[PATCH] selinux: Fix NULL deref in policydb_destroy
[linux-3.10.git] / security / selinux / ss / policydb.c
1 /*
2  * Implementation of the policy database.
3  *
4  * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
5  */
6
7 /*
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *      Support for enhanced MLS infrastructure.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *      Added conditional policy language extensions
15  *
16  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
17  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
18  *      This program is free software; you can redistribute it and/or modify
19  *      it under the terms of the GNU General Public License as published by
20  *      the Free Software Foundation, version 2.
21  */
22
23 #include <linux/kernel.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/errno.h>
27 #include "security.h"
28
29 #include "policydb.h"
30 #include "conditional.h"
31 #include "mls.h"
32
33 #define _DEBUG_HASHES
34
35 #ifdef DEBUG_HASHES
36 static char *symtab_name[SYM_NUM] = {
37         "common prefixes",
38         "classes",
39         "roles",
40         "types",
41         "users",
42         "bools",
43         "levels",
44         "categories",
45 };
46 #endif
47
48 int selinux_mls_enabled = 0;
49
50 static unsigned int symtab_sizes[SYM_NUM] = {
51         2,
52         32,
53         16,
54         512,
55         128,
56         16,
57         16,
58         16,
59 };
60
61 struct policydb_compat_info {
62         int version;
63         int sym_num;
64         int ocon_num;
65 };
66
67 /* These need to be updated if SYM_NUM or OCON_NUM changes */
68 static struct policydb_compat_info policydb_compat[] = {
69         {
70                 .version        = POLICYDB_VERSION_BASE,
71                 .sym_num        = SYM_NUM - 3,
72                 .ocon_num       = OCON_NUM - 1,
73         },
74         {
75                 .version        = POLICYDB_VERSION_BOOL,
76                 .sym_num        = SYM_NUM - 2,
77                 .ocon_num       = OCON_NUM - 1,
78         },
79         {
80                 .version        = POLICYDB_VERSION_IPV6,
81                 .sym_num        = SYM_NUM - 2,
82                 .ocon_num       = OCON_NUM,
83         },
84         {
85                 .version        = POLICYDB_VERSION_NLCLASS,
86                 .sym_num        = SYM_NUM - 2,
87                 .ocon_num       = OCON_NUM,
88         },
89         {
90                 .version        = POLICYDB_VERSION_MLS,
91                 .sym_num        = SYM_NUM,
92                 .ocon_num       = OCON_NUM,
93         },
94         {
95                 .version        = POLICYDB_VERSION_AVTAB,
96                 .sym_num        = SYM_NUM,
97                 .ocon_num       = OCON_NUM,
98         },
99 };
100
101 static struct policydb_compat_info *policydb_lookup_compat(int version)
102 {
103         int i;
104         struct policydb_compat_info *info = NULL;
105
106         for (i = 0; i < sizeof(policydb_compat)/sizeof(*info); i++) {
107                 if (policydb_compat[i].version == version) {
108                         info = &policydb_compat[i];
109                         break;
110                 }
111         }
112         return info;
113 }
114
115 /*
116  * Initialize the role table.
117  */
118 static int roles_init(struct policydb *p)
119 {
120         char *key = NULL;
121         int rc;
122         struct role_datum *role;
123
124         role = kmalloc(sizeof(*role), GFP_KERNEL);
125         if (!role) {
126                 rc = -ENOMEM;
127                 goto out;
128         }
129         memset(role, 0, sizeof(*role));
130         role->value = ++p->p_roles.nprim;
131         if (role->value != OBJECT_R_VAL) {
132                 rc = -EINVAL;
133                 goto out_free_role;
134         }
135         key = kmalloc(strlen(OBJECT_R)+1,GFP_KERNEL);
136         if (!key) {
137                 rc = -ENOMEM;
138                 goto out_free_role;
139         }
140         strcpy(key, OBJECT_R);
141         rc = hashtab_insert(p->p_roles.table, key, role);
142         if (rc)
143                 goto out_free_key;
144 out:
145         return rc;
146
147 out_free_key:
148         kfree(key);
149 out_free_role:
150         kfree(role);
151         goto out;
152 }
153
154 /*
155  * Initialize a policy database structure.
156  */
157 static int policydb_init(struct policydb *p)
158 {
159         int i, rc;
160
161         memset(p, 0, sizeof(*p));
162
163         for (i = 0; i < SYM_NUM; i++) {
164                 rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
165                 if (rc)
166                         goto out_free_symtab;
167         }
168
169         rc = avtab_init(&p->te_avtab);
170         if (rc)
171                 goto out_free_symtab;
172
173         rc = roles_init(p);
174         if (rc)
175                 goto out_free_avtab;
176
177         rc = cond_policydb_init(p);
178         if (rc)
179                 goto out_free_avtab;
180
181 out:
182         return rc;
183
184 out_free_avtab:
185         avtab_destroy(&p->te_avtab);
186
187 out_free_symtab:
188         for (i = 0; i < SYM_NUM; i++)
189                 hashtab_destroy(p->symtab[i].table);
190         goto out;
191 }
192
193 /*
194  * The following *_index functions are used to
195  * define the val_to_name and val_to_struct arrays
196  * in a policy database structure.  The val_to_name
197  * arrays are used when converting security context
198  * structures into string representations.  The
199  * val_to_struct arrays are used when the attributes
200  * of a class, role, or user are needed.
201  */
202
203 static int common_index(void *key, void *datum, void *datap)
204 {
205         struct policydb *p;
206         struct common_datum *comdatum;
207
208         comdatum = datum;
209         p = datap;
210         if (!comdatum->value || comdatum->value > p->p_commons.nprim)
211                 return -EINVAL;
212         p->p_common_val_to_name[comdatum->value - 1] = key;
213         return 0;
214 }
215
216 static int class_index(void *key, void *datum, void *datap)
217 {
218         struct policydb *p;
219         struct class_datum *cladatum;
220
221         cladatum = datum;
222         p = datap;
223         if (!cladatum->value || cladatum->value > p->p_classes.nprim)
224                 return -EINVAL;
225         p->p_class_val_to_name[cladatum->value - 1] = key;
226         p->class_val_to_struct[cladatum->value - 1] = cladatum;
227         return 0;
228 }
229
230 static int role_index(void *key, void *datum, void *datap)
231 {
232         struct policydb *p;
233         struct role_datum *role;
234
235         role = datum;
236         p = datap;
237         if (!role->value || role->value > p->p_roles.nprim)
238                 return -EINVAL;
239         p->p_role_val_to_name[role->value - 1] = key;
240         p->role_val_to_struct[role->value - 1] = role;
241         return 0;
242 }
243
244 static int type_index(void *key, void *datum, void *datap)
245 {
246         struct policydb *p;
247         struct type_datum *typdatum;
248
249         typdatum = datum;
250         p = datap;
251
252         if (typdatum->primary) {
253                 if (!typdatum->value || typdatum->value > p->p_types.nprim)
254                         return -EINVAL;
255                 p->p_type_val_to_name[typdatum->value - 1] = key;
256         }
257
258         return 0;
259 }
260
261 static int user_index(void *key, void *datum, void *datap)
262 {
263         struct policydb *p;
264         struct user_datum *usrdatum;
265
266         usrdatum = datum;
267         p = datap;
268         if (!usrdatum->value || usrdatum->value > p->p_users.nprim)
269                 return -EINVAL;
270         p->p_user_val_to_name[usrdatum->value - 1] = key;
271         p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
272         return 0;
273 }
274
275 static int sens_index(void *key, void *datum, void *datap)
276 {
277         struct policydb *p;
278         struct level_datum *levdatum;
279
280         levdatum = datum;
281         p = datap;
282
283         if (!levdatum->isalias) {
284                 if (!levdatum->level->sens ||
285                     levdatum->level->sens > p->p_levels.nprim)
286                         return -EINVAL;
287                 p->p_sens_val_to_name[levdatum->level->sens - 1] = key;
288         }
289
290         return 0;
291 }
292
293 static int cat_index(void *key, void *datum, void *datap)
294 {
295         struct policydb *p;
296         struct cat_datum *catdatum;
297
298         catdatum = datum;
299         p = datap;
300
301         if (!catdatum->isalias) {
302                 if (!catdatum->value || catdatum->value > p->p_cats.nprim)
303                         return -EINVAL;
304                 p->p_cat_val_to_name[catdatum->value - 1] = key;
305         }
306
307         return 0;
308 }
309
310 static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
311 {
312         common_index,
313         class_index,
314         role_index,
315         type_index,
316         user_index,
317         cond_index_bool,
318         sens_index,
319         cat_index,
320 };
321
322 /*
323  * Define the common val_to_name array and the class
324  * val_to_name and val_to_struct arrays in a policy
325  * database structure.
326  *
327  * Caller must clean up upon failure.
328  */
329 static int policydb_index_classes(struct policydb *p)
330 {
331         int rc;
332
333         p->p_common_val_to_name =
334                 kmalloc(p->p_commons.nprim * sizeof(char *), GFP_KERNEL);
335         if (!p->p_common_val_to_name) {
336                 rc = -ENOMEM;
337                 goto out;
338         }
339
340         rc = hashtab_map(p->p_commons.table, common_index, p);
341         if (rc)
342                 goto out;
343
344         p->class_val_to_struct =
345                 kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)), GFP_KERNEL);
346         if (!p->class_val_to_struct) {
347                 rc = -ENOMEM;
348                 goto out;
349         }
350
351         p->p_class_val_to_name =
352                 kmalloc(p->p_classes.nprim * sizeof(char *), GFP_KERNEL);
353         if (!p->p_class_val_to_name) {
354                 rc = -ENOMEM;
355                 goto out;
356         }
357
358         rc = hashtab_map(p->p_classes.table, class_index, p);
359 out:
360         return rc;
361 }
362
363 #ifdef DEBUG_HASHES
364 static void symtab_hash_eval(struct symtab *s)
365 {
366         int i;
367
368         for (i = 0; i < SYM_NUM; i++) {
369                 struct hashtab *h = s[i].table;
370                 struct hashtab_info info;
371
372                 hashtab_stat(h, &info);
373                 printk(KERN_INFO "%s:  %d entries and %d/%d buckets used, "
374                        "longest chain length %d\n", symtab_name[i], h->nel,
375                        info.slots_used, h->size, info.max_chain_len);
376         }
377 }
378 #endif
379
380 /*
381  * Define the other val_to_name and val_to_struct arrays
382  * in a policy database structure.
383  *
384  * Caller must clean up on failure.
385  */
386 static int policydb_index_others(struct policydb *p)
387 {
388         int i, rc = 0;
389
390         printk(KERN_INFO "security:  %d users, %d roles, %d types, %d bools",
391                p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
392         if (selinux_mls_enabled)
393                 printk(", %d sens, %d cats", p->p_levels.nprim,
394                        p->p_cats.nprim);
395         printk("\n");
396
397         printk(KERN_INFO "security:  %d classes, %d rules\n",
398                p->p_classes.nprim, p->te_avtab.nel);
399
400 #ifdef DEBUG_HASHES
401         avtab_hash_eval(&p->te_avtab, "rules");
402         symtab_hash_eval(p->symtab);
403 #endif
404
405         p->role_val_to_struct =
406                 kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)),
407                         GFP_KERNEL);
408         if (!p->role_val_to_struct) {
409                 rc = -ENOMEM;
410                 goto out;
411         }
412
413         p->user_val_to_struct =
414                 kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)),
415                         GFP_KERNEL);
416         if (!p->user_val_to_struct) {
417                 rc = -ENOMEM;
418                 goto out;
419         }
420
421         if (cond_init_bool_indexes(p)) {
422                 rc = -ENOMEM;
423                 goto out;
424         }
425
426         for (i = SYM_ROLES; i < SYM_NUM; i++) {
427                 p->sym_val_to_name[i] =
428                         kmalloc(p->symtab[i].nprim * sizeof(char *), GFP_KERNEL);
429                 if (!p->sym_val_to_name[i]) {
430                         rc = -ENOMEM;
431                         goto out;
432                 }
433                 rc = hashtab_map(p->symtab[i].table, index_f[i], p);
434                 if (rc)
435                         goto out;
436         }
437
438 out:
439         return rc;
440 }
441
442 /*
443  * The following *_destroy functions are used to
444  * free any memory allocated for each kind of
445  * symbol data in the policy database.
446  */
447
448 static int perm_destroy(void *key, void *datum, void *p)
449 {
450         kfree(key);
451         kfree(datum);
452         return 0;
453 }
454
455 static int common_destroy(void *key, void *datum, void *p)
456 {
457         struct common_datum *comdatum;
458
459         kfree(key);
460         comdatum = datum;
461         hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
462         hashtab_destroy(comdatum->permissions.table);
463         kfree(datum);
464         return 0;
465 }
466
467 static int class_destroy(void *key, void *datum, void *p)
468 {
469         struct class_datum *cladatum;
470         struct constraint_node *constraint, *ctemp;
471         struct constraint_expr *e, *etmp;
472
473         kfree(key);
474         cladatum = datum;
475         hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
476         hashtab_destroy(cladatum->permissions.table);
477         constraint = cladatum->constraints;
478         while (constraint) {
479                 e = constraint->expr;
480                 while (e) {
481                         ebitmap_destroy(&e->names);
482                         etmp = e;
483                         e = e->next;
484                         kfree(etmp);
485                 }
486                 ctemp = constraint;
487                 constraint = constraint->next;
488                 kfree(ctemp);
489         }
490
491         constraint = cladatum->validatetrans;
492         while (constraint) {
493                 e = constraint->expr;
494                 while (e) {
495                         ebitmap_destroy(&e->names);
496                         etmp = e;
497                         e = e->next;
498                         kfree(etmp);
499                 }
500                 ctemp = constraint;
501                 constraint = constraint->next;
502                 kfree(ctemp);
503         }
504
505         kfree(cladatum->comkey);
506         kfree(datum);
507         return 0;
508 }
509
510 static int role_destroy(void *key, void *datum, void *p)
511 {
512         struct role_datum *role;
513
514         kfree(key);
515         role = datum;
516         ebitmap_destroy(&role->dominates);
517         ebitmap_destroy(&role->types);
518         kfree(datum);
519         return 0;
520 }
521
522 static int type_destroy(void *key, void *datum, void *p)
523 {
524         kfree(key);
525         kfree(datum);
526         return 0;
527 }
528
529 static int user_destroy(void *key, void *datum, void *p)
530 {
531         struct user_datum *usrdatum;
532
533         kfree(key);
534         usrdatum = datum;
535         ebitmap_destroy(&usrdatum->roles);
536         ebitmap_destroy(&usrdatum->range.level[0].cat);
537         ebitmap_destroy(&usrdatum->range.level[1].cat);
538         ebitmap_destroy(&usrdatum->dfltlevel.cat);
539         kfree(datum);
540         return 0;
541 }
542
543 static int sens_destroy(void *key, void *datum, void *p)
544 {
545         struct level_datum *levdatum;
546
547         kfree(key);
548         levdatum = datum;
549         ebitmap_destroy(&levdatum->level->cat);
550         kfree(levdatum->level);
551         kfree(datum);
552         return 0;
553 }
554
555 static int cat_destroy(void *key, void *datum, void *p)
556 {
557         kfree(key);
558         kfree(datum);
559         return 0;
560 }
561
562 static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
563 {
564         common_destroy,
565         class_destroy,
566         role_destroy,
567         type_destroy,
568         user_destroy,
569         cond_destroy_bool,
570         sens_destroy,
571         cat_destroy,
572 };
573
574 static void ocontext_destroy(struct ocontext *c, int i)
575 {
576         context_destroy(&c->context[0]);
577         context_destroy(&c->context[1]);
578         if (i == OCON_ISID || i == OCON_FS ||
579             i == OCON_NETIF || i == OCON_FSUSE)
580                 kfree(c->u.name);
581         kfree(c);
582 }
583
584 /*
585  * Free any memory allocated by a policy database structure.
586  */
587 void policydb_destroy(struct policydb *p)
588 {
589         struct ocontext *c, *ctmp;
590         struct genfs *g, *gtmp;
591         int i;
592         struct role_allow *ra, *lra = NULL;
593         struct role_trans *tr, *ltr = NULL;
594         struct range_trans *rt, *lrt = NULL;
595
596         for (i = 0; i < SYM_NUM; i++) {
597                 hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
598                 hashtab_destroy(p->symtab[i].table);
599         }
600
601         for (i = 0; i < SYM_NUM; i++)
602                 kfree(p->sym_val_to_name[i]);
603
604         kfree(p->class_val_to_struct);
605         kfree(p->role_val_to_struct);
606         kfree(p->user_val_to_struct);
607
608         avtab_destroy(&p->te_avtab);
609
610         for (i = 0; i < OCON_NUM; i++) {
611                 c = p->ocontexts[i];
612                 while (c) {
613                         ctmp = c;
614                         c = c->next;
615                         ocontext_destroy(ctmp,i);
616                 }
617         }
618
619         g = p->genfs;
620         while (g) {
621                 kfree(g->fstype);
622                 c = g->head;
623                 while (c) {
624                         ctmp = c;
625                         c = c->next;
626                         ocontext_destroy(ctmp,OCON_FSUSE);
627                 }
628                 gtmp = g;
629                 g = g->next;
630                 kfree(gtmp);
631         }
632
633         cond_policydb_destroy(p);
634
635         for (tr = p->role_tr; tr; tr = tr->next) {
636                 if (ltr) kfree(ltr);
637                 ltr = tr;
638         }
639         if (ltr) kfree(ltr);
640
641         for (ra = p->role_allow; ra; ra = ra -> next) {
642                 if (lra) kfree(lra);
643                 lra = ra;
644         }
645         if (lra) kfree(lra);
646
647         for (rt = p->range_tr; rt; rt = rt -> next) {
648                 if (lrt) kfree(lrt);
649                 lrt = rt;
650         }
651         if (lrt) kfree(lrt);
652
653         if (p->type_attr_map) {
654                 for (i = 0; i < p->p_types.nprim; i++)
655                         ebitmap_destroy(&p->type_attr_map[i]);
656         }
657         kfree(p->type_attr_map);
658
659         return;
660 }
661
662 /*
663  * Load the initial SIDs specified in a policy database
664  * structure into a SID table.
665  */
666 int policydb_load_isids(struct policydb *p, struct sidtab *s)
667 {
668         struct ocontext *head, *c;
669         int rc;
670
671         rc = sidtab_init(s);
672         if (rc) {
673                 printk(KERN_ERR "security:  out of memory on SID table init\n");
674                 goto out;
675         }
676
677         head = p->ocontexts[OCON_ISID];
678         for (c = head; c; c = c->next) {
679                 if (!c->context[0].user) {
680                         printk(KERN_ERR "security:  SID %s was never "
681                                "defined.\n", c->u.name);
682                         rc = -EINVAL;
683                         goto out;
684                 }
685                 if (sidtab_insert(s, c->sid[0], &c->context[0])) {
686                         printk(KERN_ERR "security:  unable to load initial "
687                                "SID %s.\n", c->u.name);
688                         rc = -EINVAL;
689                         goto out;
690                 }
691         }
692 out:
693         return rc;
694 }
695
696 /*
697  * Return 1 if the fields in the security context
698  * structure `c' are valid.  Return 0 otherwise.
699  */
700 int policydb_context_isvalid(struct policydb *p, struct context *c)
701 {
702         struct role_datum *role;
703         struct user_datum *usrdatum;
704
705         if (!c->role || c->role > p->p_roles.nprim)
706                 return 0;
707
708         if (!c->user || c->user > p->p_users.nprim)
709                 return 0;
710
711         if (!c->type || c->type > p->p_types.nprim)
712                 return 0;
713
714         if (c->role != OBJECT_R_VAL) {
715                 /*
716                  * Role must be authorized for the type.
717                  */
718                 role = p->role_val_to_struct[c->role - 1];
719                 if (!ebitmap_get_bit(&role->types,
720                                      c->type - 1))
721                         /* role may not be associated with type */
722                         return 0;
723
724                 /*
725                  * User must be authorized for the role.
726                  */
727                 usrdatum = p->user_val_to_struct[c->user - 1];
728                 if (!usrdatum)
729                         return 0;
730
731                 if (!ebitmap_get_bit(&usrdatum->roles,
732                                      c->role - 1))
733                         /* user may not be associated with role */
734                         return 0;
735         }
736
737         if (!mls_context_isvalid(p, c))
738                 return 0;
739
740         return 1;
741 }
742
743 /*
744  * Read a MLS range structure from a policydb binary
745  * representation file.
746  */
747 static int mls_read_range_helper(struct mls_range *r, void *fp)
748 {
749         __le32 buf[2];
750         u32 items;
751         int rc;
752
753         rc = next_entry(buf, fp, sizeof(u32));
754         if (rc < 0)
755                 goto out;
756
757         items = le32_to_cpu(buf[0]);
758         if (items > ARRAY_SIZE(buf)) {
759                 printk(KERN_ERR "security: mls:  range overflow\n");
760                 rc = -EINVAL;
761                 goto out;
762         }
763         rc = next_entry(buf, fp, sizeof(u32) * items);
764         if (rc < 0) {
765                 printk(KERN_ERR "security: mls:  truncated range\n");
766                 goto out;
767         }
768         r->level[0].sens = le32_to_cpu(buf[0]);
769         if (items > 1)
770                 r->level[1].sens = le32_to_cpu(buf[1]);
771         else
772                 r->level[1].sens = r->level[0].sens;
773
774         rc = ebitmap_read(&r->level[0].cat, fp);
775         if (rc) {
776                 printk(KERN_ERR "security: mls:  error reading low "
777                        "categories\n");
778                 goto out;
779         }
780         if (items > 1) {
781                 rc = ebitmap_read(&r->level[1].cat, fp);
782                 if (rc) {
783                         printk(KERN_ERR "security: mls:  error reading high "
784                                "categories\n");
785                         goto bad_high;
786                 }
787         } else {
788                 rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
789                 if (rc) {
790                         printk(KERN_ERR "security: mls:  out of memory\n");
791                         goto bad_high;
792                 }
793         }
794
795         rc = 0;
796 out:
797         return rc;
798 bad_high:
799         ebitmap_destroy(&r->level[0].cat);
800         goto out;
801 }
802
803 /*
804  * Read and validate a security context structure
805  * from a policydb binary representation file.
806  */
807 static int context_read_and_validate(struct context *c,
808                                      struct policydb *p,
809                                      void *fp)
810 {
811         __le32 buf[3];
812         int rc;
813
814         rc = next_entry(buf, fp, sizeof buf);
815         if (rc < 0) {
816                 printk(KERN_ERR "security: context truncated\n");
817                 goto out;
818         }
819         c->user = le32_to_cpu(buf[0]);
820         c->role = le32_to_cpu(buf[1]);
821         c->type = le32_to_cpu(buf[2]);
822         if (p->policyvers >= POLICYDB_VERSION_MLS) {
823                 if (mls_read_range_helper(&c->range, fp)) {
824                         printk(KERN_ERR "security: error reading MLS range of "
825                                "context\n");
826                         rc = -EINVAL;
827                         goto out;
828                 }
829         }
830
831         if (!policydb_context_isvalid(p, c)) {
832                 printk(KERN_ERR "security:  invalid security context\n");
833                 context_destroy(c);
834                 rc = -EINVAL;
835         }
836 out:
837         return rc;
838 }
839
840 /*
841  * The following *_read functions are used to
842  * read the symbol data from a policy database
843  * binary representation file.
844  */
845
846 static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
847 {
848         char *key = NULL;
849         struct perm_datum *perdatum;
850         int rc;
851         __le32 buf[2];
852         u32 len;
853
854         perdatum = kmalloc(sizeof(*perdatum), GFP_KERNEL);
855         if (!perdatum) {
856                 rc = -ENOMEM;
857                 goto out;
858         }
859         memset(perdatum, 0, sizeof(*perdatum));
860
861         rc = next_entry(buf, fp, sizeof buf);
862         if (rc < 0)
863                 goto bad;
864
865         len = le32_to_cpu(buf[0]);
866         perdatum->value = le32_to_cpu(buf[1]);
867
868         key = kmalloc(len + 1,GFP_KERNEL);
869         if (!key) {
870                 rc = -ENOMEM;
871                 goto bad;
872         }
873         rc = next_entry(key, fp, len);
874         if (rc < 0)
875                 goto bad;
876         key[len] = 0;
877
878         rc = hashtab_insert(h, key, perdatum);
879         if (rc)
880                 goto bad;
881 out:
882         return rc;
883 bad:
884         perm_destroy(key, perdatum, NULL);
885         goto out;
886 }
887
888 static int common_read(struct policydb *p, struct hashtab *h, void *fp)
889 {
890         char *key = NULL;
891         struct common_datum *comdatum;
892         __le32 buf[4];
893         u32 len, nel;
894         int i, rc;
895
896         comdatum = kmalloc(sizeof(*comdatum), GFP_KERNEL);
897         if (!comdatum) {
898                 rc = -ENOMEM;
899                 goto out;
900         }
901         memset(comdatum, 0, sizeof(*comdatum));
902
903         rc = next_entry(buf, fp, sizeof buf);
904         if (rc < 0)
905                 goto bad;
906
907         len = le32_to_cpu(buf[0]);
908         comdatum->value = le32_to_cpu(buf[1]);
909
910         rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
911         if (rc)
912                 goto bad;
913         comdatum->permissions.nprim = le32_to_cpu(buf[2]);
914         nel = le32_to_cpu(buf[3]);
915
916         key = kmalloc(len + 1,GFP_KERNEL);
917         if (!key) {
918                 rc = -ENOMEM;
919                 goto bad;
920         }
921         rc = next_entry(key, fp, len);
922         if (rc < 0)
923                 goto bad;
924         key[len] = 0;
925
926         for (i = 0; i < nel; i++) {
927                 rc = perm_read(p, comdatum->permissions.table, fp);
928                 if (rc)
929                         goto bad;
930         }
931
932         rc = hashtab_insert(h, key, comdatum);
933         if (rc)
934                 goto bad;
935 out:
936         return rc;
937 bad:
938         common_destroy(key, comdatum, NULL);
939         goto out;
940 }
941
942 static int read_cons_helper(struct constraint_node **nodep, int ncons,
943                             int allowxtarget, void *fp)
944 {
945         struct constraint_node *c, *lc;
946         struct constraint_expr *e, *le;
947         __le32 buf[3];
948         u32 nexpr;
949         int rc, i, j, depth;
950
951         lc = NULL;
952         for (i = 0; i < ncons; i++) {
953                 c = kmalloc(sizeof(*c), GFP_KERNEL);
954                 if (!c)
955                         return -ENOMEM;
956                 memset(c, 0, sizeof(*c));
957
958                 if (lc) {
959                         lc->next = c;
960                 } else {
961                         *nodep = c;
962                 }
963
964                 rc = next_entry(buf, fp, (sizeof(u32) * 2));
965                 if (rc < 0)
966                         return rc;
967                 c->permissions = le32_to_cpu(buf[0]);
968                 nexpr = le32_to_cpu(buf[1]);
969                 le = NULL;
970                 depth = -1;
971                 for (j = 0; j < nexpr; j++) {
972                         e = kmalloc(sizeof(*e), GFP_KERNEL);
973                         if (!e)
974                                 return -ENOMEM;
975                         memset(e, 0, sizeof(*e));
976
977                         if (le) {
978                                 le->next = e;
979                         } else {
980                                 c->expr = e;
981                         }
982
983                         rc = next_entry(buf, fp, (sizeof(u32) * 3));
984                         if (rc < 0)
985                                 return rc;
986                         e->expr_type = le32_to_cpu(buf[0]);
987                         e->attr = le32_to_cpu(buf[1]);
988                         e->op = le32_to_cpu(buf[2]);
989
990                         switch (e->expr_type) {
991                         case CEXPR_NOT:
992                                 if (depth < 0)
993                                         return -EINVAL;
994                                 break;
995                         case CEXPR_AND:
996                         case CEXPR_OR:
997                                 if (depth < 1)
998                                         return -EINVAL;
999                                 depth--;
1000                                 break;
1001                         case CEXPR_ATTR:
1002                                 if (depth == (CEXPR_MAXDEPTH - 1))
1003                                         return -EINVAL;
1004                                 depth++;
1005                                 break;
1006                         case CEXPR_NAMES:
1007                                 if (!allowxtarget && (e->attr & CEXPR_XTARGET))
1008                                         return -EINVAL;
1009                                 if (depth == (CEXPR_MAXDEPTH - 1))
1010                                         return -EINVAL;
1011                                 depth++;
1012                                 if (ebitmap_read(&e->names, fp))
1013                                         return -EINVAL;
1014                                 break;
1015                         default:
1016                                 return -EINVAL;
1017                         }
1018                         le = e;
1019                 }
1020                 if (depth != 0)
1021                         return -EINVAL;
1022                 lc = c;
1023         }
1024
1025         return 0;
1026 }
1027
1028 static int class_read(struct policydb *p, struct hashtab *h, void *fp)
1029 {
1030         char *key = NULL;
1031         struct class_datum *cladatum;
1032         __le32 buf[6];
1033         u32 len, len2, ncons, nel;
1034         int i, rc;
1035
1036         cladatum = kmalloc(sizeof(*cladatum), GFP_KERNEL);
1037         if (!cladatum) {
1038                 rc = -ENOMEM;
1039                 goto out;
1040         }
1041         memset(cladatum, 0, sizeof(*cladatum));
1042
1043         rc = next_entry(buf, fp, sizeof(u32)*6);
1044         if (rc < 0)
1045                 goto bad;
1046
1047         len = le32_to_cpu(buf[0]);
1048         len2 = le32_to_cpu(buf[1]);
1049         cladatum->value = le32_to_cpu(buf[2]);
1050
1051         rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
1052         if (rc)
1053                 goto bad;
1054         cladatum->permissions.nprim = le32_to_cpu(buf[3]);
1055         nel = le32_to_cpu(buf[4]);
1056
1057         ncons = le32_to_cpu(buf[5]);
1058
1059         key = kmalloc(len + 1,GFP_KERNEL);
1060         if (!key) {
1061                 rc = -ENOMEM;
1062                 goto bad;
1063         }
1064         rc = next_entry(key, fp, len);
1065         if (rc < 0)
1066                 goto bad;
1067         key[len] = 0;
1068
1069         if (len2) {
1070                 cladatum->comkey = kmalloc(len2 + 1,GFP_KERNEL);
1071                 if (!cladatum->comkey) {
1072                         rc = -ENOMEM;
1073                         goto bad;
1074                 }
1075                 rc = next_entry(cladatum->comkey, fp, len2);
1076                 if (rc < 0)
1077                         goto bad;
1078                 cladatum->comkey[len2] = 0;
1079
1080                 cladatum->comdatum = hashtab_search(p->p_commons.table,
1081                                                     cladatum->comkey);
1082                 if (!cladatum->comdatum) {
1083                         printk(KERN_ERR "security:  unknown common %s\n",
1084                                cladatum->comkey);
1085                         rc = -EINVAL;
1086                         goto bad;
1087                 }
1088         }
1089         for (i = 0; i < nel; i++) {
1090                 rc = perm_read(p, cladatum->permissions.table, fp);
1091                 if (rc)
1092                         goto bad;
1093         }
1094
1095         rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp);
1096         if (rc)
1097                 goto bad;
1098
1099         if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
1100                 /* grab the validatetrans rules */
1101                 rc = next_entry(buf, fp, sizeof(u32));
1102                 if (rc < 0)
1103                         goto bad;
1104                 ncons = le32_to_cpu(buf[0]);
1105                 rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp);
1106                 if (rc)
1107                         goto bad;
1108         }
1109
1110         rc = hashtab_insert(h, key, cladatum);
1111         if (rc)
1112                 goto bad;
1113
1114         rc = 0;
1115 out:
1116         return rc;
1117 bad:
1118         class_destroy(key, cladatum, NULL);
1119         goto out;
1120 }
1121
1122 static int role_read(struct policydb *p, struct hashtab *h, void *fp)
1123 {
1124         char *key = NULL;
1125         struct role_datum *role;
1126         int rc;
1127         __le32 buf[2];
1128         u32 len;
1129
1130         role = kmalloc(sizeof(*role), GFP_KERNEL);
1131         if (!role) {
1132                 rc = -ENOMEM;
1133                 goto out;
1134         }
1135         memset(role, 0, sizeof(*role));
1136
1137         rc = next_entry(buf, fp, sizeof buf);
1138         if (rc < 0)
1139                 goto bad;
1140
1141         len = le32_to_cpu(buf[0]);
1142         role->value = le32_to_cpu(buf[1]);
1143
1144         key = kmalloc(len + 1,GFP_KERNEL);
1145         if (!key) {
1146                 rc = -ENOMEM;
1147                 goto bad;
1148         }
1149         rc = next_entry(key, fp, len);
1150         if (rc < 0)
1151                 goto bad;
1152         key[len] = 0;
1153
1154         rc = ebitmap_read(&role->dominates, fp);
1155         if (rc)
1156                 goto bad;
1157
1158         rc = ebitmap_read(&role->types, fp);
1159         if (rc)
1160                 goto bad;
1161
1162         if (strcmp(key, OBJECT_R) == 0) {
1163                 if (role->value != OBJECT_R_VAL) {
1164                         printk(KERN_ERR "Role %s has wrong value %d\n",
1165                                OBJECT_R, role->value);
1166                         rc = -EINVAL;
1167                         goto bad;
1168                 }
1169                 rc = 0;
1170                 goto bad;
1171         }
1172
1173         rc = hashtab_insert(h, key, role);
1174         if (rc)
1175                 goto bad;
1176 out:
1177         return rc;
1178 bad:
1179         role_destroy(key, role, NULL);
1180         goto out;
1181 }
1182
1183 static int type_read(struct policydb *p, struct hashtab *h, void *fp)
1184 {
1185         char *key = NULL;
1186         struct type_datum *typdatum;
1187         int rc;
1188         __le32 buf[3];
1189         u32 len;
1190
1191         typdatum = kmalloc(sizeof(*typdatum),GFP_KERNEL);
1192         if (!typdatum) {
1193                 rc = -ENOMEM;
1194                 return rc;
1195         }
1196         memset(typdatum, 0, sizeof(*typdatum));
1197
1198         rc = next_entry(buf, fp, sizeof buf);
1199         if (rc < 0)
1200                 goto bad;
1201
1202         len = le32_to_cpu(buf[0]);
1203         typdatum->value = le32_to_cpu(buf[1]);
1204         typdatum->primary = le32_to_cpu(buf[2]);
1205
1206         key = kmalloc(len + 1,GFP_KERNEL);
1207         if (!key) {
1208                 rc = -ENOMEM;
1209                 goto bad;
1210         }
1211         rc = next_entry(key, fp, len);
1212         if (rc < 0)
1213                 goto bad;
1214         key[len] = 0;
1215
1216         rc = hashtab_insert(h, key, typdatum);
1217         if (rc)
1218                 goto bad;
1219 out:
1220         return rc;
1221 bad:
1222         type_destroy(key, typdatum, NULL);
1223         goto out;
1224 }
1225
1226
1227 /*
1228  * Read a MLS level structure from a policydb binary
1229  * representation file.
1230  */
1231 static int mls_read_level(struct mls_level *lp, void *fp)
1232 {
1233         __le32 buf[1];
1234         int rc;
1235
1236         memset(lp, 0, sizeof(*lp));
1237
1238         rc = next_entry(buf, fp, sizeof buf);
1239         if (rc < 0) {
1240                 printk(KERN_ERR "security: mls: truncated level\n");
1241                 goto bad;
1242         }
1243         lp->sens = le32_to_cpu(buf[0]);
1244
1245         if (ebitmap_read(&lp->cat, fp)) {
1246                 printk(KERN_ERR "security: mls:  error reading level "
1247                        "categories\n");
1248                 goto bad;
1249         }
1250         return 0;
1251
1252 bad:
1253         return -EINVAL;
1254 }
1255
1256 static int user_read(struct policydb *p, struct hashtab *h, void *fp)
1257 {
1258         char *key = NULL;
1259         struct user_datum *usrdatum;
1260         int rc;
1261         __le32 buf[2];
1262         u32 len;
1263
1264         usrdatum = kmalloc(sizeof(*usrdatum), GFP_KERNEL);
1265         if (!usrdatum) {
1266                 rc = -ENOMEM;
1267                 goto out;
1268         }
1269         memset(usrdatum, 0, sizeof(*usrdatum));
1270
1271         rc = next_entry(buf, fp, sizeof buf);
1272         if (rc < 0)
1273                 goto bad;
1274
1275         len = le32_to_cpu(buf[0]);
1276         usrdatum->value = le32_to_cpu(buf[1]);
1277
1278         key = kmalloc(len + 1,GFP_KERNEL);
1279         if (!key) {
1280                 rc = -ENOMEM;
1281                 goto bad;
1282         }
1283         rc = next_entry(key, fp, len);
1284         if (rc < 0)
1285                 goto bad;
1286         key[len] = 0;
1287
1288         rc = ebitmap_read(&usrdatum->roles, fp);
1289         if (rc)
1290                 goto bad;
1291
1292         if (p->policyvers >= POLICYDB_VERSION_MLS) {
1293                 rc = mls_read_range_helper(&usrdatum->range, fp);
1294                 if (rc)
1295                         goto bad;
1296                 rc = mls_read_level(&usrdatum->dfltlevel, fp);
1297                 if (rc)
1298                         goto bad;
1299         }
1300
1301         rc = hashtab_insert(h, key, usrdatum);
1302         if (rc)
1303                 goto bad;
1304 out:
1305         return rc;
1306 bad:
1307         user_destroy(key, usrdatum, NULL);
1308         goto out;
1309 }
1310
1311 static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
1312 {
1313         char *key = NULL;
1314         struct level_datum *levdatum;
1315         int rc;
1316         __le32 buf[2];
1317         u32 len;
1318
1319         levdatum = kmalloc(sizeof(*levdatum), GFP_ATOMIC);
1320         if (!levdatum) {
1321                 rc = -ENOMEM;
1322                 goto out;
1323         }
1324         memset(levdatum, 0, sizeof(*levdatum));
1325
1326         rc = next_entry(buf, fp, sizeof buf);
1327         if (rc < 0)
1328                 goto bad;
1329
1330         len = le32_to_cpu(buf[0]);
1331         levdatum->isalias = le32_to_cpu(buf[1]);
1332
1333         key = kmalloc(len + 1,GFP_ATOMIC);
1334         if (!key) {
1335                 rc = -ENOMEM;
1336                 goto bad;
1337         }
1338         rc = next_entry(key, fp, len);
1339         if (rc < 0)
1340                 goto bad;
1341         key[len] = 0;
1342
1343         levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC);
1344         if (!levdatum->level) {
1345                 rc = -ENOMEM;
1346                 goto bad;
1347         }
1348         if (mls_read_level(levdatum->level, fp)) {
1349                 rc = -EINVAL;
1350                 goto bad;
1351         }
1352
1353         rc = hashtab_insert(h, key, levdatum);
1354         if (rc)
1355                 goto bad;
1356 out:
1357         return rc;
1358 bad:
1359         sens_destroy(key, levdatum, NULL);
1360         goto out;
1361 }
1362
1363 static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
1364 {
1365         char *key = NULL;
1366         struct cat_datum *catdatum;
1367         int rc;
1368         __le32 buf[3];
1369         u32 len;
1370
1371         catdatum = kmalloc(sizeof(*catdatum), GFP_ATOMIC);
1372         if (!catdatum) {
1373                 rc = -ENOMEM;
1374                 goto out;
1375         }
1376         memset(catdatum, 0, sizeof(*catdatum));
1377
1378         rc = next_entry(buf, fp, sizeof buf);
1379         if (rc < 0)
1380                 goto bad;
1381
1382         len = le32_to_cpu(buf[0]);
1383         catdatum->value = le32_to_cpu(buf[1]);
1384         catdatum->isalias = le32_to_cpu(buf[2]);
1385
1386         key = kmalloc(len + 1,GFP_ATOMIC);
1387         if (!key) {
1388                 rc = -ENOMEM;
1389                 goto bad;
1390         }
1391         rc = next_entry(key, fp, len);
1392         if (rc < 0)
1393                 goto bad;
1394         key[len] = 0;
1395
1396         rc = hashtab_insert(h, key, catdatum);
1397         if (rc)
1398                 goto bad;
1399 out:
1400         return rc;
1401
1402 bad:
1403         cat_destroy(key, catdatum, NULL);
1404         goto out;
1405 }
1406
1407 static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
1408 {
1409         common_read,
1410         class_read,
1411         role_read,
1412         type_read,
1413         user_read,
1414         cond_read_bool,
1415         sens_read,
1416         cat_read,
1417 };
1418
1419 extern int ss_initialized;
1420
1421 /*
1422  * Read the configuration data from a policy database binary
1423  * representation file into a policy database structure.
1424  */
1425 int policydb_read(struct policydb *p, void *fp)
1426 {
1427         struct role_allow *ra, *lra;
1428         struct role_trans *tr, *ltr;
1429         struct ocontext *l, *c, *newc;
1430         struct genfs *genfs_p, *genfs, *newgenfs;
1431         int i, j, rc;
1432         __le32 buf[8];
1433         u32 len, len2, config, nprim, nel, nel2;
1434         char *policydb_str;
1435         struct policydb_compat_info *info;
1436         struct range_trans *rt, *lrt;
1437
1438         config = 0;
1439
1440         rc = policydb_init(p);
1441         if (rc)
1442                 goto out;
1443
1444         /* Read the magic number and string length. */
1445         rc = next_entry(buf, fp, sizeof(u32)* 2);
1446         if (rc < 0)
1447                 goto bad;
1448
1449         if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) {
1450                 printk(KERN_ERR "security:  policydb magic number 0x%x does "
1451                        "not match expected magic number 0x%x\n",
1452                        le32_to_cpu(buf[0]), POLICYDB_MAGIC);
1453                 goto bad;
1454         }
1455
1456         len = le32_to_cpu(buf[1]);
1457         if (len != strlen(POLICYDB_STRING)) {
1458                 printk(KERN_ERR "security:  policydb string length %d does not "
1459                        "match expected length %Zu\n",
1460                        len, strlen(POLICYDB_STRING));
1461                 goto bad;
1462         }
1463         policydb_str = kmalloc(len + 1,GFP_KERNEL);
1464         if (!policydb_str) {
1465                 printk(KERN_ERR "security:  unable to allocate memory for policydb "
1466                        "string of length %d\n", len);
1467                 rc = -ENOMEM;
1468                 goto bad;
1469         }
1470         rc = next_entry(policydb_str, fp, len);
1471         if (rc < 0) {
1472                 printk(KERN_ERR "security:  truncated policydb string identifier\n");
1473                 kfree(policydb_str);
1474                 goto bad;
1475         }
1476         policydb_str[len] = 0;
1477         if (strcmp(policydb_str, POLICYDB_STRING)) {
1478                 printk(KERN_ERR "security:  policydb string %s does not match "
1479                        "my string %s\n", policydb_str, POLICYDB_STRING);
1480                 kfree(policydb_str);
1481                 goto bad;
1482         }
1483         /* Done with policydb_str. */
1484         kfree(policydb_str);
1485         policydb_str = NULL;
1486
1487         /* Read the version, config, and table sizes. */
1488         rc = next_entry(buf, fp, sizeof(u32)*4);
1489         if (rc < 0)
1490                 goto bad;
1491
1492         p->policyvers = le32_to_cpu(buf[0]);
1493         if (p->policyvers < POLICYDB_VERSION_MIN ||
1494             p->policyvers > POLICYDB_VERSION_MAX) {
1495                 printk(KERN_ERR "security:  policydb version %d does not match "
1496                        "my version range %d-%d\n",
1497                        le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
1498                 goto bad;
1499         }
1500
1501         if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) {
1502                 if (ss_initialized && !selinux_mls_enabled) {
1503                         printk(KERN_ERR "Cannot switch between non-MLS and MLS "
1504                                "policies\n");
1505                         goto bad;
1506                 }
1507                 selinux_mls_enabled = 1;
1508                 config |= POLICYDB_CONFIG_MLS;
1509
1510                 if (p->policyvers < POLICYDB_VERSION_MLS) {
1511                         printk(KERN_ERR "security policydb version %d (MLS) "
1512                                "not backwards compatible\n", p->policyvers);
1513                         goto bad;
1514                 }
1515         } else {
1516                 if (ss_initialized && selinux_mls_enabled) {
1517                         printk(KERN_ERR "Cannot switch between MLS and non-MLS "
1518                                "policies\n");
1519                         goto bad;
1520                 }
1521         }
1522
1523         info = policydb_lookup_compat(p->policyvers);
1524         if (!info) {
1525                 printk(KERN_ERR "security:  unable to find policy compat info "
1526                        "for version %d\n", p->policyvers);
1527                 goto bad;
1528         }
1529
1530         if (le32_to_cpu(buf[2]) != info->sym_num ||
1531                 le32_to_cpu(buf[3]) != info->ocon_num) {
1532                 printk(KERN_ERR "security:  policydb table sizes (%d,%d) do "
1533                        "not match mine (%d,%d)\n", le32_to_cpu(buf[2]),
1534                         le32_to_cpu(buf[3]),
1535                        info->sym_num, info->ocon_num);
1536                 goto bad;
1537         }
1538
1539         for (i = 0; i < info->sym_num; i++) {
1540                 rc = next_entry(buf, fp, sizeof(u32)*2);
1541                 if (rc < 0)
1542                         goto bad;
1543                 nprim = le32_to_cpu(buf[0]);
1544                 nel = le32_to_cpu(buf[1]);
1545                 for (j = 0; j < nel; j++) {
1546                         rc = read_f[i](p, p->symtab[i].table, fp);
1547                         if (rc)
1548                                 goto bad;
1549                 }
1550
1551                 p->symtab[i].nprim = nprim;
1552         }
1553
1554         rc = avtab_read(&p->te_avtab, fp, p->policyvers);
1555         if (rc)
1556                 goto bad;
1557
1558         if (p->policyvers >= POLICYDB_VERSION_BOOL) {
1559                 rc = cond_read_list(p, fp);
1560                 if (rc)
1561                         goto bad;
1562         }
1563
1564         rc = next_entry(buf, fp, sizeof(u32));
1565         if (rc < 0)
1566                 goto bad;
1567         nel = le32_to_cpu(buf[0]);
1568         ltr = NULL;
1569         for (i = 0; i < nel; i++) {
1570                 tr = kmalloc(sizeof(*tr), GFP_KERNEL);
1571                 if (!tr) {
1572                         rc = -ENOMEM;
1573                         goto bad;
1574                 }
1575                 memset(tr, 0, sizeof(*tr));
1576                 if (ltr) {
1577                         ltr->next = tr;
1578                 } else {
1579                         p->role_tr = tr;
1580                 }
1581                 rc = next_entry(buf, fp, sizeof(u32)*3);
1582                 if (rc < 0)
1583                         goto bad;
1584                 tr->role = le32_to_cpu(buf[0]);
1585                 tr->type = le32_to_cpu(buf[1]);
1586                 tr->new_role = le32_to_cpu(buf[2]);
1587                 ltr = tr;
1588         }
1589
1590         rc = next_entry(buf, fp, sizeof(u32));
1591         if (rc < 0)
1592                 goto bad;
1593         nel = le32_to_cpu(buf[0]);
1594         lra = NULL;
1595         for (i = 0; i < nel; i++) {
1596                 ra = kmalloc(sizeof(*ra), GFP_KERNEL);
1597                 if (!ra) {
1598                         rc = -ENOMEM;
1599                         goto bad;
1600                 }
1601                 memset(ra, 0, sizeof(*ra));
1602                 if (lra) {
1603                         lra->next = ra;
1604                 } else {
1605                         p->role_allow = ra;
1606                 }
1607                 rc = next_entry(buf, fp, sizeof(u32)*2);
1608                 if (rc < 0)
1609                         goto bad;
1610                 ra->role = le32_to_cpu(buf[0]);
1611                 ra->new_role = le32_to_cpu(buf[1]);
1612                 lra = ra;
1613         }
1614
1615         rc = policydb_index_classes(p);
1616         if (rc)
1617                 goto bad;
1618
1619         rc = policydb_index_others(p);
1620         if (rc)
1621                 goto bad;
1622
1623         for (i = 0; i < info->ocon_num; i++) {
1624                 rc = next_entry(buf, fp, sizeof(u32));
1625                 if (rc < 0)
1626                         goto bad;
1627                 nel = le32_to_cpu(buf[0]);
1628                 l = NULL;
1629                 for (j = 0; j < nel; j++) {
1630                         c = kmalloc(sizeof(*c), GFP_KERNEL);
1631                         if (!c) {
1632                                 rc = -ENOMEM;
1633                                 goto bad;
1634                         }
1635                         memset(c, 0, sizeof(*c));
1636                         if (l) {
1637                                 l->next = c;
1638                         } else {
1639                                 p->ocontexts[i] = c;
1640                         }
1641                         l = c;
1642                         rc = -EINVAL;
1643                         switch (i) {
1644                         case OCON_ISID:
1645                                 rc = next_entry(buf, fp, sizeof(u32));
1646                                 if (rc < 0)
1647                                         goto bad;
1648                                 c->sid[0] = le32_to_cpu(buf[0]);
1649                                 rc = context_read_and_validate(&c->context[0], p, fp);
1650                                 if (rc)
1651                                         goto bad;
1652                                 break;
1653                         case OCON_FS:
1654                         case OCON_NETIF:
1655                                 rc = next_entry(buf, fp, sizeof(u32));
1656                                 if (rc < 0)
1657                                         goto bad;
1658                                 len = le32_to_cpu(buf[0]);
1659                                 c->u.name = kmalloc(len + 1,GFP_KERNEL);
1660                                 if (!c->u.name) {
1661                                         rc = -ENOMEM;
1662                                         goto bad;
1663                                 }
1664                                 rc = next_entry(c->u.name, fp, len);
1665                                 if (rc < 0)
1666                                         goto bad;
1667                                 c->u.name[len] = 0;
1668                                 rc = context_read_and_validate(&c->context[0], p, fp);
1669                                 if (rc)
1670                                         goto bad;
1671                                 rc = context_read_and_validate(&c->context[1], p, fp);
1672                                 if (rc)
1673                                         goto bad;
1674                                 break;
1675                         case OCON_PORT:
1676                                 rc = next_entry(buf, fp, sizeof(u32)*3);
1677                                 if (rc < 0)
1678                                         goto bad;
1679                                 c->u.port.protocol = le32_to_cpu(buf[0]);
1680                                 c->u.port.low_port = le32_to_cpu(buf[1]);
1681                                 c->u.port.high_port = le32_to_cpu(buf[2]);
1682                                 rc = context_read_and_validate(&c->context[0], p, fp);
1683                                 if (rc)
1684                                         goto bad;
1685                                 break;
1686                         case OCON_NODE:
1687                                 rc = next_entry(buf, fp, sizeof(u32)* 2);
1688                                 if (rc < 0)
1689                                         goto bad;
1690                                 c->u.node.addr = le32_to_cpu(buf[0]);
1691                                 c->u.node.mask = le32_to_cpu(buf[1]);
1692                                 rc = context_read_and_validate(&c->context[0], p, fp);
1693                                 if (rc)
1694                                         goto bad;
1695                                 break;
1696                         case OCON_FSUSE:
1697                                 rc = next_entry(buf, fp, sizeof(u32)*2);
1698                                 if (rc < 0)
1699                                         goto bad;
1700                                 c->v.behavior = le32_to_cpu(buf[0]);
1701                                 if (c->v.behavior > SECURITY_FS_USE_NONE)
1702                                         goto bad;
1703                                 len = le32_to_cpu(buf[1]);
1704                                 c->u.name = kmalloc(len + 1,GFP_KERNEL);
1705                                 if (!c->u.name) {
1706                                         rc = -ENOMEM;
1707                                         goto bad;
1708                                 }
1709                                 rc = next_entry(c->u.name, fp, len);
1710                                 if (rc < 0)
1711                                         goto bad;
1712                                 c->u.name[len] = 0;
1713                                 rc = context_read_and_validate(&c->context[0], p, fp);
1714                                 if (rc)
1715                                         goto bad;
1716                                 break;
1717                         case OCON_NODE6: {
1718                                 int k;
1719
1720                                 rc = next_entry(buf, fp, sizeof(u32) * 8);
1721                                 if (rc < 0)
1722                                         goto bad;
1723                                 for (k = 0; k < 4; k++)
1724                                         c->u.node6.addr[k] = le32_to_cpu(buf[k]);
1725                                 for (k = 0; k < 4; k++)
1726                                         c->u.node6.mask[k] = le32_to_cpu(buf[k+4]);
1727                                 if (context_read_and_validate(&c->context[0], p, fp))
1728                                         goto bad;
1729                                 break;
1730                         }
1731                         }
1732                 }
1733         }
1734
1735         rc = next_entry(buf, fp, sizeof(u32));
1736         if (rc < 0)
1737                 goto bad;
1738         nel = le32_to_cpu(buf[0]);
1739         genfs_p = NULL;
1740         rc = -EINVAL;
1741         for (i = 0; i < nel; i++) {
1742                 rc = next_entry(buf, fp, sizeof(u32));
1743                 if (rc < 0)
1744                         goto bad;
1745                 len = le32_to_cpu(buf[0]);
1746                 newgenfs = kmalloc(sizeof(*newgenfs), GFP_KERNEL);
1747                 if (!newgenfs) {
1748                         rc = -ENOMEM;
1749                         goto bad;
1750                 }
1751                 memset(newgenfs, 0, sizeof(*newgenfs));
1752
1753                 newgenfs->fstype = kmalloc(len + 1,GFP_KERNEL);
1754                 if (!newgenfs->fstype) {
1755                         rc = -ENOMEM;
1756                         kfree(newgenfs);
1757                         goto bad;
1758                 }
1759                 rc = next_entry(newgenfs->fstype, fp, len);
1760                 if (rc < 0) {
1761                         kfree(newgenfs->fstype);
1762                         kfree(newgenfs);
1763                         goto bad;
1764                 }
1765                 newgenfs->fstype[len] = 0;
1766                 for (genfs_p = NULL, genfs = p->genfs; genfs;
1767                      genfs_p = genfs, genfs = genfs->next) {
1768                         if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
1769                                 printk(KERN_ERR "security:  dup genfs "
1770                                        "fstype %s\n", newgenfs->fstype);
1771                                 kfree(newgenfs->fstype);
1772                                 kfree(newgenfs);
1773                                 goto bad;
1774                         }
1775                         if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
1776                                 break;
1777                 }
1778                 newgenfs->next = genfs;
1779                 if (genfs_p)
1780                         genfs_p->next = newgenfs;
1781                 else
1782                         p->genfs = newgenfs;
1783                 rc = next_entry(buf, fp, sizeof(u32));
1784                 if (rc < 0)
1785                         goto bad;
1786                 nel2 = le32_to_cpu(buf[0]);
1787                 for (j = 0; j < nel2; j++) {
1788                         rc = next_entry(buf, fp, sizeof(u32));
1789                         if (rc < 0)
1790                                 goto bad;
1791                         len = le32_to_cpu(buf[0]);
1792
1793                         newc = kmalloc(sizeof(*newc), GFP_KERNEL);
1794                         if (!newc) {
1795                                 rc = -ENOMEM;
1796                                 goto bad;
1797                         }
1798                         memset(newc, 0, sizeof(*newc));
1799
1800                         newc->u.name = kmalloc(len + 1,GFP_KERNEL);
1801                         if (!newc->u.name) {
1802                                 rc = -ENOMEM;
1803                                 goto bad_newc;
1804                         }
1805                         rc = next_entry(newc->u.name, fp, len);
1806                         if (rc < 0)
1807                                 goto bad_newc;
1808                         newc->u.name[len] = 0;
1809                         rc = next_entry(buf, fp, sizeof(u32));
1810                         if (rc < 0)
1811                                 goto bad_newc;
1812                         newc->v.sclass = le32_to_cpu(buf[0]);
1813                         if (context_read_and_validate(&newc->context[0], p, fp))
1814                                 goto bad_newc;
1815                         for (l = NULL, c = newgenfs->head; c;
1816                              l = c, c = c->next) {
1817                                 if (!strcmp(newc->u.name, c->u.name) &&
1818                                     (!c->v.sclass || !newc->v.sclass ||
1819                                      newc->v.sclass == c->v.sclass)) {
1820                                         printk(KERN_ERR "security:  dup genfs "
1821                                                "entry (%s,%s)\n",
1822                                                newgenfs->fstype, c->u.name);
1823                                         goto bad_newc;
1824                                 }
1825                                 len = strlen(newc->u.name);
1826                                 len2 = strlen(c->u.name);
1827                                 if (len > len2)
1828                                         break;
1829                         }
1830
1831                         newc->next = c;
1832                         if (l)
1833                                 l->next = newc;
1834                         else
1835                                 newgenfs->head = newc;
1836                 }
1837         }
1838
1839         if (p->policyvers >= POLICYDB_VERSION_MLS) {
1840                 rc = next_entry(buf, fp, sizeof(u32));
1841                 if (rc < 0)
1842                         goto bad;
1843                 nel = le32_to_cpu(buf[0]);
1844                 lrt = NULL;
1845                 for (i = 0; i < nel; i++) {
1846                         rt = kmalloc(sizeof(*rt), GFP_KERNEL);
1847                         if (!rt) {
1848                                 rc = -ENOMEM;
1849                                 goto bad;
1850                         }
1851                         memset(rt, 0, sizeof(*rt));
1852                         if (lrt)
1853                                 lrt->next = rt;
1854                         else
1855                                 p->range_tr = rt;
1856                         rc = next_entry(buf, fp, (sizeof(u32) * 2));
1857                         if (rc < 0)
1858                                 goto bad;
1859                         rt->dom = le32_to_cpu(buf[0]);
1860                         rt->type = le32_to_cpu(buf[1]);
1861                         rc = mls_read_range_helper(&rt->range, fp);
1862                         if (rc)
1863                                 goto bad;
1864                         lrt = rt;
1865                 }
1866         }
1867
1868         p->type_attr_map = kmalloc(p->p_types.nprim*sizeof(struct ebitmap), GFP_KERNEL);
1869         if (!p->type_attr_map)
1870                 goto bad;
1871
1872         for (i = 0; i < p->p_types.nprim; i++) {
1873                 ebitmap_init(&p->type_attr_map[i]);
1874                 if (p->policyvers >= POLICYDB_VERSION_AVTAB) {
1875                         if (ebitmap_read(&p->type_attr_map[i], fp))
1876                                 goto bad;
1877                 }
1878                 /* add the type itself as the degenerate case */
1879                 if (ebitmap_set_bit(&p->type_attr_map[i], i, 1))
1880                                 goto bad;
1881         }
1882
1883         rc = 0;
1884 out:
1885         return rc;
1886 bad_newc:
1887         ocontext_destroy(newc,OCON_FSUSE);
1888 bad:
1889         if (!rc)
1890                 rc = -EINVAL;
1891         policydb_destroy(p);
1892         goto out;
1893 }