perf sched: Add 'perf sched map' scheduling event map printout
[linux-3.10.git] / tools / perf / builtin-sched.c
1 #include "builtin.h"
2 #include "perf.h"
3
4 #include "util/util.h"
5 #include "util/cache.h"
6 #include "util/symbol.h"
7 #include "util/thread.h"
8 #include "util/header.h"
9
10 #include "util/parse-options.h"
11 #include "util/trace-event.h"
12
13 #include "util/debug.h"
14
15 #include <sys/types.h>
16 #include <sys/prctl.h>
17
18 #include <semaphore.h>
19 #include <pthread.h>
20 #include <math.h>
21
22 static char                     const *input_name = "perf.data";
23 static int                      input;
24 static unsigned long            page_size;
25 static unsigned long            mmap_window = 32;
26
27 static unsigned long            total_comm = 0;
28
29 static struct rb_root           threads;
30 static struct thread            *last_match;
31
32 static struct perf_header       *header;
33 static u64                      sample_type;
34
35 static char                     default_sort_order[] = "avg, max, switch, runtime";
36 static char                     *sort_order = default_sort_order;
37
38 #define PR_SET_NAME             15               /* Set process name */
39 #define MAX_CPUS                4096
40
41 #define BUG_ON(x)               assert(!(x))
42
43 static u64                      run_measurement_overhead;
44 static u64                      sleep_measurement_overhead;
45
46 #define COMM_LEN                20
47 #define SYM_LEN                 129
48
49 #define MAX_PID                 65536
50
51 static unsigned long            nr_tasks;
52
53 struct sched_atom;
54
55 struct task_desc {
56         unsigned long           nr;
57         unsigned long           pid;
58         char                    comm[COMM_LEN];
59
60         unsigned long           nr_events;
61         unsigned long           curr_event;
62         struct sched_atom       **atoms;
63
64         pthread_t               thread;
65         sem_t                   sleep_sem;
66
67         sem_t                   ready_for_work;
68         sem_t                   work_done_sem;
69
70         u64                     cpu_usage;
71 };
72
73 enum sched_event_type {
74         SCHED_EVENT_RUN,
75         SCHED_EVENT_SLEEP,
76         SCHED_EVENT_WAKEUP,
77 };
78
79 struct sched_atom {
80         enum sched_event_type   type;
81         u64                     timestamp;
82         u64                     duration;
83         unsigned long           nr;
84         int                     specific_wait;
85         sem_t                   *wait_sem;
86         struct task_desc        *wakee;
87 };
88
89 static struct task_desc         *pid_to_task[MAX_PID];
90
91 static struct task_desc         **tasks;
92
93 static pthread_mutex_t          start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
94 static u64                      start_time;
95
96 static pthread_mutex_t          work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
97
98 static unsigned long            nr_run_events;
99 static unsigned long            nr_sleep_events;
100 static unsigned long            nr_wakeup_events;
101
102 static unsigned long            nr_sleep_corrections;
103 static unsigned long            nr_run_events_optimized;
104
105 static unsigned long            targetless_wakeups;
106 static unsigned long            multitarget_wakeups;
107
108 static u64                      cpu_usage;
109 static u64                      runavg_cpu_usage;
110 static u64                      parent_cpu_usage;
111 static u64                      runavg_parent_cpu_usage;
112
113 static unsigned long            nr_runs;
114 static u64                      sum_runtime;
115 static u64                      sum_fluct;
116 static u64                      run_avg;
117
118 static unsigned long            replay_repeat = 10;
119 static unsigned long            nr_timestamps;
120 static unsigned long            nr_unordered_timestamps;
121 static unsigned long            nr_state_machine_bugs;
122 static unsigned long            nr_context_switch_bugs;
123 static unsigned long            nr_events;
124 static unsigned long            nr_lost_chunks;
125 static unsigned long            nr_lost_events;
126
127 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
128
129 enum thread_state {
130         THREAD_SLEEPING = 0,
131         THREAD_WAIT_CPU,
132         THREAD_SCHED_IN,
133         THREAD_IGNORE
134 };
135
136 struct work_atom {
137         struct list_head        list;
138         enum thread_state       state;
139         u64                     sched_out_time;
140         u64                     wake_up_time;
141         u64                     sched_in_time;
142         u64                     runtime;
143 };
144
145 struct work_atoms {
146         struct list_head        work_list;
147         struct thread           *thread;
148         struct rb_node          node;
149         u64                     max_lat;
150         u64                     total_lat;
151         u64                     nb_atoms;
152         u64                     total_runtime;
153 };
154
155 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
156
157 static struct rb_root           atom_root, sorted_atom_root;
158
159 static u64                      all_runtime;
160 static u64                      all_count;
161
162
163 static u64 get_nsecs(void)
164 {
165         struct timespec ts;
166
167         clock_gettime(CLOCK_MONOTONIC, &ts);
168
169         return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
170 }
171
172 static void burn_nsecs(u64 nsecs)
173 {
174         u64 T0 = get_nsecs(), T1;
175
176         do {
177                 T1 = get_nsecs();
178         } while (T1 + run_measurement_overhead < T0 + nsecs);
179 }
180
181 static void sleep_nsecs(u64 nsecs)
182 {
183         struct timespec ts;
184
185         ts.tv_nsec = nsecs % 999999999;
186         ts.tv_sec = nsecs / 999999999;
187
188         nanosleep(&ts, NULL);
189 }
190
191 static void calibrate_run_measurement_overhead(void)
192 {
193         u64 T0, T1, delta, min_delta = 1000000000ULL;
194         int i;
195
196         for (i = 0; i < 10; i++) {
197                 T0 = get_nsecs();
198                 burn_nsecs(0);
199                 T1 = get_nsecs();
200                 delta = T1-T0;
201                 min_delta = min(min_delta, delta);
202         }
203         run_measurement_overhead = min_delta;
204
205         printf("run measurement overhead: %Ld nsecs\n", min_delta);
206 }
207
208 static void calibrate_sleep_measurement_overhead(void)
209 {
210         u64 T0, T1, delta, min_delta = 1000000000ULL;
211         int i;
212
213         for (i = 0; i < 10; i++) {
214                 T0 = get_nsecs();
215                 sleep_nsecs(10000);
216                 T1 = get_nsecs();
217                 delta = T1-T0;
218                 min_delta = min(min_delta, delta);
219         }
220         min_delta -= 10000;
221         sleep_measurement_overhead = min_delta;
222
223         printf("sleep measurement overhead: %Ld nsecs\n", min_delta);
224 }
225
226 static struct sched_atom *
227 get_new_event(struct task_desc *task, u64 timestamp)
228 {
229         struct sched_atom *event = calloc(1, sizeof(*event));
230         unsigned long idx = task->nr_events;
231         size_t size;
232
233         event->timestamp = timestamp;
234         event->nr = idx;
235
236         task->nr_events++;
237         size = sizeof(struct sched_atom *) * task->nr_events;
238         task->atoms = realloc(task->atoms, size);
239         BUG_ON(!task->atoms);
240
241         task->atoms[idx] = event;
242
243         return event;
244 }
245
246 static struct sched_atom *last_event(struct task_desc *task)
247 {
248         if (!task->nr_events)
249                 return NULL;
250
251         return task->atoms[task->nr_events - 1];
252 }
253
254 static void
255 add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
256 {
257         struct sched_atom *event, *curr_event = last_event(task);
258
259         /*
260          * optimize an existing RUN event by merging this one
261          * to it:
262          */
263         if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
264                 nr_run_events_optimized++;
265                 curr_event->duration += duration;
266                 return;
267         }
268
269         event = get_new_event(task, timestamp);
270
271         event->type = SCHED_EVENT_RUN;
272         event->duration = duration;
273
274         nr_run_events++;
275 }
276
277 static void
278 add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
279                        struct task_desc *wakee)
280 {
281         struct sched_atom *event, *wakee_event;
282
283         event = get_new_event(task, timestamp);
284         event->type = SCHED_EVENT_WAKEUP;
285         event->wakee = wakee;
286
287         wakee_event = last_event(wakee);
288         if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
289                 targetless_wakeups++;
290                 return;
291         }
292         if (wakee_event->wait_sem) {
293                 multitarget_wakeups++;
294                 return;
295         }
296
297         wakee_event->wait_sem = calloc(1, sizeof(*wakee_event->wait_sem));
298         sem_init(wakee_event->wait_sem, 0, 0);
299         wakee_event->specific_wait = 1;
300         event->wait_sem = wakee_event->wait_sem;
301
302         nr_wakeup_events++;
303 }
304
305 static void
306 add_sched_event_sleep(struct task_desc *task, u64 timestamp,
307                       u64 task_state __used)
308 {
309         struct sched_atom *event = get_new_event(task, timestamp);
310
311         event->type = SCHED_EVENT_SLEEP;
312
313         nr_sleep_events++;
314 }
315
316 static struct task_desc *register_pid(unsigned long pid, const char *comm)
317 {
318         struct task_desc *task;
319
320         BUG_ON(pid >= MAX_PID);
321
322         task = pid_to_task[pid];
323
324         if (task)
325                 return task;
326
327         task = calloc(1, sizeof(*task));
328         task->pid = pid;
329         task->nr = nr_tasks;
330         strcpy(task->comm, comm);
331         /*
332          * every task starts in sleeping state - this gets ignored
333          * if there's no wakeup pointing to this sleep state:
334          */
335         add_sched_event_sleep(task, 0, 0);
336
337         pid_to_task[pid] = task;
338         nr_tasks++;
339         tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
340         BUG_ON(!tasks);
341         tasks[task->nr] = task;
342
343         if (verbose)
344                 printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
345
346         return task;
347 }
348
349
350 static void print_task_traces(void)
351 {
352         struct task_desc *task;
353         unsigned long i;
354
355         for (i = 0; i < nr_tasks; i++) {
356                 task = tasks[i];
357                 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
358                         task->nr, task->comm, task->pid, task->nr_events);
359         }
360 }
361
362 static void add_cross_task_wakeups(void)
363 {
364         struct task_desc *task1, *task2;
365         unsigned long i, j;
366
367         for (i = 0; i < nr_tasks; i++) {
368                 task1 = tasks[i];
369                 j = i + 1;
370                 if (j == nr_tasks)
371                         j = 0;
372                 task2 = tasks[j];
373                 add_sched_event_wakeup(task1, 0, task2);
374         }
375 }
376
377 static void
378 process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
379 {
380         int ret = 0;
381         u64 now;
382         long long delta;
383
384         now = get_nsecs();
385         delta = start_time + atom->timestamp - now;
386
387         switch (atom->type) {
388                 case SCHED_EVENT_RUN:
389                         burn_nsecs(atom->duration);
390                         break;
391                 case SCHED_EVENT_SLEEP:
392                         if (atom->wait_sem)
393                                 ret = sem_wait(atom->wait_sem);
394                         BUG_ON(ret);
395                         break;
396                 case SCHED_EVENT_WAKEUP:
397                         if (atom->wait_sem)
398                                 ret = sem_post(atom->wait_sem);
399                         BUG_ON(ret);
400                         break;
401                 default:
402                         BUG_ON(1);
403         }
404 }
405
406 static u64 get_cpu_usage_nsec_parent(void)
407 {
408         struct rusage ru;
409         u64 sum;
410         int err;
411
412         err = getrusage(RUSAGE_SELF, &ru);
413         BUG_ON(err);
414
415         sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
416         sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
417
418         return sum;
419 }
420
421 static u64 get_cpu_usage_nsec_self(void)
422 {
423         char filename [] = "/proc/1234567890/sched";
424         unsigned long msecs, nsecs;
425         char *line = NULL;
426         u64 total = 0;
427         size_t len = 0;
428         ssize_t chars;
429         FILE *file;
430         int ret;
431
432         sprintf(filename, "/proc/%d/sched", getpid());
433         file = fopen(filename, "r");
434         BUG_ON(!file);
435
436         while ((chars = getline(&line, &len, file)) != -1) {
437                 ret = sscanf(line, "se.sum_exec_runtime : %ld.%06ld\n",
438                         &msecs, &nsecs);
439                 if (ret == 2) {
440                         total = msecs*1e6 + nsecs;
441                         break;
442                 }
443         }
444         if (line)
445                 free(line);
446         fclose(file);
447
448         return total;
449 }
450
451 static void *thread_func(void *ctx)
452 {
453         struct task_desc *this_task = ctx;
454         u64 cpu_usage_0, cpu_usage_1;
455         unsigned long i, ret;
456         char comm2[22];
457
458         sprintf(comm2, ":%s", this_task->comm);
459         prctl(PR_SET_NAME, comm2);
460
461 again:
462         ret = sem_post(&this_task->ready_for_work);
463         BUG_ON(ret);
464         ret = pthread_mutex_lock(&start_work_mutex);
465         BUG_ON(ret);
466         ret = pthread_mutex_unlock(&start_work_mutex);
467         BUG_ON(ret);
468
469         cpu_usage_0 = get_cpu_usage_nsec_self();
470
471         for (i = 0; i < this_task->nr_events; i++) {
472                 this_task->curr_event = i;
473                 process_sched_event(this_task, this_task->atoms[i]);
474         }
475
476         cpu_usage_1 = get_cpu_usage_nsec_self();
477         this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
478
479         ret = sem_post(&this_task->work_done_sem);
480         BUG_ON(ret);
481
482         ret = pthread_mutex_lock(&work_done_wait_mutex);
483         BUG_ON(ret);
484         ret = pthread_mutex_unlock(&work_done_wait_mutex);
485         BUG_ON(ret);
486
487         goto again;
488 }
489
490 static void create_tasks(void)
491 {
492         struct task_desc *task;
493         pthread_attr_t attr;
494         unsigned long i;
495         int err;
496
497         err = pthread_attr_init(&attr);
498         BUG_ON(err);
499         err = pthread_attr_setstacksize(&attr, (size_t)(16*1024));
500         BUG_ON(err);
501         err = pthread_mutex_lock(&start_work_mutex);
502         BUG_ON(err);
503         err = pthread_mutex_lock(&work_done_wait_mutex);
504         BUG_ON(err);
505         for (i = 0; i < nr_tasks; i++) {
506                 task = tasks[i];
507                 sem_init(&task->sleep_sem, 0, 0);
508                 sem_init(&task->ready_for_work, 0, 0);
509                 sem_init(&task->work_done_sem, 0, 0);
510                 task->curr_event = 0;
511                 err = pthread_create(&task->thread, &attr, thread_func, task);
512                 BUG_ON(err);
513         }
514 }
515
516 static void wait_for_tasks(void)
517 {
518         u64 cpu_usage_0, cpu_usage_1;
519         struct task_desc *task;
520         unsigned long i, ret;
521
522         start_time = get_nsecs();
523         cpu_usage = 0;
524         pthread_mutex_unlock(&work_done_wait_mutex);
525
526         for (i = 0; i < nr_tasks; i++) {
527                 task = tasks[i];
528                 ret = sem_wait(&task->ready_for_work);
529                 BUG_ON(ret);
530                 sem_init(&task->ready_for_work, 0, 0);
531         }
532         ret = pthread_mutex_lock(&work_done_wait_mutex);
533         BUG_ON(ret);
534
535         cpu_usage_0 = get_cpu_usage_nsec_parent();
536
537         pthread_mutex_unlock(&start_work_mutex);
538
539         for (i = 0; i < nr_tasks; i++) {
540                 task = tasks[i];
541                 ret = sem_wait(&task->work_done_sem);
542                 BUG_ON(ret);
543                 sem_init(&task->work_done_sem, 0, 0);
544                 cpu_usage += task->cpu_usage;
545                 task->cpu_usage = 0;
546         }
547
548         cpu_usage_1 = get_cpu_usage_nsec_parent();
549         if (!runavg_cpu_usage)
550                 runavg_cpu_usage = cpu_usage;
551         runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
552
553         parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
554         if (!runavg_parent_cpu_usage)
555                 runavg_parent_cpu_usage = parent_cpu_usage;
556         runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
557                                    parent_cpu_usage)/10;
558
559         ret = pthread_mutex_lock(&start_work_mutex);
560         BUG_ON(ret);
561
562         for (i = 0; i < nr_tasks; i++) {
563                 task = tasks[i];
564                 sem_init(&task->sleep_sem, 0, 0);
565                 task->curr_event = 0;
566         }
567 }
568
569 static void run_one_test(void)
570 {
571         u64 T0, T1, delta, avg_delta, fluct, std_dev;
572
573         T0 = get_nsecs();
574         wait_for_tasks();
575         T1 = get_nsecs();
576
577         delta = T1 - T0;
578         sum_runtime += delta;
579         nr_runs++;
580
581         avg_delta = sum_runtime / nr_runs;
582         if (delta < avg_delta)
583                 fluct = avg_delta - delta;
584         else
585                 fluct = delta - avg_delta;
586         sum_fluct += fluct;
587         std_dev = sum_fluct / nr_runs / sqrt(nr_runs);
588         if (!run_avg)
589                 run_avg = delta;
590         run_avg = (run_avg*9 + delta)/10;
591
592         printf("#%-3ld: %0.3f, ",
593                 nr_runs, (double)delta/1000000.0);
594
595         printf("ravg: %0.2f, ",
596                 (double)run_avg/1e6);
597
598         printf("cpu: %0.2f / %0.2f",
599                 (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
600
601 #if 0
602         /*
603          * rusage statistics done by the parent, these are less
604          * accurate than the sum_exec_runtime based statistics:
605          */
606         printf(" [%0.2f / %0.2f]",
607                 (double)parent_cpu_usage/1e6,
608                 (double)runavg_parent_cpu_usage/1e6);
609 #endif
610
611         printf("\n");
612
613         if (nr_sleep_corrections)
614                 printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
615         nr_sleep_corrections = 0;
616 }
617
618 static void test_calibrations(void)
619 {
620         u64 T0, T1;
621
622         T0 = get_nsecs();
623         burn_nsecs(1e6);
624         T1 = get_nsecs();
625
626         printf("the run test took %Ld nsecs\n", T1-T0);
627
628         T0 = get_nsecs();
629         sleep_nsecs(1e6);
630         T1 = get_nsecs();
631
632         printf("the sleep test took %Ld nsecs\n", T1-T0);
633 }
634
635 static int
636 process_comm_event(event_t *event, unsigned long offset, unsigned long head)
637 {
638         struct thread *thread;
639
640         thread = threads__findnew(event->comm.pid, &threads, &last_match);
641
642         dump_printf("%p [%p]: perf_event_comm: %s:%d\n",
643                 (void *)(offset + head),
644                 (void *)(long)(event->header.size),
645                 event->comm.comm, event->comm.pid);
646
647         if (thread == NULL ||
648             thread__set_comm(thread, event->comm.comm)) {
649                 dump_printf("problem processing perf_event_comm, skipping event.\n");
650                 return -1;
651         }
652         total_comm++;
653
654         return 0;
655 }
656
657
658 struct raw_event_sample {
659         u32 size;
660         char data[0];
661 };
662
663 #define FILL_FIELD(ptr, field, event, data)     \
664         ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
665
666 #define FILL_ARRAY(ptr, array, event, data)                     \
667 do {                                                            \
668         void *__array = raw_field_ptr(event, #array, data);     \
669         memcpy(ptr.array, __array, sizeof(ptr.array));  \
670 } while(0)
671
672 #define FILL_COMMON_FIELDS(ptr, event, data)                    \
673 do {                                                            \
674         FILL_FIELD(ptr, common_type, event, data);              \
675         FILL_FIELD(ptr, common_flags, event, data);             \
676         FILL_FIELD(ptr, common_preempt_count, event, data);     \
677         FILL_FIELD(ptr, common_pid, event, data);               \
678         FILL_FIELD(ptr, common_tgid, event, data);              \
679 } while (0)
680
681
682
683 struct trace_switch_event {
684         u32 size;
685
686         u16 common_type;
687         u8 common_flags;
688         u8 common_preempt_count;
689         u32 common_pid;
690         u32 common_tgid;
691
692         char prev_comm[16];
693         u32 prev_pid;
694         u32 prev_prio;
695         u64 prev_state;
696         char next_comm[16];
697         u32 next_pid;
698         u32 next_prio;
699 };
700
701 struct trace_runtime_event {
702         u32 size;
703
704         u16 common_type;
705         u8 common_flags;
706         u8 common_preempt_count;
707         u32 common_pid;
708         u32 common_tgid;
709
710         char comm[16];
711         u32 pid;
712         u64 runtime;
713         u64 vruntime;
714 };
715
716 struct trace_wakeup_event {
717         u32 size;
718
719         u16 common_type;
720         u8 common_flags;
721         u8 common_preempt_count;
722         u32 common_pid;
723         u32 common_tgid;
724
725         char comm[16];
726         u32 pid;
727
728         u32 prio;
729         u32 success;
730         u32 cpu;
731 };
732
733 struct trace_fork_event {
734         u32 size;
735
736         u16 common_type;
737         u8 common_flags;
738         u8 common_preempt_count;
739         u32 common_pid;
740         u32 common_tgid;
741
742         char parent_comm[16];
743         u32 parent_pid;
744         char child_comm[16];
745         u32 child_pid;
746 };
747
748 struct trace_sched_handler {
749         void (*switch_event)(struct trace_switch_event *,
750                              struct event *,
751                              int cpu,
752                              u64 timestamp,
753                              struct thread *thread);
754
755         void (*runtime_event)(struct trace_runtime_event *,
756                               struct event *,
757                               int cpu,
758                               u64 timestamp,
759                               struct thread *thread);
760
761         void (*wakeup_event)(struct trace_wakeup_event *,
762                              struct event *,
763                              int cpu,
764                              u64 timestamp,
765                              struct thread *thread);
766
767         void (*fork_event)(struct trace_fork_event *,
768                            struct event *,
769                            int cpu,
770                            u64 timestamp,
771                            struct thread *thread);
772 };
773
774
775 static void
776 replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
777                     struct event *event,
778                     int cpu __used,
779                     u64 timestamp __used,
780                     struct thread *thread __used)
781 {
782         struct task_desc *waker, *wakee;
783
784         if (verbose) {
785                 printf("sched_wakeup event %p\n", event);
786
787                 printf(" ... pid %d woke up %s/%d\n",
788                         wakeup_event->common_pid,
789                         wakeup_event->comm,
790                         wakeup_event->pid);
791         }
792
793         waker = register_pid(wakeup_event->common_pid, "<unknown>");
794         wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
795
796         add_sched_event_wakeup(waker, timestamp, wakee);
797 }
798
799 static u64 cpu_last_switched[MAX_CPUS];
800
801 static void
802 replay_switch_event(struct trace_switch_event *switch_event,
803                     struct event *event,
804                     int cpu,
805                     u64 timestamp,
806                     struct thread *thread __used)
807 {
808         struct task_desc *prev, *next;
809         u64 timestamp0;
810         s64 delta;
811
812         if (verbose)
813                 printf("sched_switch event %p\n", event);
814
815         if (cpu >= MAX_CPUS || cpu < 0)
816                 return;
817
818         timestamp0 = cpu_last_switched[cpu];
819         if (timestamp0)
820                 delta = timestamp - timestamp0;
821         else
822                 delta = 0;
823
824         if (delta < 0)
825                 die("hm, delta: %Ld < 0 ?\n", delta);
826
827         if (verbose) {
828                 printf(" ... switch from %s/%d to %s/%d [ran %Ld nsecs]\n",
829                         switch_event->prev_comm, switch_event->prev_pid,
830                         switch_event->next_comm, switch_event->next_pid,
831                         delta);
832         }
833
834         prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
835         next = register_pid(switch_event->next_pid, switch_event->next_comm);
836
837         cpu_last_switched[cpu] = timestamp;
838
839         add_sched_event_run(prev, timestamp, delta);
840         add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
841 }
842
843
844 static void
845 replay_fork_event(struct trace_fork_event *fork_event,
846                   struct event *event,
847                   int cpu __used,
848                   u64 timestamp __used,
849                   struct thread *thread __used)
850 {
851         if (verbose) {
852                 printf("sched_fork event %p\n", event);
853                 printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
854                 printf("...  child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
855         }
856         register_pid(fork_event->parent_pid, fork_event->parent_comm);
857         register_pid(fork_event->child_pid, fork_event->child_comm);
858 }
859
860 static struct trace_sched_handler replay_ops  = {
861         .wakeup_event           = replay_wakeup_event,
862         .switch_event           = replay_switch_event,
863         .fork_event             = replay_fork_event,
864 };
865
866 struct sort_dimension {
867         const char              *name;
868         sort_fn_t               cmp;
869         struct list_head        list;
870 };
871
872 static LIST_HEAD(cmp_pid);
873
874 static int
875 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
876 {
877         struct sort_dimension *sort;
878         int ret = 0;
879
880         BUG_ON(list_empty(list));
881
882         list_for_each_entry(sort, list, list) {
883                 ret = sort->cmp(l, r);
884                 if (ret)
885                         return ret;
886         }
887
888         return ret;
889 }
890
891 static struct work_atoms *
892 thread_atoms_search(struct rb_root *root, struct thread *thread,
893                          struct list_head *sort_list)
894 {
895         struct rb_node *node = root->rb_node;
896         struct work_atoms key = { .thread = thread };
897
898         while (node) {
899                 struct work_atoms *atoms;
900                 int cmp;
901
902                 atoms = container_of(node, struct work_atoms, node);
903
904                 cmp = thread_lat_cmp(sort_list, &key, atoms);
905                 if (cmp > 0)
906                         node = node->rb_left;
907                 else if (cmp < 0)
908                         node = node->rb_right;
909                 else {
910                         BUG_ON(thread != atoms->thread);
911                         return atoms;
912                 }
913         }
914         return NULL;
915 }
916
917 static void
918 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
919                          struct list_head *sort_list)
920 {
921         struct rb_node **new = &(root->rb_node), *parent = NULL;
922
923         while (*new) {
924                 struct work_atoms *this;
925                 int cmp;
926
927                 this = container_of(*new, struct work_atoms, node);
928                 parent = *new;
929
930                 cmp = thread_lat_cmp(sort_list, data, this);
931
932                 if (cmp > 0)
933                         new = &((*new)->rb_left);
934                 else
935                         new = &((*new)->rb_right);
936         }
937
938         rb_link_node(&data->node, parent, new);
939         rb_insert_color(&data->node, root);
940 }
941
942 static void thread_atoms_insert(struct thread *thread)
943 {
944         struct work_atoms *atoms;
945
946         atoms = calloc(sizeof(*atoms), 1);
947         if (!atoms)
948                 die("No memory");
949
950         atoms->thread = thread;
951         INIT_LIST_HEAD(&atoms->work_list);
952         __thread_latency_insert(&atom_root, atoms, &cmp_pid);
953 }
954
955 static void
956 latency_fork_event(struct trace_fork_event *fork_event __used,
957                    struct event *event __used,
958                    int cpu __used,
959                    u64 timestamp __used,
960                    struct thread *thread __used)
961 {
962         /* should insert the newcomer */
963 }
964
965 __used
966 static char sched_out_state(struct trace_switch_event *switch_event)
967 {
968         const char *str = TASK_STATE_TO_CHAR_STR;
969
970         return str[switch_event->prev_state];
971 }
972
973 static void
974 add_sched_out_event(struct work_atoms *atoms,
975                     char run_state,
976                     u64 timestamp)
977 {
978         struct work_atom *atom;
979
980         atom = calloc(sizeof(*atom), 1);
981         if (!atom)
982                 die("Non memory");
983
984         atom->sched_out_time = timestamp;
985
986         if (run_state == 'R') {
987                 atom->state = THREAD_WAIT_CPU;
988                 atom->wake_up_time = atom->sched_out_time;
989         }
990
991         list_add_tail(&atom->list, &atoms->work_list);
992 }
993
994 static void
995 add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
996 {
997         struct work_atom *atom;
998
999         BUG_ON(list_empty(&atoms->work_list));
1000
1001         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1002
1003         atom->runtime += delta;
1004         atoms->total_runtime += delta;
1005 }
1006
1007 static void
1008 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1009 {
1010         struct work_atom *atom;
1011         u64 delta;
1012
1013         if (list_empty(&atoms->work_list))
1014                 return;
1015
1016         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1017
1018         if (atom->state != THREAD_WAIT_CPU)
1019                 return;
1020
1021         if (timestamp < atom->wake_up_time) {
1022                 atom->state = THREAD_IGNORE;
1023                 return;
1024         }
1025
1026         atom->state = THREAD_SCHED_IN;
1027         atom->sched_in_time = timestamp;
1028
1029         delta = atom->sched_in_time - atom->wake_up_time;
1030         atoms->total_lat += delta;
1031         if (delta > atoms->max_lat)
1032                 atoms->max_lat = delta;
1033         atoms->nb_atoms++;
1034 }
1035
1036 static void
1037 latency_switch_event(struct trace_switch_event *switch_event,
1038                      struct event *event __used,
1039                      int cpu,
1040                      u64 timestamp,
1041                      struct thread *thread __used)
1042 {
1043         struct work_atoms *out_events, *in_events;
1044         struct thread *sched_out, *sched_in;
1045         u64 timestamp0;
1046         s64 delta;
1047
1048         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1049
1050         timestamp0 = cpu_last_switched[cpu];
1051         cpu_last_switched[cpu] = timestamp;
1052         if (timestamp0)
1053                 delta = timestamp - timestamp0;
1054         else
1055                 delta = 0;
1056
1057         if (delta < 0)
1058                 die("hm, delta: %Ld < 0 ?\n", delta);
1059
1060
1061         sched_out = threads__findnew(switch_event->prev_pid, &threads, &last_match);
1062         sched_in = threads__findnew(switch_event->next_pid, &threads, &last_match);
1063
1064         out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1065         if (!out_events) {
1066                 thread_atoms_insert(sched_out);
1067                 out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1068                 if (!out_events)
1069                         die("out-event: Internal tree error");
1070         }
1071         add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
1072
1073         in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1074         if (!in_events) {
1075                 thread_atoms_insert(sched_in);
1076                 in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1077                 if (!in_events)
1078                         die("in-event: Internal tree error");
1079                 /*
1080                  * Take came in we have not heard about yet,
1081                  * add in an initial atom in runnable state:
1082                  */
1083                 add_sched_out_event(in_events, 'R', timestamp);
1084         }
1085         add_sched_in_event(in_events, timestamp);
1086 }
1087
1088 static void
1089 latency_runtime_event(struct trace_runtime_event *runtime_event,
1090                      struct event *event __used,
1091                      int cpu,
1092                      u64 timestamp,
1093                      struct thread *this_thread __used)
1094 {
1095         struct work_atoms *atoms;
1096         struct thread *thread;
1097
1098         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1099
1100         thread = threads__findnew(runtime_event->pid, &threads, &last_match);
1101         atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1102         if (!atoms) {
1103                 thread_atoms_insert(thread);
1104                 atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1105                 if (!atoms)
1106                         die("in-event: Internal tree error");
1107                 add_sched_out_event(atoms, 'R', timestamp);
1108         }
1109
1110         add_runtime_event(atoms, runtime_event->runtime, timestamp);
1111 }
1112
1113 static void
1114 latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1115                      struct event *__event __used,
1116                      int cpu __used,
1117                      u64 timestamp,
1118                      struct thread *thread __used)
1119 {
1120         struct work_atoms *atoms;
1121         struct work_atom *atom;
1122         struct thread *wakee;
1123
1124         /* Note for later, it may be interesting to observe the failing cases */
1125         if (!wakeup_event->success)
1126                 return;
1127
1128         wakee = threads__findnew(wakeup_event->pid, &threads, &last_match);
1129         atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1130         if (!atoms) {
1131                 thread_atoms_insert(wakee);
1132                 atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1133                 if (!atoms)
1134                         die("wakeup-event: Internal tree error");
1135                 add_sched_out_event(atoms, 'S', timestamp);
1136         }
1137
1138         BUG_ON(list_empty(&atoms->work_list));
1139
1140         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1141
1142         if (atom->state != THREAD_SLEEPING)
1143                 nr_state_machine_bugs++;
1144
1145         nr_timestamps++;
1146         if (atom->sched_out_time > timestamp) {
1147                 nr_unordered_timestamps++;
1148                 return;
1149         }
1150
1151         atom->state = THREAD_WAIT_CPU;
1152         atom->wake_up_time = timestamp;
1153 }
1154
1155 static struct trace_sched_handler lat_ops  = {
1156         .wakeup_event           = latency_wakeup_event,
1157         .switch_event           = latency_switch_event,
1158         .runtime_event          = latency_runtime_event,
1159         .fork_event             = latency_fork_event,
1160 };
1161
1162 static void output_lat_thread(struct work_atoms *work_list)
1163 {
1164         int i;
1165         int ret;
1166         u64 avg;
1167
1168         if (!work_list->nb_atoms)
1169                 return;
1170         /*
1171          * Ignore idle threads:
1172          */
1173         if (!strcmp(work_list->thread->comm, "swapper"))
1174                 return;
1175
1176         all_runtime += work_list->total_runtime;
1177         all_count += work_list->nb_atoms;
1178
1179         ret = printf("  %s:%d ", work_list->thread->comm, work_list->thread->pid);
1180
1181         for (i = 0; i < 24 - ret; i++)
1182                 printf(" ");
1183
1184         avg = work_list->total_lat / work_list->nb_atoms;
1185
1186         printf("|%11.3f ms |%9llu | avg:%9.3f ms | max:%9.3f ms |\n",
1187               (double)work_list->total_runtime / 1e6,
1188                  work_list->nb_atoms, (double)avg / 1e6,
1189                  (double)work_list->max_lat / 1e6);
1190 }
1191
1192 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1193 {
1194         if (l->thread->pid < r->thread->pid)
1195                 return -1;
1196         if (l->thread->pid > r->thread->pid)
1197                 return 1;
1198
1199         return 0;
1200 }
1201
1202 static struct sort_dimension pid_sort_dimension = {
1203         .name                   = "pid",
1204         .cmp                    = pid_cmp,
1205 };
1206
1207 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1208 {
1209         u64 avgl, avgr;
1210
1211         if (!l->nb_atoms)
1212                 return -1;
1213
1214         if (!r->nb_atoms)
1215                 return 1;
1216
1217         avgl = l->total_lat / l->nb_atoms;
1218         avgr = r->total_lat / r->nb_atoms;
1219
1220         if (avgl < avgr)
1221                 return -1;
1222         if (avgl > avgr)
1223                 return 1;
1224
1225         return 0;
1226 }
1227
1228 static struct sort_dimension avg_sort_dimension = {
1229         .name                   = "avg",
1230         .cmp                    = avg_cmp,
1231 };
1232
1233 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1234 {
1235         if (l->max_lat < r->max_lat)
1236                 return -1;
1237         if (l->max_lat > r->max_lat)
1238                 return 1;
1239
1240         return 0;
1241 }
1242
1243 static struct sort_dimension max_sort_dimension = {
1244         .name                   = "max",
1245         .cmp                    = max_cmp,
1246 };
1247
1248 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1249 {
1250         if (l->nb_atoms < r->nb_atoms)
1251                 return -1;
1252         if (l->nb_atoms > r->nb_atoms)
1253                 return 1;
1254
1255         return 0;
1256 }
1257
1258 static struct sort_dimension switch_sort_dimension = {
1259         .name                   = "switch",
1260         .cmp                    = switch_cmp,
1261 };
1262
1263 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1264 {
1265         if (l->total_runtime < r->total_runtime)
1266                 return -1;
1267         if (l->total_runtime > r->total_runtime)
1268                 return 1;
1269
1270         return 0;
1271 }
1272
1273 static struct sort_dimension runtime_sort_dimension = {
1274         .name                   = "runtime",
1275         .cmp                    = runtime_cmp,
1276 };
1277
1278 static struct sort_dimension *available_sorts[] = {
1279         &pid_sort_dimension,
1280         &avg_sort_dimension,
1281         &max_sort_dimension,
1282         &switch_sort_dimension,
1283         &runtime_sort_dimension,
1284 };
1285
1286 #define NB_AVAILABLE_SORTS      (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
1287
1288 static LIST_HEAD(sort_list);
1289
1290 static int sort_dimension__add(char *tok, struct list_head *list)
1291 {
1292         int i;
1293
1294         for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
1295                 if (!strcmp(available_sorts[i]->name, tok)) {
1296                         list_add_tail(&available_sorts[i]->list, list);
1297
1298                         return 0;
1299                 }
1300         }
1301
1302         return -1;
1303 }
1304
1305 static void setup_sorting(void);
1306
1307 static void sort_lat(void)
1308 {
1309         struct rb_node *node;
1310
1311         for (;;) {
1312                 struct work_atoms *data;
1313                 node = rb_first(&atom_root);
1314                 if (!node)
1315                         break;
1316
1317                 rb_erase(node, &atom_root);
1318                 data = rb_entry(node, struct work_atoms, node);
1319                 __thread_latency_insert(&sorted_atom_root, data, &sort_list);
1320         }
1321 }
1322
1323 static struct trace_sched_handler *trace_handler;
1324
1325 static void
1326 process_sched_wakeup_event(struct raw_event_sample *raw,
1327                            struct event *event,
1328                            int cpu __used,
1329                            u64 timestamp __used,
1330                            struct thread *thread __used)
1331 {
1332         struct trace_wakeup_event wakeup_event;
1333
1334         FILL_COMMON_FIELDS(wakeup_event, event, raw->data);
1335
1336         FILL_ARRAY(wakeup_event, comm, event, raw->data);
1337         FILL_FIELD(wakeup_event, pid, event, raw->data);
1338         FILL_FIELD(wakeup_event, prio, event, raw->data);
1339         FILL_FIELD(wakeup_event, success, event, raw->data);
1340         FILL_FIELD(wakeup_event, cpu, event, raw->data);
1341
1342         if (trace_handler->wakeup_event)
1343                 trace_handler->wakeup_event(&wakeup_event, event, cpu, timestamp, thread);
1344 }
1345
1346 /*
1347  * Track the current task - that way we can know whether there's any
1348  * weird events, such as a task being switched away that is not current.
1349  */
1350 static int max_cpu = 15;
1351
1352 static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
1353
1354 static struct thread *curr_thread[MAX_CPUS];
1355
1356 static char next_shortname1 = 'A';
1357 static char next_shortname2 = '0';
1358
1359 static void
1360 map_switch_event(struct trace_switch_event *switch_event,
1361                  struct event *event __used,
1362                  int this_cpu,
1363                  u64 timestamp,
1364                  struct thread *thread __used)
1365 {
1366         struct thread *sched_out, *sched_in;
1367         int new_shortname;
1368         u64 timestamp0;
1369         s64 delta;
1370         int cpu;
1371
1372         BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1373
1374         if (this_cpu > max_cpu)
1375                 max_cpu = this_cpu;
1376
1377         timestamp0 = cpu_last_switched[this_cpu];
1378         cpu_last_switched[this_cpu] = timestamp;
1379         if (timestamp0)
1380                 delta = timestamp - timestamp0;
1381         else
1382                 delta = 0;
1383
1384         if (delta < 0)
1385                 die("hm, delta: %Ld < 0 ?\n", delta);
1386
1387
1388         sched_out = threads__findnew(switch_event->prev_pid, &threads, &last_match);
1389         sched_in = threads__findnew(switch_event->next_pid, &threads, &last_match);
1390
1391         curr_thread[this_cpu] = sched_in;
1392
1393         printf("  ");
1394
1395         new_shortname = 0;
1396         if (!sched_in->shortname[0]) {
1397                 sched_in->shortname[0] = next_shortname1;
1398                 sched_in->shortname[1] = next_shortname2;
1399
1400                 if (next_shortname1 < 'Z') {
1401                         next_shortname1++;
1402                 } else {
1403                         next_shortname1='A';
1404                         if (next_shortname2 < '9') {
1405                                 next_shortname2++;
1406                         } else {
1407                                 next_shortname2='0';
1408                         }
1409                 }
1410                 new_shortname = 1;
1411         }
1412
1413         for (cpu = 0; cpu <= max_cpu; cpu++) {
1414                 if (cpu != this_cpu)
1415                         printf(" ");
1416                 else
1417                         printf("*");
1418
1419                 if (curr_thread[cpu]) {
1420                         if (curr_thread[cpu]->pid)
1421                                 printf("%2s ", curr_thread[cpu]->shortname);
1422                         else
1423                                 printf(".  ");
1424                 } else
1425                         printf("   ");
1426         }
1427
1428         printf("  %12.6f secs ", (double)timestamp/1e9);
1429         if (new_shortname) {
1430                 printf("%s => %s:%d\n",
1431                         sched_in->shortname, sched_in->comm, sched_in->pid);
1432         } else {
1433                 printf("\n");
1434         }
1435 }
1436
1437
1438 static void
1439 process_sched_switch_event(struct raw_event_sample *raw,
1440                            struct event *event,
1441                            int this_cpu,
1442                            u64 timestamp __used,
1443                            struct thread *thread __used)
1444 {
1445         struct trace_switch_event switch_event;
1446
1447         FILL_COMMON_FIELDS(switch_event, event, raw->data);
1448
1449         FILL_ARRAY(switch_event, prev_comm, event, raw->data);
1450         FILL_FIELD(switch_event, prev_pid, event, raw->data);
1451         FILL_FIELD(switch_event, prev_prio, event, raw->data);
1452         FILL_FIELD(switch_event, prev_state, event, raw->data);
1453         FILL_ARRAY(switch_event, next_comm, event, raw->data);
1454         FILL_FIELD(switch_event, next_pid, event, raw->data);
1455         FILL_FIELD(switch_event, next_prio, event, raw->data);
1456
1457         if (curr_pid[this_cpu] != (u32)-1) {
1458                 /*
1459                  * Are we trying to switch away a PID that is
1460                  * not current?
1461                  */
1462                 if (curr_pid[this_cpu] != switch_event.prev_pid)
1463                         nr_context_switch_bugs++;
1464         }
1465         if (trace_handler->switch_event)
1466                 trace_handler->switch_event(&switch_event, event, this_cpu, timestamp, thread);
1467
1468         curr_pid[this_cpu] = switch_event.next_pid;
1469 }
1470
1471 static void
1472 process_sched_runtime_event(struct raw_event_sample *raw,
1473                            struct event *event,
1474                            int cpu __used,
1475                            u64 timestamp __used,
1476                            struct thread *thread __used)
1477 {
1478         struct trace_runtime_event runtime_event;
1479
1480         FILL_ARRAY(runtime_event, comm, event, raw->data);
1481         FILL_FIELD(runtime_event, pid, event, raw->data);
1482         FILL_FIELD(runtime_event, runtime, event, raw->data);
1483         FILL_FIELD(runtime_event, vruntime, event, raw->data);
1484
1485         if (trace_handler->runtime_event)
1486                 trace_handler->runtime_event(&runtime_event, event, cpu, timestamp, thread);
1487 }
1488
1489 static void
1490 process_sched_fork_event(struct raw_event_sample *raw,
1491                          struct event *event,
1492                          int cpu __used,
1493                          u64 timestamp __used,
1494                          struct thread *thread __used)
1495 {
1496         struct trace_fork_event fork_event;
1497
1498         FILL_COMMON_FIELDS(fork_event, event, raw->data);
1499
1500         FILL_ARRAY(fork_event, parent_comm, event, raw->data);
1501         FILL_FIELD(fork_event, parent_pid, event, raw->data);
1502         FILL_ARRAY(fork_event, child_comm, event, raw->data);
1503         FILL_FIELD(fork_event, child_pid, event, raw->data);
1504
1505         if (trace_handler->fork_event)
1506                 trace_handler->fork_event(&fork_event, event, cpu, timestamp, thread);
1507 }
1508
1509 static void
1510 process_sched_exit_event(struct event *event,
1511                          int cpu __used,
1512                          u64 timestamp __used,
1513                          struct thread *thread __used)
1514 {
1515         if (verbose)
1516                 printf("sched_exit event %p\n", event);
1517 }
1518
1519 static void
1520 process_raw_event(event_t *raw_event __used, void *more_data,
1521                   int cpu, u64 timestamp, struct thread *thread)
1522 {
1523         struct raw_event_sample *raw = more_data;
1524         struct event *event;
1525         int type;
1526
1527         type = trace_parse_common_type(raw->data);
1528         event = trace_find_event(type);
1529
1530         if (!strcmp(event->name, "sched_switch"))
1531                 process_sched_switch_event(raw, event, cpu, timestamp, thread);
1532         if (!strcmp(event->name, "sched_stat_runtime"))
1533                 process_sched_runtime_event(raw, event, cpu, timestamp, thread);
1534         if (!strcmp(event->name, "sched_wakeup"))
1535                 process_sched_wakeup_event(raw, event, cpu, timestamp, thread);
1536         if (!strcmp(event->name, "sched_wakeup_new"))
1537                 process_sched_wakeup_event(raw, event, cpu, timestamp, thread);
1538         if (!strcmp(event->name, "sched_process_fork"))
1539                 process_sched_fork_event(raw, event, cpu, timestamp, thread);
1540         if (!strcmp(event->name, "sched_process_exit"))
1541                 process_sched_exit_event(event, cpu, timestamp, thread);
1542 }
1543
1544 static int
1545 process_sample_event(event_t *event, unsigned long offset, unsigned long head)
1546 {
1547         char level;
1548         int show = 0;
1549         struct dso *dso = NULL;
1550         struct thread *thread;
1551         u64 ip = event->ip.ip;
1552         u64 timestamp = -1;
1553         u32 cpu = -1;
1554         u64 period = 1;
1555         void *more_data = event->ip.__more_data;
1556         int cpumode;
1557
1558         thread = threads__findnew(event->ip.pid, &threads, &last_match);
1559
1560         if (sample_type & PERF_SAMPLE_TIME) {
1561                 timestamp = *(u64 *)more_data;
1562                 more_data += sizeof(u64);
1563         }
1564
1565         if (sample_type & PERF_SAMPLE_CPU) {
1566                 cpu = *(u32 *)more_data;
1567                 more_data += sizeof(u32);
1568                 more_data += sizeof(u32); /* reserved */
1569         }
1570
1571         if (sample_type & PERF_SAMPLE_PERIOD) {
1572                 period = *(u64 *)more_data;
1573                 more_data += sizeof(u64);
1574         }
1575
1576         dump_printf("%p [%p]: PERF_EVENT_SAMPLE (IP, %d): %d/%d: %p period: %Ld\n",
1577                 (void *)(offset + head),
1578                 (void *)(long)(event->header.size),
1579                 event->header.misc,
1580                 event->ip.pid, event->ip.tid,
1581                 (void *)(long)ip,
1582                 (long long)period);
1583
1584         dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
1585
1586         if (thread == NULL) {
1587                 eprintf("problem processing %d event, skipping it.\n",
1588                         event->header.type);
1589                 return -1;
1590         }
1591
1592         cpumode = event->header.misc & PERF_EVENT_MISC_CPUMODE_MASK;
1593
1594         if (cpumode == PERF_EVENT_MISC_KERNEL) {
1595                 show = SHOW_KERNEL;
1596                 level = 'k';
1597
1598                 dso = kernel_dso;
1599
1600                 dump_printf(" ...... dso: %s\n", dso->name);
1601
1602         } else if (cpumode == PERF_EVENT_MISC_USER) {
1603
1604                 show = SHOW_USER;
1605                 level = '.';
1606
1607         } else {
1608                 show = SHOW_HV;
1609                 level = 'H';
1610
1611                 dso = hypervisor_dso;
1612
1613                 dump_printf(" ...... dso: [hypervisor]\n");
1614         }
1615
1616         if (sample_type & PERF_SAMPLE_RAW)
1617                 process_raw_event(event, more_data, cpu, timestamp, thread);
1618
1619         return 0;
1620 }
1621
1622 static int
1623 process_event(event_t *event, unsigned long offset, unsigned long head)
1624 {
1625         trace_event(event);
1626
1627         nr_events++;
1628         switch (event->header.type) {
1629         case PERF_EVENT_MMAP:
1630                 return 0;
1631         case PERF_EVENT_LOST:
1632                 nr_lost_chunks++;
1633                 nr_lost_events += event->lost.lost;
1634                 return 0;
1635
1636         case PERF_EVENT_COMM:
1637                 return process_comm_event(event, offset, head);
1638
1639         case PERF_EVENT_EXIT ... PERF_EVENT_READ:
1640                 return 0;
1641
1642         case PERF_EVENT_SAMPLE:
1643                 return process_sample_event(event, offset, head);
1644
1645         case PERF_EVENT_MAX:
1646         default:
1647                 return -1;
1648         }
1649
1650         return 0;
1651 }
1652
1653 static int read_events(void)
1654 {
1655         int ret, rc = EXIT_FAILURE;
1656         unsigned long offset = 0;
1657         unsigned long head = 0;
1658         struct stat perf_stat;
1659         event_t *event;
1660         uint32_t size;
1661         char *buf;
1662
1663         trace_report();
1664         register_idle_thread(&threads, &last_match);
1665
1666         input = open(input_name, O_RDONLY);
1667         if (input < 0) {
1668                 perror("failed to open file");
1669                 exit(-1);
1670         }
1671
1672         ret = fstat(input, &perf_stat);
1673         if (ret < 0) {
1674                 perror("failed to stat file");
1675                 exit(-1);
1676         }
1677
1678         if (!perf_stat.st_size) {
1679                 fprintf(stderr, "zero-sized file, nothing to do!\n");
1680                 exit(0);
1681         }
1682         header = perf_header__read(input);
1683         head = header->data_offset;
1684         sample_type = perf_header__sample_type(header);
1685
1686         if (!(sample_type & PERF_SAMPLE_RAW))
1687                 die("No trace sample to read. Did you call perf record "
1688                     "without -R?");
1689
1690         if (load_kernel() < 0) {
1691                 perror("failed to load kernel symbols");
1692                 return EXIT_FAILURE;
1693         }
1694
1695 remap:
1696         buf = (char *)mmap(NULL, page_size * mmap_window, PROT_READ,
1697                            MAP_SHARED, input, offset);
1698         if (buf == MAP_FAILED) {
1699                 perror("failed to mmap file");
1700                 exit(-1);
1701         }
1702
1703 more:
1704         event = (event_t *)(buf + head);
1705
1706         size = event->header.size;
1707         if (!size)
1708                 size = 8;
1709
1710         if (head + event->header.size >= page_size * mmap_window) {
1711                 unsigned long shift = page_size * (head / page_size);
1712                 int res;
1713
1714                 res = munmap(buf, page_size * mmap_window);
1715                 assert(res == 0);
1716
1717                 offset += shift;
1718                 head -= shift;
1719                 goto remap;
1720         }
1721
1722         size = event->header.size;
1723
1724
1725         if (!size || process_event(event, offset, head) < 0) {
1726
1727                 /*
1728                  * assume we lost track of the stream, check alignment, and
1729                  * increment a single u64 in the hope to catch on again 'soon'.
1730                  */
1731
1732                 if (unlikely(head & 7))
1733                         head &= ~7ULL;
1734
1735                 size = 8;
1736         }
1737
1738         head += size;
1739
1740         if (offset + head < (unsigned long)perf_stat.st_size)
1741                 goto more;
1742
1743         rc = EXIT_SUCCESS;
1744         close(input);
1745
1746         return rc;
1747 }
1748
1749 static void print_bad_events(void)
1750 {
1751         if (nr_unordered_timestamps && nr_timestamps) {
1752                 printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1753                         (double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
1754                         nr_unordered_timestamps, nr_timestamps);
1755         }
1756         if (nr_lost_events && nr_events) {
1757                 printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1758                         (double)nr_lost_events/(double)nr_events*100.0,
1759                         nr_lost_events, nr_events, nr_lost_chunks);
1760         }
1761         if (nr_state_machine_bugs && nr_timestamps) {
1762                 printf("  INFO: %.3f%% state machine bugs (%ld out of %ld)",
1763                         (double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
1764                         nr_state_machine_bugs, nr_timestamps);
1765                 if (nr_lost_events)
1766                         printf(" (due to lost events?)");
1767                 printf("\n");
1768         }
1769         if (nr_context_switch_bugs && nr_timestamps) {
1770                 printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1771                         (double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
1772                         nr_context_switch_bugs, nr_timestamps);
1773                 if (nr_lost_events)
1774                         printf(" (due to lost events?)");
1775                 printf("\n");
1776         }
1777 }
1778
1779 static void __cmd_lat(void)
1780 {
1781         struct rb_node *next;
1782
1783         setup_pager();
1784         read_events();
1785         sort_lat();
1786
1787         printf("\n -----------------------------------------------------------------------------------------\n");
1788         printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms |\n");
1789         printf(" -----------------------------------------------------------------------------------------\n");
1790
1791         next = rb_first(&sorted_atom_root);
1792
1793         while (next) {
1794                 struct work_atoms *work_list;
1795
1796                 work_list = rb_entry(next, struct work_atoms, node);
1797                 output_lat_thread(work_list);
1798                 next = rb_next(next);
1799         }
1800
1801         printf(" -----------------------------------------------------------------------------------------\n");
1802         printf("  TOTAL:                |%11.3f ms |%9Ld |\n",
1803                 (double)all_runtime/1e6, all_count);
1804
1805         printf(" ---------------------------------------------------\n");
1806
1807         print_bad_events();
1808         printf("\n");
1809
1810 }
1811
1812 static struct trace_sched_handler map_ops  = {
1813         .wakeup_event           = NULL,
1814         .switch_event           = map_switch_event,
1815         .runtime_event          = NULL,
1816         .fork_event             = NULL,
1817 };
1818
1819 static void __cmd_map(void)
1820 {
1821         setup_pager();
1822         read_events();
1823         print_bad_events();
1824 }
1825
1826 static void __cmd_replay(void)
1827 {
1828         unsigned long i;
1829
1830         calibrate_run_measurement_overhead();
1831         calibrate_sleep_measurement_overhead();
1832
1833         test_calibrations();
1834
1835         read_events();
1836
1837         printf("nr_run_events:        %ld\n", nr_run_events);
1838         printf("nr_sleep_events:      %ld\n", nr_sleep_events);
1839         printf("nr_wakeup_events:     %ld\n", nr_wakeup_events);
1840
1841         if (targetless_wakeups)
1842                 printf("target-less wakeups:  %ld\n", targetless_wakeups);
1843         if (multitarget_wakeups)
1844                 printf("multi-target wakeups: %ld\n", multitarget_wakeups);
1845         if (nr_run_events_optimized)
1846                 printf("run atoms optimized: %ld\n",
1847                         nr_run_events_optimized);
1848
1849         print_task_traces();
1850         add_cross_task_wakeups();
1851
1852         create_tasks();
1853         printf("------------------------------------------------------------\n");
1854         for (i = 0; i < replay_repeat; i++)
1855                 run_one_test();
1856 }
1857
1858
1859 static const char * const sched_usage[] = {
1860         "perf sched [<options>] {record|latency|replay|trace}",
1861         NULL
1862 };
1863
1864 static const struct option sched_options[] = {
1865         OPT_BOOLEAN('v', "verbose", &verbose,
1866                     "be more verbose (show symbol address, etc)"),
1867         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1868                     "dump raw trace in ASCII"),
1869         OPT_END()
1870 };
1871
1872 static const char * const latency_usage[] = {
1873         "perf sched latency [<options>]",
1874         NULL
1875 };
1876
1877 static const struct option latency_options[] = {
1878         OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
1879                    "sort by key(s): runtime, switch, avg, max"),
1880         OPT_BOOLEAN('v', "verbose", &verbose,
1881                     "be more verbose (show symbol address, etc)"),
1882         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1883                     "dump raw trace in ASCII"),
1884         OPT_END()
1885 };
1886
1887 static const char * const replay_usage[] = {
1888         "perf sched replay [<options>]",
1889         NULL
1890 };
1891
1892 static const struct option replay_options[] = {
1893         OPT_INTEGER('r', "repeat", &replay_repeat,
1894                     "repeat the workload replay N times (-1: infinite)"),
1895         OPT_BOOLEAN('v', "verbose", &verbose,
1896                     "be more verbose (show symbol address, etc)"),
1897         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1898                     "dump raw trace in ASCII"),
1899         OPT_END()
1900 };
1901
1902 static void setup_sorting(void)
1903 {
1904         char *tmp, *tok, *str = strdup(sort_order);
1905
1906         for (tok = strtok_r(str, ", ", &tmp);
1907                         tok; tok = strtok_r(NULL, ", ", &tmp)) {
1908                 if (sort_dimension__add(tok, &sort_list) < 0) {
1909                         error("Unknown --sort key: `%s'", tok);
1910                         usage_with_options(latency_usage, latency_options);
1911                 }
1912         }
1913
1914         free(str);
1915
1916         sort_dimension__add((char *)"pid", &cmp_pid);
1917 }
1918
1919 static const char *record_args[] = {
1920         "record",
1921         "-a",
1922         "-R",
1923         "-M",
1924         "-f",
1925         "-m", "1024",
1926         "-c", "1",
1927         "-e", "sched:sched_switch:r",
1928         "-e", "sched:sched_stat_wait:r",
1929         "-e", "sched:sched_stat_sleep:r",
1930         "-e", "sched:sched_stat_iowait:r",
1931         "-e", "sched:sched_stat_runtime:r",
1932         "-e", "sched:sched_process_exit:r",
1933         "-e", "sched:sched_process_fork:r",
1934         "-e", "sched:sched_wakeup:r",
1935         "-e", "sched:sched_migrate_task:r",
1936 };
1937
1938 static int __cmd_record(int argc, const char **argv)
1939 {
1940         unsigned int rec_argc, i, j;
1941         const char **rec_argv;
1942
1943         rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1944         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1945
1946         for (i = 0; i < ARRAY_SIZE(record_args); i++)
1947                 rec_argv[i] = strdup(record_args[i]);
1948
1949         for (j = 1; j < (unsigned int)argc; j++, i++)
1950                 rec_argv[i] = argv[j];
1951
1952         BUG_ON(i != rec_argc);
1953
1954         return cmd_record(i, rec_argv, NULL);
1955 }
1956
1957 int cmd_sched(int argc, const char **argv, const char *prefix __used)
1958 {
1959         symbol__init();
1960         page_size = getpagesize();
1961
1962         argc = parse_options(argc, argv, sched_options, sched_usage,
1963                              PARSE_OPT_STOP_AT_NON_OPTION);
1964         if (!argc)
1965                 usage_with_options(sched_usage, sched_options);
1966
1967         if (!strncmp(argv[0], "rec", 3)) {
1968                 return __cmd_record(argc, argv);
1969         } else if (!strncmp(argv[0], "lat", 3)) {
1970                 trace_handler = &lat_ops;
1971                 if (argc > 1) {
1972                         argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1973                         if (argc)
1974                                 usage_with_options(latency_usage, latency_options);
1975                 }
1976                 setup_sorting();
1977                 __cmd_lat();
1978         } else if (!strcmp(argv[0], "map")) {
1979                 trace_handler = &map_ops;
1980                 setup_sorting();
1981                 __cmd_map();
1982         } else if (!strncmp(argv[0], "rep", 3)) {
1983                 trace_handler = &replay_ops;
1984                 if (argc) {
1985                         argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1986                         if (argc)
1987                                 usage_with_options(replay_usage, replay_options);
1988                 }
1989                 __cmd_replay();
1990         } else if (!strcmp(argv[0], "trace")) {
1991                 /*
1992                  * Aliased to 'perf trace' for now:
1993                  */
1994                 return cmd_trace(argc, argv, prefix);
1995         } else {
1996                 usage_with_options(sched_usage, sched_options);
1997         }
1998
1999         return 0;
2000 }