;
2862
2863         return off;
2864 }
2865
2866 /* kvm_io_bus_write - called under kvm->slots_lock */
2867 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2868                      int len, const void *val)
2869 {
2870         int idx;
2871         struct kvm_io_bus *bus;
2872         struct kvm_io_range range;
2873
2874         range = (struct kvm_io_range) {
2875                 .addr = addr,
2876                 .len = len,
2877         };
2878
2879         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2880         idx = kvm_io_bus_get_first_dev(bus, addr, len);
2881         if (idx < 0)
2882                 return -EOPNOTSUPP;
2883
2884         while (idx < bus->dev_count &&
2885                 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2886                 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2887                         return 0;
2888                 idx++;
2889         }
2890
2891         return -EOPNOTSUPP;
2892 }
2893
2894 /* kvm_io_bus_read - called under kvm->slots_lock */
2895 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2896                     int len, void *val)
2897 {
2898         int idx;
2899         struct kvm_io_bus *bus;
2900         struct kvm_io_range range;
2901
2902         range = (struct kvm_io_range) {
2903                 .addr = addr,
2904                 .len = len,
2905         };
2906
2907         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2908         idx = kvm_io_bus_get_first_dev(bus, addr, len);
2909         if (idx < 0)
2910                 return -EOPNOTSUPP;
2911
2912         while (idx < bus->dev_count &&
2913                 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2914                 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2915                         return 0;
2916                 idx++;
2917         }
2918
2919         return -EOPNOTSUPP;
2920 }
2921
2922 /* Caller must hold slots_lock. */
2923 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2924                             int len, struct kvm_io_device *dev)
2925 {
2926         struct kvm_io_bus *new_bus, *bus;
2927
2928         bus = kvm->buses[bus_idx];
2929         if (bus->dev_count > NR_IOBUS_DEVS - 1)
2930                 return -ENOSPC;
2931
2932         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2933                           sizeof(struct kvm_io_range)), GFP_KERNEL);
2934         if (!new_bus)
2935                 return -ENOMEM;
2936         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2937                sizeof(struct kvm_io_range)));
2938         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2939         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2940         synchronize_srcu_expedited(&kvm->srcu);
2941         kfree(bus);
2942
2943         return 0;
2944 }
2945
2946 /* Caller must hold slots_lock. */
2947 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2948                               struct kvm_io_device *dev)
2949 {
2950         int i, r;
2951         struct kvm_io_bus *new_bus, *bus;
2952
2953         bus = kvm->buses[bus_idx];
2954         r = -ENOENT;
2955         for (i = 0; i < bus->dev_count; i++)
2956                 if (bus->range[i].dev == dev) {
2957                         r = 0;
2958                         break;
2959                 }
2960
2961         if (r)
2962                 return r;
2963
2964         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2965                           sizeof(struct kvm_io_range)), GFP_KERNEL);
2966         if (!new_bus)
2967                 return -ENOMEM;
2968
2969         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2970         new_bus->dev_count--;
2971         memcpy(new_bus->range + i, bus->range + i + 1,
2972                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2973
2974         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2975         synchronize_srcu_expedited(&kvm->srcu);
2976         kfree(bus);
2977         return r;
2978 }
2979
2980 static struct notifier_block kvm_cpu_notifier = {
2981         .notifier_call = kvm_cpu_hotplug,
2982 };
2983
2984 static int vm_stat_get(void *_offset, u64 *val)
2985 {
2986         unsigned offset = (long)_offset;
2987         struct kvm *kvm;
2988
2989         *val = 0;
2990         raw_spin_lock(&kvm_lock);
2991         list_for_each_entry(kvm, &vm_list, vm_list)
2992                 *val += *(u32 *)((void *)kvm + offset);
2993         raw_spin_unlock(&kvm_lock);
2994         return 0;
2995 }
2996
2997 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2998
2999 static int vcpu_stat_get(void *_offset, u64 *val)
3000 {
3001         unsigned offset = (long)_offset;
3002         struct kvm *kvm;
3003         struct kvm_vcpu *vcpu;
3004         int i;
3005
3006         *val = 0;
3007         raw_spin_lock(&kvm_lock);
3008         list_for_each_entry(kvm, &vm_list, vm_list)
3009                 kvm_for_each_vcpu(i, vcpu, kvm)
3010                         *val += *(u32 *)((void *)vcpu + offset);
3011
3012         raw_spin_unlock(&kvm_lock);
3013         return 0;
3014 }
3015
3016 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3017
3018 static const struct file_operations *stat_fops[] = {
3019         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3020         [KVM_STAT_VM]   = &vm_stat_fops,
3021 };
3022
3023 static int kvm_init_debug(void)
3024 {
3025         int r = -EFAULT;
3026         struct kvm_stats_debugfs_item *p;
3027
3028         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3029         if (kvm_debugfs_dir == NULL)
3030                 goto out;
3031
3032         for (p = debugfs_entries; p->name; ++p) {
3033                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3034                                                 (void *)(long)p->offset,
3035                                                 stat_fops[p->kind]);
3036                 if (p->dentry == NULL)
3037                         goto out_dir;
3038         }
3039
3040         return 0;
3041
3042 out_dir:
3043         debugfs_remove_recursive(kvm_debugfs_dir);
3044 out:
3045         return r;
3046 }
3047
3048 static void kvm_exit_debug(void)
3049 {
3050         struct kvm_stats_debugfs_item *p;
3051
3052         for (p = debugfs_entries; p->name; ++p)
3053                 debugfs_remove(p->dentry);
3054         debugfs_remove(kvm_debugfs_dir);
3055 }
3056
3057 static int kvm_suspend(void)
3058 {
3059         if (kvm_usage_count)
3060                 hardware_disable_nolock(NULL);
3061         return 0;
3062 }
3063
3064 static void kvm_resume(void)
3065 {
3066         if (kvm_usage_count) {
3067                 WARN_ON(raw_spin_is_locked(&kvm_lock));
3068                 hardware_enable_nolock(NULL);
3069         }
3070 }
3071
3072 static struct syscore_ops kvm_syscore_ops = {
3073         .suspend = kvm_suspend,
3074         .resume = kvm_resume,
3075 };
3076
3077 static inline
3078 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3079 {
3080         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3081 }
3082
3083 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3084 {
3085         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3086         if (vcpu->preempted)
3087                 vcpu->preempted = false;
3088
3089         kvm_arch_vcpu_load(vcpu, cpu);
3090 }
3091
3092 static void kvm_sched_out(struct preempt_notifier *pn,
3093                           struct task_struct *next)
3094 {
3095         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3096
3097         if (current->state == TASK_RUNNING)
3098                 vcpu->preempted = true;
3099         kvm_arch_vcpu_put(vcpu);
3100 }
3101
3102 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3103                   struct module *module)
3104 {
3105         int r;
3106         int cpu;
3107
3108         r = kvm_arch_init(opaque);
3109         if (r)
3110                 goto out_fail;
3111
3112         /*
3113          * kvm_arch_init makes sure there's at most one caller
3114          * for architectures that support multiple implementations,
3115          * like intel and amd on x86.
3116          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3117          * conflicts in case kvm is already setup for another implementation.
3118          */
3119         r = kvm_irqfd_init();
3120         if (r)
3121                 goto out_irqfd;
3122
3123         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3124                 r = -ENOMEM;
3125                 goto out_free_0;
3126         }
3127
3128         r = kvm_arch_hardware_setup();
3129         if (r < 0)
3130                 goto out_free_0a;
3131
3132         for_each_online_cpu(cpu) {
3133                 smp_call_function_single(cpu,
3134                                 kvm_arch_check_processor_compat,
3135                                 &r, 1);
3136                 if (r < 0)
3137                         goto out_free_1;
3138         }
3139
3140         r = register_cpu_notifier(&kvm_cpu_notifier);
3141         if (r)
3142                 goto out_free_2;
3143         register_reboot_notifier(&kvm_reboot_notifier);
3144
3145         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3146         if (!vcpu_align)
3147                 vcpu_align = __alignof__(struct kvm_vcpu);
3148         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3149                                            0, NULL);
3150         if (!kvm_vcpu_cache) {
3151                 r = -ENOMEM;
3152                 goto out_free_3;
3153         }
3154
3155         r = kvm_async_pf_init();
3156         if (r)
3157                 goto out_free;
3158
3159         kvm_chardev_ops.owner = module;
3160         kvm_vm_fops.owner = module;
3161         kvm_vcpu_fops.owner = module;
3162
3163         r = misc_register(&kvm_dev);
3164         if (r) {
3165                 printk(KERN_ERR "kvm: misc device register failed\n");
3166                 goto out_unreg;
3167         }
3168
3169         register_syscore_ops(&kvm_syscore_ops);
3170
3171         kvm_preempt_ops.sched_in = kvm_sched_in;
3172         kvm_preempt_ops.sched_out = kvm_sched_out;
3173
3174         r = kvm_init_debug();
3175         if (r) {
3176                 printk(KERN_ERR "kvm: create debugfs files failed\n");
3177                 goto out_undebugfs;
3178         }
3179
3180         return 0;
3181
3182 out_undebugfs:
3183         unregister_syscore_ops(&kvm_syscore_ops);
3184 out_unreg:
3185         kvm_async_pf_deinit();
3186 out_free:
3187         kmem_cache_destroy(kvm_vcpu_cache);
3188 out_free_3:
3189         unregister_reboot_notifier(&kvm_reboot_notifier);
3190         unregister_cpu_notifier(&kvm_cpu_notifier);
3191 out_free_2:
3192 out_free_1:
3193         kvm_arch_hardware_unsetup();
3194 out_free_0a:
3195         free_cpumask_var(cpus_hardware_enabled);
3196 out_free_0:
3197         kvm_irqfd_exit();
3198 out_irqfd:
3199         kvm_arch_exit();
3200 out_fail:
3201         return r;
3202 }
3203 EXPORT_SYMBOL_GPL(kvm_init);
3204
3205 void kvm_exit(void)
3206 {
3207         kvm_exit_debug();
3208         misc_deregister(&kvm_dev);
3209         kmem_cache_destroy(kvm_vcpu_cache);
3210         kvm_async_pf_deinit();
3211         unregister_syscore_ops(&kvm_syscore_ops);
3212         unregister_reboot_notifier(&kvm_reboot_notifier);
3213         unregister_cpu_notifier(&kvm_cpu_notifier);
3214         on_each_cpu(hardware_disable_nolock, NULL, 1);
3215         kvm_arch_hardware_unsetup();
3216         kvm_arch_exit();
3217         kvm_irqfd_exit();
3218         free_cpumask_var(cpus_hardware_enabled);
3219 }
3220 EXPORT_SYMBOL_GPL(kvm_exit);