[PATCH] selinux: kfree cleanup
[linux-3.10.git] / security / selinux / ss / services.c
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5  *           James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *      Support for enhanced MLS infrastructure.
10  *
11  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
12  *
13  *      Added conditional policy language extensions
14  *
15  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
17  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
18  *      This program is free software; you can redistribute it and/or modify
19  *      it under the terms of the GNU General Public License as published by
20  *      the Free Software Foundation, version 2.
21  */
22 #include <linux/kernel.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/spinlock.h>
26 #include <linux/errno.h>
27 #include <linux/in.h>
28 #include <linux/sched.h>
29 #include <linux/audit.h>
30 #include <asm/semaphore.h>
31 #include "flask.h"
32 #include "avc.h"
33 #include "avc_ss.h"
34 #include "security.h"
35 #include "context.h"
36 #include "policydb.h"
37 #include "sidtab.h"
38 #include "services.h"
39 #include "conditional.h"
40 #include "mls.h"
41
42 extern void selnl_notify_policyload(u32 seqno);
43 unsigned int policydb_loaded_version;
44
45 static DEFINE_RWLOCK(policy_rwlock);
46 #define POLICY_RDLOCK read_lock(&policy_rwlock)
47 #define POLICY_WRLOCK write_lock_irq(&policy_rwlock)
48 #define POLICY_RDUNLOCK read_unlock(&policy_rwlock)
49 #define POLICY_WRUNLOCK write_unlock_irq(&policy_rwlock)
50
51 static DECLARE_MUTEX(load_sem);
52 #define LOAD_LOCK down(&load_sem)
53 #define LOAD_UNLOCK up(&load_sem)
54
55 static struct sidtab sidtab;
56 struct policydb policydb;
57 int ss_initialized = 0;
58
59 /*
60  * The largest sequence number that has been used when
61  * providing an access decision to the access vector cache.
62  * The sequence number only changes when a policy change
63  * occurs.
64  */
65 static u32 latest_granting = 0;
66
67 /* Forward declaration. */
68 static int context_struct_to_string(struct context *context, char **scontext,
69                                     u32 *scontext_len);
70
71 /*
72  * Return the boolean value of a constraint expression
73  * when it is applied to the specified source and target
74  * security contexts.
75  *
76  * xcontext is a special beast...  It is used by the validatetrans rules
77  * only.  For these rules, scontext is the context before the transition,
78  * tcontext is the context after the transition, and xcontext is the context
79  * of the process performing the transition.  All other callers of
80  * constraint_expr_eval should pass in NULL for xcontext.
81  */
82 static int constraint_expr_eval(struct context *scontext,
83                                 struct context *tcontext,
84                                 struct context *xcontext,
85                                 struct constraint_expr *cexpr)
86 {
87         u32 val1, val2;
88         struct context *c;
89         struct role_datum *r1, *r2;
90         struct mls_level *l1, *l2;
91         struct constraint_expr *e;
92         int s[CEXPR_MAXDEPTH];
93         int sp = -1;
94
95         for (e = cexpr; e; e = e->next) {
96                 switch (e->expr_type) {
97                 case CEXPR_NOT:
98                         BUG_ON(sp < 0);
99                         s[sp] = !s[sp];
100                         break;
101                 case CEXPR_AND:
102                         BUG_ON(sp < 1);
103                         sp--;
104                         s[sp] &= s[sp+1];
105                         break;
106                 case CEXPR_OR:
107                         BUG_ON(sp < 1);
108                         sp--;
109                         s[sp] |= s[sp+1];
110                         break;
111                 case CEXPR_ATTR:
112                         if (sp == (CEXPR_MAXDEPTH-1))
113                                 return 0;
114                         switch (e->attr) {
115                         case CEXPR_USER:
116                                 val1 = scontext->user;
117                                 val2 = tcontext->user;
118                                 break;
119                         case CEXPR_TYPE:
120                                 val1 = scontext->type;
121                                 val2 = tcontext->type;
122                                 break;
123                         case CEXPR_ROLE:
124                                 val1 = scontext->role;
125                                 val2 = tcontext->role;
126                                 r1 = policydb.role_val_to_struct[val1 - 1];
127                                 r2 = policydb.role_val_to_struct[val2 - 1];
128                                 switch (e->op) {
129                                 case CEXPR_DOM:
130                                         s[++sp] = ebitmap_get_bit(&r1->dominates,
131                                                                   val2 - 1);
132                                         continue;
133                                 case CEXPR_DOMBY:
134                                         s[++sp] = ebitmap_get_bit(&r2->dominates,
135                                                                   val1 - 1);
136                                         continue;
137                                 case CEXPR_INCOMP:
138                                         s[++sp] = ( !ebitmap_get_bit(&r1->dominates,
139                                                                      val2 - 1) &&
140                                                     !ebitmap_get_bit(&r2->dominates,
141                                                                      val1 - 1) );
142                                         continue;
143                                 default:
144                                         break;
145                                 }
146                                 break;
147                         case CEXPR_L1L2:
148                                 l1 = &(scontext->range.level[0]);
149                                 l2 = &(tcontext->range.level[0]);
150                                 goto mls_ops;
151                         case CEXPR_L1H2:
152                                 l1 = &(scontext->range.level[0]);
153                                 l2 = &(tcontext->range.level[1]);
154                                 goto mls_ops;
155                         case CEXPR_H1L2:
156                                 l1 = &(scontext->range.level[1]);
157                                 l2 = &(tcontext->range.level[0]);
158                                 goto mls_ops;
159                         case CEXPR_H1H2:
160                                 l1 = &(scontext->range.level[1]);
161                                 l2 = &(tcontext->range.level[1]);
162                                 goto mls_ops;
163                         case CEXPR_L1H1:
164                                 l1 = &(scontext->range.level[0]);
165                                 l2 = &(scontext->range.level[1]);
166                                 goto mls_ops;
167                         case CEXPR_L2H2:
168                                 l1 = &(tcontext->range.level[0]);
169                                 l2 = &(tcontext->range.level[1]);
170                                 goto mls_ops;
171 mls_ops:
172                         switch (e->op) {
173                         case CEXPR_EQ:
174                                 s[++sp] = mls_level_eq(l1, l2);
175                                 continue;
176                         case CEXPR_NEQ:
177                                 s[++sp] = !mls_level_eq(l1, l2);
178                                 continue;
179                         case CEXPR_DOM:
180                                 s[++sp] = mls_level_dom(l1, l2);
181                                 continue;
182                         case CEXPR_DOMBY:
183                                 s[++sp] = mls_level_dom(l2, l1);
184                                 continue;
185                         case CEXPR_INCOMP:
186                                 s[++sp] = mls_level_incomp(l2, l1);
187                                 continue;
188                         default:
189                                 BUG();
190                                 return 0;
191                         }
192                         break;
193                         default:
194                                 BUG();
195                                 return 0;
196                         }
197
198                         switch (e->op) {
199                         case CEXPR_EQ:
200                                 s[++sp] = (val1 == val2);
201                                 break;
202                         case CEXPR_NEQ:
203                                 s[++sp] = (val1 != val2);
204                                 break;
205                         default:
206                                 BUG();
207                                 return 0;
208                         }
209                         break;
210                 case CEXPR_NAMES:
211                         if (sp == (CEXPR_MAXDEPTH-1))
212                                 return 0;
213                         c = scontext;
214                         if (e->attr & CEXPR_TARGET)
215                                 c = tcontext;
216                         else if (e->attr & CEXPR_XTARGET) {
217                                 c = xcontext;
218                                 if (!c) {
219                                         BUG();
220                                         return 0;
221                                 }
222                         }
223                         if (e->attr & CEXPR_USER)
224                                 val1 = c->user;
225                         else if (e->attr & CEXPR_ROLE)
226                                 val1 = c->role;
227                         else if (e->attr & CEXPR_TYPE)
228                                 val1 = c->type;
229                         else {
230                                 BUG();
231                                 return 0;
232                         }
233
234                         switch (e->op) {
235                         case CEXPR_EQ:
236                                 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
237                                 break;
238                         case CEXPR_NEQ:
239                                 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
240                                 break;
241                         default:
242                                 BUG();
243                                 return 0;
244                         }
245                         break;
246                 default:
247                         BUG();
248                         return 0;
249                 }
250         }
251
252         BUG_ON(sp != 0);
253         return s[0];
254 }
255
256 /*
257  * Compute access vectors based on a context structure pair for
258  * the permissions in a particular class.
259  */
260 static int context_struct_compute_av(struct context *scontext,
261                                      struct context *tcontext,
262                                      u16 tclass,
263                                      u32 requested,
264                                      struct av_decision *avd)
265 {
266         struct constraint_node *constraint;
267         struct role_allow *ra;
268         struct avtab_key avkey;
269         struct avtab_datum *avdatum;
270         struct class_datum *tclass_datum;
271
272         /*
273          * Remap extended Netlink classes for old policy versions.
274          * Do this here rather than socket_type_to_security_class()
275          * in case a newer policy version is loaded, allowing sockets
276          * to remain in the correct class.
277          */
278         if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
279                 if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
280                     tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
281                         tclass = SECCLASS_NETLINK_SOCKET;
282
283         if (!tclass || tclass > policydb.p_classes.nprim) {
284                 printk(KERN_ERR "security_compute_av:  unrecognized class %d\n",
285                        tclass);
286                 return -EINVAL;
287         }
288         tclass_datum = policydb.class_val_to_struct[tclass - 1];
289
290         /*
291          * Initialize the access vectors to the default values.
292          */
293         avd->allowed = 0;
294         avd->decided = 0xffffffff;
295         avd->auditallow = 0;
296         avd->auditdeny = 0xffffffff;
297         avd->seqno = latest_granting;
298
299         /*
300          * If a specific type enforcement rule was defined for
301          * this permission check, then use it.
302          */
303         avkey.source_type = scontext->type;
304         avkey.target_type = tcontext->type;
305         avkey.target_class = tclass;
306         avdatum = avtab_search(&policydb.te_avtab, &avkey, AVTAB_AV);
307         if (avdatum) {
308                 if (avdatum->specified & AVTAB_ALLOWED)
309                         avd->allowed = avtab_allowed(avdatum);
310                 if (avdatum->specified & AVTAB_AUDITDENY)
311                         avd->auditdeny = avtab_auditdeny(avdatum);
312                 if (avdatum->specified & AVTAB_AUDITALLOW)
313                         avd->auditallow = avtab_auditallow(avdatum);
314         }
315
316         /* Check conditional av table for additional permissions */
317         cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
318
319         /*
320          * Remove any permissions prohibited by a constraint (this includes
321          * the MLS policy).
322          */
323         constraint = tclass_datum->constraints;
324         while (constraint) {
325                 if ((constraint->permissions & (avd->allowed)) &&
326                     !constraint_expr_eval(scontext, tcontext, NULL,
327                                           constraint->expr)) {
328                         avd->allowed = (avd->allowed) & ~(constraint->permissions);
329                 }
330                 constraint = constraint->next;
331         }
332
333         /*
334          * If checking process transition permission and the
335          * role is changing, then check the (current_role, new_role)
336          * pair.
337          */
338         if (tclass == SECCLASS_PROCESS &&
339             (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
340             scontext->role != tcontext->role) {
341                 for (ra = policydb.role_allow; ra; ra = ra->next) {
342                         if (scontext->role == ra->role &&
343                             tcontext->role == ra->new_role)
344                                 break;
345                 }
346                 if (!ra)
347                         avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION |
348                                                         PROCESS__DYNTRANSITION);
349         }
350
351         return 0;
352 }
353
354 static int security_validtrans_handle_fail(struct context *ocontext,
355                                            struct context *ncontext,
356                                            struct context *tcontext,
357                                            u16 tclass)
358 {
359         char *o = NULL, *n = NULL, *t = NULL;
360         u32 olen, nlen, tlen;
361
362         if (context_struct_to_string(ocontext, &o, &olen) < 0)
363                 goto out;
364         if (context_struct_to_string(ncontext, &n, &nlen) < 0)
365                 goto out;
366         if (context_struct_to_string(tcontext, &t, &tlen) < 0)
367                 goto out;
368         audit_log(current->audit_context, AUDIT_SELINUX_ERR,
369                   "security_validate_transition:  denied for"
370                   " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
371                   o, n, t, policydb.p_class_val_to_name[tclass-1]);
372 out:
373         kfree(o);
374         kfree(n);
375         kfree(t);
376
377         if (!selinux_enforcing)
378                 return 0;
379         return -EPERM;
380 }
381
382 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
383                                  u16 tclass)
384 {
385         struct context *ocontext;
386         struct context *ncontext;
387         struct context *tcontext;
388         struct class_datum *tclass_datum;
389         struct constraint_node *constraint;
390         int rc = 0;
391
392         if (!ss_initialized)
393                 return 0;
394
395         POLICY_RDLOCK;
396
397         /*
398          * Remap extended Netlink classes for old policy versions.
399          * Do this here rather than socket_type_to_security_class()
400          * in case a newer policy version is loaded, allowing sockets
401          * to remain in the correct class.
402          */
403         if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
404                 if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
405                     tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
406                         tclass = SECCLASS_NETLINK_SOCKET;
407
408         if (!tclass || tclass > policydb.p_classes.nprim) {
409                 printk(KERN_ERR "security_validate_transition:  "
410                        "unrecognized class %d\n", tclass);
411                 rc = -EINVAL;
412                 goto out;
413         }
414         tclass_datum = policydb.class_val_to_struct[tclass - 1];
415
416         ocontext = sidtab_search(&sidtab, oldsid);
417         if (!ocontext) {
418                 printk(KERN_ERR "security_validate_transition: "
419                        " unrecognized SID %d\n", oldsid);
420                 rc = -EINVAL;
421                 goto out;
422         }
423
424         ncontext = sidtab_search(&sidtab, newsid);
425         if (!ncontext) {
426                 printk(KERN_ERR "security_validate_transition: "
427                        " unrecognized SID %d\n", newsid);
428                 rc = -EINVAL;
429                 goto out;
430         }
431
432         tcontext = sidtab_search(&sidtab, tasksid);
433         if (!tcontext) {
434                 printk(KERN_ERR "security_validate_transition: "
435                        " unrecognized SID %d\n", tasksid);
436                 rc = -EINVAL;
437                 goto out;
438         }
439
440         constraint = tclass_datum->validatetrans;
441         while (constraint) {
442                 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
443                                           constraint->expr)) {
444                         rc = security_validtrans_handle_fail(ocontext, ncontext,
445                                                              tcontext, tclass);
446                         goto out;
447                 }
448                 constraint = constraint->next;
449         }
450
451 out:
452         POLICY_RDUNLOCK;
453         return rc;
454 }
455
456 /**
457  * security_compute_av - Compute access vector decisions.
458  * @ssid: source security identifier
459  * @tsid: target security identifier
460  * @tclass: target security class
461  * @requested: requested permissions
462  * @avd: access vector decisions
463  *
464  * Compute a set of access vector decisions based on the
465  * SID pair (@ssid, @tsid) for the permissions in @tclass.
466  * Return -%EINVAL if any of the parameters are invalid or %0
467  * if the access vector decisions were computed successfully.
468  */
469 int security_compute_av(u32 ssid,
470                         u32 tsid,
471                         u16 tclass,
472                         u32 requested,
473                         struct av_decision *avd)
474 {
475         struct context *scontext = NULL, *tcontext = NULL;
476         int rc = 0;
477
478         if (!ss_initialized) {
479                 avd->allowed = 0xffffffff;
480                 avd->decided = 0xffffffff;
481                 avd->auditallow = 0;
482                 avd->auditdeny = 0xffffffff;
483                 avd->seqno = latest_granting;
484                 return 0;
485         }
486
487         POLICY_RDLOCK;
488
489         scontext = sidtab_search(&sidtab, ssid);
490         if (!scontext) {
491                 printk(KERN_ERR "security_compute_av:  unrecognized SID %d\n",
492                        ssid);
493                 rc = -EINVAL;
494                 goto out;
495         }
496         tcontext = sidtab_search(&sidtab, tsid);
497         if (!tcontext) {
498                 printk(KERN_ERR "security_compute_av:  unrecognized SID %d\n",
499                        tsid);
500                 rc = -EINVAL;
501                 goto out;
502         }
503
504         rc = context_struct_compute_av(scontext, tcontext, tclass,
505                                        requested, avd);
506 out:
507         POLICY_RDUNLOCK;
508         return rc;
509 }
510
511 /*
512  * Write the security context string representation of
513  * the context structure `context' into a dynamically
514  * allocated string of the correct size.  Set `*scontext'
515  * to point to this string and set `*scontext_len' to
516  * the length of the string.
517  */
518 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
519 {
520         char *scontextp;
521
522         *scontext = NULL;
523         *scontext_len = 0;
524
525         /* Compute the size of the context. */
526         *scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
527         *scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
528         *scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
529         *scontext_len += mls_compute_context_len(context);
530
531         /* Allocate space for the context; caller must free this space. */
532         scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
533         if (!scontextp) {
534                 return -ENOMEM;
535         }
536         *scontext = scontextp;
537
538         /*
539          * Copy the user name, role name and type name into the context.
540          */
541         sprintf(scontextp, "%s:%s:%s",
542                 policydb.p_user_val_to_name[context->user - 1],
543                 policydb.p_role_val_to_name[context->role - 1],
544                 policydb.p_type_val_to_name[context->type - 1]);
545         scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
546                      1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
547                      1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
548
549         mls_sid_to_context(context, &scontextp);
550
551         *scontextp = 0;
552
553         return 0;
554 }
555
556 #include "initial_sid_to_string.h"
557
558 /**
559  * security_sid_to_context - Obtain a context for a given SID.
560  * @sid: security identifier, SID
561  * @scontext: security context
562  * @scontext_len: length in bytes
563  *
564  * Write the string representation of the context associated with @sid
565  * into a dynamically allocated string of the correct size.  Set @scontext
566  * to point to this string and set @scontext_len to the length of the string.
567  */
568 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
569 {
570         struct context *context;
571         int rc = 0;
572
573         if (!ss_initialized) {
574                 if (sid <= SECINITSID_NUM) {
575                         char *scontextp;
576
577                         *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
578                         scontextp = kmalloc(*scontext_len,GFP_ATOMIC);
579                         strcpy(scontextp, initial_sid_to_string[sid]);
580                         *scontext = scontextp;
581                         goto out;
582                 }
583                 printk(KERN_ERR "security_sid_to_context:  called before initial "
584                        "load_policy on unknown SID %d\n", sid);
585                 rc = -EINVAL;
586                 goto out;
587         }
588         POLICY_RDLOCK;
589         context = sidtab_search(&sidtab, sid);
590         if (!context) {
591                 printk(KERN_ERR "security_sid_to_context:  unrecognized SID "
592                        "%d\n", sid);
593                 rc = -EINVAL;
594                 goto out_unlock;
595         }
596         rc = context_struct_to_string(context, scontext, scontext_len);
597 out_unlock:
598         POLICY_RDUNLOCK;
599 out:
600         return rc;
601
602 }
603
604 /**
605  * security_context_to_sid - Obtain a SID for a given security context.
606  * @scontext: security context
607  * @scontext_len: length in bytes
608  * @sid: security identifier, SID
609  *
610  * Obtains a SID associated with the security context that
611  * has the string representation specified by @scontext.
612  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
613  * memory is available, or 0 on success.
614  */
615 int security_context_to_sid(char *scontext, u32 scontext_len, u32 *sid)
616 {
617         char *scontext2;
618         struct context context;
619         struct role_datum *role;
620         struct type_datum *typdatum;
621         struct user_datum *usrdatum;
622         char *scontextp, *p, oldc;
623         int rc = 0;
624
625         if (!ss_initialized) {
626                 int i;
627
628                 for (i = 1; i < SECINITSID_NUM; i++) {
629                         if (!strcmp(initial_sid_to_string[i], scontext)) {
630                                 *sid = i;
631                                 goto out;
632                         }
633                 }
634                 *sid = SECINITSID_KERNEL;
635                 goto out;
636         }
637         *sid = SECSID_NULL;
638
639         /* Copy the string so that we can modify the copy as we parse it.
640            The string should already by null terminated, but we append a
641            null suffix to the copy to avoid problems with the existing
642            attr package, which doesn't view the null terminator as part
643            of the attribute value. */
644         scontext2 = kmalloc(scontext_len+1,GFP_KERNEL);
645         if (!scontext2) {
646                 rc = -ENOMEM;
647                 goto out;
648         }
649         memcpy(scontext2, scontext, scontext_len);
650         scontext2[scontext_len] = 0;
651
652         context_init(&context);
653         *sid = SECSID_NULL;
654
655         POLICY_RDLOCK;
656
657         /* Parse the security context. */
658
659         rc = -EINVAL;
660         scontextp = (char *) scontext2;
661
662         /* Extract the user. */
663         p = scontextp;
664         while (*p && *p != ':')
665                 p++;
666
667         if (*p == 0)
668                 goto out_unlock;
669
670         *p++ = 0;
671
672         usrdatum = hashtab_search(policydb.p_users.table, scontextp);
673         if (!usrdatum)
674                 goto out_unlock;
675
676         context.user = usrdatum->value;
677
678         /* Extract role. */
679         scontextp = p;
680         while (*p && *p != ':')
681                 p++;
682
683         if (*p == 0)
684                 goto out_unlock;
685
686         *p++ = 0;
687
688         role = hashtab_search(policydb.p_roles.table, scontextp);
689         if (!role)
690                 goto out_unlock;
691         context.role = role->value;
692
693         /* Extract type. */
694         scontextp = p;
695         while (*p && *p != ':')
696                 p++;
697         oldc = *p;
698         *p++ = 0;
699
700         typdatum = hashtab_search(policydb.p_types.table, scontextp);
701         if (!typdatum)
702                 goto out_unlock;
703
704         context.type = typdatum->value;
705
706         rc = mls_context_to_sid(oldc, &p, &context);
707         if (rc)
708                 goto out_unlock;
709
710         if ((p - scontext2) < scontext_len) {
711                 rc = -EINVAL;
712                 goto out_unlock;
713         }
714
715         /* Check the validity of the new context. */
716         if (!policydb_context_isvalid(&policydb, &context)) {
717                 rc = -EINVAL;
718                 goto out_unlock;
719         }
720         /* Obtain the new sid. */
721         rc = sidtab_context_to_sid(&sidtab, &context, sid);
722 out_unlock:
723         POLICY_RDUNLOCK;
724         context_destroy(&context);
725         kfree(scontext2);
726 out:
727         return rc;
728 }
729
730 static int compute_sid_handle_invalid_context(
731         struct context *scontext,
732         struct context *tcontext,
733         u16 tclass,
734         struct context *newcontext)
735 {
736         char *s = NULL, *t = NULL, *n = NULL;
737         u32 slen, tlen, nlen;
738
739         if (context_struct_to_string(scontext, &s, &slen) < 0)
740                 goto out;
741         if (context_struct_to_string(tcontext, &t, &tlen) < 0)
742                 goto out;
743         if (context_struct_to_string(newcontext, &n, &nlen) < 0)
744                 goto out;
745         audit_log(current->audit_context, AUDIT_SELINUX_ERR,
746                   "security_compute_sid:  invalid context %s"
747                   " for scontext=%s"
748                   " tcontext=%s"
749                   " tclass=%s",
750                   n, s, t, policydb.p_class_val_to_name[tclass-1]);
751 out:
752         kfree(s);
753         kfree(t);
754         kfree(n);
755         if (!selinux_enforcing)
756                 return 0;
757         return -EACCES;
758 }
759
760 static int security_compute_sid(u32 ssid,
761                                 u32 tsid,
762                                 u16 tclass,
763                                 u32 specified,
764                                 u32 *out_sid)
765 {
766         struct context *scontext = NULL, *tcontext = NULL, newcontext;
767         struct role_trans *roletr = NULL;
768         struct avtab_key avkey;
769         struct avtab_datum *avdatum;
770         struct avtab_node *node;
771         unsigned int type_change = 0;
772         int rc = 0;
773
774         if (!ss_initialized) {
775                 switch (tclass) {
776                 case SECCLASS_PROCESS:
777                         *out_sid = ssid;
778                         break;
779                 default:
780                         *out_sid = tsid;
781                         break;
782                 }
783                 goto out;
784         }
785
786         POLICY_RDLOCK;
787
788         scontext = sidtab_search(&sidtab, ssid);
789         if (!scontext) {
790                 printk(KERN_ERR "security_compute_sid:  unrecognized SID %d\n",
791                        ssid);
792                 rc = -EINVAL;
793                 goto out_unlock;
794         }
795         tcontext = sidtab_search(&sidtab, tsid);
796         if (!tcontext) {
797                 printk(KERN_ERR "security_compute_sid:  unrecognized SID %d\n",
798                        tsid);
799                 rc = -EINVAL;
800                 goto out_unlock;
801         }
802
803         context_init(&newcontext);
804
805         /* Set the user identity. */
806         switch (specified) {
807         case AVTAB_TRANSITION:
808         case AVTAB_CHANGE:
809                 /* Use the process user identity. */
810                 newcontext.user = scontext->user;
811                 break;
812         case AVTAB_MEMBER:
813                 /* Use the related object owner. */
814                 newcontext.user = tcontext->user;
815                 break;
816         }
817
818         /* Set the role and type to default values. */
819         switch (tclass) {
820         case SECCLASS_PROCESS:
821                 /* Use the current role and type of process. */
822                 newcontext.role = scontext->role;
823                 newcontext.type = scontext->type;
824                 break;
825         default:
826                 /* Use the well-defined object role. */
827                 newcontext.role = OBJECT_R_VAL;
828                 /* Use the type of the related object. */
829                 newcontext.type = tcontext->type;
830         }
831
832         /* Look for a type transition/member/change rule. */
833         avkey.source_type = scontext->type;
834         avkey.target_type = tcontext->type;
835         avkey.target_class = tclass;
836         avdatum = avtab_search(&policydb.te_avtab, &avkey, AVTAB_TYPE);
837
838         /* If no permanent rule, also check for enabled conditional rules */
839         if(!avdatum) {
840                 node = avtab_search_node(&policydb.te_cond_avtab, &avkey, specified);
841                 for (; node != NULL; node = avtab_search_node_next(node, specified)) {
842                         if (node->datum.specified & AVTAB_ENABLED) {
843                                 avdatum = &node->datum;
844                                 break;
845                         }
846                 }
847         }
848
849         type_change = (avdatum && (avdatum->specified & specified));
850         if (type_change) {
851                 /* Use the type from the type transition/member/change rule. */
852                 switch (specified) {
853                 case AVTAB_TRANSITION:
854                         newcontext.type = avtab_transition(avdatum);
855                         break;
856                 case AVTAB_MEMBER:
857                         newcontext.type = avtab_member(avdatum);
858                         break;
859                 case AVTAB_CHANGE:
860                         newcontext.type = avtab_change(avdatum);
861                         break;
862                 }
863         }
864
865         /* Check for class-specific changes. */
866         switch (tclass) {
867         case SECCLASS_PROCESS:
868                 if (specified & AVTAB_TRANSITION) {
869                         /* Look for a role transition rule. */
870                         for (roletr = policydb.role_tr; roletr;
871                              roletr = roletr->next) {
872                                 if (roletr->role == scontext->role &&
873                                     roletr->type == tcontext->type) {
874                                         /* Use the role transition rule. */
875                                         newcontext.role = roletr->new_role;
876                                         break;
877                                 }
878                         }
879                 }
880                 break;
881         default:
882                 break;
883         }
884
885         /* Set the MLS attributes.
886            This is done last because it may allocate memory. */
887         rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
888         if (rc)
889                 goto out_unlock;
890
891         /* Check the validity of the context. */
892         if (!policydb_context_isvalid(&policydb, &newcontext)) {
893                 rc = compute_sid_handle_invalid_context(scontext,
894                                                         tcontext,
895                                                         tclass,
896                                                         &newcontext);
897                 if (rc)
898                         goto out_unlock;
899         }
900         /* Obtain the sid for the context. */
901         rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
902 out_unlock:
903         POLICY_RDUNLOCK;
904         context_destroy(&newcontext);
905 out:
906         return rc;
907 }
908
909 /**
910  * security_transition_sid - Compute the SID for a new subject/object.
911  * @ssid: source security identifier
912  * @tsid: target security identifier
913  * @tclass: target security class
914  * @out_sid: security identifier for new subject/object
915  *
916  * Compute a SID to use for labeling a new subject or object in the
917  * class @tclass based on a SID pair (@ssid, @tsid).
918  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
919  * if insufficient memory is available, or %0 if the new SID was
920  * computed successfully.
921  */
922 int security_transition_sid(u32 ssid,
923                             u32 tsid,
924                             u16 tclass,
925                             u32 *out_sid)
926 {
927         return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
928 }
929
930 /**
931  * security_member_sid - Compute the SID for member selection.
932  * @ssid: source security identifier
933  * @tsid: target security identifier
934  * @tclass: target security class
935  * @out_sid: security identifier for selected member
936  *
937  * Compute a SID to use when selecting a member of a polyinstantiated
938  * object of class @tclass based on a SID pair (@ssid, @tsid).
939  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
940  * if insufficient memory is available, or %0 if the SID was
941  * computed successfully.
942  */
943 int security_member_sid(u32 ssid,
944                         u32 tsid,
945                         u16 tclass,
946                         u32 *out_sid)
947 {
948         return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
949 }
950
951 /**
952  * security_change_sid - Compute the SID for object relabeling.
953  * @ssid: source security identifier
954  * @tsid: target security identifier
955  * @tclass: target security class
956  * @out_sid: security identifier for selected member
957  *
958  * Compute a SID to use for relabeling an object of class @tclass
959  * based on a SID pair (@ssid, @tsid).
960  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
961  * if insufficient memory is available, or %0 if the SID was
962  * computed successfully.
963  */
964 int security_change_sid(u32 ssid,
965                         u32 tsid,
966                         u16 tclass,
967                         u32 *out_sid)
968 {
969         return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
970 }
971
972 /*
973  * Verify that each permission that is defined under the
974  * existing policy is still defined with the same value
975  * in the new policy.
976  */
977 static int validate_perm(void *key, void *datum, void *p)
978 {
979         struct hashtab *h;
980         struct perm_datum *perdatum, *perdatum2;
981         int rc = 0;
982
983
984         h = p;
985         perdatum = datum;
986
987         perdatum2 = hashtab_search(h, key);
988         if (!perdatum2) {
989                 printk(KERN_ERR "security:  permission %s disappeared",
990                        (char *)key);
991                 rc = -ENOENT;
992                 goto out;
993         }
994         if (perdatum->value != perdatum2->value) {
995                 printk(KERN_ERR "security:  the value of permission %s changed",
996                        (char *)key);
997                 rc = -EINVAL;
998         }
999 out:
1000         return rc;
1001 }
1002
1003 /*
1004  * Verify that each class that is defined under the
1005  * existing policy is still defined with the same
1006  * attributes in the new policy.
1007  */
1008 static int validate_class(void *key, void *datum, void *p)
1009 {
1010         struct policydb *newp;
1011         struct class_datum *cladatum, *cladatum2;
1012         int rc;
1013
1014         newp = p;
1015         cladatum = datum;
1016
1017         cladatum2 = hashtab_search(newp->p_classes.table, key);
1018         if (!cladatum2) {
1019                 printk(KERN_ERR "security:  class %s disappeared\n",
1020                        (char *)key);
1021                 rc = -ENOENT;
1022                 goto out;
1023         }
1024         if (cladatum->value != cladatum2->value) {
1025                 printk(KERN_ERR "security:  the value of class %s changed\n",
1026                        (char *)key);
1027                 rc = -EINVAL;
1028                 goto out;
1029         }
1030         if ((cladatum->comdatum && !cladatum2->comdatum) ||
1031             (!cladatum->comdatum && cladatum2->comdatum)) {
1032                 printk(KERN_ERR "security:  the inherits clause for the access "
1033                        "vector definition for class %s changed\n", (char *)key);
1034                 rc = -EINVAL;
1035                 goto out;
1036         }
1037         if (cladatum->comdatum) {
1038                 rc = hashtab_map(cladatum->comdatum->permissions.table, validate_perm,
1039                                  cladatum2->comdatum->permissions.table);
1040                 if (rc) {
1041                         printk(" in the access vector definition for class "
1042                                "%s\n", (char *)key);
1043                         goto out;
1044                 }
1045         }
1046         rc = hashtab_map(cladatum->permissions.table, validate_perm,
1047                          cladatum2->permissions.table);
1048         if (rc)
1049                 printk(" in access vector definition for class %s\n",
1050                        (char *)key);
1051 out:
1052         return rc;
1053 }
1054
1055 /* Clone the SID into the new SID table. */
1056 static int clone_sid(u32 sid,
1057                      struct context *context,
1058                      void *arg)
1059 {
1060         struct sidtab *s = arg;
1061
1062         return sidtab_insert(s, sid, context);
1063 }
1064
1065 static inline int convert_context_handle_invalid_context(struct context *context)
1066 {
1067         int rc = 0;
1068
1069         if (selinux_enforcing) {
1070                 rc = -EINVAL;
1071         } else {
1072                 char *s;
1073                 u32 len;
1074
1075                 context_struct_to_string(context, &s, &len);
1076                 printk(KERN_ERR "security:  context %s is invalid\n", s);
1077                 kfree(s);
1078         }
1079         return rc;
1080 }
1081
1082 struct convert_context_args {
1083         struct policydb *oldp;
1084         struct policydb *newp;
1085 };
1086
1087 /*
1088  * Convert the values in the security context
1089  * structure `c' from the values specified
1090  * in the policy `p->oldp' to the values specified
1091  * in the policy `p->newp'.  Verify that the
1092  * context is valid under the new policy.
1093  */
1094 static int convert_context(u32 key,
1095                            struct context *c,
1096                            void *p)
1097 {
1098         struct convert_context_args *args;
1099         struct context oldc;
1100         struct role_datum *role;
1101         struct type_datum *typdatum;
1102         struct user_datum *usrdatum;
1103         char *s;
1104         u32 len;
1105         int rc;
1106
1107         args = p;
1108
1109         rc = context_cpy(&oldc, c);
1110         if (rc)
1111                 goto out;
1112
1113         rc = -EINVAL;
1114
1115         /* Convert the user. */
1116         usrdatum = hashtab_search(args->newp->p_users.table,
1117                                   args->oldp->p_user_val_to_name[c->user - 1]);
1118         if (!usrdatum) {
1119                 goto bad;
1120         }
1121         c->user = usrdatum->value;
1122
1123         /* Convert the role. */
1124         role = hashtab_search(args->newp->p_roles.table,
1125                               args->oldp->p_role_val_to_name[c->role - 1]);
1126         if (!role) {
1127                 goto bad;
1128         }
1129         c->role = role->value;
1130
1131         /* Convert the type. */
1132         typdatum = hashtab_search(args->newp->p_types.table,
1133                                   args->oldp->p_type_val_to_name[c->type - 1]);
1134         if (!typdatum) {
1135                 goto bad;
1136         }
1137         c->type = typdatum->value;
1138
1139         rc = mls_convert_context(args->oldp, args->newp, c);
1140         if (rc)
1141                 goto bad;
1142
1143         /* Check the validity of the new context. */
1144         if (!policydb_context_isvalid(args->newp, c)) {
1145                 rc = convert_context_handle_invalid_context(&oldc);
1146                 if (rc)
1147                         goto bad;
1148         }
1149
1150         context_destroy(&oldc);
1151 out:
1152         return rc;
1153 bad:
1154         context_struct_to_string(&oldc, &s, &len);
1155         context_destroy(&oldc);
1156         printk(KERN_ERR "security:  invalidating context %s\n", s);
1157         kfree(s);
1158         goto out;
1159 }
1160
1161 extern void selinux_complete_init(void);
1162
1163 /**
1164  * security_load_policy - Load a security policy configuration.
1165  * @data: binary policy data
1166  * @len: length of data in bytes
1167  *
1168  * Load a new set of security policy configuration data,
1169  * validate it and convert the SID table as necessary.
1170  * This function will flush the access vector cache after
1171  * loading the new policy.
1172  */
1173 int security_load_policy(void *data, size_t len)
1174 {
1175         struct policydb oldpolicydb, newpolicydb;
1176         struct sidtab oldsidtab, newsidtab;
1177         struct convert_context_args args;
1178         u32 seqno;
1179         int rc = 0;
1180         struct policy_file file = { data, len }, *fp = &file;
1181
1182         LOAD_LOCK;
1183
1184         if (!ss_initialized) {
1185                 avtab_cache_init();
1186                 if (policydb_read(&policydb, fp)) {
1187                         LOAD_UNLOCK;
1188                         avtab_cache_destroy();
1189                         return -EINVAL;
1190                 }
1191                 if (policydb_load_isids(&policydb, &sidtab)) {
1192                         LOAD_UNLOCK;
1193                         policydb_destroy(&policydb);
1194                         avtab_cache_destroy();
1195                         return -EINVAL;
1196                 }
1197                 policydb_loaded_version = policydb.policyvers;
1198                 ss_initialized = 1;
1199                 seqno = ++latest_granting;
1200                 LOAD_UNLOCK;
1201                 selinux_complete_init();
1202                 avc_ss_reset(seqno);
1203                 selnl_notify_policyload(seqno);
1204                 return 0;
1205         }
1206
1207 #if 0
1208         sidtab_hash_eval(&sidtab, "sids");
1209 #endif
1210
1211         if (policydb_read(&newpolicydb, fp)) {
1212                 LOAD_UNLOCK;
1213                 return -EINVAL;
1214         }
1215
1216         sidtab_init(&newsidtab);
1217
1218         /* Verify that the existing classes did not change. */
1219         if (hashtab_map(policydb.p_classes.table, validate_class, &newpolicydb)) {
1220                 printk(KERN_ERR "security:  the definition of an existing "
1221                        "class changed\n");
1222                 rc = -EINVAL;
1223                 goto err;
1224         }
1225
1226         /* Clone the SID table. */
1227         sidtab_shutdown(&sidtab);
1228         if (sidtab_map(&sidtab, clone_sid, &newsidtab)) {
1229                 rc = -ENOMEM;
1230                 goto err;
1231         }
1232
1233         /* Convert the internal representations of contexts
1234            in the new SID table and remove invalid SIDs. */
1235         args.oldp = &policydb;
1236         args.newp = &newpolicydb;
1237         sidtab_map_remove_on_error(&newsidtab, convert_context, &args);
1238
1239         /* Save the old policydb and SID table to free later. */
1240         memcpy(&oldpolicydb, &policydb, sizeof policydb);
1241         sidtab_set(&oldsidtab, &sidtab);
1242
1243         /* Install the new policydb and SID table. */
1244         POLICY_WRLOCK;
1245         memcpy(&policydb, &newpolicydb, sizeof policydb);
1246         sidtab_set(&sidtab, &newsidtab);
1247         seqno = ++latest_granting;
1248         policydb_loaded_version = policydb.policyvers;
1249         POLICY_WRUNLOCK;
1250         LOAD_UNLOCK;
1251
1252         /* Free the old policydb and SID table. */
1253         policydb_destroy(&oldpolicydb);
1254         sidtab_destroy(&oldsidtab);
1255
1256         avc_ss_reset(seqno);
1257         selnl_notify_policyload(seqno);
1258
1259         return 0;
1260
1261 err:
1262         LOAD_UNLOCK;
1263         sidtab_destroy(&newsidtab);
1264         policydb_destroy(&newpolicydb);
1265         return rc;
1266
1267 }
1268
1269 /**
1270  * security_port_sid - Obtain the SID for a port.
1271  * @domain: communication domain aka address family
1272  * @type: socket type
1273  * @protocol: protocol number
1274  * @port: port number
1275  * @out_sid: security identifier
1276  */
1277 int security_port_sid(u16 domain,
1278                       u16 type,
1279                       u8 protocol,
1280                       u16 port,
1281                       u32 *out_sid)
1282 {
1283         struct ocontext *c;
1284         int rc = 0;
1285
1286         POLICY_RDLOCK;
1287
1288         c = policydb.ocontexts[OCON_PORT];
1289         while (c) {
1290                 if (c->u.port.protocol == protocol &&
1291                     c->u.port.low_port <= port &&
1292                     c->u.port.high_port >= port)
1293                         break;
1294                 c = c->next;
1295         }
1296
1297         if (c) {
1298                 if (!c->sid[0]) {
1299                         rc = sidtab_context_to_sid(&sidtab,
1300                                                    &c->context[0],
1301                                                    &c->sid[0]);
1302                         if (rc)
1303                                 goto out;
1304                 }
1305                 *out_sid = c->sid[0];
1306         } else {
1307                 *out_sid = SECINITSID_PORT;
1308         }
1309
1310 out:
1311         POLICY_RDUNLOCK;
1312         return rc;
1313 }
1314
1315 /**
1316  * security_netif_sid - Obtain the SID for a network interface.
1317  * @name: interface name
1318  * @if_sid: interface SID
1319  * @msg_sid: default SID for received packets
1320  */
1321 int security_netif_sid(char *name,
1322                        u32 *if_sid,
1323                        u32 *msg_sid)
1324 {
1325         int rc = 0;
1326         struct ocontext *c;
1327
1328         POLICY_RDLOCK;
1329
1330         c = policydb.ocontexts[OCON_NETIF];
1331         while (c) {
1332                 if (strcmp(name, c->u.name) == 0)
1333                         break;
1334                 c = c->next;
1335         }
1336
1337         if (c) {
1338                 if (!c->sid[0] || !c->sid[1]) {
1339                         rc = sidtab_context_to_sid(&sidtab,
1340                                                   &c->context[0],
1341                                                   &c->sid[0]);
1342                         if (rc)
1343                                 goto out;
1344                         rc = sidtab_context_to_sid(&sidtab,
1345                                                    &c->context[1],
1346                                                    &c->sid[1]);
1347                         if (rc)
1348                                 goto out;
1349                 }
1350                 *if_sid = c->sid[0];
1351                 *msg_sid = c->sid[1];
1352         } else {
1353                 *if_sid = SECINITSID_NETIF;
1354                 *msg_sid = SECINITSID_NETMSG;
1355         }
1356
1357 out:
1358         POLICY_RDUNLOCK;
1359         return rc;
1360 }
1361
1362 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1363 {
1364         int i, fail = 0;
1365
1366         for(i = 0; i < 4; i++)
1367                 if(addr[i] != (input[i] & mask[i])) {
1368                         fail = 1;
1369                         break;
1370                 }
1371
1372         return !fail;
1373 }
1374
1375 /**
1376  * security_node_sid - Obtain the SID for a node (host).
1377  * @domain: communication domain aka address family
1378  * @addrp: address
1379  * @addrlen: address length in bytes
1380  * @out_sid: security identifier
1381  */
1382 int security_node_sid(u16 domain,
1383                       void *addrp,
1384                       u32 addrlen,
1385                       u32 *out_sid)
1386 {
1387         int rc = 0;
1388         struct ocontext *c;
1389
1390         POLICY_RDLOCK;
1391
1392         switch (domain) {
1393         case AF_INET: {
1394                 u32 addr;
1395
1396                 if (addrlen != sizeof(u32)) {
1397                         rc = -EINVAL;
1398                         goto out;
1399                 }
1400
1401                 addr = *((u32 *)addrp);
1402
1403                 c = policydb.ocontexts[OCON_NODE];
1404                 while (c) {
1405                         if (c->u.node.addr == (addr & c->u.node.mask))
1406                                 break;
1407                         c = c->next;
1408                 }
1409                 break;
1410         }
1411
1412         case AF_INET6:
1413                 if (addrlen != sizeof(u64) * 2) {
1414                         rc = -EINVAL;
1415                         goto out;
1416                 }
1417                 c = policydb.ocontexts[OCON_NODE6];
1418                 while (c) {
1419                         if (match_ipv6_addrmask(addrp, c->u.node6.addr,
1420                                                 c->u.node6.mask))
1421                                 break;
1422                         c = c->next;
1423                 }
1424                 break;
1425
1426         default:
1427                 *out_sid = SECINITSID_NODE;
1428                 goto out;
1429         }
1430
1431         if (c) {
1432                 if (!c->sid[0]) {
1433                         rc = sidtab_context_to_sid(&sidtab,
1434                                                    &c->context[0],
1435                                                    &c->sid[0]);
1436                         if (rc)
1437                                 goto out;
1438                 }
1439                 *out_sid = c->sid[0];
1440         } else {
1441                 *out_sid = SECINITSID_NODE;
1442         }
1443
1444 out:
1445         POLICY_RDUNLOCK;
1446         return rc;
1447 }
1448
1449 #define SIDS_NEL 25
1450
1451 /**
1452  * security_get_user_sids - Obtain reachable SIDs for a user.
1453  * @fromsid: starting SID
1454  * @username: username
1455  * @sids: array of reachable SIDs for user
1456  * @nel: number of elements in @sids
1457  *
1458  * Generate the set of SIDs for legal security contexts
1459  * for a given user that can be reached by @fromsid.
1460  * Set *@sids to point to a dynamically allocated
1461  * array containing the set of SIDs.  Set *@nel to the
1462  * number of elements in the array.
1463  */
1464
1465 int security_get_user_sids(u32 fromsid,
1466                            char *username,
1467                            u32 **sids,
1468                            u32 *nel)
1469 {
1470         struct context *fromcon, usercon;
1471         u32 *mysids, *mysids2, sid;
1472         u32 mynel = 0, maxnel = SIDS_NEL;
1473         struct user_datum *user;
1474         struct role_datum *role;
1475         struct av_decision avd;
1476         int rc = 0, i, j;
1477
1478         if (!ss_initialized) {
1479                 *sids = NULL;
1480                 *nel = 0;
1481                 goto out;
1482         }
1483
1484         POLICY_RDLOCK;
1485
1486         fromcon = sidtab_search(&sidtab, fromsid);
1487         if (!fromcon) {
1488                 rc = -EINVAL;
1489                 goto out_unlock;
1490         }
1491
1492         user = hashtab_search(policydb.p_users.table, username);
1493         if (!user) {
1494                 rc = -EINVAL;
1495                 goto out_unlock;
1496         }
1497         usercon.user = user->value;
1498
1499         mysids = kmalloc(maxnel*sizeof(*mysids), GFP_ATOMIC);
1500         if (!mysids) {
1501                 rc = -ENOMEM;
1502                 goto out_unlock;
1503         }
1504         memset(mysids, 0, maxnel*sizeof(*mysids));
1505
1506         for (i = ebitmap_startbit(&user->roles); i < ebitmap_length(&user->roles); i++) {
1507                 if (!ebitmap_get_bit(&user->roles, i))
1508                         continue;
1509                 role = policydb.role_val_to_struct[i];
1510                 usercon.role = i+1;
1511                 for (j = ebitmap_startbit(&role->types); j < ebitmap_length(&role->types); j++) {
1512                         if (!ebitmap_get_bit(&role->types, j))
1513                                 continue;
1514                         usercon.type = j+1;
1515
1516                         if (mls_setup_user_range(fromcon, user, &usercon))
1517                                 continue;
1518
1519                         rc = context_struct_compute_av(fromcon, &usercon,
1520                                                        SECCLASS_PROCESS,
1521                                                        PROCESS__TRANSITION,
1522                                                        &avd);
1523                         if (rc ||  !(avd.allowed & PROCESS__TRANSITION))
1524                                 continue;
1525                         rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
1526                         if (rc) {
1527                                 kfree(mysids);
1528                                 goto out_unlock;
1529                         }
1530                         if (mynel < maxnel) {
1531                                 mysids[mynel++] = sid;
1532                         } else {
1533                                 maxnel += SIDS_NEL;
1534                                 mysids2 = kmalloc(maxnel*sizeof(*mysids2), GFP_ATOMIC);
1535                                 if (!mysids2) {
1536                                         rc = -ENOMEM;
1537                                         kfree(mysids);
1538                                         goto out_unlock;
1539                                 }
1540                                 memset(mysids2, 0, maxnel*sizeof(*mysids2));
1541                                 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
1542                                 kfree(mysids);
1543                                 mysids = mysids2;
1544                                 mysids[mynel++] = sid;
1545                         }
1546                 }
1547         }
1548
1549         *sids = mysids;
1550         *nel = mynel;
1551
1552 out_unlock:
1553         POLICY_RDUNLOCK;
1554 out:
1555         return rc;
1556 }
1557
1558 /**
1559  * security_genfs_sid - Obtain a SID for a file in a filesystem
1560  * @fstype: filesystem type
1561  * @path: path from root of mount
1562  * @sclass: file security class
1563  * @sid: SID for path
1564  *
1565  * Obtain a SID to use for a file in a filesystem that
1566  * cannot support xattr or use a fixed labeling behavior like
1567  * transition SIDs or task SIDs.
1568  */
1569 int security_genfs_sid(const char *fstype,
1570                        char *path,
1571                        u16 sclass,
1572                        u32 *sid)
1573 {
1574         int len;
1575         struct genfs *genfs;
1576         struct ocontext *c;
1577         int rc = 0, cmp = 0;
1578
1579         POLICY_RDLOCK;
1580
1581         for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
1582                 cmp = strcmp(fstype, genfs->fstype);
1583                 if (cmp <= 0)
1584                         break;
1585         }
1586
1587         if (!genfs || cmp) {
1588                 *sid = SECINITSID_UNLABELED;
1589                 rc = -ENOENT;
1590                 goto out;
1591         }
1592
1593         for (c = genfs->head; c; c = c->next) {
1594                 len = strlen(c->u.name);
1595                 if ((!c->v.sclass || sclass == c->v.sclass) &&
1596                     (strncmp(c->u.name, path, len) == 0))
1597                         break;
1598         }
1599
1600         if (!c) {
1601                 *sid = SECINITSID_UNLABELED;
1602                 rc = -ENOENT;
1603                 goto out;
1604         }
1605
1606         if (!c->sid[0]) {
1607                 rc = sidtab_context_to_sid(&sidtab,
1608                                            &c->context[0],
1609                                            &c->sid[0]);
1610                 if (rc)
1611                         goto out;
1612         }
1613
1614         *sid = c->sid[0];
1615 out:
1616         POLICY_RDUNLOCK;
1617         return rc;
1618 }
1619
1620 /**
1621  * security_fs_use - Determine how to handle labeling for a filesystem.
1622  * @fstype: filesystem type
1623  * @behavior: labeling behavior
1624  * @sid: SID for filesystem (superblock)
1625  */
1626 int security_fs_use(
1627         const char *fstype,
1628         unsigned int *behavior,
1629         u32 *sid)
1630 {
1631         int rc = 0;
1632         struct ocontext *c;
1633
1634         POLICY_RDLOCK;
1635
1636         c = policydb.ocontexts[OCON_FSUSE];
1637         while (c) {
1638                 if (strcmp(fstype, c->u.name) == 0)
1639                         break;
1640                 c = c->next;
1641         }
1642
1643         if (c) {
1644                 *behavior = c->v.behavior;
1645                 if (!c->sid[0]) {
1646                         rc = sidtab_context_to_sid(&sidtab,
1647                                                    &c->context[0],
1648                                                    &c->sid[0]);
1649                         if (rc)
1650                                 goto out;
1651                 }
1652                 *sid = c->sid[0];
1653         } else {
1654                 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
1655                 if (rc) {
1656                         *behavior = SECURITY_FS_USE_NONE;
1657                         rc = 0;
1658                 } else {
1659                         *behavior = SECURITY_FS_USE_GENFS;
1660                 }
1661         }
1662
1663 out:
1664         POLICY_RDUNLOCK;
1665         return rc;
1666 }
1667
1668 int security_get_bools(int *len, char ***names, int **values)
1669 {
1670         int i, rc = -ENOMEM;
1671
1672         POLICY_RDLOCK;
1673         *names = NULL;
1674         *values = NULL;
1675
1676         *len = policydb.p_bools.nprim;
1677         if (!*len) {
1678                 rc = 0;
1679                 goto out;
1680         }
1681
1682         *names = (char**)kmalloc(sizeof(char*) * *len, GFP_ATOMIC);
1683         if (!*names)
1684                 goto err;
1685         memset(*names, 0, sizeof(char*) * *len);
1686
1687         *values = (int*)kmalloc(sizeof(int) * *len, GFP_ATOMIC);
1688         if (!*values)
1689                 goto err;
1690
1691         for (i = 0; i < *len; i++) {
1692                 size_t name_len;
1693                 (*values)[i] = policydb.bool_val_to_struct[i]->state;
1694                 name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
1695                 (*names)[i] = (char*)kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
1696                 if (!(*names)[i])
1697                         goto err;
1698                 strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
1699                 (*names)[i][name_len - 1] = 0;
1700         }
1701         rc = 0;
1702 out:
1703         POLICY_RDUNLOCK;
1704         return rc;
1705 err:
1706         if (*names) {
1707                 for (i = 0; i < *len; i++)
1708                         kfree((*names)[i]);
1709         }
1710         kfree(*values);
1711         goto out;
1712 }
1713
1714
1715 int security_set_bools(int len, int *values)
1716 {
1717         int i, rc = 0;
1718         int lenp, seqno = 0;
1719         struct cond_node *cur;
1720
1721         POLICY_WRLOCK;
1722
1723         lenp = policydb.p_bools.nprim;
1724         if (len != lenp) {
1725                 rc = -EFAULT;
1726                 goto out;
1727         }
1728
1729         printk(KERN_INFO "security: committed booleans { ");
1730         for (i = 0; i < len; i++) {
1731                 if (values[i]) {
1732                         policydb.bool_val_to_struct[i]->state = 1;
1733                 } else {
1734                         policydb.bool_val_to_struct[i]->state = 0;
1735                 }
1736                 if (i != 0)
1737                         printk(", ");
1738                 printk("%s:%d", policydb.p_bool_val_to_name[i],
1739                        policydb.bool_val_to_struct[i]->state);
1740         }
1741         printk(" }\n");
1742
1743         for (cur = policydb.cond_list; cur != NULL; cur = cur->next) {
1744                 rc = evaluate_cond_node(&policydb, cur);
1745                 if (rc)
1746                         goto out;
1747         }
1748
1749         seqno = ++latest_granting;
1750
1751 out:
1752         POLICY_WRUNLOCK;
1753         if (!rc) {
1754                 avc_ss_reset(seqno);
1755                 selnl_notify_policyload(seqno);
1756         }
1757         return rc;
1758 }
1759
1760 int security_get_bool_value(int bool)
1761 {
1762         int rc = 0;
1763         int len;
1764
1765         POLICY_RDLOCK;
1766
1767         len = policydb.p_bools.nprim;
1768         if (bool >= len) {
1769                 rc = -EFAULT;
1770                 goto out;
1771         }
1772
1773         rc = policydb.bool_val_to_struct[bool]->state;
1774 out:
1775         POLICY_RDUNLOCK;
1776         return rc;
1777 }