perf sched: Finish latency => atom rename and misc cleanups
[linux-3.10.git] / tools / perf / builtin-sched.c
1 #include "builtin.h"
2 #include "perf.h"
3
4 #include "util/util.h"
5 #include "util/cache.h"
6 #include "util/symbol.h"
7 #include "util/thread.h"
8 #include "util/header.h"
9
10 #include "util/parse-options.h"
11 #include "util/trace-event.h"
12
13 #include "util/debug.h"
14
15 #include <sys/types.h>
16 #include <sys/prctl.h>
17
18 #include <semaphore.h>
19 #include <pthread.h>
20 #include <math.h>
21
22 static char                     const *input_name = "perf.data";
23 static int                      input;
24 static unsigned long            page_size;
25 static unsigned long            mmap_window = 32;
26
27 static unsigned long            total_comm = 0;
28
29 static struct rb_root           threads;
30 static struct thread            *last_match;
31
32 static struct perf_header       *header;
33 static u64                      sample_type;
34
35 static char                     default_sort_order[] = "avg, max, switch, runtime";
36 static char                     *sort_order = default_sort_order;
37
38 #define PR_SET_NAME             15               /* Set process name */
39 #define MAX_CPUS                4096
40
41 #define BUG_ON(x)               assert(!(x))
42
43 static u64                      run_measurement_overhead;
44 static u64                      sleep_measurement_overhead;
45
46 #define COMM_LEN                20
47 #define SYM_LEN                 129
48
49 #define MAX_PID                 65536
50
51 static unsigned long            nr_tasks;
52
53 struct sched_event;
54
55 struct task_desc {
56         unsigned long           nr;
57         unsigned long           pid;
58         char                    comm[COMM_LEN];
59
60         unsigned long           nr_events;
61         unsigned long           curr_event;
62         struct sched_event      **events;
63
64         pthread_t               thread;
65         sem_t                   sleep_sem;
66
67         sem_t                   ready_for_work;
68         sem_t                   work_done_sem;
69
70         u64                     cpu_usage;
71 };
72
73 enum sched_event_type {
74         SCHED_EVENT_RUN,
75         SCHED_EVENT_SLEEP,
76         SCHED_EVENT_WAKEUP,
77 };
78
79 struct sched_event {
80         enum sched_event_type   type;
81         u64                     timestamp;
82         u64                     duration;
83         unsigned long           nr;
84         int                     specific_wait;
85         sem_t                   *wait_sem;
86         struct task_desc        *wakee;
87 };
88
89 static struct task_desc         *pid_to_task[MAX_PID];
90
91 static struct task_desc         **tasks;
92
93 static pthread_mutex_t          start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
94 static u64                      start_time;
95
96 static pthread_mutex_t          work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
97
98 static unsigned long            nr_run_events;
99 static unsigned long            nr_sleep_events;
100 static unsigned long            nr_wakeup_events;
101
102 static unsigned long            nr_sleep_corrections;
103 static unsigned long            nr_run_events_optimized;
104
105 static unsigned long            targetless_wakeups;
106 static unsigned long            multitarget_wakeups;
107
108 static u64                      cpu_usage;
109 static u64                      runavg_cpu_usage;
110 static u64                      parent_cpu_usage;
111 static u64                      runavg_parent_cpu_usage;
112
113 static unsigned long            nr_runs;
114 static u64                      sum_runtime;
115 static u64                      sum_fluct;
116 static u64                      run_avg;
117
118 static unsigned long            replay_repeat = 10;
119
120 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
121
122 enum thread_state {
123         THREAD_SLEEPING = 0,
124         THREAD_WAIT_CPU,
125         THREAD_SCHED_IN,
126         THREAD_IGNORE
127 };
128
129 struct work_atom {
130         struct list_head        list;
131         enum thread_state       state;
132         u64                     wake_up_time;
133         u64                     sched_in_time;
134         u64                     runtime;
135 };
136
137 struct task_atoms {
138         struct list_head        atom_list;
139         struct thread           *thread;
140         struct rb_node          node;
141         u64                     max_lat;
142         u64                     total_lat;
143         u64                     nb_atoms;
144         u64                     total_runtime;
145 };
146
147 typedef int (*sort_thread_lat)(struct task_atoms *, struct task_atoms *);
148
149 static struct rb_root           atom_root, sorted_atom_root;
150
151 static u64                      all_runtime;
152 static u64                      all_count;
153
154 static int read_events(void);
155
156
157 static u64 get_nsecs(void)
158 {
159         struct timespec ts;
160
161         clock_gettime(CLOCK_MONOTONIC, &ts);
162
163         return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
164 }
165
166 static void burn_nsecs(u64 nsecs)
167 {
168         u64 T0 = get_nsecs(), T1;
169
170         do {
171                 T1 = get_nsecs();
172         } while (T1 + run_measurement_overhead < T0 + nsecs);
173 }
174
175 static void sleep_nsecs(u64 nsecs)
176 {
177         struct timespec ts;
178
179         ts.tv_nsec = nsecs % 999999999;
180         ts.tv_sec = nsecs / 999999999;
181
182         nanosleep(&ts, NULL);
183 }
184
185 static void calibrate_run_measurement_overhead(void)
186 {
187         u64 T0, T1, delta, min_delta = 1000000000ULL;
188         int i;
189
190         for (i = 0; i < 10; i++) {
191                 T0 = get_nsecs();
192                 burn_nsecs(0);
193                 T1 = get_nsecs();
194                 delta = T1-T0;
195                 min_delta = min(min_delta, delta);
196         }
197         run_measurement_overhead = min_delta;
198
199         printf("run measurement overhead: %Ld nsecs\n", min_delta);
200 }
201
202 static void calibrate_sleep_measurement_overhead(void)
203 {
204         u64 T0, T1, delta, min_delta = 1000000000ULL;
205         int i;
206
207         for (i = 0; i < 10; i++) {
208                 T0 = get_nsecs();
209                 sleep_nsecs(10000);
210                 T1 = get_nsecs();
211                 delta = T1-T0;
212                 min_delta = min(min_delta, delta);
213         }
214         min_delta -= 10000;
215         sleep_measurement_overhead = min_delta;
216
217         printf("sleep measurement overhead: %Ld nsecs\n", min_delta);
218 }
219
220 static struct sched_event *
221 get_new_event(struct task_desc *task, u64 timestamp)
222 {
223         struct sched_event *event = calloc(1, sizeof(*event));
224         unsigned long idx = task->nr_events;
225         size_t size;
226
227         event->timestamp = timestamp;
228         event->nr = idx;
229
230         task->nr_events++;
231         size = sizeof(struct sched_event *) * task->nr_events;
232         task->events = realloc(task->events, size);
233         BUG_ON(!task->events);
234
235         task->events[idx] = event;
236
237         return event;
238 }
239
240 static struct sched_event *last_event(struct task_desc *task)
241 {
242         if (!task->nr_events)
243                 return NULL;
244
245         return task->events[task->nr_events - 1];
246 }
247
248 static void
249 add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
250 {
251         struct sched_event *event, *curr_event = last_event(task);
252
253         /*
254          * optimize an existing RUN event by merging this one
255          * to it:
256          */
257         if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
258                 nr_run_events_optimized++;
259                 curr_event->duration += duration;
260                 return;
261         }
262
263         event = get_new_event(task, timestamp);
264
265         event->type = SCHED_EVENT_RUN;
266         event->duration = duration;
267
268         nr_run_events++;
269 }
270
271 static void
272 add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
273                        struct task_desc *wakee)
274 {
275         struct sched_event *event, *wakee_event;
276
277         event = get_new_event(task, timestamp);
278         event->type = SCHED_EVENT_WAKEUP;
279         event->wakee = wakee;
280
281         wakee_event = last_event(wakee);
282         if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
283                 targetless_wakeups++;
284                 return;
285         }
286         if (wakee_event->wait_sem) {
287                 multitarget_wakeups++;
288                 return;
289         }
290
291         wakee_event->wait_sem = calloc(1, sizeof(*wakee_event->wait_sem));
292         sem_init(wakee_event->wait_sem, 0, 0);
293         wakee_event->specific_wait = 1;
294         event->wait_sem = wakee_event->wait_sem;
295
296         nr_wakeup_events++;
297 }
298
299 static void
300 add_sched_event_sleep(struct task_desc *task, u64 timestamp,
301                       u64 task_state __used)
302 {
303         struct sched_event *event = get_new_event(task, timestamp);
304
305         event->type = SCHED_EVENT_SLEEP;
306
307         nr_sleep_events++;
308 }
309
310 static struct task_desc *register_pid(unsigned long pid, const char *comm)
311 {
312         struct task_desc *task;
313
314         BUG_ON(pid >= MAX_PID);
315
316         task = pid_to_task[pid];
317
318         if (task)
319                 return task;
320
321         task = calloc(1, sizeof(*task));
322         task->pid = pid;
323         task->nr = nr_tasks;
324         strcpy(task->comm, comm);
325         /*
326          * every task starts in sleeping state - this gets ignored
327          * if there's no wakeup pointing to this sleep state:
328          */
329         add_sched_event_sleep(task, 0, 0);
330
331         pid_to_task[pid] = task;
332         nr_tasks++;
333         tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
334         BUG_ON(!tasks);
335         tasks[task->nr] = task;
336
337         if (verbose)
338                 printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
339
340         return task;
341 }
342
343
344 static void print_task_traces(void)
345 {
346         struct task_desc *task;
347         unsigned long i;
348
349         for (i = 0; i < nr_tasks; i++) {
350                 task = tasks[i];
351                 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
352                         task->nr, task->comm, task->pid, task->nr_events);
353         }
354 }
355
356 static void add_cross_task_wakeups(void)
357 {
358         struct task_desc *task1, *task2;
359         unsigned long i, j;
360
361         for (i = 0; i < nr_tasks; i++) {
362                 task1 = tasks[i];
363                 j = i + 1;
364                 if (j == nr_tasks)
365                         j = 0;
366                 task2 = tasks[j];
367                 add_sched_event_wakeup(task1, 0, task2);
368         }
369 }
370
371 static void
372 process_sched_event(struct task_desc *this_task __used, struct sched_event *event)
373 {
374         int ret = 0;
375         u64 now;
376         long long delta;
377
378         now = get_nsecs();
379         delta = start_time + event->timestamp - now;
380
381         switch (event->type) {
382                 case SCHED_EVENT_RUN:
383                         burn_nsecs(event->duration);
384                         break;
385                 case SCHED_EVENT_SLEEP:
386                         if (event->wait_sem)
387                                 ret = sem_wait(event->wait_sem);
388                         BUG_ON(ret);
389                         break;
390                 case SCHED_EVENT_WAKEUP:
391                         if (event->wait_sem)
392                                 ret = sem_post(event->wait_sem);
393                         BUG_ON(ret);
394                         break;
395                 default:
396                         BUG_ON(1);
397         }
398 }
399
400 static u64 get_cpu_usage_nsec_parent(void)
401 {
402         struct rusage ru;
403         u64 sum;
404         int err;
405
406         err = getrusage(RUSAGE_SELF, &ru);
407         BUG_ON(err);
408
409         sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
410         sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
411
412         return sum;
413 }
414
415 static u64 get_cpu_usage_nsec_self(void)
416 {
417         char filename [] = "/proc/1234567890/sched";
418         unsigned long msecs, nsecs;
419         char *line = NULL;
420         u64 total = 0;
421         size_t len = 0;
422         ssize_t chars;
423         FILE *file;
424         int ret;
425
426         sprintf(filename, "/proc/%d/sched", getpid());
427         file = fopen(filename, "r");
428         BUG_ON(!file);
429
430         while ((chars = getline(&line, &len, file)) != -1) {
431                 ret = sscanf(line, "se.sum_exec_runtime : %ld.%06ld\n",
432                         &msecs, &nsecs);
433                 if (ret == 2) {
434                         total = msecs*1e6 + nsecs;
435                         break;
436                 }
437         }
438         if (line)
439                 free(line);
440         fclose(file);
441
442         return total;
443 }
444
445 static void *thread_func(void *ctx)
446 {
447         struct task_desc *this_task = ctx;
448         u64 cpu_usage_0, cpu_usage_1;
449         unsigned long i, ret;
450         char comm2[22];
451
452         sprintf(comm2, ":%s", this_task->comm);
453         prctl(PR_SET_NAME, comm2);
454
455 again:
456         ret = sem_post(&this_task->ready_for_work);
457         BUG_ON(ret);
458         ret = pthread_mutex_lock(&start_work_mutex);
459         BUG_ON(ret);
460         ret = pthread_mutex_unlock(&start_work_mutex);
461         BUG_ON(ret);
462
463         cpu_usage_0 = get_cpu_usage_nsec_self();
464
465         for (i = 0; i < this_task->nr_events; i++) {
466                 this_task->curr_event = i;
467                 process_sched_event(this_task, this_task->events[i]);
468         }
469
470         cpu_usage_1 = get_cpu_usage_nsec_self();
471         this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
472
473         ret = sem_post(&this_task->work_done_sem);
474         BUG_ON(ret);
475
476         ret = pthread_mutex_lock(&work_done_wait_mutex);
477         BUG_ON(ret);
478         ret = pthread_mutex_unlock(&work_done_wait_mutex);
479         BUG_ON(ret);
480
481         goto again;
482 }
483
484 static void create_tasks(void)
485 {
486         struct task_desc *task;
487         pthread_attr_t attr;
488         unsigned long i;
489         int err;
490
491         err = pthread_attr_init(&attr);
492         BUG_ON(err);
493         err = pthread_attr_setstacksize(&attr, (size_t)(16*1024));
494         BUG_ON(err);
495         err = pthread_mutex_lock(&start_work_mutex);
496         BUG_ON(err);
497         err = pthread_mutex_lock(&work_done_wait_mutex);
498         BUG_ON(err);
499         for (i = 0; i < nr_tasks; i++) {
500                 task = tasks[i];
501                 sem_init(&task->sleep_sem, 0, 0);
502                 sem_init(&task->ready_for_work, 0, 0);
503                 sem_init(&task->work_done_sem, 0, 0);
504                 task->curr_event = 0;
505                 err = pthread_create(&task->thread, &attr, thread_func, task);
506                 BUG_ON(err);
507         }
508 }
509
510 static void wait_for_tasks(void)
511 {
512         u64 cpu_usage_0, cpu_usage_1;
513         struct task_desc *task;
514         unsigned long i, ret;
515
516         start_time = get_nsecs();
517         cpu_usage = 0;
518         pthread_mutex_unlock(&work_done_wait_mutex);
519
520         for (i = 0; i < nr_tasks; i++) {
521                 task = tasks[i];
522                 ret = sem_wait(&task->ready_for_work);
523                 BUG_ON(ret);
524                 sem_init(&task->ready_for_work, 0, 0);
525         }
526         ret = pthread_mutex_lock(&work_done_wait_mutex);
527         BUG_ON(ret);
528
529         cpu_usage_0 = get_cpu_usage_nsec_parent();
530
531         pthread_mutex_unlock(&start_work_mutex);
532
533         for (i = 0; i < nr_tasks; i++) {
534                 task = tasks[i];
535                 ret = sem_wait(&task->work_done_sem);
536                 BUG_ON(ret);
537                 sem_init(&task->work_done_sem, 0, 0);
538                 cpu_usage += task->cpu_usage;
539                 task->cpu_usage = 0;
540         }
541
542         cpu_usage_1 = get_cpu_usage_nsec_parent();
543         if (!runavg_cpu_usage)
544                 runavg_cpu_usage = cpu_usage;
545         runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
546
547         parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
548         if (!runavg_parent_cpu_usage)
549                 runavg_parent_cpu_usage = parent_cpu_usage;
550         runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
551                                    parent_cpu_usage)/10;
552
553         ret = pthread_mutex_lock(&start_work_mutex);
554         BUG_ON(ret);
555
556         for (i = 0; i < nr_tasks; i++) {
557                 task = tasks[i];
558                 sem_init(&task->sleep_sem, 0, 0);
559                 task->curr_event = 0;
560         }
561 }
562
563 static void run_one_test(void)
564 {
565         u64 T0, T1, delta, avg_delta, fluct, std_dev;
566
567         T0 = get_nsecs();
568         wait_for_tasks();
569         T1 = get_nsecs();
570
571         delta = T1 - T0;
572         sum_runtime += delta;
573         nr_runs++;
574
575         avg_delta = sum_runtime / nr_runs;
576         if (delta < avg_delta)
577                 fluct = avg_delta - delta;
578         else
579                 fluct = delta - avg_delta;
580         sum_fluct += fluct;
581         std_dev = sum_fluct / nr_runs / sqrt(nr_runs);
582         if (!run_avg)
583                 run_avg = delta;
584         run_avg = (run_avg*9 + delta)/10;
585
586         printf("#%-3ld: %0.3f, ",
587                 nr_runs, (double)delta/1000000.0);
588
589         printf("ravg: %0.2f, ",
590                 (double)run_avg/1e6);
591
592         printf("cpu: %0.2f / %0.2f",
593                 (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
594
595 #if 0
596         /*
597          * rusage statistics done by the parent, these are less
598          * accurate than the sum_exec_runtime based statistics:
599          */
600         printf(" [%0.2f / %0.2f]",
601                 (double)parent_cpu_usage/1e6,
602                 (double)runavg_parent_cpu_usage/1e6);
603 #endif
604
605         printf("\n");
606
607         if (nr_sleep_corrections)
608                 printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
609         nr_sleep_corrections = 0;
610 }
611
612 static void test_calibrations(void)
613 {
614         u64 T0, T1;
615
616         T0 = get_nsecs();
617         burn_nsecs(1e6);
618         T1 = get_nsecs();
619
620         printf("the run test took %Ld nsecs\n", T1-T0);
621
622         T0 = get_nsecs();
623         sleep_nsecs(1e6);
624         T1 = get_nsecs();
625
626         printf("the sleep test took %Ld nsecs\n", T1-T0);
627 }
628
629 static void __cmd_replay(void)
630 {
631         unsigned long i;
632
633         calibrate_run_measurement_overhead();
634         calibrate_sleep_measurement_overhead();
635
636         test_calibrations();
637
638         read_events();
639
640         printf("nr_run_events:        %ld\n", nr_run_events);
641         printf("nr_sleep_events:      %ld\n", nr_sleep_events);
642         printf("nr_wakeup_events:     %ld\n", nr_wakeup_events);
643
644         if (targetless_wakeups)
645                 printf("target-less wakeups:  %ld\n", targetless_wakeups);
646         if (multitarget_wakeups)
647                 printf("multi-target wakeups: %ld\n", multitarget_wakeups);
648         if (nr_run_events_optimized)
649                 printf("run events optimized: %ld\n",
650                         nr_run_events_optimized);
651
652         print_task_traces();
653         add_cross_task_wakeups();
654
655         create_tasks();
656         printf("------------------------------------------------------------\n");
657         for (i = 0; i < replay_repeat; i++)
658                 run_one_test();
659 }
660
661 static int
662 process_comm_event(event_t *event, unsigned long offset, unsigned long head)
663 {
664         struct thread *thread;
665
666         thread = threads__findnew(event->comm.pid, &threads, &last_match);
667
668         dump_printf("%p [%p]: PERF_EVENT_COMM: %s:%d\n",
669                 (void *)(offset + head),
670                 (void *)(long)(event->header.size),
671                 event->comm.comm, event->comm.pid);
672
673         if (thread == NULL ||
674             thread__set_comm(thread, event->comm.comm)) {
675                 dump_printf("problem processing PERF_EVENT_COMM, skipping event.\n");
676                 return -1;
677         }
678         total_comm++;
679
680         return 0;
681 }
682
683
684 struct raw_event_sample {
685         u32 size;
686         char data[0];
687 };
688
689 #define FILL_FIELD(ptr, field, event, data)     \
690         ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
691
692 #define FILL_ARRAY(ptr, array, event, data)                     \
693 do {                                                            \
694         void *__array = raw_field_ptr(event, #array, data);     \
695         memcpy(ptr.array, __array, sizeof(ptr.array));  \
696 } while(0)
697
698 #define FILL_COMMON_FIELDS(ptr, event, data)                    \
699 do {                                                            \
700         FILL_FIELD(ptr, common_type, event, data);              \
701         FILL_FIELD(ptr, common_flags, event, data);             \
702         FILL_FIELD(ptr, common_preempt_count, event, data);     \
703         FILL_FIELD(ptr, common_pid, event, data);               \
704         FILL_FIELD(ptr, common_tgid, event, data);              \
705 } while (0)
706
707
708
709 struct trace_switch_event {
710         u32 size;
711
712         u16 common_type;
713         u8 common_flags;
714         u8 common_preempt_count;
715         u32 common_pid;
716         u32 common_tgid;
717
718         char prev_comm[16];
719         u32 prev_pid;
720         u32 prev_prio;
721         u64 prev_state;
722         char next_comm[16];
723         u32 next_pid;
724         u32 next_prio;
725 };
726
727
728 struct trace_wakeup_event {
729         u32 size;
730
731         u16 common_type;
732         u8 common_flags;
733         u8 common_preempt_count;
734         u32 common_pid;
735         u32 common_tgid;
736
737         char comm[16];
738         u32 pid;
739
740         u32 prio;
741         u32 success;
742         u32 cpu;
743 };
744
745 struct trace_fork_event {
746         u32 size;
747
748         u16 common_type;
749         u8 common_flags;
750         u8 common_preempt_count;
751         u32 common_pid;
752         u32 common_tgid;
753
754         char parent_comm[16];
755         u32 parent_pid;
756         char child_comm[16];
757         u32 child_pid;
758 };
759
760 struct trace_sched_handler {
761         void (*switch_event)(struct trace_switch_event *,
762                              struct event *,
763                              int cpu,
764                              u64 timestamp,
765                              struct thread *thread);
766
767         void (*wakeup_event)(struct trace_wakeup_event *,
768                              struct event *,
769                              int cpu,
770                              u64 timestamp,
771                              struct thread *thread);
772
773         void (*fork_event)(struct trace_fork_event *,
774                            struct event *,
775                            int cpu,
776                            u64 timestamp,
777                            struct thread *thread);
778 };
779
780
781 static void
782 replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
783                     struct event *event,
784                     int cpu __used,
785                     u64 timestamp __used,
786                     struct thread *thread __used)
787 {
788         struct task_desc *waker, *wakee;
789
790         if (verbose) {
791                 printf("sched_wakeup event %p\n", event);
792
793                 printf(" ... pid %d woke up %s/%d\n",
794                         wakeup_event->common_pid,
795                         wakeup_event->comm,
796                         wakeup_event->pid);
797         }
798
799         waker = register_pid(wakeup_event->common_pid, "<unknown>");
800         wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
801
802         add_sched_event_wakeup(waker, timestamp, wakee);
803 }
804
805 static unsigned long cpu_last_switched[MAX_CPUS];
806
807 static void
808 replay_switch_event(struct trace_switch_event *switch_event,
809                     struct event *event,
810                     int cpu,
811                     u64 timestamp,
812                     struct thread *thread __used)
813 {
814         struct task_desc *prev, *next;
815         u64 timestamp0;
816         s64 delta;
817
818         if (verbose)
819                 printf("sched_switch event %p\n", event);
820
821         if (cpu >= MAX_CPUS || cpu < 0)
822                 return;
823
824         timestamp0 = cpu_last_switched[cpu];
825         if (timestamp0)
826                 delta = timestamp - timestamp0;
827         else
828                 delta = 0;
829
830         if (delta < 0)
831                 die("hm, delta: %Ld < 0 ?\n", delta);
832
833         if (verbose) {
834                 printf(" ... switch from %s/%d to %s/%d [ran %Ld nsecs]\n",
835                         switch_event->prev_comm, switch_event->prev_pid,
836                         switch_event->next_comm, switch_event->next_pid,
837                         delta);
838         }
839
840         prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
841         next = register_pid(switch_event->next_pid, switch_event->next_comm);
842
843         cpu_last_switched[cpu] = timestamp;
844
845         add_sched_event_run(prev, timestamp, delta);
846         add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
847 }
848
849
850 static void
851 replay_fork_event(struct trace_fork_event *fork_event,
852                   struct event *event,
853                   int cpu __used,
854                   u64 timestamp __used,
855                   struct thread *thread __used)
856 {
857         if (verbose) {
858                 printf("sched_fork event %p\n", event);
859                 printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
860                 printf("...  child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
861         }
862         register_pid(fork_event->parent_pid, fork_event->parent_comm);
863         register_pid(fork_event->child_pid, fork_event->child_comm);
864 }
865
866 static struct trace_sched_handler replay_ops  = {
867         .wakeup_event           = replay_wakeup_event,
868         .switch_event           = replay_switch_event,
869         .fork_event             = replay_fork_event,
870 };
871
872 static struct task_atoms *
873 thread_atoms_search(struct rb_root *root, struct thread *thread)
874 {
875         struct rb_node *node = root->rb_node;
876
877         while (node) {
878                 struct task_atoms *atoms;
879
880                 atoms = container_of(node, struct task_atoms, node);
881                 if (thread->pid > atoms->thread->pid)
882                         node = node->rb_left;
883                 else if (thread->pid < atoms->thread->pid)
884                         node = node->rb_right;
885                 else {
886                         return atoms;
887                 }
888         }
889         return NULL;
890 }
891
892 struct sort_dimension {
893         const char              *name;
894         sort_thread_lat         cmp;
895         struct list_head        list;
896 };
897
898 static LIST_HEAD(cmp_pid);
899
900 static int
901 thread_lat_cmp(struct list_head *list, struct task_atoms *l,
902                struct task_atoms *r)
903 {
904         struct sort_dimension *sort;
905         int ret = 0;
906
907         list_for_each_entry(sort, list, list) {
908                 ret = sort->cmp(l, r);
909                 if (ret)
910                         return ret;
911         }
912
913         return ret;
914 }
915
916 static void
917 __thread_latency_insert(struct rb_root *root, struct task_atoms *data,
918                          struct list_head *sort_list)
919 {
920         struct rb_node **new = &(root->rb_node), *parent = NULL;
921
922         while (*new) {
923                 struct task_atoms *this;
924                 int cmp;
925
926                 this = container_of(*new, struct task_atoms, node);
927                 parent = *new;
928
929                 cmp = thread_lat_cmp(sort_list, data, this);
930
931                 if (cmp > 0)
932                         new = &((*new)->rb_left);
933                 else
934                         new = &((*new)->rb_right);
935         }
936
937         rb_link_node(&data->node, parent, new);
938         rb_insert_color(&data->node, root);
939 }
940
941 static void thread_atoms_insert(struct thread *thread)
942 {
943         struct task_atoms *atoms;
944
945         atoms = calloc(sizeof(*atoms), 1);
946         if (!atoms)
947                 die("No memory");
948
949         atoms->thread = thread;
950         INIT_LIST_HEAD(&atoms->atom_list);
951         __thread_latency_insert(&atom_root, atoms, &cmp_pid);
952 }
953
954 static void
955 latency_fork_event(struct trace_fork_event *fork_event __used,
956                    struct event *event __used,
957                    int cpu __used,
958                    u64 timestamp __used,
959                    struct thread *thread __used)
960 {
961         /* should insert the newcomer */
962 }
963
964 __used
965 static char sched_out_state(struct trace_switch_event *switch_event)
966 {
967         const char *str = TASK_STATE_TO_CHAR_STR;
968
969         return str[switch_event->prev_state];
970 }
971
972 static void
973 lat_sched_out(struct task_atoms *atoms,
974               struct trace_switch_event *switch_event __used,
975               u64 delta,
976               u64 timestamp)
977 {
978         struct work_atom *atom;
979
980         atom = calloc(sizeof(*atom), 1);
981         if (!atom)
982                 die("Non memory");
983
984         if (sched_out_state(switch_event) == 'R') {
985                 atom->state = THREAD_WAIT_CPU;
986                 atom->wake_up_time = timestamp;
987         }
988
989         atom->runtime = delta;
990         list_add_tail(&atom->list, &atoms->atom_list);
991 }
992
993 static void
994 lat_sched_in(struct task_atoms *atoms, u64 timestamp)
995 {
996         struct work_atom *atom;
997         u64 delta;
998
999         if (list_empty(&atoms->atom_list))
1000                 return;
1001
1002         atom = list_entry(atoms->atom_list.prev, struct work_atom, list);
1003
1004         if (atom->state != THREAD_WAIT_CPU)
1005                 return;
1006
1007         if (timestamp < atom->wake_up_time) {
1008                 atom->state = THREAD_IGNORE;
1009                 return;
1010         }
1011
1012         atom->state = THREAD_SCHED_IN;
1013         atom->sched_in_time = timestamp;
1014
1015         delta = atom->sched_in_time - atom->wake_up_time;
1016         atoms->total_lat += delta;
1017         if (delta > atoms->max_lat)
1018                 atoms->max_lat = delta;
1019         atoms->nb_atoms++;
1020         atoms->total_runtime += atom->runtime;
1021 }
1022
1023 static void
1024 latency_switch_event(struct trace_switch_event *switch_event,
1025                      struct event *event __used,
1026                      int cpu,
1027                      u64 timestamp,
1028                      struct thread *thread __used)
1029 {
1030         struct task_atoms *out_atoms, *in_atoms;
1031         struct thread *sched_out, *sched_in;
1032         u64 timestamp0;
1033         s64 delta;
1034
1035         if (cpu >= MAX_CPUS || cpu < 0)
1036                 return;
1037
1038         timestamp0 = cpu_last_switched[cpu];
1039         cpu_last_switched[cpu] = timestamp;
1040         if (timestamp0)
1041                 delta = timestamp - timestamp0;
1042         else
1043                 delta = 0;
1044
1045         if (delta < 0)
1046                 die("hm, delta: %Ld < 0 ?\n", delta);
1047
1048
1049         sched_out = threads__findnew(switch_event->prev_pid, &threads, &last_match);
1050         sched_in = threads__findnew(switch_event->next_pid, &threads, &last_match);
1051
1052         in_atoms = thread_atoms_search(&atom_root, sched_in);
1053         if (!in_atoms) {
1054                 thread_atoms_insert(sched_in);
1055                 in_atoms = thread_atoms_search(&atom_root, sched_in);
1056                 if (!in_atoms)
1057                         die("in-atom: Internal tree error");
1058         }
1059
1060         out_atoms = thread_atoms_search(&atom_root, sched_out);
1061         if (!out_atoms) {
1062                 thread_atoms_insert(sched_out);
1063                 out_atoms = thread_atoms_search(&atom_root, sched_out);
1064                 if (!out_atoms)
1065                         die("out-atom: Internal tree error");
1066         }
1067
1068         lat_sched_in(in_atoms, timestamp);
1069         lat_sched_out(out_atoms, switch_event, delta, timestamp);
1070 }
1071
1072 static void
1073 latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1074                      struct event *event __used,
1075                      int cpu __used,
1076                      u64 timestamp,
1077                      struct thread *thread __used)
1078 {
1079         struct task_atoms *atoms;
1080         struct work_atom *atom;
1081         struct thread *wakee;
1082
1083         /* Note for later, it may be interesting to observe the failing cases */
1084         if (!wakeup_event->success)
1085                 return;
1086
1087         wakee = threads__findnew(wakeup_event->pid, &threads, &last_match);
1088         atoms = thread_atoms_search(&atom_root, wakee);
1089         if (!atoms) {
1090                 thread_atoms_insert(wakee);
1091                 return;
1092         }
1093
1094         if (list_empty(&atoms->atom_list))
1095                 return;
1096
1097         atom = list_entry(atoms->atom_list.prev, struct work_atom, list);
1098
1099         if (atom->state != THREAD_SLEEPING)
1100                 return;
1101
1102         atom->state = THREAD_WAIT_CPU;
1103         atom->wake_up_time = timestamp;
1104 }
1105
1106 static struct trace_sched_handler lat_ops  = {
1107         .wakeup_event           = latency_wakeup_event,
1108         .switch_event           = latency_switch_event,
1109         .fork_event             = latency_fork_event,
1110 };
1111
1112 static void output_lat_thread(struct task_atoms *atom_list)
1113 {
1114         int i;
1115         int ret;
1116         u64 avg;
1117
1118         if (!atom_list->nb_atoms)
1119                 return;
1120
1121         all_runtime += atom_list->total_runtime;
1122         all_count += atom_list->nb_atoms;
1123
1124         ret = printf(" %s ", atom_list->thread->comm);
1125
1126         for (i = 0; i < 19 - ret; i++)
1127                 printf(" ");
1128
1129         avg = atom_list->total_lat / atom_list->nb_atoms;
1130
1131         printf("|%9.3f ms |%9llu | avg:%9.3f ms | max:%9.3f ms |\n",
1132               (double)atom_list->total_runtime / 1e6,
1133                  atom_list->nb_atoms, (double)avg / 1e6,
1134                  (double)atom_list->max_lat / 1e6);
1135 }
1136
1137 static int pid_cmp(struct task_atoms *l, struct task_atoms *r)
1138 {
1139
1140         if (l->thread->pid < r->thread->pid)
1141                 return -1;
1142         if (l->thread->pid > r->thread->pid)
1143                 return 1;
1144
1145         return 0;
1146 }
1147
1148 static struct sort_dimension pid_sort_dimension = {
1149         .name = "pid",
1150         .cmp = pid_cmp,
1151 };
1152
1153 static int avg_cmp(struct task_atoms *l, struct task_atoms *r)
1154 {
1155         u64 avgl, avgr;
1156
1157         if (!l->nb_atoms)
1158                 return -1;
1159
1160         if (!r->nb_atoms)
1161                 return 1;
1162
1163         avgl = l->total_lat / l->nb_atoms;
1164         avgr = r->total_lat / r->nb_atoms;
1165
1166         if (avgl < avgr)
1167                 return -1;
1168         if (avgl > avgr)
1169                 return 1;
1170
1171         return 0;
1172 }
1173
1174 static struct sort_dimension avg_sort_dimension = {
1175         .name   = "avg",
1176         .cmp    = avg_cmp,
1177 };
1178
1179 static int max_cmp(struct task_atoms *l, struct task_atoms *r)
1180 {
1181         if (l->max_lat < r->max_lat)
1182                 return -1;
1183         if (l->max_lat > r->max_lat)
1184                 return 1;
1185
1186         return 0;
1187 }
1188
1189 static struct sort_dimension max_sort_dimension = {
1190         .name   = "max",
1191         .cmp    = max_cmp,
1192 };
1193
1194 static int switch_cmp(struct task_atoms *l, struct task_atoms *r)
1195 {
1196         if (l->nb_atoms < r->nb_atoms)
1197                 return -1;
1198         if (l->nb_atoms > r->nb_atoms)
1199                 return 1;
1200
1201         return 0;
1202 }
1203
1204 static struct sort_dimension switch_sort_dimension = {
1205         .name   = "switch",
1206         .cmp    = switch_cmp,
1207 };
1208
1209 static int runtime_cmp(struct task_atoms *l, struct task_atoms *r)
1210 {
1211         if (l->total_runtime < r->total_runtime)
1212                 return -1;
1213         if (l->total_runtime > r->total_runtime)
1214                 return 1;
1215
1216         return 0;
1217 }
1218
1219 static struct sort_dimension runtime_sort_dimension = {
1220         .name   = "runtime",
1221         .cmp    = runtime_cmp,
1222 };
1223
1224 static struct sort_dimension *available_sorts[] = {
1225         &pid_sort_dimension,
1226         &avg_sort_dimension,
1227         &max_sort_dimension,
1228         &switch_sort_dimension,
1229         &runtime_sort_dimension,
1230 };
1231
1232 #define NB_AVAILABLE_SORTS      (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
1233
1234 static LIST_HEAD(sort_list);
1235
1236 static int sort_dimension__add(char *tok, struct list_head *list)
1237 {
1238         int i;
1239
1240         for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
1241                 if (!strcmp(available_sorts[i]->name, tok)) {
1242                         list_add_tail(&available_sorts[i]->list, list);
1243
1244                         return 0;
1245                 }
1246         }
1247
1248         return -1;
1249 }
1250
1251 static void setup_sorting(void);
1252
1253 static void sort_lat(void)
1254 {
1255         struct rb_node *node;
1256
1257         for (;;) {
1258                 struct task_atoms *data;
1259                 node = rb_first(&atom_root);
1260                 if (!node)
1261                         break;
1262
1263                 rb_erase(node, &atom_root);
1264                 data = rb_entry(node, struct task_atoms, node);
1265                 __thread_latency_insert(&sorted_atom_root, data, &sort_list);
1266         }
1267 }
1268
1269 static void __cmd_lat(void)
1270 {
1271         struct rb_node *next;
1272
1273         setup_pager();
1274         read_events();
1275         sort_lat();
1276
1277         printf("-----------------------------------------------------------------------------------\n");
1278         printf(" Task              |  Runtime ms | Switches | Average delay ms | Maximum delay ms |\n");
1279         printf("-----------------------------------------------------------------------------------\n");
1280
1281         next = rb_first(&sorted_atom_root);
1282
1283         while (next) {
1284                 struct task_atoms *atom_list;
1285
1286                 atom_list = rb_entry(next, struct task_atoms, node);
1287                 output_lat_thread(atom_list);
1288                 next = rb_next(next);
1289         }
1290
1291         printf("-----------------------------------------------------------------------------------\n");
1292         printf(" TOTAL:            |%9.3f ms |%9Ld |\n",
1293                 (double)all_runtime/1e6, all_count);
1294         printf("---------------------------------------------\n");
1295 }
1296
1297 static struct trace_sched_handler *trace_handler;
1298
1299 static void
1300 process_sched_wakeup_event(struct raw_event_sample *raw,
1301                            struct event *event,
1302                            int cpu __used,
1303                            u64 timestamp __used,
1304                            struct thread *thread __used)
1305 {
1306         struct trace_wakeup_event wakeup_event;
1307
1308         FILL_COMMON_FIELDS(wakeup_event, event, raw->data);
1309
1310         FILL_ARRAY(wakeup_event, comm, event, raw->data);
1311         FILL_FIELD(wakeup_event, pid, event, raw->data);
1312         FILL_FIELD(wakeup_event, prio, event, raw->data);
1313         FILL_FIELD(wakeup_event, success, event, raw->data);
1314         FILL_FIELD(wakeup_event, cpu, event, raw->data);
1315
1316         trace_handler->wakeup_event(&wakeup_event, event, cpu, timestamp, thread);
1317 }
1318
1319 static void
1320 process_sched_switch_event(struct raw_event_sample *raw,
1321                            struct event *event,
1322                            int cpu __used,
1323                            u64 timestamp __used,
1324                            struct thread *thread __used)
1325 {
1326         struct trace_switch_event switch_event;
1327
1328         FILL_COMMON_FIELDS(switch_event, event, raw->data);
1329
1330         FILL_ARRAY(switch_event, prev_comm, event, raw->data);
1331         FILL_FIELD(switch_event, prev_pid, event, raw->data);
1332         FILL_FIELD(switch_event, prev_prio, event, raw->data);
1333         FILL_FIELD(switch_event, prev_state, event, raw->data);
1334         FILL_ARRAY(switch_event, next_comm, event, raw->data);
1335         FILL_FIELD(switch_event, next_pid, event, raw->data);
1336         FILL_FIELD(switch_event, next_prio, event, raw->data);
1337
1338         trace_handler->switch_event(&switch_event, event, cpu, timestamp, thread);
1339 }
1340
1341 static void
1342 process_sched_fork_event(struct raw_event_sample *raw,
1343                          struct event *event,
1344                          int cpu __used,
1345                          u64 timestamp __used,
1346                          struct thread *thread __used)
1347 {
1348         struct trace_fork_event fork_event;
1349
1350         FILL_COMMON_FIELDS(fork_event, event, raw->data);
1351
1352         FILL_ARRAY(fork_event, parent_comm, event, raw->data);
1353         FILL_FIELD(fork_event, parent_pid, event, raw->data);
1354         FILL_ARRAY(fork_event, child_comm, event, raw->data);
1355         FILL_FIELD(fork_event, child_pid, event, raw->data);
1356
1357         trace_handler->fork_event(&fork_event, event, cpu, timestamp, thread);
1358 }
1359
1360 static void
1361 process_sched_exit_event(struct event *event,
1362                          int cpu __used,
1363                          u64 timestamp __used,
1364                          struct thread *thread __used)
1365 {
1366         if (verbose)
1367                 printf("sched_exit event %p\n", event);
1368 }
1369
1370 static void
1371 process_raw_event(event_t *raw_event __used, void *more_data,
1372                   int cpu, u64 timestamp, struct thread *thread)
1373 {
1374         struct raw_event_sample *raw = more_data;
1375         struct event *event;
1376         int type;
1377
1378         type = trace_parse_common_type(raw->data);
1379         event = trace_find_event(type);
1380
1381         if (!strcmp(event->name, "sched_switch"))
1382                 process_sched_switch_event(raw, event, cpu, timestamp, thread);
1383         if (!strcmp(event->name, "sched_wakeup"))
1384                 process_sched_wakeup_event(raw, event, cpu, timestamp, thread);
1385         if (!strcmp(event->name, "sched_wakeup_new"))
1386                 process_sched_wakeup_event(raw, event, cpu, timestamp, thread);
1387         if (!strcmp(event->name, "sched_process_fork"))
1388                 process_sched_fork_event(raw, event, cpu, timestamp, thread);
1389         if (!strcmp(event->name, "sched_process_exit"))
1390                 process_sched_exit_event(event, cpu, timestamp, thread);
1391 }
1392
1393 static int
1394 process_sample_event(event_t *event, unsigned long offset, unsigned long head)
1395 {
1396         char level;
1397         int show = 0;
1398         struct dso *dso = NULL;
1399         struct thread *thread;
1400         u64 ip = event->ip.ip;
1401         u64 timestamp = -1;
1402         u32 cpu = -1;
1403         u64 period = 1;
1404         void *more_data = event->ip.__more_data;
1405         int cpumode;
1406
1407         thread = threads__findnew(event->ip.pid, &threads, &last_match);
1408
1409         if (sample_type & PERF_SAMPLE_TIME) {
1410                 timestamp = *(u64 *)more_data;
1411                 more_data += sizeof(u64);
1412         }
1413
1414         if (sample_type & PERF_SAMPLE_CPU) {
1415                 cpu = *(u32 *)more_data;
1416                 more_data += sizeof(u32);
1417                 more_data += sizeof(u32); /* reserved */
1418         }
1419
1420         if (sample_type & PERF_SAMPLE_PERIOD) {
1421                 period = *(u64 *)more_data;
1422                 more_data += sizeof(u64);
1423         }
1424
1425         dump_printf("%p [%p]: PERF_EVENT_SAMPLE (IP, %d): %d/%d: %p period: %Ld\n",
1426                 (void *)(offset + head),
1427                 (void *)(long)(event->header.size),
1428                 event->header.misc,
1429                 event->ip.pid, event->ip.tid,
1430                 (void *)(long)ip,
1431                 (long long)period);
1432
1433         dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
1434
1435         if (thread == NULL) {
1436                 eprintf("problem processing %d event, skipping it.\n",
1437                         event->header.type);
1438                 return -1;
1439         }
1440
1441         cpumode = event->header.misc & PERF_EVENT_MISC_CPUMODE_MASK;
1442
1443         if (cpumode == PERF_EVENT_MISC_KERNEL) {
1444                 show = SHOW_KERNEL;
1445                 level = 'k';
1446
1447                 dso = kernel_dso;
1448
1449                 dump_printf(" ...... dso: %s\n", dso->name);
1450
1451         } else if (cpumode == PERF_EVENT_MISC_USER) {
1452
1453                 show = SHOW_USER;
1454                 level = '.';
1455
1456         } else {
1457                 show = SHOW_HV;
1458                 level = 'H';
1459
1460                 dso = hypervisor_dso;
1461
1462                 dump_printf(" ...... dso: [hypervisor]\n");
1463         }
1464
1465         if (sample_type & PERF_SAMPLE_RAW)
1466                 process_raw_event(event, more_data, cpu, timestamp, thread);
1467
1468         return 0;
1469 }
1470
1471 static int
1472 process_event(event_t *event, unsigned long offset, unsigned long head)
1473 {
1474         trace_event(event);
1475
1476         switch (event->header.type) {
1477         case PERF_EVENT_MMAP ... PERF_EVENT_LOST:
1478                 return 0;
1479
1480         case PERF_EVENT_COMM:
1481                 return process_comm_event(event, offset, head);
1482
1483         case PERF_EVENT_EXIT ... PERF_EVENT_READ:
1484                 return 0;
1485
1486         case PERF_EVENT_SAMPLE:
1487                 return process_sample_event(event, offset, head);
1488
1489         case PERF_EVENT_MAX:
1490         default:
1491                 return -1;
1492         }
1493
1494         return 0;
1495 }
1496
1497 static int read_events(void)
1498 {
1499         int ret, rc = EXIT_FAILURE;
1500         unsigned long offset = 0;
1501         unsigned long head = 0;
1502         struct stat perf_stat;
1503         event_t *event;
1504         uint32_t size;
1505         char *buf;
1506
1507         trace_report();
1508         register_idle_thread(&threads, &last_match);
1509
1510         input = open(input_name, O_RDONLY);
1511         if (input < 0) {
1512                 perror("failed to open file");
1513                 exit(-1);
1514         }
1515
1516         ret = fstat(input, &perf_stat);
1517         if (ret < 0) {
1518                 perror("failed to stat file");
1519                 exit(-1);
1520         }
1521
1522         if (!perf_stat.st_size) {
1523                 fprintf(stderr, "zero-sized file, nothing to do!\n");
1524                 exit(0);
1525         }
1526         header = perf_header__read(input);
1527         head = header->data_offset;
1528         sample_type = perf_header__sample_type(header);
1529
1530         if (!(sample_type & PERF_SAMPLE_RAW))
1531                 die("No trace sample to read. Did you call perf record "
1532                     "without -R?");
1533
1534         if (load_kernel() < 0) {
1535                 perror("failed to load kernel symbols");
1536                 return EXIT_FAILURE;
1537         }
1538
1539 remap:
1540         buf = (char *)mmap(NULL, page_size * mmap_window, PROT_READ,
1541                            MAP_SHARED, input, offset);
1542         if (buf == MAP_FAILED) {
1543                 perror("failed to mmap file");
1544                 exit(-1);
1545         }
1546
1547 more:
1548         event = (event_t *)(buf + head);
1549
1550         size = event->header.size;
1551         if (!size)
1552                 size = 8;
1553
1554         if (head + event->header.size >= page_size * mmap_window) {
1555                 unsigned long shift = page_size * (head / page_size);
1556                 int res;
1557
1558                 res = munmap(buf, page_size * mmap_window);
1559                 assert(res == 0);
1560
1561                 offset += shift;
1562                 head -= shift;
1563                 goto remap;
1564         }
1565
1566         size = event->header.size;
1567
1568
1569         if (!size || process_event(event, offset, head) < 0) {
1570
1571                 /*
1572                  * assume we lost track of the stream, check alignment, and
1573                  * increment a single u64 in the hope to catch on again 'soon'.
1574                  */
1575
1576                 if (unlikely(head & 7))
1577                         head &= ~7ULL;
1578
1579                 size = 8;
1580         }
1581
1582         head += size;
1583
1584         if (offset + head < (unsigned long)perf_stat.st_size)
1585                 goto more;
1586
1587         rc = EXIT_SUCCESS;
1588         close(input);
1589
1590         return rc;
1591 }
1592
1593 static const char * const sched_usage[] = {
1594         "perf sched [<options>] {record|latency|replay}",
1595         NULL
1596 };
1597
1598 static const struct option sched_options[] = {
1599         OPT_BOOLEAN('v', "verbose", &verbose,
1600                     "be more verbose (show symbol address, etc)"),
1601         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1602                     "dump raw trace in ASCII"),
1603         OPT_END()
1604 };
1605
1606 static const char * const latency_usage[] = {
1607         "perf sched latency [<options>]",
1608         NULL
1609 };
1610
1611 static const struct option latency_options[] = {
1612         OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
1613                    "sort by key(s): runtime, switch, avg, max"),
1614         OPT_BOOLEAN('v', "verbose", &verbose,
1615                     "be more verbose (show symbol address, etc)"),
1616         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1617                     "dump raw trace in ASCII"),
1618         OPT_END()
1619 };
1620
1621 static const char * const replay_usage[] = {
1622         "perf sched replay [<options>]",
1623         NULL
1624 };
1625
1626 static const struct option replay_options[] = {
1627         OPT_INTEGER('r', "repeat", &replay_repeat,
1628                     "repeat the workload replay N times (-1: infinite)"),
1629         OPT_BOOLEAN('v', "verbose", &verbose,
1630                     "be more verbose (show symbol address, etc)"),
1631         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1632                     "dump raw trace in ASCII"),
1633         OPT_END()
1634 };
1635
1636 static void setup_sorting(void)
1637 {
1638         char *tmp, *tok, *str = strdup(sort_order);
1639
1640         for (tok = strtok_r(str, ", ", &tmp);
1641                         tok; tok = strtok_r(NULL, ", ", &tmp)) {
1642                 if (sort_dimension__add(tok, &sort_list) < 0) {
1643                         error("Unknown --sort key: `%s'", tok);
1644                         usage_with_options(latency_usage, latency_options);
1645                 }
1646         }
1647
1648         free(str);
1649
1650         sort_dimension__add((char *)"pid", &cmp_pid);
1651 }
1652
1653 int cmd_sched(int argc, const char **argv, const char *prefix __used)
1654 {
1655         symbol__init();
1656         page_size = getpagesize();
1657
1658         argc = parse_options(argc, argv, sched_options, sched_usage,
1659                              PARSE_OPT_STOP_AT_NON_OPTION);
1660         if (!argc)
1661                 usage_with_options(sched_usage, sched_options);
1662
1663         if (!strncmp(argv[0], "lat", 3)) {
1664                 trace_handler = &lat_ops;
1665                 if (argc > 1) {
1666                         argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1667                         if (argc)
1668                                 usage_with_options(latency_usage, latency_options);
1669                         setup_sorting();
1670                 }
1671                 __cmd_lat();
1672         } else if (!strncmp(argv[0], "rep", 3)) {
1673                 trace_handler = &replay_ops;
1674                 if (argc) {
1675                         argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1676                         if (argc)
1677                                 usage_with_options(replay_usage, replay_options);
1678                 }
1679                 __cmd_replay();
1680         } else {
1681                 usage_with_options(sched_usage, sched_options);
1682         }
1683
1684
1685         return 0;
1686 }