Linux-2.6.12-rc2
[linux-3.10.git] / security / selinux / ss / policydb.c
1 /*
2  * Implementation of the policy database.
3  *
4  * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
5  */
6
7 /*
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *      Support for enhanced MLS infrastructure.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *      Added conditional policy language extensions
15  *
16  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
17  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
18  *      This program is free software; you can redistribute it and/or modify
19  *      it under the terms of the GNU General Public License as published by
20  *      the Free Software Foundation, version 2.
21  */
22
23 #include <linux/kernel.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/errno.h>
27 #include "security.h"
28
29 #include "policydb.h"
30 #include "conditional.h"
31 #include "mls.h"
32
33 #define _DEBUG_HASHES
34
35 #ifdef DEBUG_HASHES
36 static char *symtab_name[SYM_NUM] = {
37         "common prefixes",
38         "classes",
39         "roles",
40         "types",
41         "users",
42         "bools",
43         "levels",
44         "categories",
45 };
46 #endif
47
48 int selinux_mls_enabled = 0;
49
50 static unsigned int symtab_sizes[SYM_NUM] = {
51         2,
52         32,
53         16,
54         512,
55         128,
56         16,
57         16,
58         16,
59 };
60
61 struct policydb_compat_info {
62         int version;
63         int sym_num;
64         int ocon_num;
65 };
66
67 /* These need to be updated if SYM_NUM or OCON_NUM changes */
68 static struct policydb_compat_info policydb_compat[] = {
69         {
70                 .version        = POLICYDB_VERSION_BASE,
71                 .sym_num        = SYM_NUM - 3,
72                 .ocon_num       = OCON_NUM - 1,
73         },
74         {
75                 .version        = POLICYDB_VERSION_BOOL,
76                 .sym_num        = SYM_NUM - 2,
77                 .ocon_num       = OCON_NUM - 1,
78         },
79         {
80                 .version        = POLICYDB_VERSION_IPV6,
81                 .sym_num        = SYM_NUM - 2,
82                 .ocon_num       = OCON_NUM,
83         },
84         {
85                 .version        = POLICYDB_VERSION_NLCLASS,
86                 .sym_num        = SYM_NUM - 2,
87                 .ocon_num       = OCON_NUM,
88         },
89         {
90                 .version        = POLICYDB_VERSION_MLS,
91                 .sym_num        = SYM_NUM,
92                 .ocon_num       = OCON_NUM,
93         },
94 };
95
96 static struct policydb_compat_info *policydb_lookup_compat(int version)
97 {
98         int i;
99         struct policydb_compat_info *info = NULL;
100
101         for (i = 0; i < sizeof(policydb_compat)/sizeof(*info); i++) {
102                 if (policydb_compat[i].version == version) {
103                         info = &policydb_compat[i];
104                         break;
105                 }
106         }
107         return info;
108 }
109
110 /*
111  * Initialize the role table.
112  */
113 static int roles_init(struct policydb *p)
114 {
115         char *key = NULL;
116         int rc;
117         struct role_datum *role;
118
119         role = kmalloc(sizeof(*role), GFP_KERNEL);
120         if (!role) {
121                 rc = -ENOMEM;
122                 goto out;
123         }
124         memset(role, 0, sizeof(*role));
125         role->value = ++p->p_roles.nprim;
126         if (role->value != OBJECT_R_VAL) {
127                 rc = -EINVAL;
128                 goto out_free_role;
129         }
130         key = kmalloc(strlen(OBJECT_R)+1,GFP_KERNEL);
131         if (!key) {
132                 rc = -ENOMEM;
133                 goto out_free_role;
134         }
135         strcpy(key, OBJECT_R);
136         rc = hashtab_insert(p->p_roles.table, key, role);
137         if (rc)
138                 goto out_free_key;
139 out:
140         return rc;
141
142 out_free_key:
143         kfree(key);
144 out_free_role:
145         kfree(role);
146         goto out;
147 }
148
149 /*
150  * Initialize a policy database structure.
151  */
152 static int policydb_init(struct policydb *p)
153 {
154         int i, rc;
155
156         memset(p, 0, sizeof(*p));
157
158         for (i = 0; i < SYM_NUM; i++) {
159                 rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
160                 if (rc)
161                         goto out_free_symtab;
162         }
163
164         rc = avtab_init(&p->te_avtab);
165         if (rc)
166                 goto out_free_symtab;
167
168         rc = roles_init(p);
169         if (rc)
170                 goto out_free_avtab;
171
172         rc = cond_policydb_init(p);
173         if (rc)
174                 goto out_free_avtab;
175
176 out:
177         return rc;
178
179 out_free_avtab:
180         avtab_destroy(&p->te_avtab);
181
182 out_free_symtab:
183         for (i = 0; i < SYM_NUM; i++)
184                 hashtab_destroy(p->symtab[i].table);
185         goto out;
186 }
187
188 /*
189  * The following *_index functions are used to
190  * define the val_to_name and val_to_struct arrays
191  * in a policy database structure.  The val_to_name
192  * arrays are used when converting security context
193  * structures into string representations.  The
194  * val_to_struct arrays are used when the attributes
195  * of a class, role, or user are needed.
196  */
197
198 static int common_index(void *key, void *datum, void *datap)
199 {
200         struct policydb *p;
201         struct common_datum *comdatum;
202
203         comdatum = datum;
204         p = datap;
205         if (!comdatum->value || comdatum->value > p->p_commons.nprim)
206                 return -EINVAL;
207         p->p_common_val_to_name[comdatum->value - 1] = key;
208         return 0;
209 }
210
211 static int class_index(void *key, void *datum, void *datap)
212 {
213         struct policydb *p;
214         struct class_datum *cladatum;
215
216         cladatum = datum;
217         p = datap;
218         if (!cladatum->value || cladatum->value > p->p_classes.nprim)
219                 return -EINVAL;
220         p->p_class_val_to_name[cladatum->value - 1] = key;
221         p->class_val_to_struct[cladatum->value - 1] = cladatum;
222         return 0;
223 }
224
225 static int role_index(void *key, void *datum, void *datap)
226 {
227         struct policydb *p;
228         struct role_datum *role;
229
230         role = datum;
231         p = datap;
232         if (!role->value || role->value > p->p_roles.nprim)
233                 return -EINVAL;
234         p->p_role_val_to_name[role->value - 1] = key;
235         p->role_val_to_struct[role->value - 1] = role;
236         return 0;
237 }
238
239 static int type_index(void *key, void *datum, void *datap)
240 {
241         struct policydb *p;
242         struct type_datum *typdatum;
243
244         typdatum = datum;
245         p = datap;
246
247         if (typdatum->primary) {
248                 if (!typdatum->value || typdatum->value > p->p_types.nprim)
249                         return -EINVAL;
250                 p->p_type_val_to_name[typdatum->value - 1] = key;
251         }
252
253         return 0;
254 }
255
256 static int user_index(void *key, void *datum, void *datap)
257 {
258         struct policydb *p;
259         struct user_datum *usrdatum;
260
261         usrdatum = datum;
262         p = datap;
263         if (!usrdatum->value || usrdatum->value > p->p_users.nprim)
264                 return -EINVAL;
265         p->p_user_val_to_name[usrdatum->value - 1] = key;
266         p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
267         return 0;
268 }
269
270 static int sens_index(void *key, void *datum, void *datap)
271 {
272         struct policydb *p;
273         struct level_datum *levdatum;
274
275         levdatum = datum;
276         p = datap;
277
278         if (!levdatum->isalias) {
279                 if (!levdatum->level->sens ||
280                     levdatum->level->sens > p->p_levels.nprim)
281                         return -EINVAL;
282                 p->p_sens_val_to_name[levdatum->level->sens - 1] = key;
283         }
284
285         return 0;
286 }
287
288 static int cat_index(void *key, void *datum, void *datap)
289 {
290         struct policydb *p;
291         struct cat_datum *catdatum;
292
293         catdatum = datum;
294         p = datap;
295
296         if (!catdatum->isalias) {
297                 if (!catdatum->value || catdatum->value > p->p_cats.nprim)
298                         return -EINVAL;
299                 p->p_cat_val_to_name[catdatum->value - 1] = key;
300         }
301
302         return 0;
303 }
304
305 static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
306 {
307         common_index,
308         class_index,
309         role_index,
310         type_index,
311         user_index,
312         cond_index_bool,
313         sens_index,
314         cat_index,
315 };
316
317 /*
318  * Define the common val_to_name array and the class
319  * val_to_name and val_to_struct arrays in a policy
320  * database structure.
321  *
322  * Caller must clean up upon failure.
323  */
324 static int policydb_index_classes(struct policydb *p)
325 {
326         int rc;
327
328         p->p_common_val_to_name =
329                 kmalloc(p->p_commons.nprim * sizeof(char *), GFP_KERNEL);
330         if (!p->p_common_val_to_name) {
331                 rc = -ENOMEM;
332                 goto out;
333         }
334
335         rc = hashtab_map(p->p_commons.table, common_index, p);
336         if (rc)
337                 goto out;
338
339         p->class_val_to_struct =
340                 kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)), GFP_KERNEL);
341         if (!p->class_val_to_struct) {
342                 rc = -ENOMEM;
343                 goto out;
344         }
345
346         p->p_class_val_to_name =
347                 kmalloc(p->p_classes.nprim * sizeof(char *), GFP_KERNEL);
348         if (!p->p_class_val_to_name) {
349                 rc = -ENOMEM;
350                 goto out;
351         }
352
353         rc = hashtab_map(p->p_classes.table, class_index, p);
354 out:
355         return rc;
356 }
357
358 #ifdef DEBUG_HASHES
359 static void symtab_hash_eval(struct symtab *s)
360 {
361         int i;
362
363         for (i = 0; i < SYM_NUM; i++) {
364                 struct hashtab *h = s[i].table;
365                 struct hashtab_info info;
366
367                 hashtab_stat(h, &info);
368                 printk(KERN_INFO "%s:  %d entries and %d/%d buckets used, "
369                        "longest chain length %d\n", symtab_name[i], h->nel,
370                        info.slots_used, h->size, info.max_chain_len);
371         }
372 }
373 #endif
374
375 /*
376  * Define the other val_to_name and val_to_struct arrays
377  * in a policy database structure.
378  *
379  * Caller must clean up on failure.
380  */
381 static int policydb_index_others(struct policydb *p)
382 {
383         int i, rc = 0;
384
385         printk(KERN_INFO "security:  %d users, %d roles, %d types, %d bools",
386                p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
387         if (selinux_mls_enabled)
388                 printk(", %d sens, %d cats", p->p_levels.nprim,
389                        p->p_cats.nprim);
390         printk("\n");
391
392         printk(KERN_INFO "security:  %d classes, %d rules\n",
393                p->p_classes.nprim, p->te_avtab.nel);
394
395 #ifdef DEBUG_HASHES
396         avtab_hash_eval(&p->te_avtab, "rules");
397         symtab_hash_eval(p->symtab);
398 #endif
399
400         p->role_val_to_struct =
401                 kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)),
402                         GFP_KERNEL);
403         if (!p->role_val_to_struct) {
404                 rc = -ENOMEM;
405                 goto out;
406         }
407
408         p->user_val_to_struct =
409                 kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)),
410                         GFP_KERNEL);
411         if (!p->user_val_to_struct) {
412                 rc = -ENOMEM;
413                 goto out;
414         }
415
416         if (cond_init_bool_indexes(p)) {
417                 rc = -ENOMEM;
418                 goto out;
419         }
420
421         for (i = SYM_ROLES; i < SYM_NUM; i++) {
422                 p->sym_val_to_name[i] =
423                         kmalloc(p->symtab[i].nprim * sizeof(char *), GFP_KERNEL);
424                 if (!p->sym_val_to_name[i]) {
425                         rc = -ENOMEM;
426                         goto out;
427                 }
428                 rc = hashtab_map(p->symtab[i].table, index_f[i], p);
429                 if (rc)
430                         goto out;
431         }
432
433 out:
434         return rc;
435 }
436
437 /*
438  * The following *_destroy functions are used to
439  * free any memory allocated for each kind of
440  * symbol data in the policy database.
441  */
442
443 static int perm_destroy(void *key, void *datum, void *p)
444 {
445         kfree(key);
446         kfree(datum);
447         return 0;
448 }
449
450 static int common_destroy(void *key, void *datum, void *p)
451 {
452         struct common_datum *comdatum;
453
454         kfree(key);
455         comdatum = datum;
456         hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
457         hashtab_destroy(comdatum->permissions.table);
458         kfree(datum);
459         return 0;
460 }
461
462 static int class_destroy(void *key, void *datum, void *p)
463 {
464         struct class_datum *cladatum;
465         struct constraint_node *constraint, *ctemp;
466         struct constraint_expr *e, *etmp;
467
468         kfree(key);
469         cladatum = datum;
470         hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
471         hashtab_destroy(cladatum->permissions.table);
472         constraint = cladatum->constraints;
473         while (constraint) {
474                 e = constraint->expr;
475                 while (e) {
476                         ebitmap_destroy(&e->names);
477                         etmp = e;
478                         e = e->next;
479                         kfree(etmp);
480                 }
481                 ctemp = constraint;
482                 constraint = constraint->next;
483                 kfree(ctemp);
484         }
485
486         constraint = cladatum->validatetrans;
487         while (constraint) {
488                 e = constraint->expr;
489                 while (e) {
490                         ebitmap_destroy(&e->names);
491                         etmp = e;
492                         e = e->next;
493                         kfree(etmp);
494                 }
495                 ctemp = constraint;
496                 constraint = constraint->next;
497                 kfree(ctemp);
498         }
499
500         kfree(cladatum->comkey);
501         kfree(datum);
502         return 0;
503 }
504
505 static int role_destroy(void *key, void *datum, void *p)
506 {
507         struct role_datum *role;
508
509         kfree(key);
510         role = datum;
511         ebitmap_destroy(&role->dominates);
512         ebitmap_destroy(&role->types);
513         kfree(datum);
514         return 0;
515 }
516
517 static int type_destroy(void *key, void *datum, void *p)
518 {
519         kfree(key);
520         kfree(datum);
521         return 0;
522 }
523
524 static int user_destroy(void *key, void *datum, void *p)
525 {
526         struct user_datum *usrdatum;
527
528         kfree(key);
529         usrdatum = datum;
530         ebitmap_destroy(&usrdatum->roles);
531         ebitmap_destroy(&usrdatum->range.level[0].cat);
532         ebitmap_destroy(&usrdatum->range.level[1].cat);
533         ebitmap_destroy(&usrdatum->dfltlevel.cat);
534         kfree(datum);
535         return 0;
536 }
537
538 static int sens_destroy(void *key, void *datum, void *p)
539 {
540         struct level_datum *levdatum;
541
542         kfree(key);
543         levdatum = datum;
544         ebitmap_destroy(&levdatum->level->cat);
545         kfree(levdatum->level);
546         kfree(datum);
547         return 0;
548 }
549
550 static int cat_destroy(void *key, void *datum, void *p)
551 {
552         kfree(key);
553         kfree(datum);
554         return 0;
555 }
556
557 static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
558 {
559         common_destroy,
560         class_destroy,
561         role_destroy,
562         type_destroy,
563         user_destroy,
564         cond_destroy_bool,
565         sens_destroy,
566         cat_destroy,
567 };
568
569 static void ocontext_destroy(struct ocontext *c, int i)
570 {
571         context_destroy(&c->context[0]);
572         context_destroy(&c->context[1]);
573         if (i == OCON_ISID || i == OCON_FS ||
574             i == OCON_NETIF || i == OCON_FSUSE)
575                 kfree(c->u.name);
576         kfree(c);
577 }
578
579 /*
580  * Free any memory allocated by a policy database structure.
581  */
582 void policydb_destroy(struct policydb *p)
583 {
584         struct ocontext *c, *ctmp;
585         struct genfs *g, *gtmp;
586         int i;
587
588         for (i = 0; i < SYM_NUM; i++) {
589                 hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
590                 hashtab_destroy(p->symtab[i].table);
591         }
592
593         for (i = 0; i < SYM_NUM; i++) {
594                 if (p->sym_val_to_name[i])
595                         kfree(p->sym_val_to_name[i]);
596         }
597
598         if (p->class_val_to_struct)
599                 kfree(p->class_val_to_struct);
600         if (p->role_val_to_struct)
601                 kfree(p->role_val_to_struct);
602         if (p->user_val_to_struct)
603                 kfree(p->user_val_to_struct);
604
605         avtab_destroy(&p->te_avtab);
606
607         for (i = 0; i < OCON_NUM; i++) {
608                 c = p->ocontexts[i];
609                 while (c) {
610                         ctmp = c;
611                         c = c->next;
612                         ocontext_destroy(ctmp,i);
613                 }
614         }
615
616         g = p->genfs;
617         while (g) {
618                 kfree(g->fstype);
619                 c = g->head;
620                 while (c) {
621                         ctmp = c;
622                         c = c->next;
623                         ocontext_destroy(ctmp,OCON_FSUSE);
624                 }
625                 gtmp = g;
626                 g = g->next;
627                 kfree(gtmp);
628         }
629
630         cond_policydb_destroy(p);
631
632         return;
633 }
634
635 /*
636  * Load the initial SIDs specified in a policy database
637  * structure into a SID table.
638  */
639 int policydb_load_isids(struct policydb *p, struct sidtab *s)
640 {
641         struct ocontext *head, *c;
642         int rc;
643
644         rc = sidtab_init(s);
645         if (rc) {
646                 printk(KERN_ERR "security:  out of memory on SID table init\n");
647                 goto out;
648         }
649
650         head = p->ocontexts[OCON_ISID];
651         for (c = head; c; c = c->next) {
652                 if (!c->context[0].user) {
653                         printk(KERN_ERR "security:  SID %s was never "
654                                "defined.\n", c->u.name);
655                         rc = -EINVAL;
656                         goto out;
657                 }
658                 if (sidtab_insert(s, c->sid[0], &c->context[0])) {
659                         printk(KERN_ERR "security:  unable to load initial "
660                                "SID %s.\n", c->u.name);
661                         rc = -EINVAL;
662                         goto out;
663                 }
664         }
665 out:
666         return rc;
667 }
668
669 /*
670  * Return 1 if the fields in the security context
671  * structure `c' are valid.  Return 0 otherwise.
672  */
673 int policydb_context_isvalid(struct policydb *p, struct context *c)
674 {
675         struct role_datum *role;
676         struct user_datum *usrdatum;
677
678         if (!c->role || c->role > p->p_roles.nprim)
679                 return 0;
680
681         if (!c->user || c->user > p->p_users.nprim)
682                 return 0;
683
684         if (!c->type || c->type > p->p_types.nprim)
685                 return 0;
686
687         if (c->role != OBJECT_R_VAL) {
688                 /*
689                  * Role must be authorized for the type.
690                  */
691                 role = p->role_val_to_struct[c->role - 1];
692                 if (!ebitmap_get_bit(&role->types,
693                                      c->type - 1))
694                         /* role may not be associated with type */
695                         return 0;
696
697                 /*
698                  * User must be authorized for the role.
699                  */
700                 usrdatum = p->user_val_to_struct[c->user - 1];
701                 if (!usrdatum)
702                         return 0;
703
704                 if (!ebitmap_get_bit(&usrdatum->roles,
705                                      c->role - 1))
706                         /* user may not be associated with role */
707                         return 0;
708         }
709
710         if (!mls_context_isvalid(p, c))
711                 return 0;
712
713         return 1;
714 }
715
716 /*
717  * Read a MLS range structure from a policydb binary
718  * representation file.
719  */
720 static int mls_read_range_helper(struct mls_range *r, void *fp)
721 {
722         u32 buf[2], items;
723         int rc;
724
725         rc = next_entry(buf, fp, sizeof(u32));
726         if (rc < 0)
727                 goto out;
728
729         items = le32_to_cpu(buf[0]);
730         if (items > ARRAY_SIZE(buf)) {
731                 printk(KERN_ERR "security: mls:  range overflow\n");
732                 rc = -EINVAL;
733                 goto out;
734         }
735         rc = next_entry(buf, fp, sizeof(u32) * items);
736         if (rc < 0) {
737                 printk(KERN_ERR "security: mls:  truncated range\n");
738                 goto out;
739         }
740         r->level[0].sens = le32_to_cpu(buf[0]);
741         if (items > 1)
742                 r->level[1].sens = le32_to_cpu(buf[1]);
743         else
744                 r->level[1].sens = r->level[0].sens;
745
746         rc = ebitmap_read(&r->level[0].cat, fp);
747         if (rc) {
748                 printk(KERN_ERR "security: mls:  error reading low "
749                        "categories\n");
750                 goto out;
751         }
752         if (items > 1) {
753                 rc = ebitmap_read(&r->level[1].cat, fp);
754                 if (rc) {
755                         printk(KERN_ERR "security: mls:  error reading high "
756                                "categories\n");
757                         goto bad_high;
758                 }
759         } else {
760                 rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
761                 if (rc) {
762                         printk(KERN_ERR "security: mls:  out of memory\n");
763                         goto bad_high;
764                 }
765         }
766
767         rc = 0;
768 out:
769         return rc;
770 bad_high:
771         ebitmap_destroy(&r->level[0].cat);
772         goto out;
773 }
774
775 /*
776  * Read and validate a security context structure
777  * from a policydb binary representation file.
778  */
779 static int context_read_and_validate(struct context *c,
780                                      struct policydb *p,
781                                      void *fp)
782 {
783         u32 buf[3];
784         int rc;
785
786         rc = next_entry(buf, fp, sizeof buf);
787         if (rc < 0) {
788                 printk(KERN_ERR "security: context truncated\n");
789                 goto out;
790         }
791         c->user = le32_to_cpu(buf[0]);
792         c->role = le32_to_cpu(buf[1]);
793         c->type = le32_to_cpu(buf[2]);
794         if (p->policyvers >= POLICYDB_VERSION_MLS) {
795                 if (mls_read_range_helper(&c->range, fp)) {
796                         printk(KERN_ERR "security: error reading MLS range of "
797                                "context\n");
798                         rc = -EINVAL;
799                         goto out;
800                 }
801         }
802
803         if (!policydb_context_isvalid(p, c)) {
804                 printk(KERN_ERR "security:  invalid security context\n");
805                 context_destroy(c);
806                 rc = -EINVAL;
807         }
808 out:
809         return rc;
810 }
811
812 /*
813  * The following *_read functions are used to
814  * read the symbol data from a policy database
815  * binary representation file.
816  */
817
818 static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
819 {
820         char *key = NULL;
821         struct perm_datum *perdatum;
822         int rc;
823         u32 buf[2], len;
824
825         perdatum = kmalloc(sizeof(*perdatum), GFP_KERNEL);
826         if (!perdatum) {
827                 rc = -ENOMEM;
828                 goto out;
829         }
830         memset(perdatum, 0, sizeof(*perdatum));
831
832         rc = next_entry(buf, fp, sizeof buf);
833         if (rc < 0)
834                 goto bad;
835
836         len = le32_to_cpu(buf[0]);
837         perdatum->value = le32_to_cpu(buf[1]);
838
839         key = kmalloc(len + 1,GFP_KERNEL);
840         if (!key) {
841                 rc = -ENOMEM;
842                 goto bad;
843         }
844         rc = next_entry(key, fp, len);
845         if (rc < 0)
846                 goto bad;
847         key[len] = 0;
848
849         rc = hashtab_insert(h, key, perdatum);
850         if (rc)
851                 goto bad;
852 out:
853         return rc;
854 bad:
855         perm_destroy(key, perdatum, NULL);
856         goto out;
857 }
858
859 static int common_read(struct policydb *p, struct hashtab *h, void *fp)
860 {
861         char *key = NULL;
862         struct common_datum *comdatum;
863         u32 buf[4], len, nel;
864         int i, rc;
865
866         comdatum = kmalloc(sizeof(*comdatum), GFP_KERNEL);
867         if (!comdatum) {
868                 rc = -ENOMEM;
869                 goto out;
870         }
871         memset(comdatum, 0, sizeof(*comdatum));
872
873         rc = next_entry(buf, fp, sizeof buf);
874         if (rc < 0)
875                 goto bad;
876
877         len = le32_to_cpu(buf[0]);
878         comdatum->value = le32_to_cpu(buf[1]);
879
880         rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
881         if (rc)
882                 goto bad;
883         comdatum->permissions.nprim = le32_to_cpu(buf[2]);
884         nel = le32_to_cpu(buf[3]);
885
886         key = kmalloc(len + 1,GFP_KERNEL);
887         if (!key) {
888                 rc = -ENOMEM;
889                 goto bad;
890         }
891         rc = next_entry(key, fp, len);
892         if (rc < 0)
893                 goto bad;
894         key[len] = 0;
895
896         for (i = 0; i < nel; i++) {
897                 rc = perm_read(p, comdatum->permissions.table, fp);
898                 if (rc)
899                         goto bad;
900         }
901
902         rc = hashtab_insert(h, key, comdatum);
903         if (rc)
904                 goto bad;
905 out:
906         return rc;
907 bad:
908         common_destroy(key, comdatum, NULL);
909         goto out;
910 }
911
912 static int read_cons_helper(struct constraint_node **nodep, int ncons,
913                             int allowxtarget, void *fp)
914 {
915         struct constraint_node *c, *lc;
916         struct constraint_expr *e, *le;
917         u32 buf[3], nexpr;
918         int rc, i, j, depth;
919
920         lc = NULL;
921         for (i = 0; i < ncons; i++) {
922                 c = kmalloc(sizeof(*c), GFP_KERNEL);
923                 if (!c)
924                         return -ENOMEM;
925                 memset(c, 0, sizeof(*c));
926
927                 if (lc) {
928                         lc->next = c;
929                 } else {
930                         *nodep = c;
931                 }
932
933                 rc = next_entry(buf, fp, (sizeof(u32) * 2));
934                 if (rc < 0)
935                         return rc;
936                 c->permissions = le32_to_cpu(buf[0]);
937                 nexpr = le32_to_cpu(buf[1]);
938                 le = NULL;
939                 depth = -1;
940                 for (j = 0; j < nexpr; j++) {
941                         e = kmalloc(sizeof(*e), GFP_KERNEL);
942                         if (!e)
943                                 return -ENOMEM;
944                         memset(e, 0, sizeof(*e));
945
946                         if (le) {
947                                 le->next = e;
948                         } else {
949                                 c->expr = e;
950                         }
951
952                         rc = next_entry(buf, fp, (sizeof(u32) * 3));
953                         if (rc < 0)
954                                 return rc;
955                         e->expr_type = le32_to_cpu(buf[0]);
956                         e->attr = le32_to_cpu(buf[1]);
957                         e->op = le32_to_cpu(buf[2]);
958
959                         switch (e->expr_type) {
960                         case CEXPR_NOT:
961                                 if (depth < 0)
962                                         return -EINVAL;
963                                 break;
964                         case CEXPR_AND:
965                         case CEXPR_OR:
966                                 if (depth < 1)
967                                         return -EINVAL;
968                                 depth--;
969                                 break;
970                         case CEXPR_ATTR:
971                                 if (depth == (CEXPR_MAXDEPTH - 1))
972                                         return -EINVAL;
973                                 depth++;
974                                 break;
975                         case CEXPR_NAMES:
976                                 if (!allowxtarget && (e->attr & CEXPR_XTARGET))
977                                         return -EINVAL;
978                                 if (depth == (CEXPR_MAXDEPTH - 1))
979                                         return -EINVAL;
980                                 depth++;
981                                 if (ebitmap_read(&e->names, fp))
982                                         return -EINVAL;
983                                 break;
984                         default:
985                                 return -EINVAL;
986                         }
987                         le = e;
988                 }
989                 if (depth != 0)
990                         return -EINVAL;
991                 lc = c;
992         }
993
994         return 0;
995 }
996
997 static int class_read(struct policydb *p, struct hashtab *h, void *fp)
998 {
999         char *key = NULL;
1000         struct class_datum *cladatum;
1001         u32 buf[6], len, len2, ncons, nel;
1002         int i, rc;
1003
1004         cladatum = kmalloc(sizeof(*cladatum), GFP_KERNEL);
1005         if (!cladatum) {
1006                 rc = -ENOMEM;
1007                 goto out;
1008         }
1009         memset(cladatum, 0, sizeof(*cladatum));
1010
1011         rc = next_entry(buf, fp, sizeof(u32)*6);
1012         if (rc < 0)
1013                 goto bad;
1014
1015         len = le32_to_cpu(buf[0]);
1016         len2 = le32_to_cpu(buf[1]);
1017         cladatum->value = le32_to_cpu(buf[2]);
1018
1019         rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
1020         if (rc)
1021                 goto bad;
1022         cladatum->permissions.nprim = le32_to_cpu(buf[3]);
1023         nel = le32_to_cpu(buf[4]);
1024
1025         ncons = le32_to_cpu(buf[5]);
1026
1027         key = kmalloc(len + 1,GFP_KERNEL);
1028         if (!key) {
1029                 rc = -ENOMEM;
1030                 goto bad;
1031         }
1032         rc = next_entry(key, fp, len);
1033         if (rc < 0)
1034                 goto bad;
1035         key[len] = 0;
1036
1037         if (len2) {
1038                 cladatum->comkey = kmalloc(len2 + 1,GFP_KERNEL);
1039                 if (!cladatum->comkey) {
1040                         rc = -ENOMEM;
1041                         goto bad;
1042                 }
1043                 rc = next_entry(cladatum->comkey, fp, len2);
1044                 if (rc < 0)
1045                         goto bad;
1046                 cladatum->comkey[len2] = 0;
1047
1048                 cladatum->comdatum = hashtab_search(p->p_commons.table,
1049                                                     cladatum->comkey);
1050                 if (!cladatum->comdatum) {
1051                         printk(KERN_ERR "security:  unknown common %s\n",
1052                                cladatum->comkey);
1053                         rc = -EINVAL;
1054                         goto bad;
1055                 }
1056         }
1057         for (i = 0; i < nel; i++) {
1058                 rc = perm_read(p, cladatum->permissions.table, fp);
1059                 if (rc)
1060                         goto bad;
1061         }
1062
1063         rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp);
1064         if (rc)
1065                 goto bad;
1066
1067         if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
1068                 /* grab the validatetrans rules */
1069                 rc = next_entry(buf, fp, sizeof(u32));
1070                 if (rc < 0)
1071                         goto bad;
1072                 ncons = le32_to_cpu(buf[0]);
1073                 rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp);
1074                 if (rc)
1075                         goto bad;
1076         }
1077
1078         rc = hashtab_insert(h, key, cladatum);
1079         if (rc)
1080                 goto bad;
1081
1082         rc = 0;
1083 out:
1084         return rc;
1085 bad:
1086         class_destroy(key, cladatum, NULL);
1087         goto out;
1088 }
1089
1090 static int role_read(struct policydb *p, struct hashtab *h, void *fp)
1091 {
1092         char *key = NULL;
1093         struct role_datum *role;
1094         int rc;
1095         u32 buf[2], len;
1096
1097         role = kmalloc(sizeof(*role), GFP_KERNEL);
1098         if (!role) {
1099                 rc = -ENOMEM;
1100                 goto out;
1101         }
1102         memset(role, 0, sizeof(*role));
1103
1104         rc = next_entry(buf, fp, sizeof buf);
1105         if (rc < 0)
1106                 goto bad;
1107
1108         len = le32_to_cpu(buf[0]);
1109         role->value = le32_to_cpu(buf[1]);
1110
1111         key = kmalloc(len + 1,GFP_KERNEL);
1112         if (!key) {
1113                 rc = -ENOMEM;
1114                 goto bad;
1115         }
1116         rc = next_entry(key, fp, len);
1117         if (rc < 0)
1118                 goto bad;
1119         key[len] = 0;
1120
1121         rc = ebitmap_read(&role->dominates, fp);
1122         if (rc)
1123                 goto bad;
1124
1125         rc = ebitmap_read(&role->types, fp);
1126         if (rc)
1127                 goto bad;
1128
1129         if (strcmp(key, OBJECT_R) == 0) {
1130                 if (role->value != OBJECT_R_VAL) {
1131                         printk(KERN_ERR "Role %s has wrong value %d\n",
1132                                OBJECT_R, role->value);
1133                         rc = -EINVAL;
1134                         goto bad;
1135                 }
1136                 rc = 0;
1137                 goto bad;
1138         }
1139
1140         rc = hashtab_insert(h, key, role);
1141         if (rc)
1142                 goto bad;
1143 out:
1144         return rc;
1145 bad:
1146         role_destroy(key, role, NULL);
1147         goto out;
1148 }
1149
1150 static int type_read(struct policydb *p, struct hashtab *h, void *fp)
1151 {
1152         char *key = NULL;
1153         struct type_datum *typdatum;
1154         int rc;
1155         u32 buf[3], len;
1156
1157         typdatum = kmalloc(sizeof(*typdatum),GFP_KERNEL);
1158         if (!typdatum) {
1159                 rc = -ENOMEM;
1160                 return rc;
1161         }
1162         memset(typdatum, 0, sizeof(*typdatum));
1163
1164         rc = next_entry(buf, fp, sizeof buf);
1165         if (rc < 0)
1166                 goto bad;
1167
1168         len = le32_to_cpu(buf[0]);
1169         typdatum->value = le32_to_cpu(buf[1]);
1170         typdatum->primary = le32_to_cpu(buf[2]);
1171
1172         key = kmalloc(len + 1,GFP_KERNEL);
1173         if (!key) {
1174                 rc = -ENOMEM;
1175                 goto bad;
1176         }
1177         rc = next_entry(key, fp, len);
1178         if (rc < 0)
1179                 goto bad;
1180         key[len] = 0;
1181
1182         rc = hashtab_insert(h, key, typdatum);
1183         if (rc)
1184                 goto bad;
1185 out:
1186         return rc;
1187 bad:
1188         type_destroy(key, typdatum, NULL);
1189         goto out;
1190 }
1191
1192
1193 /*
1194  * Read a MLS level structure from a policydb binary
1195  * representation file.
1196  */
1197 static int mls_read_level(struct mls_level *lp, void *fp)
1198 {
1199         u32 buf[1];
1200         int rc;
1201
1202         memset(lp, 0, sizeof(*lp));
1203
1204         rc = next_entry(buf, fp, sizeof buf);
1205         if (rc < 0) {
1206                 printk(KERN_ERR "security: mls: truncated level\n");
1207                 goto bad;
1208         }
1209         lp->sens = le32_to_cpu(buf[0]);
1210
1211         if (ebitmap_read(&lp->cat, fp)) {
1212                 printk(KERN_ERR "security: mls:  error reading level "
1213                        "categories\n");
1214                 goto bad;
1215         }
1216         return 0;
1217
1218 bad:
1219         return -EINVAL;
1220 }
1221
1222 static int user_read(struct policydb *p, struct hashtab *h, void *fp)
1223 {
1224         char *key = NULL;
1225         struct user_datum *usrdatum;
1226         int rc;
1227         u32 buf[2], len;
1228
1229         usrdatum = kmalloc(sizeof(*usrdatum), GFP_KERNEL);
1230         if (!usrdatum) {
1231                 rc = -ENOMEM;
1232                 goto out;
1233         }
1234         memset(usrdatum, 0, sizeof(*usrdatum));
1235
1236         rc = next_entry(buf, fp, sizeof buf);
1237         if (rc < 0)
1238                 goto bad;
1239
1240         len = le32_to_cpu(buf[0]);
1241         usrdatum->value = le32_to_cpu(buf[1]);
1242
1243         key = kmalloc(len + 1,GFP_KERNEL);
1244         if (!key) {
1245                 rc = -ENOMEM;
1246                 goto bad;
1247         }
1248         rc = next_entry(key, fp, len);
1249         if (rc < 0)
1250                 goto bad;
1251         key[len] = 0;
1252
1253         rc = ebitmap_read(&usrdatum->roles, fp);
1254         if (rc)
1255                 goto bad;
1256
1257         if (p->policyvers >= POLICYDB_VERSION_MLS) {
1258                 rc = mls_read_range_helper(&usrdatum->range, fp);
1259                 if (rc)
1260                         goto bad;
1261                 rc = mls_read_level(&usrdatum->dfltlevel, fp);
1262                 if (rc)
1263                         goto bad;
1264         }
1265
1266         rc = hashtab_insert(h, key, usrdatum);
1267         if (rc)
1268                 goto bad;
1269 out:
1270         return rc;
1271 bad:
1272         user_destroy(key, usrdatum, NULL);
1273         goto out;
1274 }
1275
1276 static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
1277 {
1278         char *key = NULL;
1279         struct level_datum *levdatum;
1280         int rc;
1281         u32 buf[2], len;
1282
1283         levdatum = kmalloc(sizeof(*levdatum), GFP_ATOMIC);
1284         if (!levdatum) {
1285                 rc = -ENOMEM;
1286                 goto out;
1287         }
1288         memset(levdatum, 0, sizeof(*levdatum));
1289
1290         rc = next_entry(buf, fp, sizeof buf);
1291         if (rc < 0)
1292                 goto bad;
1293
1294         len = le32_to_cpu(buf[0]);
1295         levdatum->isalias = le32_to_cpu(buf[1]);
1296
1297         key = kmalloc(len + 1,GFP_ATOMIC);
1298         if (!key) {
1299                 rc = -ENOMEM;
1300                 goto bad;
1301         }
1302         rc = next_entry(key, fp, len);
1303         if (rc < 0)
1304                 goto bad;
1305         key[len] = 0;
1306
1307         levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC);
1308         if (!levdatum->level) {
1309                 rc = -ENOMEM;
1310                 goto bad;
1311         }
1312         if (mls_read_level(levdatum->level, fp)) {
1313                 rc = -EINVAL;
1314                 goto bad;
1315         }
1316
1317         rc = hashtab_insert(h, key, levdatum);
1318         if (rc)
1319                 goto bad;
1320 out:
1321         return rc;
1322 bad:
1323         sens_destroy(key, levdatum, NULL);
1324         goto out;
1325 }
1326
1327 static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
1328 {
1329         char *key = NULL;
1330         struct cat_datum *catdatum;
1331         int rc;
1332         u32 buf[3], len;
1333
1334         catdatum = kmalloc(sizeof(*catdatum), GFP_ATOMIC);
1335         if (!catdatum) {
1336                 rc = -ENOMEM;
1337                 goto out;
1338         }
1339         memset(catdatum, 0, sizeof(*catdatum));
1340
1341         rc = next_entry(buf, fp, sizeof buf);
1342         if (rc < 0)
1343                 goto bad;
1344
1345         len = le32_to_cpu(buf[0]);
1346         catdatum->value = le32_to_cpu(buf[1]);
1347         catdatum->isalias = le32_to_cpu(buf[2]);
1348
1349         key = kmalloc(len + 1,GFP_ATOMIC);
1350         if (!key) {
1351                 rc = -ENOMEM;
1352                 goto bad;
1353         }
1354         rc = next_entry(key, fp, len);
1355         if (rc < 0)
1356                 goto bad;
1357         key[len] = 0;
1358
1359         rc = hashtab_insert(h, key, catdatum);
1360         if (rc)
1361                 goto bad;
1362 out:
1363         return rc;
1364
1365 bad:
1366         cat_destroy(key, catdatum, NULL);
1367         goto out;
1368 }
1369
1370 static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
1371 {
1372         common_read,
1373         class_read,
1374         role_read,
1375         type_read,
1376         user_read,
1377         cond_read_bool,
1378         sens_read,
1379         cat_read,
1380 };
1381
1382 extern int ss_initialized;
1383
1384 /*
1385  * Read the configuration data from a policy database binary
1386  * representation file into a policy database structure.
1387  */
1388 int policydb_read(struct policydb *p, void *fp)
1389 {
1390         struct role_allow *ra, *lra;
1391         struct role_trans *tr, *ltr;
1392         struct ocontext *l, *c, *newc;
1393         struct genfs *genfs_p, *genfs, *newgenfs;
1394         int i, j, rc;
1395         u32 buf[8], len, len2, config, nprim, nel, nel2;
1396         char *policydb_str;
1397         struct policydb_compat_info *info;
1398         struct range_trans *rt, *lrt;
1399
1400         config = 0;
1401
1402         rc = policydb_init(p);
1403         if (rc)
1404                 goto out;
1405
1406         /* Read the magic number and string length. */
1407         rc = next_entry(buf, fp, sizeof(u32)* 2);
1408         if (rc < 0)
1409                 goto bad;
1410
1411         for (i = 0; i < 2; i++)
1412                 buf[i] = le32_to_cpu(buf[i]);
1413
1414         if (buf[0] != POLICYDB_MAGIC) {
1415                 printk(KERN_ERR "security:  policydb magic number 0x%x does "
1416                        "not match expected magic number 0x%x\n",
1417                        buf[0], POLICYDB_MAGIC);
1418                 goto bad;
1419         }
1420
1421         len = buf[1];
1422         if (len != strlen(POLICYDB_STRING)) {
1423                 printk(KERN_ERR "security:  policydb string length %d does not "
1424                        "match expected length %Zu\n",
1425                        len, strlen(POLICYDB_STRING));
1426                 goto bad;
1427         }
1428         policydb_str = kmalloc(len + 1,GFP_KERNEL);
1429         if (!policydb_str) {
1430                 printk(KERN_ERR "security:  unable to allocate memory for policydb "
1431                        "string of length %d\n", len);
1432                 rc = -ENOMEM;
1433                 goto bad;
1434         }
1435         rc = next_entry(policydb_str, fp, len);
1436         if (rc < 0) {
1437                 printk(KERN_ERR "security:  truncated policydb string identifier\n");
1438                 kfree(policydb_str);
1439                 goto bad;
1440         }
1441         policydb_str[len] = 0;
1442         if (strcmp(policydb_str, POLICYDB_STRING)) {
1443                 printk(KERN_ERR "security:  policydb string %s does not match "
1444                        "my string %s\n", policydb_str, POLICYDB_STRING);
1445                 kfree(policydb_str);
1446                 goto bad;
1447         }
1448         /* Done with policydb_str. */
1449         kfree(policydb_str);
1450         policydb_str = NULL;
1451
1452         /* Read the version, config, and table sizes. */
1453         rc = next_entry(buf, fp, sizeof(u32)*4);
1454         if (rc < 0)
1455                 goto bad;
1456         for (i = 0; i < 4; i++)
1457                 buf[i] = le32_to_cpu(buf[i]);
1458
1459         p->policyvers = buf[0];
1460         if (p->policyvers < POLICYDB_VERSION_MIN ||
1461             p->policyvers > POLICYDB_VERSION_MAX) {
1462                 printk(KERN_ERR "security:  policydb version %d does not match "
1463                        "my version range %d-%d\n",
1464                        buf[0], POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
1465                 goto bad;
1466         }
1467
1468         if ((buf[1] & POLICYDB_CONFIG_MLS)) {
1469                 if (ss_initialized && !selinux_mls_enabled) {
1470                         printk(KERN_ERR "Cannot switch between non-MLS and MLS "
1471                                "policies\n");
1472                         goto bad;
1473                 }
1474                 selinux_mls_enabled = 1;
1475                 config |= POLICYDB_CONFIG_MLS;
1476
1477                 if (p->policyvers < POLICYDB_VERSION_MLS) {
1478                         printk(KERN_ERR "security policydb version %d (MLS) "
1479                                "not backwards compatible\n", p->policyvers);
1480                         goto bad;
1481                 }
1482         } else {
1483                 if (ss_initialized && selinux_mls_enabled) {
1484                         printk(KERN_ERR "Cannot switch between MLS and non-MLS "
1485                                "policies\n");
1486                         goto bad;
1487                 }
1488         }
1489
1490         info = policydb_lookup_compat(p->policyvers);
1491         if (!info) {
1492                 printk(KERN_ERR "security:  unable to find policy compat info "
1493                        "for version %d\n", p->policyvers);
1494                 goto bad;
1495         }
1496
1497         if (buf[2] != info->sym_num || buf[3] != info->ocon_num) {
1498                 printk(KERN_ERR "security:  policydb table sizes (%d,%d) do "
1499                        "not match mine (%d,%d)\n", buf[2], buf[3],
1500                        info->sym_num, info->ocon_num);
1501                 goto bad;
1502         }
1503
1504         for (i = 0; i < info->sym_num; i++) {
1505                 rc = next_entry(buf, fp, sizeof(u32)*2);
1506                 if (rc < 0)
1507                         goto bad;
1508                 nprim = le32_to_cpu(buf[0]);
1509                 nel = le32_to_cpu(buf[1]);
1510                 for (j = 0; j < nel; j++) {
1511                         rc = read_f[i](p, p->symtab[i].table, fp);
1512                         if (rc)
1513                                 goto bad;
1514                 }
1515
1516                 p->symtab[i].nprim = nprim;
1517         }
1518
1519         rc = avtab_read(&p->te_avtab, fp, config);
1520         if (rc)
1521                 goto bad;
1522
1523         if (p->policyvers >= POLICYDB_VERSION_BOOL) {
1524                 rc = cond_read_list(p, fp);
1525                 if (rc)
1526                         goto bad;
1527         }
1528
1529         rc = next_entry(buf, fp, sizeof(u32));
1530         if (rc < 0)
1531                 goto bad;
1532         nel = le32_to_cpu(buf[0]);
1533         ltr = NULL;
1534         for (i = 0; i < nel; i++) {
1535                 tr = kmalloc(sizeof(*tr), GFP_KERNEL);
1536                 if (!tr) {
1537                         rc = -ENOMEM;
1538                         goto bad;
1539                 }
1540                 memset(tr, 0, sizeof(*tr));
1541                 if (ltr) {
1542                         ltr->next = tr;
1543                 } else {
1544                         p->role_tr = tr;
1545                 }
1546                 rc = next_entry(buf, fp, sizeof(u32)*3);
1547                 if (rc < 0)
1548                         goto bad;
1549                 tr->role = le32_to_cpu(buf[0]);
1550                 tr->type = le32_to_cpu(buf[1]);
1551                 tr->new_role = le32_to_cpu(buf[2]);
1552                 ltr = tr;
1553         }
1554
1555         rc = next_entry(buf, fp, sizeof(u32));
1556         if (rc < 0)
1557                 goto bad;
1558         nel = le32_to_cpu(buf[0]);
1559         lra = NULL;
1560         for (i = 0; i < nel; i++) {
1561                 ra = kmalloc(sizeof(*ra), GFP_KERNEL);
1562                 if (!ra) {
1563                         rc = -ENOMEM;
1564                         goto bad;
1565                 }
1566                 memset(ra, 0, sizeof(*ra));
1567                 if (lra) {
1568                         lra->next = ra;
1569                 } else {
1570                         p->role_allow = ra;
1571                 }
1572                 rc = next_entry(buf, fp, sizeof(u32)*2);
1573                 if (rc < 0)
1574                         goto bad;
1575                 ra->role = le32_to_cpu(buf[0]);
1576                 ra->new_role = le32_to_cpu(buf[1]);
1577                 lra = ra;
1578         }
1579
1580         rc = policydb_index_classes(p);
1581         if (rc)
1582                 goto bad;
1583
1584         rc = policydb_index_others(p);
1585         if (rc)
1586                 goto bad;
1587
1588         for (i = 0; i < info->ocon_num; i++) {
1589                 rc = next_entry(buf, fp, sizeof(u32));
1590                 if (rc < 0)
1591                         goto bad;
1592                 nel = le32_to_cpu(buf[0]);
1593                 l = NULL;
1594                 for (j = 0; j < nel; j++) {
1595                         c = kmalloc(sizeof(*c), GFP_KERNEL);
1596                         if (!c) {
1597                                 rc = -ENOMEM;
1598                                 goto bad;
1599                         }
1600                         memset(c, 0, sizeof(*c));
1601                         if (l) {
1602                                 l->next = c;
1603                         } else {
1604                                 p->ocontexts[i] = c;
1605                         }
1606                         l = c;
1607                         rc = -EINVAL;
1608                         switch (i) {
1609                         case OCON_ISID:
1610                                 rc = next_entry(buf, fp, sizeof(u32));
1611                                 if (rc < 0)
1612                                         goto bad;
1613                                 c->sid[0] = le32_to_cpu(buf[0]);
1614                                 rc = context_read_and_validate(&c->context[0], p, fp);
1615                                 if (rc)
1616                                         goto bad;
1617                                 break;
1618                         case OCON_FS:
1619                         case OCON_NETIF:
1620                                 rc = next_entry(buf, fp, sizeof(u32));
1621                                 if (rc < 0)
1622                                         goto bad;
1623                                 len = le32_to_cpu(buf[0]);
1624                                 c->u.name = kmalloc(len + 1,GFP_KERNEL);
1625                                 if (!c->u.name) {
1626                                         rc = -ENOMEM;
1627                                         goto bad;
1628                                 }
1629                                 rc = next_entry(c->u.name, fp, len);
1630                                 if (rc < 0)
1631                                         goto bad;
1632                                 c->u.name[len] = 0;
1633                                 rc = context_read_and_validate(&c->context[0], p, fp);
1634                                 if (rc)
1635                                         goto bad;
1636                                 rc = context_read_and_validate(&c->context[1], p, fp);
1637                                 if (rc)
1638                                         goto bad;
1639                                 break;
1640                         case OCON_PORT:
1641                                 rc = next_entry(buf, fp, sizeof(u32)*3);
1642                                 if (rc < 0)
1643                                         goto bad;
1644                                 c->u.port.protocol = le32_to_cpu(buf[0]);
1645                                 c->u.port.low_port = le32_to_cpu(buf[1]);
1646                                 c->u.port.high_port = le32_to_cpu(buf[2]);
1647                                 rc = context_read_and_validate(&c->context[0], p, fp);
1648                                 if (rc)
1649                                         goto bad;
1650                                 break;
1651                         case OCON_NODE:
1652                                 rc = next_entry(buf, fp, sizeof(u32)* 2);
1653                                 if (rc < 0)
1654                                         goto bad;
1655                                 c->u.node.addr = le32_to_cpu(buf[0]);
1656                                 c->u.node.mask = le32_to_cpu(buf[1]);
1657                                 rc = context_read_and_validate(&c->context[0], p, fp);
1658                                 if (rc)
1659                                         goto bad;
1660                                 break;
1661                         case OCON_FSUSE:
1662                                 rc = next_entry(buf, fp, sizeof(u32)*2);
1663                                 if (rc < 0)
1664                                         goto bad;
1665                                 c->v.behavior = le32_to_cpu(buf[0]);
1666                                 if (c->v.behavior > SECURITY_FS_USE_NONE)
1667                                         goto bad;
1668                                 len = le32_to_cpu(buf[1]);
1669                                 c->u.name = kmalloc(len + 1,GFP_KERNEL);
1670                                 if (!c->u.name) {
1671                                         rc = -ENOMEM;
1672                                         goto bad;
1673                                 }
1674                                 rc = next_entry(c->u.name, fp, len);
1675                                 if (rc < 0)
1676                                         goto bad;
1677                                 c->u.name[len] = 0;
1678                                 rc = context_read_and_validate(&c->context[0], p, fp);
1679                                 if (rc)
1680                                         goto bad;
1681                                 break;
1682                         case OCON_NODE6: {
1683                                 int k;
1684
1685                                 rc = next_entry(buf, fp, sizeof(u32) * 8);
1686                                 if (rc < 0)
1687                                         goto bad;
1688                                 for (k = 0; k < 4; k++)
1689                                         c->u.node6.addr[k] = le32_to_cpu(buf[k]);
1690                                 for (k = 0; k < 4; k++)
1691                                         c->u.node6.mask[k] = le32_to_cpu(buf[k+4]);
1692                                 if (context_read_and_validate(&c->context[0], p, fp))
1693                                         goto bad;
1694                                 break;
1695                         }
1696                         }
1697                 }
1698         }
1699
1700         rc = next_entry(buf, fp, sizeof(u32));
1701         if (rc < 0)
1702                 goto bad;
1703         nel = le32_to_cpu(buf[0]);
1704         genfs_p = NULL;
1705         rc = -EINVAL;
1706         for (i = 0; i < nel; i++) {
1707                 rc = next_entry(buf, fp, sizeof(u32));
1708                 if (rc < 0)
1709                         goto bad;
1710                 len = le32_to_cpu(buf[0]);
1711                 newgenfs = kmalloc(sizeof(*newgenfs), GFP_KERNEL);
1712                 if (!newgenfs) {
1713                         rc = -ENOMEM;
1714                         goto bad;
1715                 }
1716                 memset(newgenfs, 0, sizeof(*newgenfs));
1717
1718                 newgenfs->fstype = kmalloc(len + 1,GFP_KERNEL);
1719                 if (!newgenfs->fstype) {
1720                         rc = -ENOMEM;
1721                         kfree(newgenfs);
1722                         goto bad;
1723                 }
1724                 rc = next_entry(newgenfs->fstype, fp, len);
1725                 if (rc < 0) {
1726                         kfree(newgenfs->fstype);
1727                         kfree(newgenfs);
1728                         goto bad;
1729                 }
1730                 newgenfs->fstype[len] = 0;
1731                 for (genfs_p = NULL, genfs = p->genfs; genfs;
1732                      genfs_p = genfs, genfs = genfs->next) {
1733                         if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
1734                                 printk(KERN_ERR "security:  dup genfs "
1735                                        "fstype %s\n", newgenfs->fstype);
1736                                 kfree(newgenfs->fstype);
1737                                 kfree(newgenfs);
1738                                 goto bad;
1739                         }
1740                         if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
1741                                 break;
1742                 }
1743                 newgenfs->next = genfs;
1744                 if (genfs_p)
1745                         genfs_p->next = newgenfs;
1746                 else
1747                         p->genfs = newgenfs;
1748                 rc = next_entry(buf, fp, sizeof(u32));
1749                 if (rc < 0)
1750                         goto bad;
1751                 nel2 = le32_to_cpu(buf[0]);
1752                 for (j = 0; j < nel2; j++) {
1753                         rc = next_entry(buf, fp, sizeof(u32));
1754                         if (rc < 0)
1755                                 goto bad;
1756                         len = le32_to_cpu(buf[0]);
1757
1758                         newc = kmalloc(sizeof(*newc), GFP_KERNEL);
1759                         if (!newc) {
1760                                 rc = -ENOMEM;
1761                                 goto bad;
1762                         }
1763                         memset(newc, 0, sizeof(*newc));
1764
1765                         newc->u.name = kmalloc(len + 1,GFP_KERNEL);
1766                         if (!newc->u.name) {
1767                                 rc = -ENOMEM;
1768                                 goto bad_newc;
1769                         }
1770                         rc = next_entry(newc->u.name, fp, len);
1771                         if (rc < 0)
1772                                 goto bad_newc;
1773                         newc->u.name[len] = 0;
1774                         rc = next_entry(buf, fp, sizeof(u32));
1775                         if (rc < 0)
1776                                 goto bad_newc;
1777                         newc->v.sclass = le32_to_cpu(buf[0]);
1778                         if (context_read_and_validate(&newc->context[0], p, fp))
1779                                 goto bad_newc;
1780                         for (l = NULL, c = newgenfs->head; c;
1781                              l = c, c = c->next) {
1782                                 if (!strcmp(newc->u.name, c->u.name) &&
1783                                     (!c->v.sclass || !newc->v.sclass ||
1784                                      newc->v.sclass == c->v.sclass)) {
1785                                         printk(KERN_ERR "security:  dup genfs "
1786                                                "entry (%s,%s)\n",
1787                                                newgenfs->fstype, c->u.name);
1788                                         goto bad_newc;
1789                                 }
1790                                 len = strlen(newc->u.name);
1791                                 len2 = strlen(c->u.name);
1792                                 if (len > len2)
1793                                         break;
1794                         }
1795
1796                         newc->next = c;
1797                         if (l)
1798                                 l->next = newc;
1799                         else
1800                                 newgenfs->head = newc;
1801                 }
1802         }
1803
1804         if (p->policyvers >= POLICYDB_VERSION_MLS) {
1805                 rc = next_entry(buf, fp, sizeof(u32));
1806                 if (rc < 0)
1807                         goto bad;
1808                 nel = le32_to_cpu(buf[0]);
1809                 lrt = NULL;
1810                 for (i = 0; i < nel; i++) {
1811                         rt = kmalloc(sizeof(*rt), GFP_KERNEL);
1812                         if (!rt) {
1813                                 rc = -ENOMEM;
1814                                 goto bad;
1815                         }
1816                         memset(rt, 0, sizeof(*rt));
1817                         if (lrt)
1818                                 lrt->next = rt;
1819                         else
1820                                 p->range_tr = rt;
1821                         rc = next_entry(buf, fp, (sizeof(u32) * 2));
1822                         if (rc < 0)
1823                                 goto bad;
1824                         rt->dom = le32_to_cpu(buf[0]);
1825                         rt->type = le32_to_cpu(buf[1]);
1826                         rc = mls_read_range_helper(&rt->range, fp);
1827                         if (rc)
1828                                 goto bad;
1829                         lrt = rt;
1830                 }
1831         }
1832
1833         rc = 0;
1834 out:
1835         return rc;
1836 bad_newc:
1837         ocontext_destroy(newc,OCON_FSUSE);
1838 bad:
1839         if (!rc)
1840                 rc = -EINVAL;
1841         policydb_destroy(p);
1842         goto out;
1843 }