f05f97a2bc3a1343e5960f1c409a8ae0e7e565f4
[linux-3.10.git] / security / selinux / ss / policydb.c
1 /*
2  * Implementation of the policy database.
3  *
4  * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
5  */
6
7 /*
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *      Support for enhanced MLS infrastructure.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *      Added conditional policy language extensions
15  *
16  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
17  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
18  *      This program is free software; you can redistribute it and/or modify
19  *      it under the terms of the GNU General Public License as published by
20  *      the Free Software Foundation, version 2.
21  */
22
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/string.h>
27 #include <linux/errno.h>
28 #include "security.h"
29
30 #include "policydb.h"
31 #include "conditional.h"
32 #include "mls.h"
33
34 #define _DEBUG_HASHES
35
36 #ifdef DEBUG_HASHES
37 static char *symtab_name[SYM_NUM] = {
38         "common prefixes",
39         "classes",
40         "roles",
41         "types",
42         "users",
43         "bools",
44         "levels",
45         "categories",
46 };
47 #endif
48
49 int selinux_mls_enabled = 0;
50
51 static unsigned int symtab_sizes[SYM_NUM] = {
52         2,
53         32,
54         16,
55         512,
56         128,
57         16,
58         16,
59         16,
60 };
61
62 struct policydb_compat_info {
63         int version;
64         int sym_num;
65         int ocon_num;
66 };
67
68 /* These need to be updated if SYM_NUM or OCON_NUM changes */
69 static struct policydb_compat_info policydb_compat[] = {
70         {
71                 .version        = POLICYDB_VERSION_BASE,
72                 .sym_num        = SYM_NUM - 3,
73                 .ocon_num       = OCON_NUM - 1,
74         },
75         {
76                 .version        = POLICYDB_VERSION_BOOL,
77                 .sym_num        = SYM_NUM - 2,
78                 .ocon_num       = OCON_NUM - 1,
79         },
80         {
81                 .version        = POLICYDB_VERSION_IPV6,
82                 .sym_num        = SYM_NUM - 2,
83                 .ocon_num       = OCON_NUM,
84         },
85         {
86                 .version        = POLICYDB_VERSION_NLCLASS,
87                 .sym_num        = SYM_NUM - 2,
88                 .ocon_num       = OCON_NUM,
89         },
90         {
91                 .version        = POLICYDB_VERSION_MLS,
92                 .sym_num        = SYM_NUM,
93                 .ocon_num       = OCON_NUM,
94         },
95         {
96                 .version        = POLICYDB_VERSION_AVTAB,
97                 .sym_num        = SYM_NUM,
98                 .ocon_num       = OCON_NUM,
99         },
100         {
101                 .version        = POLICYDB_VERSION_RANGETRANS,
102                 .sym_num        = SYM_NUM,
103                 .ocon_num       = OCON_NUM,
104         },
105 };
106
107 static struct policydb_compat_info *policydb_lookup_compat(int version)
108 {
109         int i;
110         struct policydb_compat_info *info = NULL;
111
112         for (i = 0; i < ARRAY_SIZE(policydb_compat); i++) {
113                 if (policydb_compat[i].version == version) {
114                         info = &policydb_compat[i];
115                         break;
116                 }
117         }
118         return info;
119 }
120
121 /*
122  * Initialize the role table.
123  */
124 static int roles_init(struct policydb *p)
125 {
126         char *key = NULL;
127         int rc;
128         struct role_datum *role;
129
130         role = kzalloc(sizeof(*role), GFP_KERNEL);
131         if (!role) {
132                 rc = -ENOMEM;
133                 goto out;
134         }
135         role->value = ++p->p_roles.nprim;
136         if (role->value != OBJECT_R_VAL) {
137                 rc = -EINVAL;
138                 goto out_free_role;
139         }
140         key = kmalloc(strlen(OBJECT_R)+1,GFP_KERNEL);
141         if (!key) {
142                 rc = -ENOMEM;
143                 goto out_free_role;
144         }
145         strcpy(key, OBJECT_R);
146         rc = hashtab_insert(p->p_roles.table, key, role);
147         if (rc)
148                 goto out_free_key;
149 out:
150         return rc;
151
152 out_free_key:
153         kfree(key);
154 out_free_role:
155         kfree(role);
156         goto out;
157 }
158
159 /*
160  * Initialize a policy database structure.
161  */
162 static int policydb_init(struct policydb *p)
163 {
164         int i, rc;
165
166         memset(p, 0, sizeof(*p));
167
168         for (i = 0; i < SYM_NUM; i++) {
169                 rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
170                 if (rc)
171                         goto out_free_symtab;
172         }
173
174         rc = avtab_init(&p->te_avtab);
175         if (rc)
176                 goto out_free_symtab;
177
178         rc = roles_init(p);
179         if (rc)
180                 goto out_free_avtab;
181
182         rc = cond_policydb_init(p);
183         if (rc)
184                 goto out_free_avtab;
185
186 out:
187         return rc;
188
189 out_free_avtab:
190         avtab_destroy(&p->te_avtab);
191
192 out_free_symtab:
193         for (i = 0; i < SYM_NUM; i++)
194                 hashtab_destroy(p->symtab[i].table);
195         goto out;
196 }
197
198 /*
199  * The following *_index functions are used to
200  * define the val_to_name and val_to_struct arrays
201  * in a policy database structure.  The val_to_name
202  * arrays are used when converting security context
203  * structures into string representations.  The
204  * val_to_struct arrays are used when the attributes
205  * of a class, role, or user are needed.
206  */
207
208 static int common_index(void *key, void *datum, void *datap)
209 {
210         struct policydb *p;
211         struct common_datum *comdatum;
212
213         comdatum = datum;
214         p = datap;
215         if (!comdatum->value || comdatum->value > p->p_commons.nprim)
216                 return -EINVAL;
217         p->p_common_val_to_name[comdatum->value - 1] = key;
218         return 0;
219 }
220
221 static int class_index(void *key, void *datum, void *datap)
222 {
223         struct policydb *p;
224         struct class_datum *cladatum;
225
226         cladatum = datum;
227         p = datap;
228         if (!cladatum->value || cladatum->value > p->p_classes.nprim)
229                 return -EINVAL;
230         p->p_class_val_to_name[cladatum->value - 1] = key;
231         p->class_val_to_struct[cladatum->value - 1] = cladatum;
232         return 0;
233 }
234
235 static int role_index(void *key, void *datum, void *datap)
236 {
237         struct policydb *p;
238         struct role_datum *role;
239
240         role = datum;
241         p = datap;
242         if (!role->value || role->value > p->p_roles.nprim)
243                 return -EINVAL;
244         p->p_role_val_to_name[role->value - 1] = key;
245         p->role_val_to_struct[role->value - 1] = role;
246         return 0;
247 }
248
249 static int type_index(void *key, void *datum, void *datap)
250 {
251         struct policydb *p;
252         struct type_datum *typdatum;
253
254         typdatum = datum;
255         p = datap;
256
257         if (typdatum->primary) {
258                 if (!typdatum->value || typdatum->value > p->p_types.nprim)
259                         return -EINVAL;
260                 p->p_type_val_to_name[typdatum->value - 1] = key;
261         }
262
263         return 0;
264 }
265
266 static int user_index(void *key, void *datum, void *datap)
267 {
268         struct policydb *p;
269         struct user_datum *usrdatum;
270
271         usrdatum = datum;
272         p = datap;
273         if (!usrdatum->value || usrdatum->value > p->p_users.nprim)
274                 return -EINVAL;
275         p->p_user_val_to_name[usrdatum->value - 1] = key;
276         p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
277         return 0;
278 }
279
280 static int sens_index(void *key, void *datum, void *datap)
281 {
282         struct policydb *p;
283         struct level_datum *levdatum;
284
285         levdatum = datum;
286         p = datap;
287
288         if (!levdatum->isalias) {
289                 if (!levdatum->level->sens ||
290                     levdatum->level->sens > p->p_levels.nprim)
291                         return -EINVAL;
292                 p->p_sens_val_to_name[levdatum->level->sens - 1] = key;
293         }
294
295         return 0;
296 }
297
298 static int cat_index(void *key, void *datum, void *datap)
299 {
300         struct policydb *p;
301         struct cat_datum *catdatum;
302
303         catdatum = datum;
304         p = datap;
305
306         if (!catdatum->isalias) {
307                 if (!catdatum->value || catdatum->value > p->p_cats.nprim)
308                         return -EINVAL;
309                 p->p_cat_val_to_name[catdatum->value - 1] = key;
310         }
311
312         return 0;
313 }
314
315 static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
316 {
317         common_index,
318         class_index,
319         role_index,
320         type_index,
321         user_index,
322         cond_index_bool,
323         sens_index,
324         cat_index,
325 };
326
327 /*
328  * Define the common val_to_name array and the class
329  * val_to_name and val_to_struct arrays in a policy
330  * database structure.
331  *
332  * Caller must clean up upon failure.
333  */
334 static int policydb_index_classes(struct policydb *p)
335 {
336         int rc;
337
338         p->p_common_val_to_name =
339                 kmalloc(p->p_commons.nprim * sizeof(char *), GFP_KERNEL);
340         if (!p->p_common_val_to_name) {
341                 rc = -ENOMEM;
342                 goto out;
343         }
344
345         rc = hashtab_map(p->p_commons.table, common_index, p);
346         if (rc)
347                 goto out;
348
349         p->class_val_to_struct =
350                 kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)), GFP_KERNEL);
351         if (!p->class_val_to_struct) {
352                 rc = -ENOMEM;
353                 goto out;
354         }
355
356         p->p_class_val_to_name =
357                 kmalloc(p->p_classes.nprim * sizeof(char *), GFP_KERNEL);
358         if (!p->p_class_val_to_name) {
359                 rc = -ENOMEM;
360                 goto out;
361         }
362
363         rc = hashtab_map(p->p_classes.table, class_index, p);
364 out:
365         return rc;
366 }
367
368 #ifdef DEBUG_HASHES
369 static void symtab_hash_eval(struct symtab *s)
370 {
371         int i;
372
373         for (i = 0; i < SYM_NUM; i++) {
374                 struct hashtab *h = s[i].table;
375                 struct hashtab_info info;
376
377                 hashtab_stat(h, &info);
378                 printk(KERN_DEBUG "%s:  %d entries and %d/%d buckets used, "
379                        "longest chain length %d\n", symtab_name[i], h->nel,
380                        info.slots_used, h->size, info.max_chain_len);
381         }
382 }
383 #endif
384
385 /*
386  * Define the other val_to_name and val_to_struct arrays
387  * in a policy database structure.
388  *
389  * Caller must clean up on failure.
390  */
391 static int policydb_index_others(struct policydb *p)
392 {
393         int i, rc = 0;
394
395         printk(KERN_DEBUG "security:  %d users, %d roles, %d types, %d bools",
396                p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
397         if (selinux_mls_enabled)
398                 printk(", %d sens, %d cats", p->p_levels.nprim,
399                        p->p_cats.nprim);
400         printk("\n");
401
402         printk(KERN_DEBUG "security:  %d classes, %d rules\n",
403                p->p_classes.nprim, p->te_avtab.nel);
404
405 #ifdef DEBUG_HASHES
406         avtab_hash_eval(&p->te_avtab, "rules");
407         symtab_hash_eval(p->symtab);
408 #endif
409
410         p->role_val_to_struct =
411                 kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)),
412                         GFP_KERNEL);
413         if (!p->role_val_to_struct) {
414                 rc = -ENOMEM;
415                 goto out;
416         }
417
418         p->user_val_to_struct =
419                 kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)),
420                         GFP_KERNEL);
421         if (!p->user_val_to_struct) {
422                 rc = -ENOMEM;
423                 goto out;
424         }
425
426         if (cond_init_bool_indexes(p)) {
427                 rc = -ENOMEM;
428                 goto out;
429         }
430
431         for (i = SYM_ROLES; i < SYM_NUM; i++) {
432                 p->sym_val_to_name[i] =
433                         kmalloc(p->symtab[i].nprim * sizeof(char *), GFP_KERNEL);
434                 if (!p->sym_val_to_name[i]) {
435                         rc = -ENOMEM;
436                         goto out;
437                 }
438                 rc = hashtab_map(p->symtab[i].table, index_f[i], p);
439                 if (rc)
440                         goto out;
441         }
442
443 out:
444         return rc;
445 }
446
447 /*
448  * The following *_destroy functions are used to
449  * free any memory allocated for each kind of
450  * symbol data in the policy database.
451  */
452
453 static int perm_destroy(void *key, void *datum, void *p)
454 {
455         kfree(key);
456         kfree(datum);
457         return 0;
458 }
459
460 static int common_destroy(void *key, void *datum, void *p)
461 {
462         struct common_datum *comdatum;
463
464         kfree(key);
465         comdatum = datum;
466         hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
467         hashtab_destroy(comdatum->permissions.table);
468         kfree(datum);
469         return 0;
470 }
471
472 static int cls_destroy(void *key, void *datum, void *p)
473 {
474         struct class_datum *cladatum;
475         struct constraint_node *constraint, *ctemp;
476         struct constraint_expr *e, *etmp;
477
478         kfree(key);
479         cladatum = datum;
480         hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
481         hashtab_destroy(cladatum->permissions.table);
482         constraint = cladatum->constraints;
483         while (constraint) {
484                 e = constraint->expr;
485                 while (e) {
486                         ebitmap_destroy(&e->names);
487                         etmp = e;
488                         e = e->next;
489                         kfree(etmp);
490                 }
491                 ctemp = constraint;
492                 constraint = constraint->next;
493                 kfree(ctemp);
494         }
495
496         constraint = cladatum->validatetrans;
497         while (constraint) {
498                 e = constraint->expr;
499                 while (e) {
500                         ebitmap_destroy(&e->names);
501                         etmp = e;
502                         e = e->next;
503                         kfree(etmp);
504                 }
505                 ctemp = constraint;
506                 constraint = constraint->next;
507                 kfree(ctemp);
508         }
509
510         kfree(cladatum->comkey);
511         kfree(datum);
512         return 0;
513 }
514
515 static int role_destroy(void *key, void *datum, void *p)
516 {
517         struct role_datum *role;
518
519         kfree(key);
520         role = datum;
521         ebitmap_destroy(&role->dominates);
522         ebitmap_destroy(&role->types);
523         kfree(datum);
524         return 0;
525 }
526
527 static int type_destroy(void *key, void *datum, void *p)
528 {
529         kfree(key);
530         kfree(datum);
531         return 0;
532 }
533
534 static int user_destroy(void *key, void *datum, void *p)
535 {
536         struct user_datum *usrdatum;
537
538         kfree(key);
539         usrdatum = datum;
540         ebitmap_destroy(&usrdatum->roles);
541         ebitmap_destroy(&usrdatum->range.level[0].cat);
542         ebitmap_destroy(&usrdatum->range.level[1].cat);
543         ebitmap_destroy(&usrdatum->dfltlevel.cat);
544         kfree(datum);
545         return 0;
546 }
547
548 static int sens_destroy(void *key, void *datum, void *p)
549 {
550         struct level_datum *levdatum;
551
552         kfree(key);
553         levdatum = datum;
554         ebitmap_destroy(&levdatum->level->cat);
555         kfree(levdatum->level);
556         kfree(datum);
557         return 0;
558 }
559
560 static int cat_destroy(void *key, void *datum, void *p)
561 {
562         kfree(key);
563         kfree(datum);
564         return 0;
565 }
566
567 static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
568 {
569         common_destroy,
570         cls_destroy,
571         role_destroy,
572         type_destroy,
573         user_destroy,
574         cond_destroy_bool,
575         sens_destroy,
576         cat_destroy,
577 };
578
579 static void ocontext_destroy(struct ocontext *c, int i)
580 {
581         context_destroy(&c->context[0]);
582         context_destroy(&c->context[1]);
583         if (i == OCON_ISID || i == OCON_FS ||
584             i == OCON_NETIF || i == OCON_FSUSE)
585                 kfree(c->u.name);
586         kfree(c);
587 }
588
589 /*
590  * Free any memory allocated by a policy database structure.
591  */
592 void policydb_destroy(struct policydb *p)
593 {
594         struct ocontext *c, *ctmp;
595         struct genfs *g, *gtmp;
596         int i;
597         struct role_allow *ra, *lra = NULL;
598         struct role_trans *tr, *ltr = NULL;
599         struct range_trans *rt, *lrt = NULL;
600
601         for (i = 0; i < SYM_NUM; i++) {
602                 cond_resched();
603                 hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
604                 hashtab_destroy(p->symtab[i].table);
605         }
606
607         for (i = 0; i < SYM_NUM; i++)
608                 kfree(p->sym_val_to_name[i]);
609
610         kfree(p->class_val_to_struct);
611         kfree(p->role_val_to_struct);
612         kfree(p->user_val_to_struct);
613
614         avtab_destroy(&p->te_avtab);
615
616         for (i = 0; i < OCON_NUM; i++) {
617                 cond_resched();
618                 c = p->ocontexts[i];
619                 while (c) {
620                         ctmp = c;
621                         c = c->next;
622                         ocontext_destroy(ctmp,i);
623                 }
624                 p->ocontexts[i] = NULL;
625         }
626
627         g = p->genfs;
628         while (g) {
629                 cond_resched();
630                 kfree(g->fstype);
631                 c = g->head;
632                 while (c) {
633                         ctmp = c;
634                         c = c->next;
635                         ocontext_destroy(ctmp,OCON_FSUSE);
636                 }
637                 gtmp = g;
638                 g = g->next;
639                 kfree(gtmp);
640         }
641         p->genfs = NULL;
642
643         cond_policydb_destroy(p);
644
645         for (tr = p->role_tr; tr; tr = tr->next) {
646                 cond_resched();
647                 kfree(ltr);
648                 ltr = tr;
649         }
650         kfree(ltr);
651
652         for (ra = p->role_allow; ra; ra = ra -> next) {
653                 cond_resched();
654                 kfree(lra);
655                 lra = ra;
656         }
657         kfree(lra);
658
659         for (rt = p->range_tr; rt; rt = rt -> next) {
660                 cond_resched();
661                 if (lrt) {
662                         ebitmap_destroy(&lrt->target_range.level[0].cat);
663                         ebitmap_destroy(&lrt->target_range.level[1].cat);
664                         kfree(lrt);
665                 }
666                 lrt = rt;
667         }
668         if (lrt) {
669                 ebitmap_destroy(&lrt->target_range.level[0].cat);
670                 ebitmap_destroy(&lrt->target_range.level[1].cat);
671                 kfree(lrt);
672         }
673
674         if (p->type_attr_map) {
675                 for (i = 0; i < p->p_types.nprim; i++)
676                         ebitmap_destroy(&p->type_attr_map[i]);
677         }
678         kfree(p->type_attr_map);
679
680         return;
681 }
682
683 /*
684  * Load the initial SIDs specified in a policy database
685  * structure into a SID table.
686  */
687 int policydb_load_isids(struct policydb *p, struct sidtab *s)
688 {
689         struct ocontext *head, *c;
690         int rc;
691
692         rc = sidtab_init(s);
693         if (rc) {
694                 printk(KERN_ERR "security:  out of memory on SID table init\n");
695                 goto out;
696         }
697
698         head = p->ocontexts[OCON_ISID];
699         for (c = head; c; c = c->next) {
700                 if (!c->context[0].user) {
701                         printk(KERN_ERR "security:  SID %s was never "
702                                "defined.\n", c->u.name);
703                         rc = -EINVAL;
704                         goto out;
705                 }
706                 if (sidtab_insert(s, c->sid[0], &c->context[0])) {
707                         printk(KERN_ERR "security:  unable to load initial "
708                                "SID %s.\n", c->u.name);
709                         rc = -EINVAL;
710                         goto out;
711                 }
712         }
713 out:
714         return rc;
715 }
716
717 /*
718  * Return 1 if the fields in the security context
719  * structure `c' are valid.  Return 0 otherwise.
720  */
721 int policydb_context_isvalid(struct policydb *p, struct context *c)
722 {
723         struct role_datum *role;
724         struct user_datum *usrdatum;
725
726         if (!c->role || c->role > p->p_roles.nprim)
727                 return 0;
728
729         if (!c->user || c->user > p->p_users.nprim)
730                 return 0;
731
732         if (!c->type || c->type > p->p_types.nprim)
733                 return 0;
734
735         if (c->role != OBJECT_R_VAL) {
736                 /*
737                  * Role must be authorized for the type.
738                  */
739                 role = p->role_val_to_struct[c->role - 1];
740                 if (!ebitmap_get_bit(&role->types,
741                                      c->type - 1))
742                         /* role may not be associated with type */
743                         return 0;
744
745                 /*
746                  * User must be authorized for the role.
747                  */
748                 usrdatum = p->user_val_to_struct[c->user - 1];
749                 if (!usrdatum)
750                         return 0;
751
752                 if (!ebitmap_get_bit(&usrdatum->roles,
753                                      c->role - 1))
754                         /* user may not be associated with role */
755                         return 0;
756         }
757
758         if (!mls_context_isvalid(p, c))
759                 return 0;
760
761         return 1;
762 }
763
764 /*
765  * Read a MLS range structure from a policydb binary
766  * representation file.
767  */
768 static int mls_read_range_helper(struct mls_range *r, void *fp)
769 {
770         __le32 buf[2];
771         u32 items;
772         int rc;
773
774         rc = next_entry(buf, fp, sizeof(u32));
775         if (rc < 0)
776                 goto out;
777
778         items = le32_to_cpu(buf[0]);
779         if (items > ARRAY_SIZE(buf)) {
780                 printk(KERN_ERR "security: mls:  range overflow\n");
781                 rc = -EINVAL;
782                 goto out;
783         }
784         rc = next_entry(buf, fp, sizeof(u32) * items);
785         if (rc < 0) {
786                 printk(KERN_ERR "security: mls:  truncated range\n");
787                 goto out;
788         }
789         r->level[0].sens = le32_to_cpu(buf[0]);
790         if (items > 1)
791                 r->level[1].sens = le32_to_cpu(buf[1]);
792         else
793                 r->level[1].sens = r->level[0].sens;
794
795         rc = ebitmap_read(&r->level[0].cat, fp);
796         if (rc) {
797                 printk(KERN_ERR "security: mls:  error reading low "
798                        "categories\n");
799                 goto out;
800         }
801         if (items > 1) {
802                 rc = ebitmap_read(&r->level[1].cat, fp);
803                 if (rc) {
804                         printk(KERN_ERR "security: mls:  error reading high "
805                                "categories\n");
806                         goto bad_high;
807                 }
808         } else {
809                 rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
810                 if (rc) {
811                         printk(KERN_ERR "security: mls:  out of memory\n");
812                         goto bad_high;
813                 }
814         }
815
816         rc = 0;
817 out:
818         return rc;
819 bad_high:
820         ebitmap_destroy(&r->level[0].cat);
821         goto out;
822 }
823
824 /*
825  * Read and validate a security context structure
826  * from a policydb binary representation file.
827  */
828 static int context_read_and_validate(struct context *c,
829                                      struct policydb *p,
830                                      void *fp)
831 {
832         __le32 buf[3];
833         int rc;
834
835         rc = next_entry(buf, fp, sizeof buf);
836         if (rc < 0) {
837                 printk(KERN_ERR "security: context truncated\n");
838                 goto out;
839         }
840         c->user = le32_to_cpu(buf[0]);
841         c->role = le32_to_cpu(buf[1]);
842         c->type = le32_to_cpu(buf[2]);
843         if (p->policyvers >= POLICYDB_VERSION_MLS) {
844                 if (mls_read_range_helper(&c->range, fp)) {
845                         printk(KERN_ERR "security: error reading MLS range of "
846                                "context\n");
847                         rc = -EINVAL;
848                         goto out;
849                 }
850         }
851
852         if (!policydb_context_isvalid(p, c)) {
853                 printk(KERN_ERR "security:  invalid security context\n");
854                 context_destroy(c);
855                 rc = -EINVAL;
856         }
857 out:
858         return rc;
859 }
860
861 /*
862  * The following *_read functions are used to
863  * read the symbol data from a policy database
864  * binary representation file.
865  */
866
867 static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
868 {
869         char *key = NULL;
870         struct perm_datum *perdatum;
871         int rc;
872         __le32 buf[2];
873         u32 len;
874
875         perdatum = kzalloc(sizeof(*perdatum), GFP_KERNEL);
876         if (!perdatum) {
877                 rc = -ENOMEM;
878                 goto out;
879         }
880
881         rc = next_entry(buf, fp, sizeof buf);
882         if (rc < 0)
883                 goto bad;
884
885         len = le32_to_cpu(buf[0]);
886         perdatum->value = le32_to_cpu(buf[1]);
887
888         key = kmalloc(len + 1,GFP_KERNEL);
889         if (!key) {
890                 rc = -ENOMEM;
891                 goto bad;
892         }
893         rc = next_entry(key, fp, len);
894         if (rc < 0)
895                 goto bad;
896         key[len] = 0;
897
898         rc = hashtab_insert(h, key, perdatum);
899         if (rc)
900                 goto bad;
901 out:
902         return rc;
903 bad:
904         perm_destroy(key, perdatum, NULL);
905         goto out;
906 }
907
908 static int common_read(struct policydb *p, struct hashtab *h, void *fp)
909 {
910         char *key = NULL;
911         struct common_datum *comdatum;
912         __le32 buf[4];
913         u32 len, nel;
914         int i, rc;
915
916         comdatum = kzalloc(sizeof(*comdatum), GFP_KERNEL);
917         if (!comdatum) {
918                 rc = -ENOMEM;
919                 goto out;
920         }
921
922         rc = next_entry(buf, fp, sizeof buf);
923         if (rc < 0)
924                 goto bad;
925
926         len = le32_to_cpu(buf[0]);
927         comdatum->value = le32_to_cpu(buf[1]);
928
929         rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
930         if (rc)
931                 goto bad;
932         comdatum->permissions.nprim = le32_to_cpu(buf[2]);
933         nel = le32_to_cpu(buf[3]);
934
935         key = kmalloc(len + 1,GFP_KERNEL);
936         if (!key) {
937                 rc = -ENOMEM;
938                 goto bad;
939         }
940         rc = next_entry(key, fp, len);
941         if (rc < 0)
942                 goto bad;
943         key[len] = 0;
944
945         for (i = 0; i < nel; i++) {
946                 rc = perm_read(p, comdatum->permissions.table, fp);
947                 if (rc)
948                         goto bad;
949         }
950
951         rc = hashtab_insert(h, key, comdatum);
952         if (rc)
953                 goto bad;
954 out:
955         return rc;
956 bad:
957         common_destroy(key, comdatum, NULL);
958         goto out;
959 }
960
961 static int read_cons_helper(struct constraint_node **nodep, int ncons,
962                             int allowxtarget, void *fp)
963 {
964         struct constraint_node *c, *lc;
965         struct constraint_expr *e, *le;
966         __le32 buf[3];
967         u32 nexpr;
968         int rc, i, j, depth;
969
970         lc = NULL;
971         for (i = 0; i < ncons; i++) {
972                 c = kzalloc(sizeof(*c), GFP_KERNEL);
973                 if (!c)
974                         return -ENOMEM;
975
976                 if (lc) {
977                         lc->next = c;
978                 } else {
979                         *nodep = c;
980                 }
981
982                 rc = next_entry(buf, fp, (sizeof(u32) * 2));
983                 if (rc < 0)
984                         return rc;
985                 c->permissions = le32_to_cpu(buf[0]);
986                 nexpr = le32_to_cpu(buf[1]);
987                 le = NULL;
988                 depth = -1;
989                 for (j = 0; j < nexpr; j++) {
990                         e = kzalloc(sizeof(*e), GFP_KERNEL);
991                         if (!e)
992                                 return -ENOMEM;
993
994                         if (le) {
995                                 le->next = e;
996                         } else {
997                                 c->expr = e;
998                         }
999
1000                         rc = next_entry(buf, fp, (sizeof(u32) * 3));
1001                         if (rc < 0)
1002                                 return rc;
1003                         e->expr_type = le32_to_cpu(buf[0]);
1004                         e->attr = le32_to_cpu(buf[1]);
1005                         e->op = le32_to_cpu(buf[2]);
1006
1007                         switch (e->expr_type) {
1008                         case CEXPR_NOT:
1009                                 if (depth < 0)
1010                                         return -EINVAL;
1011                                 break;
1012                         case CEXPR_AND:
1013                         case CEXPR_OR:
1014                                 if (depth < 1)
1015                                         return -EINVAL;
1016                                 depth--;
1017                                 break;
1018                         case CEXPR_ATTR:
1019                                 if (depth == (CEXPR_MAXDEPTH - 1))
1020                                         return -EINVAL;
1021                                 depth++;
1022                                 break;
1023                         case CEXPR_NAMES:
1024                                 if (!allowxtarget && (e->attr & CEXPR_XTARGET))
1025                                         return -EINVAL;
1026                                 if (depth == (CEXPR_MAXDEPTH - 1))
1027                                         return -EINVAL;
1028                                 depth++;
1029                                 if (ebitmap_read(&e->names, fp))
1030                                         return -EINVAL;
1031                                 break;
1032                         default:
1033                                 return -EINVAL;
1034                         }
1035                         le = e;
1036                 }
1037                 if (depth != 0)
1038                         return -EINVAL;
1039                 lc = c;
1040         }
1041
1042         return 0;
1043 }
1044
1045 static int class_read(struct policydb *p, struct hashtab *h, void *fp)
1046 {
1047         char *key = NULL;
1048         struct class_datum *cladatum;
1049         __le32 buf[6];
1050         u32 len, len2, ncons, nel;
1051         int i, rc;
1052
1053         cladatum = kzalloc(sizeof(*cladatum), GFP_KERNEL);
1054         if (!cladatum) {
1055                 rc = -ENOMEM;
1056                 goto out;
1057         }
1058
1059         rc = next_entry(buf, fp, sizeof(u32)*6);
1060         if (rc < 0)
1061                 goto bad;
1062
1063         len = le32_to_cpu(buf[0]);
1064         len2 = le32_to_cpu(buf[1]);
1065         cladatum->value = le32_to_cpu(buf[2]);
1066
1067         rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
1068         if (rc)
1069                 goto bad;
1070         cladatum->permissions.nprim = le32_to_cpu(buf[3]);
1071         nel = le32_to_cpu(buf[4]);
1072
1073         ncons = le32_to_cpu(buf[5]);
1074
1075         key = kmalloc(len + 1,GFP_KERNEL);
1076         if (!key) {
1077                 rc = -ENOMEM;
1078                 goto bad;
1079         }
1080         rc = next_entry(key, fp, len);
1081         if (rc < 0)
1082                 goto bad;
1083         key[len] = 0;
1084
1085         if (len2) {
1086                 cladatum->comkey = kmalloc(len2 + 1,GFP_KERNEL);
1087                 if (!cladatum->comkey) {
1088                         rc = -ENOMEM;
1089                         goto bad;
1090                 }
1091                 rc = next_entry(cladatum->comkey, fp, len2);
1092                 if (rc < 0)
1093                         goto bad;
1094                 cladatum->comkey[len2] = 0;
1095
1096                 cladatum->comdatum = hashtab_search(p->p_commons.table,
1097                                                     cladatum->comkey);
1098                 if (!cladatum->comdatum) {
1099                         printk(KERN_ERR "security:  unknown common %s\n",
1100                                cladatum->comkey);
1101                         rc = -EINVAL;
1102                         goto bad;
1103                 }
1104         }
1105         for (i = 0; i < nel; i++) {
1106                 rc = perm_read(p, cladatum->permissions.table, fp);
1107                 if (rc)
1108                         goto bad;
1109         }
1110
1111         rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp);
1112         if (rc)
1113                 goto bad;
1114
1115         if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
1116                 /* grab the validatetrans rules */
1117                 rc = next_entry(buf, fp, sizeof(u32));
1118                 if (rc < 0)
1119                         goto bad;
1120                 ncons = le32_to_cpu(buf[0]);
1121                 rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp);
1122                 if (rc)
1123                         goto bad;
1124         }
1125
1126         rc = hashtab_insert(h, key, cladatum);
1127         if (rc)
1128                 goto bad;
1129
1130         rc = 0;
1131 out:
1132         return rc;
1133 bad:
1134         cls_destroy(key, cladatum, NULL);
1135         goto out;
1136 }
1137
1138 static int role_read(struct policydb *p, struct hashtab *h, void *fp)
1139 {
1140         char *key = NULL;
1141         struct role_datum *role;
1142         int rc;
1143         __le32 buf[2];
1144         u32 len;
1145
1146         role = kzalloc(sizeof(*role), GFP_KERNEL);
1147         if (!role) {
1148                 rc = -ENOMEM;
1149                 goto out;
1150         }
1151
1152         rc = next_entry(buf, fp, sizeof buf);
1153         if (rc < 0)
1154                 goto bad;
1155
1156         len = le32_to_cpu(buf[0]);
1157         role->value = le32_to_cpu(buf[1]);
1158
1159         key = kmalloc(len + 1,GFP_KERNEL);
1160         if (!key) {
1161                 rc = -ENOMEM;
1162                 goto bad;
1163         }
1164         rc = next_entry(key, fp, len);
1165         if (rc < 0)
1166                 goto bad;
1167         key[len] = 0;
1168
1169         rc = ebitmap_read(&role->dominates, fp);
1170         if (rc)
1171                 goto bad;
1172
1173         rc = ebitmap_read(&role->types, fp);
1174         if (rc)
1175                 goto bad;
1176
1177         if (strcmp(key, OBJECT_R) == 0) {
1178                 if (role->value != OBJECT_R_VAL) {
1179                         printk(KERN_ERR "Role %s has wrong value %d\n",
1180                                OBJECT_R, role->value);
1181                         rc = -EINVAL;
1182                         goto bad;
1183                 }
1184                 rc = 0;
1185                 goto bad;
1186         }
1187
1188         rc = hashtab_insert(h, key, role);
1189         if (rc)
1190                 goto bad;
1191 out:
1192         return rc;
1193 bad:
1194         role_destroy(key, role, NULL);
1195         goto out;
1196 }
1197
1198 static int type_read(struct policydb *p, struct hashtab *h, void *fp)
1199 {
1200         char *key = NULL;
1201         struct type_datum *typdatum;
1202         int rc;
1203         __le32 buf[3];
1204         u32 len;
1205
1206         typdatum = kzalloc(sizeof(*typdatum),GFP_KERNEL);
1207         if (!typdatum) {
1208                 rc = -ENOMEM;
1209                 return rc;
1210         }
1211
1212         rc = next_entry(buf, fp, sizeof buf);
1213         if (rc < 0)
1214                 goto bad;
1215
1216         len = le32_to_cpu(buf[0]);
1217         typdatum->value = le32_to_cpu(buf[1]);
1218         typdatum->primary = le32_to_cpu(buf[2]);
1219
1220         key = kmalloc(len + 1,GFP_KERNEL);
1221         if (!key) {
1222                 rc = -ENOMEM;
1223                 goto bad;
1224         }
1225         rc = next_entry(key, fp, len);
1226         if (rc < 0)
1227                 goto bad;
1228         key[len] = 0;
1229
1230         rc = hashtab_insert(h, key, typdatum);
1231         if (rc)
1232                 goto bad;
1233 out:
1234         return rc;
1235 bad:
1236         type_destroy(key, typdatum, NULL);
1237         goto out;
1238 }
1239
1240
1241 /*
1242  * Read a MLS level structure from a policydb binary
1243  * representation file.
1244  */
1245 static int mls_read_level(struct mls_level *lp, void *fp)
1246 {
1247         __le32 buf[1];
1248         int rc;
1249
1250         memset(lp, 0, sizeof(*lp));
1251
1252         rc = next_entry(buf, fp, sizeof buf);
1253         if (rc < 0) {
1254                 printk(KERN_ERR "security: mls: truncated level\n");
1255                 goto bad;
1256         }
1257         lp->sens = le32_to_cpu(buf[0]);
1258
1259         if (ebitmap_read(&lp->cat, fp)) {
1260                 printk(KERN_ERR "security: mls:  error reading level "
1261                        "categories\n");
1262                 goto bad;
1263         }
1264         return 0;
1265
1266 bad:
1267         return -EINVAL;
1268 }
1269
1270 static int user_read(struct policydb *p, struct hashtab *h, void *fp)
1271 {
1272         char *key = NULL;
1273         struct user_datum *usrdatum;
1274         int rc;
1275         __le32 buf[2];
1276         u32 len;
1277
1278         usrdatum = kzalloc(sizeof(*usrdatum), GFP_KERNEL);
1279         if (!usrdatum) {
1280                 rc = -ENOMEM;
1281                 goto out;
1282         }
1283
1284         rc = next_entry(buf, fp, sizeof buf);
1285         if (rc < 0)
1286                 goto bad;
1287
1288         len = le32_to_cpu(buf[0]);
1289         usrdatum->value = le32_to_cpu(buf[1]);
1290
1291         key = kmalloc(len + 1,GFP_KERNEL);
1292         if (!key) {
1293                 rc = -ENOMEM;
1294                 goto bad;
1295         }
1296         rc = next_entry(key, fp, len);
1297         if (rc < 0)
1298                 goto bad;
1299         key[len] = 0;
1300
1301         rc = ebitmap_read(&usrdatum->roles, fp);
1302         if (rc)
1303                 goto bad;
1304
1305         if (p->policyvers >= POLICYDB_VERSION_MLS) {
1306                 rc = mls_read_range_helper(&usrdatum->range, fp);
1307                 if (rc)
1308                         goto bad;
1309                 rc = mls_read_level(&usrdatum->dfltlevel, fp);
1310                 if (rc)
1311                         goto bad;
1312         }
1313
1314         rc = hashtab_insert(h, key, usrdatum);
1315         if (rc)
1316                 goto bad;
1317 out:
1318         return rc;
1319 bad:
1320         user_destroy(key, usrdatum, NULL);
1321         goto out;
1322 }
1323
1324 static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
1325 {
1326         char *key = NULL;
1327         struct level_datum *levdatum;
1328         int rc;
1329         __le32 buf[2];
1330         u32 len;
1331
1332         levdatum = kzalloc(sizeof(*levdatum), GFP_ATOMIC);
1333         if (!levdatum) {
1334                 rc = -ENOMEM;
1335                 goto out;
1336         }
1337
1338         rc = next_entry(buf, fp, sizeof buf);
1339         if (rc < 0)
1340                 goto bad;
1341
1342         len = le32_to_cpu(buf[0]);
1343         levdatum->isalias = le32_to_cpu(buf[1]);
1344
1345         key = kmalloc(len + 1,GFP_ATOMIC);
1346         if (!key) {
1347                 rc = -ENOMEM;
1348                 goto bad;
1349         }
1350         rc = next_entry(key, fp, len);
1351         if (rc < 0)
1352                 goto bad;
1353         key[len] = 0;
1354
1355         levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC);
1356         if (!levdatum->level) {
1357                 rc = -ENOMEM;
1358                 goto bad;
1359         }
1360         if (mls_read_level(levdatum->level, fp)) {
1361                 rc = -EINVAL;
1362                 goto bad;
1363         }
1364
1365         rc = hashtab_insert(h, key, levdatum);
1366         if (rc)
1367                 goto bad;
1368 out:
1369         return rc;
1370 bad:
1371         sens_destroy(key, levdatum, NULL);
1372         goto out;
1373 }
1374
1375 static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
1376 {
1377         char *key = NULL;
1378         struct cat_datum *catdatum;
1379         int rc;
1380         __le32 buf[3];
1381         u32 len;
1382
1383         catdatum = kzalloc(sizeof(*catdatum), GFP_ATOMIC);
1384         if (!catdatum) {
1385                 rc = -ENOMEM;
1386                 goto out;
1387         }
1388
1389         rc = next_entry(buf, fp, sizeof buf);
1390         if (rc < 0)
1391                 goto bad;
1392
1393         len = le32_to_cpu(buf[0]);
1394         catdatum->value = le32_to_cpu(buf[1]);
1395         catdatum->isalias = le32_to_cpu(buf[2]);
1396
1397         key = kmalloc(len + 1,GFP_ATOMIC);
1398         if (!key) {
1399                 rc = -ENOMEM;
1400                 goto bad;
1401         }
1402         rc = next_entry(key, fp, len);
1403         if (rc < 0)
1404                 goto bad;
1405         key[len] = 0;
1406
1407         rc = hashtab_insert(h, key, catdatum);
1408         if (rc)
1409                 goto bad;
1410 out:
1411         return rc;
1412
1413 bad:
1414         cat_destroy(key, catdatum, NULL);
1415         goto out;
1416 }
1417
1418 static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
1419 {
1420         common_read,
1421         class_read,
1422         role_read,
1423         type_read,
1424         user_read,
1425         cond_read_bool,
1426         sens_read,
1427         cat_read,
1428 };
1429
1430 extern int ss_initialized;
1431
1432 /*
1433  * Read the configuration data from a policy database binary
1434  * representation file into a policy database structure.
1435  */
1436 int policydb_read(struct policydb *p, void *fp)
1437 {
1438         struct role_allow *ra, *lra;
1439         struct role_trans *tr, *ltr;
1440         struct ocontext *l, *c, *newc;
1441         struct genfs *genfs_p, *genfs, *newgenfs;
1442         int i, j, rc;
1443         __le32 buf[8];
1444         u32 len, len2, config, nprim, nel, nel2;
1445         char *policydb_str;
1446         struct policydb_compat_info *info;
1447         struct range_trans *rt, *lrt;
1448
1449         config = 0;
1450
1451         rc = policydb_init(p);
1452         if (rc)
1453                 goto out;
1454
1455         /* Read the magic number and string length. */
1456         rc = next_entry(buf, fp, sizeof(u32)* 2);
1457         if (rc < 0)
1458                 goto bad;
1459
1460         if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) {
1461                 printk(KERN_ERR "security:  policydb magic number 0x%x does "
1462                        "not match expected magic number 0x%x\n",
1463                        le32_to_cpu(buf[0]), POLICYDB_MAGIC);
1464                 goto bad;
1465         }
1466
1467         len = le32_to_cpu(buf[1]);
1468         if (len != strlen(POLICYDB_STRING)) {
1469                 printk(KERN_ERR "security:  policydb string length %d does not "
1470                        "match expected length %Zu\n",
1471                        len, strlen(POLICYDB_STRING));
1472                 goto bad;
1473         }
1474         policydb_str = kmalloc(len + 1,GFP_KERNEL);
1475         if (!policydb_str) {
1476                 printk(KERN_ERR "security:  unable to allocate memory for policydb "
1477                        "string of length %d\n", len);
1478                 rc = -ENOMEM;
1479                 goto bad;
1480         }
1481         rc = next_entry(policydb_str, fp, len);
1482         if (rc < 0) {
1483                 printk(KERN_ERR "security:  truncated policydb string identifier\n");
1484                 kfree(policydb_str);
1485                 goto bad;
1486         }
1487         policydb_str[len] = 0;
1488         if (strcmp(policydb_str, POLICYDB_STRING)) {
1489                 printk(KERN_ERR "security:  policydb string %s does not match "
1490                        "my string %s\n", policydb_str, POLICYDB_STRING);
1491                 kfree(policydb_str);
1492                 goto bad;
1493         }
1494         /* Done with policydb_str. */
1495         kfree(policydb_str);
1496         policydb_str = NULL;
1497
1498         /* Read the version, config, and table sizes. */
1499         rc = next_entry(buf, fp, sizeof(u32)*4);
1500         if (rc < 0)
1501                 goto bad;
1502
1503         p->policyvers = le32_to_cpu(buf[0]);
1504         if (p->policyvers < POLICYDB_VERSION_MIN ||
1505             p->policyvers > POLICYDB_VERSION_MAX) {
1506                 printk(KERN_ERR "security:  policydb version %d does not match "
1507                        "my version range %d-%d\n",
1508                        le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
1509                 goto bad;
1510         }
1511
1512         if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) {
1513                 if (ss_initialized && !selinux_mls_enabled) {
1514                         printk(KERN_ERR "Cannot switch between non-MLS and MLS "
1515                                "policies\n");
1516                         goto bad;
1517                 }
1518                 selinux_mls_enabled = 1;
1519                 config |= POLICYDB_CONFIG_MLS;
1520
1521                 if (p->policyvers < POLICYDB_VERSION_MLS) {
1522                         printk(KERN_ERR "security policydb version %d (MLS) "
1523                                "not backwards compatible\n", p->policyvers);
1524                         goto bad;
1525                 }
1526         } else {
1527                 if (ss_initialized && selinux_mls_enabled) {
1528                         printk(KERN_ERR "Cannot switch between MLS and non-MLS "
1529                                "policies\n");
1530                         goto bad;
1531                 }
1532         }
1533
1534         info = policydb_lookup_compat(p->policyvers);
1535         if (!info) {
1536                 printk(KERN_ERR "security:  unable to find policy compat info "
1537                        "for version %d\n", p->policyvers);
1538                 goto bad;
1539         }
1540
1541         if (le32_to_cpu(buf[2]) != info->sym_num ||
1542                 le32_to_cpu(buf[3]) != info->ocon_num) {
1543                 printk(KERN_ERR "security:  policydb table sizes (%d,%d) do "
1544                        "not match mine (%d,%d)\n", le32_to_cpu(buf[2]),
1545                         le32_to_cpu(buf[3]),
1546                        info->sym_num, info->ocon_num);
1547                 goto bad;
1548         }
1549
1550         for (i = 0; i < info->sym_num; i++) {
1551                 rc = next_entry(buf, fp, sizeof(u32)*2);
1552                 if (rc < 0)
1553                         goto bad;
1554                 nprim = le32_to_cpu(buf[0]);
1555                 nel = le32_to_cpu(buf[1]);
1556                 for (j = 0; j < nel; j++) {
1557                         rc = read_f[i](p, p->symtab[i].table, fp);
1558                         if (rc)
1559                                 goto bad;
1560                 }
1561
1562                 p->symtab[i].nprim = nprim;
1563         }
1564
1565         rc = avtab_read(&p->te_avtab, fp, p->policyvers);
1566         if (rc)
1567                 goto bad;
1568
1569         if (p->policyvers >= POLICYDB_VERSION_BOOL) {
1570                 rc = cond_read_list(p, fp);
1571                 if (rc)
1572                         goto bad;
1573         }
1574
1575         rc = next_entry(buf, fp, sizeof(u32));
1576         if (rc < 0)
1577                 goto bad;
1578         nel = le32_to_cpu(buf[0]);
1579         ltr = NULL;
1580         for (i = 0; i < nel; i++) {
1581                 tr = kzalloc(sizeof(*tr), GFP_KERNEL);
1582                 if (!tr) {
1583                         rc = -ENOMEM;
1584                         goto bad;
1585                 }
1586                 if (ltr) {
1587                         ltr->next = tr;
1588                 } else {
1589                         p->role_tr = tr;
1590                 }
1591                 rc = next_entry(buf, fp, sizeof(u32)*3);
1592                 if (rc < 0)
1593                         goto bad;
1594                 tr->role = le32_to_cpu(buf[0]);
1595                 tr->type = le32_to_cpu(buf[1]);
1596                 tr->new_role = le32_to_cpu(buf[2]);
1597                 ltr = tr;
1598         }
1599
1600         rc = next_entry(buf, fp, sizeof(u32));
1601         if (rc < 0)
1602                 goto bad;
1603         nel = le32_to_cpu(buf[0]);
1604         lra = NULL;
1605         for (i = 0; i < nel; i++) {
1606                 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1607                 if (!ra) {
1608                         rc = -ENOMEM;
1609                         goto bad;
1610                 }
1611                 if (lra) {
1612                         lra->next = ra;
1613                 } else {
1614                         p->role_allow = ra;
1615                 }
1616                 rc = next_entry(buf, fp, sizeof(u32)*2);
1617                 if (rc < 0)
1618                         goto bad;
1619                 ra->role = le32_to_cpu(buf[0]);
1620                 ra->new_role = le32_to_cpu(buf[1]);
1621                 lra = ra;
1622         }
1623
1624         rc = policydb_index_classes(p);
1625         if (rc)
1626                 goto bad;
1627
1628         rc = policydb_index_others(p);
1629         if (rc)
1630                 goto bad;
1631
1632         for (i = 0; i < info->ocon_num; i++) {
1633                 rc = next_entry(buf, fp, sizeof(u32));
1634                 if (rc < 0)
1635                         goto bad;
1636                 nel = le32_to_cpu(buf[0]);
1637                 l = NULL;
1638                 for (j = 0; j < nel; j++) {
1639                         c = kzalloc(sizeof(*c), GFP_KERNEL);
1640                         if (!c) {
1641                                 rc = -ENOMEM;
1642                                 goto bad;
1643                         }
1644                         if (l) {
1645                                 l->next = c;
1646                         } else {
1647                                 p->ocontexts[i] = c;
1648                         }
1649                         l = c;
1650                         rc = -EINVAL;
1651                         switch (i) {
1652                         case OCON_ISID:
1653                                 rc = next_entry(buf, fp, sizeof(u32));
1654                                 if (rc < 0)
1655                                         goto bad;
1656                                 c->sid[0] = le32_to_cpu(buf[0]);
1657                                 rc = context_read_and_validate(&c->context[0], p, fp);
1658                                 if (rc)
1659                                         goto bad;
1660                                 break;
1661                         case OCON_FS:
1662                         case OCON_NETIF:
1663                                 rc = next_entry(buf, fp, sizeof(u32));
1664                                 if (rc < 0)
1665                                         goto bad;
1666                                 len = le32_to_cpu(buf[0]);
1667                                 c->u.name = kmalloc(len + 1,GFP_KERNEL);
1668                                 if (!c->u.name) {
1669                                         rc = -ENOMEM;
1670                                         goto bad;
1671                                 }
1672                                 rc = next_entry(c->u.name, fp, len);
1673                                 if (rc < 0)
1674                                         goto bad;
1675                                 c->u.name[len] = 0;
1676                                 rc = context_read_and_validate(&c->context[0], p, fp);
1677                                 if (rc)
1678                                         goto bad;
1679                                 rc = context_read_and_validate(&c->context[1], p, fp);
1680                                 if (rc)
1681                                         goto bad;
1682                                 break;
1683                         case OCON_PORT:
1684                                 rc = next_entry(buf, fp, sizeof(u32)*3);
1685                                 if (rc < 0)
1686                                         goto bad;
1687                                 c->u.port.protocol = le32_to_cpu(buf[0]);
1688                                 c->u.port.low_port = le32_to_cpu(buf[1]);
1689                                 c->u.port.high_port = le32_to_cpu(buf[2]);
1690                                 rc = context_read_and_validate(&c->context[0], p, fp);
1691                                 if (rc)
1692                                         goto bad;
1693                                 break;
1694                         case OCON_NODE:
1695                                 rc = next_entry(buf, fp, sizeof(u32)* 2);
1696                                 if (rc < 0)
1697                                         goto bad;
1698                                 c->u.node.addr = le32_to_cpu(buf[0]);
1699                                 c->u.node.mask = le32_to_cpu(buf[1]);
1700                                 rc = context_read_and_validate(&c->context[0], p, fp);
1701                                 if (rc)
1702                                         goto bad;
1703                                 break;
1704                         case OCON_FSUSE:
1705                                 rc = next_entry(buf, fp, sizeof(u32)*2);
1706                                 if (rc < 0)
1707                                         goto bad;
1708                                 c->v.behavior = le32_to_cpu(buf[0]);
1709                                 if (c->v.behavior > SECURITY_FS_USE_NONE)
1710                                         goto bad;
1711                                 len = le32_to_cpu(buf[1]);
1712                                 c->u.name = kmalloc(len + 1,GFP_KERNEL);
1713                                 if (!c->u.name) {
1714                                         rc = -ENOMEM;
1715                                         goto bad;
1716                                 }
1717                                 rc = next_entry(c->u.name, fp, len);
1718                                 if (rc < 0)
1719                                         goto bad;
1720                                 c->u.name[len] = 0;
1721                                 rc = context_read_and_validate(&c->context[0], p, fp);
1722                                 if (rc)
1723                                         goto bad;
1724                                 break;
1725                         case OCON_NODE6: {
1726                                 int k;
1727
1728                                 rc = next_entry(buf, fp, sizeof(u32) * 8);
1729                                 if (rc < 0)
1730                                         goto bad;
1731                                 for (k = 0; k < 4; k++)
1732                                         c->u.node6.addr[k] = le32_to_cpu(buf[k]);
1733                                 for (k = 0; k < 4; k++)
1734                                         c->u.node6.mask[k] = le32_to_cpu(buf[k+4]);
1735                                 if (context_read_and_validate(&c->context[0], p, fp))
1736                                         goto bad;
1737                                 break;
1738                         }
1739                         }
1740                 }
1741         }
1742
1743         rc = next_entry(buf, fp, sizeof(u32));
1744         if (rc < 0)
1745                 goto bad;
1746         nel = le32_to_cpu(buf[0]);
1747         genfs_p = NULL;
1748         rc = -EINVAL;
1749         for (i = 0; i < nel; i++) {
1750                 rc = next_entry(buf, fp, sizeof(u32));
1751                 if (rc < 0)
1752                         goto bad;
1753                 len = le32_to_cpu(buf[0]);
1754                 newgenfs = kzalloc(sizeof(*newgenfs), GFP_KERNEL);
1755                 if (!newgenfs) {
1756                         rc = -ENOMEM;
1757                         goto bad;
1758                 }
1759
1760                 newgenfs->fstype = kmalloc(len + 1,GFP_KERNEL);
1761                 if (!newgenfs->fstype) {
1762                         rc = -ENOMEM;
1763                         kfree(newgenfs);
1764                         goto bad;
1765                 }
1766                 rc = next_entry(newgenfs->fstype, fp, len);
1767                 if (rc < 0) {
1768                         kfree(newgenfs->fstype);
1769                         kfree(newgenfs);
1770                         goto bad;
1771                 }
1772                 newgenfs->fstype[len] = 0;
1773                 for (genfs_p = NULL, genfs = p->genfs; genfs;
1774                      genfs_p = genfs, genfs = genfs->next) {
1775                         if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
1776                                 printk(KERN_ERR "security:  dup genfs "
1777                                        "fstype %s\n", newgenfs->fstype);
1778                                 kfree(newgenfs->fstype);
1779                                 kfree(newgenfs);
1780                                 goto bad;
1781                         }
1782                         if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
1783                                 break;
1784                 }
1785                 newgenfs->next = genfs;
1786                 if (genfs_p)
1787                         genfs_p->next = newgenfs;
1788                 else
1789                         p->genfs = newgenfs;
1790                 rc = next_entry(buf, fp, sizeof(u32));
1791                 if (rc < 0)
1792                         goto bad;
1793                 nel2 = le32_to_cpu(buf[0]);
1794                 for (j = 0; j < nel2; j++) {
1795                         rc = next_entry(buf, fp, sizeof(u32));
1796                         if (rc < 0)
1797                                 goto bad;
1798                         len = le32_to_cpu(buf[0]);
1799
1800                         newc = kzalloc(sizeof(*newc), GFP_KERNEL);
1801                         if (!newc) {
1802                                 rc = -ENOMEM;
1803                                 goto bad;
1804                         }
1805
1806                         newc->u.name = kmalloc(len + 1,GFP_KERNEL);
1807                         if (!newc->u.name) {
1808                                 rc = -ENOMEM;
1809                                 goto bad_newc;
1810                         }
1811                         rc = next_entry(newc->u.name, fp, len);
1812                         if (rc < 0)
1813                                 goto bad_newc;
1814                         newc->u.name[len] = 0;
1815                         rc = next_entry(buf, fp, sizeof(u32));
1816                         if (rc < 0)
1817                                 goto bad_newc;
1818                         newc->v.sclass = le32_to_cpu(buf[0]);
1819                         if (context_read_and_validate(&newc->context[0], p, fp))
1820                                 goto bad_newc;
1821                         for (l = NULL, c = newgenfs->head; c;
1822                              l = c, c = c->next) {
1823                                 if (!strcmp(newc->u.name, c->u.name) &&
1824                                     (!c->v.sclass || !newc->v.sclass ||
1825                                      newc->v.sclass == c->v.sclass)) {
1826                                         printk(KERN_ERR "security:  dup genfs "
1827                                                "entry (%s,%s)\n",
1828                                                newgenfs->fstype, c->u.name);
1829                                         goto bad_newc;
1830                                 }
1831                                 len = strlen(newc->u.name);
1832                                 len2 = strlen(c->u.name);
1833                                 if (len > len2)
1834                                         break;
1835                         }
1836
1837                         newc->next = c;
1838                         if (l)
1839                                 l->next = newc;
1840                         else
1841                                 newgenfs->head = newc;
1842                 }
1843         }
1844
1845         if (p->policyvers >= POLICYDB_VERSION_MLS) {
1846                 int new_rangetr = p->policyvers >= POLICYDB_VERSION_RANGETRANS;
1847                 rc = next_entry(buf, fp, sizeof(u32));
1848                 if (rc < 0)
1849                         goto bad;
1850                 nel = le32_to_cpu(buf[0]);
1851                 lrt = NULL;
1852                 for (i = 0; i < nel; i++) {
1853                         rt = kzalloc(sizeof(*rt), GFP_KERNEL);
1854                         if (!rt) {
1855                                 rc = -ENOMEM;
1856                                 goto bad;
1857                         }
1858                         if (lrt)
1859                                 lrt->next = rt;
1860                         else
1861                                 p->range_tr = rt;
1862                         rc = next_entry(buf, fp, (sizeof(u32) * 2));
1863                         if (rc < 0)
1864                                 goto bad;
1865                         rt->source_type = le32_to_cpu(buf[0]);
1866                         rt->target_type = le32_to_cpu(buf[1]);
1867                         if (new_rangetr) {
1868                                 rc = next_entry(buf, fp, sizeof(u32));
1869                                 if (rc < 0)
1870                                         goto bad;
1871                                 rt->target_class = le32_to_cpu(buf[0]);
1872                         } else
1873                                 rt->target_class = SECCLASS_PROCESS;
1874                         rc = mls_read_range_helper(&rt->target_range, fp);
1875                         if (rc)
1876                                 goto bad;
1877                         lrt = rt;
1878                 }
1879         }
1880
1881         p->type_attr_map = kmalloc(p->p_types.nprim*sizeof(struct ebitmap), GFP_KERNEL);
1882         if (!p->type_attr_map)
1883                 goto bad;
1884
1885         for (i = 0; i < p->p_types.nprim; i++) {
1886                 ebitmap_init(&p->type_attr_map[i]);
1887                 if (p->policyvers >= POLICYDB_VERSION_AVTAB) {
1888                         if (ebitmap_read(&p->type_attr_map[i], fp))
1889                                 goto bad;
1890                 }
1891                 /* add the type itself as the degenerate case */
1892                 if (ebitmap_set_bit(&p->type_attr_map[i], i, 1))
1893                                 goto bad;
1894         }
1895
1896         rc = 0;
1897 out:
1898         return rc;
1899 bad_newc:
1900         ocontext_destroy(newc,OCON_FSUSE);
1901 bad:
1902         if (!rc)
1903                 rc = -EINVAL;
1904         policydb_destroy(p);
1905         goto out;
1906 }