2fa28c88900c1cb4ad7a1cc57e7b28421f4c1587
[linux-3.10.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *      Paul Moore <paul@paul-moore.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/security.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
52 #include <net/icmp.h>
53 #include <net/ip.h>             /* for local_port_range[] */
54 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
55 #include <net/net_namespace.h>
56 #include <net/netlabel.h>
57 #include <linux/uaccess.h>
58 #include <asm/ioctls.h>
59 #include <linux/atomic.h>
60 #include <linux/bitops.h>
61 #include <linux/interrupt.h>
62 #include <linux/netdevice.h>    /* for network interface checks */
63 #include <linux/netlink.h>
64 #include <linux/tcp.h>
65 #include <linux/udp.h>
66 #include <linux/dccp.h>
67 #include <linux/quota.h>
68 #include <linux/un.h>           /* for Unix socket types */
69 #include <net/af_unix.h>        /* for Unix socket types */
70 #include <linux/parser.h>
71 #include <linux/nfs_mount.h>
72 #include <net/ipv6.h>
73 #include <linux/hugetlb.h>
74 #include <linux/personality.h>
75 #include <linux/audit.h>
76 #include <linux/string.h>
77 #include <linux/selinux.h>
78 #include <linux/mutex.h>
79 #include <linux/posix-timers.h>
80 #include <linux/syslog.h>
81 #include <linux/user_namespace.h>
82 #include <linux/export.h>
83 #include <linux/msg.h>
84 #include <linux/shm.h>
85
86 #include "avc.h"
87 #include "objsec.h"
88 #include "netif.h"
89 #include "netnode.h"
90 #include "netport.h"
91 #include "xfrm.h"
92 #include "netlabel.h"
93 #include "audit.h"
94 #include "avc_ss.h"
95
96 #define NUM_SEL_MNT_OPTS 5
97
98 extern struct security_operations *security_ops;
99
100 /* SECMARK reference count */
101 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
102
103 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
104 int selinux_enforcing;
105
106 static int __init enforcing_setup(char *str)
107 {
108         unsigned long enforcing;
109         if (!strict_strtoul(str, 0, &enforcing))
110                 selinux_enforcing = enforcing ? 1 : 0;
111         return 1;
112 }
113 __setup("enforcing=", enforcing_setup);
114 #endif
115
116 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
117 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
118
119 static int __init selinux_enabled_setup(char *str)
120 {
121         unsigned long enabled;
122         if (!strict_strtoul(str, 0, &enabled))
123                 selinux_enabled = enabled ? 1 : 0;
124         return 1;
125 }
126 __setup("selinux=", selinux_enabled_setup);
127 #else
128 int selinux_enabled = 1;
129 #endif
130
131 static struct kmem_cache *sel_inode_cache;
132
133 /**
134  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
135  *
136  * Description:
137  * This function checks the SECMARK reference counter to see if any SECMARK
138  * targets are currently configured, if the reference counter is greater than
139  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
140  * enabled, false (0) if SECMARK is disabled.
141  *
142  */
143 static int selinux_secmark_enabled(void)
144 {
145         return (atomic_read(&selinux_secmark_refcount) > 0);
146 }
147
148 /*
149  * initialise the security for the init task
150  */
151 static void cred_init_security(void)
152 {
153         struct cred *cred = (struct cred *) current->real_cred;
154         struct task_security_struct *tsec;
155
156         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
157         if (!tsec)
158                 panic("SELinux:  Failed to initialize initial task.\n");
159
160         tsec->osid = tsec->sid = SECINITSID_KERNEL;
161         cred->security = tsec;
162 }
163
164 /*
165  * get the security ID of a set of credentials
166  */
167 static inline u32 cred_sid(const struct cred *cred)
168 {
169         const struct task_security_struct *tsec;
170
171         tsec = cred->security;
172         return tsec->sid;
173 }
174
175 /*
176  * get the objective security ID of a task
177  */
178 static inline u32 task_sid(const struct task_struct *task)
179 {
180         u32 sid;
181
182         rcu_read_lock();
183         sid = cred_sid(__task_cred(task));
184         rcu_read_unlock();
185         return sid;
186 }
187
188 /*
189  * get the subjective security ID of the current task
190  */
191 static inline u32 current_sid(void)
192 {
193         const struct task_security_struct *tsec = current_security();
194
195         return tsec->sid;
196 }
197
198 /* Allocate and free functions for each kind of security blob. */
199
200 static int inode_alloc_security(struct inode *inode)
201 {
202         struct inode_security_struct *isec;
203         u32 sid = current_sid();
204
205         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
206         if (!isec)
207                 return -ENOMEM;
208
209         mutex_init(&isec->lock);
210         INIT_LIST_HEAD(&isec->list);
211         isec->inode = inode;
212         isec->sid = SECINITSID_UNLABELED;
213         isec->sclass = SECCLASS_FILE;
214         isec->task_sid = sid;
215         inode->i_security = isec;
216
217         return 0;
218 }
219
220 static void inode_free_security(struct inode *inode)
221 {
222         struct inode_security_struct *isec = inode->i_security;
223         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
224
225         spin_lock(&sbsec->isec_lock);
226         if (!list_empty(&isec->list))
227                 list_del_init(&isec->list);
228         spin_unlock(&sbsec->isec_lock);
229
230         inode->i_security = NULL;
231         kmem_cache_free(sel_inode_cache, isec);
232 }
233
234 static int file_alloc_security(struct file *file)
235 {
236         struct file_security_struct *fsec;
237         u32 sid = current_sid();
238
239         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
240         if (!fsec)
241                 return -ENOMEM;
242
243         fsec->sid = sid;
244         fsec->fown_sid = sid;
245         file->f_security = fsec;
246
247         return 0;
248 }
249
250 static void file_free_security(struct file *file)
251 {
252         struct file_security_struct *fsec = file->f_security;
253         file->f_security = NULL;
254         kfree(fsec);
255 }
256
257 static int superblock_alloc_security(struct super_block *sb)
258 {
259         struct superblock_security_struct *sbsec;
260
261         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
262         if (!sbsec)
263                 return -ENOMEM;
264
265         mutex_init(&sbsec->lock);
266         INIT_LIST_HEAD(&sbsec->isec_head);
267         spin_lock_init(&sbsec->isec_lock);
268         sbsec->sb = sb;
269         sbsec->sid = SECINITSID_UNLABELED;
270         sbsec->def_sid = SECINITSID_FILE;
271         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
272         sb->s_security = sbsec;
273
274         return 0;
275 }
276
277 static void superblock_free_security(struct super_block *sb)
278 {
279         struct superblock_security_struct *sbsec = sb->s_security;
280         sb->s_security = NULL;
281         kfree(sbsec);
282 }
283
284 /* The file system's label must be initialized prior to use. */
285
286 static const char *labeling_behaviors[6] = {
287         "uses xattr",
288         "uses transition SIDs",
289         "uses task SIDs",
290         "uses genfs_contexts",
291         "not configured for labeling",
292         "uses mountpoint labeling",
293 };
294
295 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
296
297 static inline int inode_doinit(struct inode *inode)
298 {
299         return inode_doinit_with_dentry(inode, NULL);
300 }
301
302 enum {
303         Opt_error = -1,
304         Opt_context = 1,
305         Opt_fscontext = 2,
306         Opt_defcontext = 3,
307         Opt_rootcontext = 4,
308         Opt_labelsupport = 5,
309 };
310
311 static const match_table_t tokens = {
312         {Opt_context, CONTEXT_STR "%s"},
313         {Opt_fscontext, FSCONTEXT_STR "%s"},
314         {Opt_defcontext, DEFCONTEXT_STR "%s"},
315         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
316         {Opt_labelsupport, LABELSUPP_STR},
317         {Opt_error, NULL},
318 };
319
320 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
321
322 static int may_context_mount_sb_relabel(u32 sid,
323                         struct superblock_security_struct *sbsec,
324                         const struct cred *cred)
325 {
326         const struct task_security_struct *tsec = cred->security;
327         int rc;
328
329         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
330                           FILESYSTEM__RELABELFROM, NULL);
331         if (rc)
332                 return rc;
333
334         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
335                           FILESYSTEM__RELABELTO, NULL);
336         return rc;
337 }
338
339 static int may_context_mount_inode_relabel(u32 sid,
340                         struct superblock_security_struct *sbsec,
341                         const struct cred *cred)
342 {
343         const struct task_security_struct *tsec = cred->security;
344         int rc;
345         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
346                           FILESYSTEM__RELABELFROM, NULL);
347         if (rc)
348                 return rc;
349
350         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
351                           FILESYSTEM__ASSOCIATE, NULL);
352         return rc;
353 }
354
355 static int sb_finish_set_opts(struct super_block *sb)
356 {
357         struct superblock_security_struct *sbsec = sb->s_security;
358         struct dentry *root = sb->s_root;
359         struct inode *root_inode = root->d_inode;
360         int rc = 0;
361
362         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
363                 /* Make sure that the xattr handler exists and that no
364                    error other than -ENODATA is returned by getxattr on
365                    the root directory.  -ENODATA is ok, as this may be
366                    the first boot of the SELinux kernel before we have
367                    assigned xattr values to the filesystem. */
368                 if (!root_inode->i_op->getxattr) {
369                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
370                                "xattr support\n", sb->s_id, sb->s_type->name);
371                         rc = -EOPNOTSUPP;
372                         goto out;
373                 }
374                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
375                 if (rc < 0 && rc != -ENODATA) {
376                         if (rc == -EOPNOTSUPP)
377                                 printk(KERN_WARNING "SELinux: (dev %s, type "
378                                        "%s) has no security xattr handler\n",
379                                        sb->s_id, sb->s_type->name);
380                         else
381                                 printk(KERN_WARNING "SELinux: (dev %s, type "
382                                        "%s) getxattr errno %d\n", sb->s_id,
383                                        sb->s_type->name, -rc);
384                         goto out;
385                 }
386         }
387
388         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
389
390         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
391                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
392                        sb->s_id, sb->s_type->name);
393         else
394                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
395                        sb->s_id, sb->s_type->name,
396                        labeling_behaviors[sbsec->behavior-1]);
397
398         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
399             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
400             sbsec->behavior == SECURITY_FS_USE_NONE ||
401             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
402                 sbsec->flags &= ~SE_SBLABELSUPP;
403
404         /* Special handling for sysfs. Is genfs but also has setxattr handler*/
405         if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
406                 sbsec->flags |= SE_SBLABELSUPP;
407
408         /* Initialize the root inode. */
409         rc = inode_doinit_with_dentry(root_inode, root);
410
411         /* Initialize any other inodes associated with the superblock, e.g.
412            inodes created prior to initial policy load or inodes created
413            during get_sb by a pseudo filesystem that directly
414            populates itself. */
415         spin_lock(&sbsec->isec_lock);
416 next_inode:
417         if (!list_empty(&sbsec->isec_head)) {
418                 struct inode_security_struct *isec =
419                                 list_entry(sbsec->isec_head.next,
420                                            struct inode_security_struct, list);
421                 struct inode *inode = isec->inode;
422                 spin_unlock(&sbsec->isec_lock);
423                 inode = igrab(inode);
424                 if (inode) {
425                         if (!IS_PRIVATE(inode))
426                                 inode_doinit(inode);
427                         iput(inode);
428                 }
429                 spin_lock(&sbsec->isec_lock);
430                 list_del_init(&isec->list);
431                 goto next_inode;
432         }
433         spin_unlock(&sbsec->isec_lock);
434 out:
435         return rc;
436 }
437
438 /*
439  * This function should allow an FS to ask what it's mount security
440  * options were so it can use those later for submounts, displaying
441  * mount options, or whatever.
442  */
443 static int selinux_get_mnt_opts(const struct super_block *sb,
444                                 struct security_mnt_opts *opts)
445 {
446         int rc = 0, i;
447         struct superblock_security_struct *sbsec = sb->s_security;
448         char *context = NULL;
449         u32 len;
450         char tmp;
451
452         security_init_mnt_opts(opts);
453
454         if (!(sbsec->flags & SE_SBINITIALIZED))
455                 return -EINVAL;
456
457         if (!ss_initialized)
458                 return -EINVAL;
459
460         tmp = sbsec->flags & SE_MNTMASK;
461         /* count the number of mount options for this sb */
462         for (i = 0; i < 8; i++) {
463                 if (tmp & 0x01)
464                         opts->num_mnt_opts++;
465                 tmp >>= 1;
466         }
467         /* Check if the Label support flag is set */
468         if (sbsec->flags & SE_SBLABELSUPP)
469                 opts->num_mnt_opts++;
470
471         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
472         if (!opts->mnt_opts) {
473                 rc = -ENOMEM;
474                 goto out_free;
475         }
476
477         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
478         if (!opts->mnt_opts_flags) {
479                 rc = -ENOMEM;
480                 goto out_free;
481         }
482
483         i = 0;
484         if (sbsec->flags & FSCONTEXT_MNT) {
485                 rc = security_sid_to_context(sbsec->sid, &context, &len);
486                 if (rc)
487                         goto out_free;
488                 opts->mnt_opts[i] = context;
489                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
490         }
491         if (sbsec->flags & CONTEXT_MNT) {
492                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
493                 if (rc)
494                         goto out_free;
495                 opts->mnt_opts[i] = context;
496                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
497         }
498         if (sbsec->flags & DEFCONTEXT_MNT) {
499                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
500                 if (rc)
501                         goto out_free;
502                 opts->mnt_opts[i] = context;
503                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
504         }
505         if (sbsec->flags & ROOTCONTEXT_MNT) {
506                 struct inode *root = sbsec->sb->s_root->d_inode;
507                 struct inode_security_struct *isec = root->i_security;
508
509                 rc = security_sid_to_context(isec->sid, &context, &len);
510                 if (rc)
511                         goto out_free;
512                 opts->mnt_opts[i] = context;
513                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
514         }
515         if (sbsec->flags & SE_SBLABELSUPP) {
516                 opts->mnt_opts[i] = NULL;
517                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
518         }
519
520         BUG_ON(i != opts->num_mnt_opts);
521
522         return 0;
523
524 out_free:
525         security_free_mnt_opts(opts);
526         return rc;
527 }
528
529 static int bad_option(struct superblock_security_struct *sbsec, char flag,
530                       u32 old_sid, u32 new_sid)
531 {
532         char mnt_flags = sbsec->flags & SE_MNTMASK;
533
534         /* check if the old mount command had the same options */
535         if (sbsec->flags & SE_SBINITIALIZED)
536                 if (!(sbsec->flags & flag) ||
537                     (old_sid != new_sid))
538                         return 1;
539
540         /* check if we were passed the same options twice,
541          * aka someone passed context=a,context=b
542          */
543         if (!(sbsec->flags & SE_SBINITIALIZED))
544                 if (mnt_flags & flag)
545                         return 1;
546         return 0;
547 }
548
549 /*
550  * Allow filesystems with binary mount data to explicitly set mount point
551  * labeling information.
552  */
553 static int selinux_set_mnt_opts(struct super_block *sb,
554                                 struct security_mnt_opts *opts)
555 {
556         const struct cred *cred = current_cred();
557         int rc = 0, i;
558         struct superblock_security_struct *sbsec = sb->s_security;
559         const char *name = sb->s_type->name;
560         struct inode *inode = sbsec->sb->s_root->d_inode;
561         struct inode_security_struct *root_isec = inode->i_security;
562         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
563         u32 defcontext_sid = 0;
564         char **mount_options = opts->mnt_opts;
565         int *flags = opts->mnt_opts_flags;
566         int num_opts = opts->num_mnt_opts;
567
568         mutex_lock(&sbsec->lock);
569
570         if (!ss_initialized) {
571                 if (!num_opts) {
572                         /* Defer initialization until selinux_complete_init,
573                            after the initial policy is loaded and the security
574                            server is ready to handle calls. */
575                         goto out;
576                 }
577                 rc = -EINVAL;
578                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
579                         "before the security server is initialized\n");
580                 goto out;
581         }
582
583         /*
584          * Binary mount data FS will come through this function twice.  Once
585          * from an explicit call and once from the generic calls from the vfs.
586          * Since the generic VFS calls will not contain any security mount data
587          * we need to skip the double mount verification.
588          *
589          * This does open a hole in which we will not notice if the first
590          * mount using this sb set explict options and a second mount using
591          * this sb does not set any security options.  (The first options
592          * will be used for both mounts)
593          */
594         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
595             && (num_opts == 0))
596                 goto out;
597
598         /*
599          * parse the mount options, check if they are valid sids.
600          * also check if someone is trying to mount the same sb more
601          * than once with different security options.
602          */
603         for (i = 0; i < num_opts; i++) {
604                 u32 sid;
605
606                 if (flags[i] == SE_SBLABELSUPP)
607                         continue;
608                 rc = security_context_to_sid(mount_options[i],
609                                              strlen(mount_options[i]), &sid);
610                 if (rc) {
611                         printk(KERN_WARNING "SELinux: security_context_to_sid"
612                                "(%s) failed for (dev %s, type %s) errno=%d\n",
613                                mount_options[i], sb->s_id, name, rc);
614                         goto out;
615                 }
616                 switch (flags[i]) {
617                 case FSCONTEXT_MNT:
618                         fscontext_sid = sid;
619
620                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
621                                         fscontext_sid))
622                                 goto out_double_mount;
623
624                         sbsec->flags |= FSCONTEXT_MNT;
625                         break;
626                 case CONTEXT_MNT:
627                         context_sid = sid;
628
629                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
630                                         context_sid))
631                                 goto out_double_mount;
632
633                         sbsec->flags |= CONTEXT_MNT;
634                         break;
635                 case ROOTCONTEXT_MNT:
636                         rootcontext_sid = sid;
637
638                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
639                                         rootcontext_sid))
640                                 goto out_double_mount;
641
642                         sbsec->flags |= ROOTCONTEXT_MNT;
643
644                         break;
645                 case DEFCONTEXT_MNT:
646                         defcontext_sid = sid;
647
648                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
649                                         defcontext_sid))
650                                 goto out_double_mount;
651
652                         sbsec->flags |= DEFCONTEXT_MNT;
653
654                         break;
655                 default:
656                         rc = -EINVAL;
657                         goto out;
658                 }
659         }
660
661         if (sbsec->flags & SE_SBINITIALIZED) {
662                 /* previously mounted with options, but not on this attempt? */
663                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
664                         goto out_double_mount;
665                 rc = 0;
666                 goto out;
667         }
668
669         if (strcmp(sb->s_type->name, "proc") == 0)
670                 sbsec->flags |= SE_SBPROC;
671
672         /* Determine the labeling behavior to use for this filesystem type. */
673         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
674         if (rc) {
675                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
676                        __func__, sb->s_type->name, rc);
677                 goto out;
678         }
679
680         /* sets the context of the superblock for the fs being mounted. */
681         if (fscontext_sid) {
682                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
683                 if (rc)
684                         goto out;
685
686                 sbsec->sid = fscontext_sid;
687         }
688
689         /*
690          * Switch to using mount point labeling behavior.
691          * sets the label used on all file below the mountpoint, and will set
692          * the superblock context if not already set.
693          */
694         if (context_sid) {
695                 if (!fscontext_sid) {
696                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
697                                                           cred);
698                         if (rc)
699                                 goto out;
700                         sbsec->sid = context_sid;
701                 } else {
702                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
703                                                              cred);
704                         if (rc)
705                                 goto out;
706                 }
707                 if (!rootcontext_sid)
708                         rootcontext_sid = context_sid;
709
710                 sbsec->mntpoint_sid = context_sid;
711                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
712         }
713
714         if (rootcontext_sid) {
715                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
716                                                      cred);
717                 if (rc)
718                         goto out;
719
720                 root_isec->sid = rootcontext_sid;
721                 root_isec->initialized = 1;
722         }
723
724         if (defcontext_sid) {
725                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
726                         rc = -EINVAL;
727                         printk(KERN_WARNING "SELinux: defcontext option is "
728                                "invalid for this filesystem type\n");
729                         goto out;
730                 }
731
732                 if (defcontext_sid != sbsec->def_sid) {
733                         rc = may_context_mount_inode_relabel(defcontext_sid,
734                                                              sbsec, cred);
735                         if (rc)
736                                 goto out;
737                 }
738
739                 sbsec->def_sid = defcontext_sid;
740         }
741
742         rc = sb_finish_set_opts(sb);
743 out:
744         mutex_unlock(&sbsec->lock);
745         return rc;
746 out_double_mount:
747         rc = -EINVAL;
748         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
749                "security settings for (dev %s, type %s)\n", sb->s_id, name);
750         goto out;
751 }
752
753 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
754                                         struct super_block *newsb)
755 {
756         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
757         struct superblock_security_struct *newsbsec = newsb->s_security;
758
759         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
760         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
761         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
762
763         /*
764          * if the parent was able to be mounted it clearly had no special lsm
765          * mount options.  thus we can safely deal with this superblock later
766          */
767         if (!ss_initialized)
768                 return;
769
770         /* how can we clone if the old one wasn't set up?? */
771         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
772
773         /* if fs is reusing a sb, just let its options stand... */
774         if (newsbsec->flags & SE_SBINITIALIZED)
775                 return;
776
777         mutex_lock(&newsbsec->lock);
778
779         newsbsec->flags = oldsbsec->flags;
780
781         newsbsec->sid = oldsbsec->sid;
782         newsbsec->def_sid = oldsbsec->def_sid;
783         newsbsec->behavior = oldsbsec->behavior;
784
785         if (set_context) {
786                 u32 sid = oldsbsec->mntpoint_sid;
787
788                 if (!set_fscontext)
789                         newsbsec->sid = sid;
790                 if (!set_rootcontext) {
791                         struct inode *newinode = newsb->s_root->d_inode;
792                         struct inode_security_struct *newisec = newinode->i_security;
793                         newisec->sid = sid;
794                 }
795                 newsbsec->mntpoint_sid = sid;
796         }
797         if (set_rootcontext) {
798                 const struct inode *oldinode = oldsb->s_root->d_inode;
799                 const struct inode_security_struct *oldisec = oldinode->i_security;
800                 struct inode *newinode = newsb->s_root->d_inode;
801                 struct inode_security_struct *newisec = newinode->i_security;
802
803                 newisec->sid = oldisec->sid;
804         }
805
806         sb_finish_set_opts(newsb);
807         mutex_unlock(&newsbsec->lock);
808 }
809
810 static int selinux_parse_opts_str(char *options,
811                                   struct security_mnt_opts *opts)
812 {
813         char *p;
814         char *context = NULL, *defcontext = NULL;
815         char *fscontext = NULL, *rootcontext = NULL;
816         int rc, num_mnt_opts = 0;
817
818         opts->num_mnt_opts = 0;
819
820         /* Standard string-based options. */
821         while ((p = strsep(&options, "|")) != NULL) {
822                 int token;
823                 substring_t args[MAX_OPT_ARGS];
824
825                 if (!*p)
826                         continue;
827
828                 token = match_token(p, tokens, args);
829
830                 switch (token) {
831                 case Opt_context:
832                         if (context || defcontext) {
833                                 rc = -EINVAL;
834                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
835                                 goto out_err;
836                         }
837                         context = match_strdup(&args[0]);
838                         if (!context) {
839                                 rc = -ENOMEM;
840                                 goto out_err;
841                         }
842                         break;
843
844                 case Opt_fscontext:
845                         if (fscontext) {
846                                 rc = -EINVAL;
847                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
848                                 goto out_err;
849                         }
850                         fscontext = match_strdup(&args[0]);
851                         if (!fscontext) {
852                                 rc = -ENOMEM;
853                                 goto out_err;
854                         }
855                         break;
856
857                 case Opt_rootcontext:
858                         if (rootcontext) {
859                                 rc = -EINVAL;
860                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
861                                 goto out_err;
862                         }
863                         rootcontext = match_strdup(&args[0]);
864                         if (!rootcontext) {
865                                 rc = -ENOMEM;
866                                 goto out_err;
867                         }
868                         break;
869
870                 case Opt_defcontext:
871                         if (context || defcontext) {
872                                 rc = -EINVAL;
873                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
874                                 goto out_err;
875                         }
876                         defcontext = match_strdup(&args[0]);
877                         if (!defcontext) {
878                                 rc = -ENOMEM;
879                                 goto out_err;
880                         }
881                         break;
882                 case Opt_labelsupport:
883                         break;
884                 default:
885                         rc = -EINVAL;
886                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
887                         goto out_err;
888
889                 }
890         }
891
892         rc = -ENOMEM;
893         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
894         if (!opts->mnt_opts)
895                 goto out_err;
896
897         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
898         if (!opts->mnt_opts_flags) {
899                 kfree(opts->mnt_opts);
900                 goto out_err;
901         }
902
903         if (fscontext) {
904                 opts->mnt_opts[num_mnt_opts] = fscontext;
905                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
906         }
907         if (context) {
908                 opts->mnt_opts[num_mnt_opts] = context;
909                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
910         }
911         if (rootcontext) {
912                 opts->mnt_opts[num_mnt_opts] = rootcontext;
913                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
914         }
915         if (defcontext) {
916                 opts->mnt_opts[num_mnt_opts] = defcontext;
917                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
918         }
919
920         opts->num_mnt_opts = num_mnt_opts;
921         return 0;
922
923 out_err:
924         kfree(context);
925         kfree(defcontext);
926         kfree(fscontext);
927         kfree(rootcontext);
928         return rc;
929 }
930 /*
931  * string mount options parsing and call set the sbsec
932  */
933 static int superblock_doinit(struct super_block *sb, void *data)
934 {
935         int rc = 0;
936         char *options = data;
937         struct security_mnt_opts opts;
938
939         security_init_mnt_opts(&opts);
940
941         if (!data)
942                 goto out;
943
944         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
945
946         rc = selinux_parse_opts_str(options, &opts);
947         if (rc)
948                 goto out_err;
949
950 out:
951         rc = selinux_set_mnt_opts(sb, &opts);
952
953 out_err:
954         security_free_mnt_opts(&opts);
955         return rc;
956 }
957
958 static void selinux_write_opts(struct seq_file *m,
959                                struct security_mnt_opts *opts)
960 {
961         int i;
962         char *prefix;
963
964         for (i = 0; i < opts->num_mnt_opts; i++) {
965                 char *has_comma;
966
967                 if (opts->mnt_opts[i])
968                         has_comma = strchr(opts->mnt_opts[i], ',');
969                 else
970                         has_comma = NULL;
971
972                 switch (opts->mnt_opts_flags[i]) {
973                 case CONTEXT_MNT:
974                         prefix = CONTEXT_STR;
975                         break;
976                 case FSCONTEXT_MNT:
977                         prefix = FSCONTEXT_STR;
978                         break;
979                 case ROOTCONTEXT_MNT:
980                         prefix = ROOTCONTEXT_STR;
981                         break;
982                 case DEFCONTEXT_MNT:
983                         prefix = DEFCONTEXT_STR;
984                         break;
985                 case SE_SBLABELSUPP:
986                         seq_putc(m, ',');
987                         seq_puts(m, LABELSUPP_STR);
988                         continue;
989                 default:
990                         BUG();
991                         return;
992                 };
993                 /* we need a comma before each option */
994                 seq_putc(m, ',');
995                 seq_puts(m, prefix);
996                 if (has_comma)
997                         seq_putc(m, '\"');
998                 seq_puts(m, opts->mnt_opts[i]);
999                 if (has_comma)
1000                         seq_putc(m, '\"');
1001         }
1002 }
1003
1004 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1005 {
1006         struct security_mnt_opts opts;
1007         int rc;
1008
1009         rc = selinux_get_mnt_opts(sb, &opts);
1010         if (rc) {
1011                 /* before policy load we may get EINVAL, don't show anything */
1012                 if (rc == -EINVAL)
1013                         rc = 0;
1014                 return rc;
1015         }
1016
1017         selinux_write_opts(m, &opts);
1018
1019         security_free_mnt_opts(&opts);
1020
1021         return rc;
1022 }
1023
1024 static inline u16 inode_mode_to_security_class(umode_t mode)
1025 {
1026         switch (mode & S_IFMT) {
1027         case S_IFSOCK:
1028                 return SECCLASS_SOCK_FILE;
1029         case S_IFLNK:
1030                 return SECCLASS_LNK_FILE;
1031         case S_IFREG:
1032                 return SECCLASS_FILE;
1033         case S_IFBLK:
1034                 return SECCLASS_BLK_FILE;
1035         case S_IFDIR:
1036                 return SECCLASS_DIR;
1037         case S_IFCHR:
1038                 return SECCLASS_CHR_FILE;
1039         case S_IFIFO:
1040                 return SECCLASS_FIFO_FILE;
1041
1042         }
1043
1044         return SECCLASS_FILE;
1045 }
1046
1047 static inline int default_protocol_stream(int protocol)
1048 {
1049         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1050 }
1051
1052 static inline int default_protocol_dgram(int protocol)
1053 {
1054         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1055 }
1056
1057 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1058 {
1059         switch (family) {
1060         case PF_UNIX:
1061                 switch (type) {
1062                 case SOCK_STREAM:
1063                 case SOCK_SEQPACKET:
1064                         return SECCLASS_UNIX_STREAM_SOCKET;
1065                 case SOCK_DGRAM:
1066                         return SECCLASS_UNIX_DGRAM_SOCKET;
1067                 }
1068                 break;
1069         case PF_INET:
1070         case PF_INET6:
1071                 switch (type) {
1072                 case SOCK_STREAM:
1073                         if (default_protocol_stream(protocol))
1074                                 return SECCLASS_TCP_SOCKET;
1075                         else
1076                                 return SECCLASS_RAWIP_SOCKET;
1077                 case SOCK_DGRAM:
1078                         if (default_protocol_dgram(protocol))
1079                                 return SECCLASS_UDP_SOCKET;
1080                         else
1081                                 return SECCLASS_RAWIP_SOCKET;
1082                 case SOCK_DCCP:
1083                         return SECCLASS_DCCP_SOCKET;
1084                 default:
1085                         return SECCLASS_RAWIP_SOCKET;
1086                 }
1087                 break;
1088         case PF_NETLINK:
1089                 switch (protocol) {
1090                 case NETLINK_ROUTE:
1091                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1092                 case NETLINK_FIREWALL:
1093                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1094                 case NETLINK_SOCK_DIAG:
1095                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1096                 case NETLINK_NFLOG:
1097                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1098                 case NETLINK_XFRM:
1099                         return SECCLASS_NETLINK_XFRM_SOCKET;
1100                 case NETLINK_SELINUX:
1101                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1102                 case NETLINK_AUDIT:
1103                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1104                 case NETLINK_IP6_FW:
1105                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1106                 case NETLINK_DNRTMSG:
1107                         return SECCLASS_NETLINK_DNRT_SOCKET;
1108                 case NETLINK_KOBJECT_UEVENT:
1109                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1110                 default:
1111                         return SECCLASS_NETLINK_SOCKET;
1112                 }
1113         case PF_PACKET:
1114                 return SECCLASS_PACKET_SOCKET;
1115         case PF_KEY:
1116                 return SECCLASS_KEY_SOCKET;
1117         case PF_APPLETALK:
1118                 return SECCLASS_APPLETALK_SOCKET;
1119         }
1120
1121         return SECCLASS_SOCKET;
1122 }
1123
1124 #ifdef CONFIG_PROC_FS
1125 static int selinux_proc_get_sid(struct dentry *dentry,
1126                                 u16 tclass,
1127                                 u32 *sid)
1128 {
1129         int rc;
1130         char *buffer, *path;
1131
1132         buffer = (char *)__get_free_page(GFP_KERNEL);
1133         if (!buffer)
1134                 return -ENOMEM;
1135
1136         path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1137         if (IS_ERR(path))
1138                 rc = PTR_ERR(path);
1139         else {
1140                 /* each process gets a /proc/PID/ entry. Strip off the
1141                  * PID part to get a valid selinux labeling.
1142                  * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1143                 while (path[1] >= '0' && path[1] <= '9') {
1144                         path[1] = '/';
1145                         path++;
1146                 }
1147                 rc = security_genfs_sid("proc", path, tclass, sid);
1148         }
1149         free_page((unsigned long)buffer);
1150         return rc;
1151 }
1152 #else
1153 static int selinux_proc_get_sid(struct dentry *dentry,
1154                                 u16 tclass,
1155                                 u32 *sid)
1156 {
1157         return -EINVAL;
1158 }
1159 #endif
1160
1161 /* The inode's security attributes must be initialized before first use. */
1162 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1163 {
1164         struct superblock_security_struct *sbsec = NULL;
1165         struct inode_security_struct *isec = inode->i_security;
1166         u32 sid;
1167         struct dentry *dentry;
1168 #define INITCONTEXTLEN 255
1169         char *context = NULL;
1170         unsigned len = 0;
1171         int rc = 0;
1172
1173         if (isec->initialized)
1174                 goto out;
1175
1176         mutex_lock(&isec->lock);
1177         if (isec->initialized)
1178                 goto out_unlock;
1179
1180         sbsec = inode->i_sb->s_security;
1181         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1182                 /* Defer initialization until selinux_complete_init,
1183                    after the initial policy is loaded and the security
1184                    server is ready to handle calls. */
1185                 spin_lock(&sbsec->isec_lock);
1186                 if (list_empty(&isec->list))
1187                         list_add(&isec->list, &sbsec->isec_head);
1188                 spin_unlock(&sbsec->isec_lock);
1189                 goto out_unlock;
1190         }
1191
1192         switch (sbsec->behavior) {
1193         case SECURITY_FS_USE_XATTR:
1194                 if (!inode->i_op->getxattr) {
1195                         isec->sid = sbsec->def_sid;
1196                         break;
1197                 }
1198
1199                 /* Need a dentry, since the xattr API requires one.
1200                    Life would be simpler if we could just pass the inode. */
1201                 if (opt_dentry) {
1202                         /* Called from d_instantiate or d_splice_alias. */
1203                         dentry = dget(opt_dentry);
1204                 } else {
1205                         /* Called from selinux_complete_init, try to find a dentry. */
1206                         dentry = d_find_alias(inode);
1207                 }
1208                 if (!dentry) {
1209                         /*
1210                          * this is can be hit on boot when a file is accessed
1211                          * before the policy is loaded.  When we load policy we
1212                          * may find inodes that have no dentry on the
1213                          * sbsec->isec_head list.  No reason to complain as these
1214                          * will get fixed up the next time we go through
1215                          * inode_doinit with a dentry, before these inodes could
1216                          * be used again by userspace.
1217                          */
1218                         goto out_unlock;
1219                 }
1220
1221                 len = INITCONTEXTLEN;
1222                 context = kmalloc(len+1, GFP_NOFS);
1223                 if (!context) {
1224                         rc = -ENOMEM;
1225                         dput(dentry);
1226                         goto out_unlock;
1227                 }
1228                 context[len] = '\0';
1229                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1230                                            context, len);
1231                 if (rc == -ERANGE) {
1232                         kfree(context);
1233
1234                         /* Need a larger buffer.  Query for the right size. */
1235                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1236                                                    NULL, 0);
1237                         if (rc < 0) {
1238                                 dput(dentry);
1239                                 goto out_unlock;
1240                         }
1241                         len = rc;
1242                         context = kmalloc(len+1, GFP_NOFS);
1243                         if (!context) {
1244                                 rc = -ENOMEM;
1245                                 dput(dentry);
1246                                 goto out_unlock;
1247                         }
1248                         context[len] = '\0';
1249                         rc = inode->i_op->getxattr(dentry,
1250                                                    XATTR_NAME_SELINUX,
1251                                                    context, len);
1252                 }
1253                 dput(dentry);
1254                 if (rc < 0) {
1255                         if (rc != -ENODATA) {
1256                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1257                                        "%d for dev=%s ino=%ld\n", __func__,
1258                                        -rc, inode->i_sb->s_id, inode->i_ino);
1259                                 kfree(context);
1260                                 goto out_unlock;
1261                         }
1262                         /* Map ENODATA to the default file SID */
1263                         sid = sbsec->def_sid;
1264                         rc = 0;
1265                 } else {
1266                         rc = security_context_to_sid_default(context, rc, &sid,
1267                                                              sbsec->def_sid,
1268                                                              GFP_NOFS);
1269                         if (rc) {
1270                                 char *dev = inode->i_sb->s_id;
1271                                 unsigned long ino = inode->i_ino;
1272
1273                                 if (rc == -EINVAL) {
1274                                         if (printk_ratelimit())
1275                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1276                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1277                                                         "filesystem in question.\n", ino, dev, context);
1278                                 } else {
1279                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1280                                                "returned %d for dev=%s ino=%ld\n",
1281                                                __func__, context, -rc, dev, ino);
1282                                 }
1283                                 kfree(context);
1284                                 /* Leave with the unlabeled SID */
1285                                 rc = 0;
1286                                 break;
1287                         }
1288                 }
1289                 kfree(context);
1290                 isec->sid = sid;
1291                 break;
1292         case SECURITY_FS_USE_TASK:
1293                 isec->sid = isec->task_sid;
1294                 break;
1295         case SECURITY_FS_USE_TRANS:
1296                 /* Default to the fs SID. */
1297                 isec->sid = sbsec->sid;
1298
1299                 /* Try to obtain a transition SID. */
1300                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1301                 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1302                                              isec->sclass, NULL, &sid);
1303                 if (rc)
1304                         goto out_unlock;
1305                 isec->sid = sid;
1306                 break;
1307         case SECURITY_FS_USE_MNTPOINT:
1308                 isec->sid = sbsec->mntpoint_sid;
1309                 break;
1310         default:
1311                 /* Default to the fs superblock SID. */
1312                 isec->sid = sbsec->sid;
1313
1314                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1315                         if (opt_dentry) {
1316                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1317                                 rc = selinux_proc_get_sid(opt_dentry,
1318                                                           isec->sclass,
1319                                                           &sid);
1320                                 if (rc)
1321                                         goto out_unlock;
1322                                 isec->sid = sid;
1323                         }
1324                 }
1325                 break;
1326         }
1327
1328         isec->initialized = 1;
1329
1330 out_unlock:
1331         mutex_unlock(&isec->lock);
1332 out:
1333         if (isec->sclass == SECCLASS_FILE)
1334                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1335         return rc;
1336 }
1337
1338 /* Convert a Linux signal to an access vector. */
1339 static inline u32 signal_to_av(int sig)
1340 {
1341         u32 perm = 0;
1342
1343         switch (sig) {
1344         case SIGCHLD:
1345                 /* Commonly granted from child to parent. */
1346                 perm = PROCESS__SIGCHLD;
1347                 break;
1348         case SIGKILL:
1349                 /* Cannot be caught or ignored */
1350                 perm = PROCESS__SIGKILL;
1351                 break;
1352         case SIGSTOP:
1353                 /* Cannot be caught or ignored */
1354                 perm = PROCESS__SIGSTOP;
1355                 break;
1356         default:
1357                 /* All other signals. */
1358                 perm = PROCESS__SIGNAL;
1359                 break;
1360         }
1361
1362         return perm;
1363 }
1364
1365 /*
1366  * Check permission between a pair of credentials
1367  * fork check, ptrace check, etc.
1368  */
1369 static int cred_has_perm(const struct cred *actor,
1370                          const struct cred *target,
1371                          u32 perms)
1372 {
1373         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1374
1375         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1376 }
1377
1378 /*
1379  * Check permission between a pair of tasks, e.g. signal checks,
1380  * fork check, ptrace check, etc.
1381  * tsk1 is the actor and tsk2 is the target
1382  * - this uses the default subjective creds of tsk1
1383  */
1384 static int task_has_perm(const struct task_struct *tsk1,
1385                          const struct task_struct *tsk2,
1386                          u32 perms)
1387 {
1388         const struct task_security_struct *__tsec1, *__tsec2;
1389         u32 sid1, sid2;
1390
1391         rcu_read_lock();
1392         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1393         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1394         rcu_read_unlock();
1395         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1396 }
1397
1398 /*
1399  * Check permission between current and another task, e.g. signal checks,
1400  * fork check, ptrace check, etc.
1401  * current is the actor and tsk2 is the target
1402  * - this uses current's subjective creds
1403  */
1404 static int current_has_perm(const struct task_struct *tsk,
1405                             u32 perms)
1406 {
1407         u32 sid, tsid;
1408
1409         sid = current_sid();
1410         tsid = task_sid(tsk);
1411         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1412 }
1413
1414 #if CAP_LAST_CAP > 63
1415 #error Fix SELinux to handle capabilities > 63.
1416 #endif
1417
1418 /* Check whether a task is allowed to use a capability. */
1419 static int cred_has_capability(const struct cred *cred,
1420                                int cap, int audit)
1421 {
1422         struct common_audit_data ad;
1423         struct av_decision avd;
1424         u16 sclass;
1425         u32 sid = cred_sid(cred);
1426         u32 av = CAP_TO_MASK(cap);
1427         int rc;
1428
1429         ad.type = LSM_AUDIT_DATA_CAP;
1430         ad.u.cap = cap;
1431
1432         switch (CAP_TO_INDEX(cap)) {
1433         case 0:
1434                 sclass = SECCLASS_CAPABILITY;
1435                 break;
1436         case 1:
1437                 sclass = SECCLASS_CAPABILITY2;
1438                 break;
1439         default:
1440                 printk(KERN_ERR
1441                        "SELinux:  out of range capability %d\n", cap);
1442                 BUG();
1443                 return -EINVAL;
1444         }
1445
1446         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1447         if (audit == SECURITY_CAP_AUDIT) {
1448                 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1449                 if (rc2)
1450                         return rc2;
1451         }
1452         return rc;
1453 }
1454
1455 /* Check whether a task is allowed to use a system operation. */
1456 static int task_has_system(struct task_struct *tsk,
1457                            u32 perms)
1458 {
1459         u32 sid = task_sid(tsk);
1460
1461         return avc_has_perm(sid, SECINITSID_KERNEL,
1462                             SECCLASS_SYSTEM, perms, NULL);
1463 }
1464
1465 /* Check whether a task has a particular permission to an inode.
1466    The 'adp' parameter is optional and allows other audit
1467    data to be passed (e.g. the dentry). */
1468 static int inode_has_perm(const struct cred *cred,
1469                           struct inode *inode,
1470                           u32 perms,
1471                           struct common_audit_data *adp,
1472                           unsigned flags)
1473 {
1474         struct inode_security_struct *isec;
1475         u32 sid;
1476
1477         validate_creds(cred);
1478
1479         if (unlikely(IS_PRIVATE(inode)))
1480                 return 0;
1481
1482         sid = cred_sid(cred);
1483         isec = inode->i_security;
1484
1485         return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1486 }
1487
1488 /* Same as inode_has_perm, but pass explicit audit data containing
1489    the dentry to help the auditing code to more easily generate the
1490    pathname if needed. */
1491 static inline int dentry_has_perm(const struct cred *cred,
1492                                   struct dentry *dentry,
1493                                   u32 av)
1494 {
1495         struct inode *inode = dentry->d_inode;
1496         struct common_audit_data ad;
1497
1498         ad.type = LSM_AUDIT_DATA_DENTRY;
1499         ad.u.dentry = dentry;
1500         return inode_has_perm(cred, inode, av, &ad, 0);
1501 }
1502
1503 /* Same as inode_has_perm, but pass explicit audit data containing
1504    the path to help the auditing code to more easily generate the
1505    pathname if needed. */
1506 static inline int path_has_perm(const struct cred *cred,
1507                                 struct path *path,
1508                                 u32 av)
1509 {
1510         struct inode *inode = path->dentry->d_inode;
1511         struct common_audit_data ad;
1512
1513         ad.type = LSM_AUDIT_DATA_PATH;
1514         ad.u.path = *path;
1515         return inode_has_perm(cred, inode, av, &ad, 0);
1516 }
1517
1518 /* Check whether a task can use an open file descriptor to
1519    access an inode in a given way.  Check access to the
1520    descriptor itself, and then use dentry_has_perm to
1521    check a particular permission to the file.
1522    Access to the descriptor is implicitly granted if it
1523    has the same SID as the process.  If av is zero, then
1524    access to the file is not checked, e.g. for cases
1525    where only the descriptor is affected like seek. */
1526 static int file_has_perm(const struct cred *cred,
1527                          struct file *file,
1528                          u32 av)
1529 {
1530         struct file_security_struct *fsec = file->f_security;
1531         struct inode *inode = file_inode(file);
1532         struct common_audit_data ad;
1533         u32 sid = cred_sid(cred);
1534         int rc;
1535
1536         ad.type = LSM_AUDIT_DATA_PATH;
1537         ad.u.path = file->f_path;
1538
1539         if (sid != fsec->sid) {
1540                 rc = avc_has_perm(sid, fsec->sid,
1541                                   SECCLASS_FD,
1542                                   FD__USE,
1543                                   &ad);
1544                 if (rc)
1545                         goto out;
1546         }
1547
1548         /* av is zero if only checking access to the descriptor. */
1549         rc = 0;
1550         if (av)
1551                 rc = inode_has_perm(cred, inode, av, &ad, 0);
1552
1553 out:
1554         return rc;
1555 }
1556
1557 /* Check whether a task can create a file. */
1558 static int may_create(struct inode *dir,
1559                       struct dentry *dentry,
1560                       u16 tclass)
1561 {
1562         const struct task_security_struct *tsec = current_security();
1563         struct inode_security_struct *dsec;
1564         struct superblock_security_struct *sbsec;
1565         u32 sid, newsid;
1566         struct common_audit_data ad;
1567         int rc;
1568
1569         dsec = dir->i_security;
1570         sbsec = dir->i_sb->s_security;
1571
1572         sid = tsec->sid;
1573         newsid = tsec->create_sid;
1574
1575         ad.type = LSM_AUDIT_DATA_DENTRY;
1576         ad.u.dentry = dentry;
1577
1578         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1579                           DIR__ADD_NAME | DIR__SEARCH,
1580                           &ad);
1581         if (rc)
1582                 return rc;
1583
1584         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1585                 rc = security_transition_sid(sid, dsec->sid, tclass,
1586                                              &dentry->d_name, &newsid);
1587                 if (rc)
1588                         return rc;
1589         }
1590
1591         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1592         if (rc)
1593                 return rc;
1594
1595         return avc_has_perm(newsid, sbsec->sid,
1596                             SECCLASS_FILESYSTEM,
1597                             FILESYSTEM__ASSOCIATE, &ad);
1598 }
1599
1600 /* Check whether a task can create a key. */
1601 static int may_create_key(u32 ksid,
1602                           struct task_struct *ctx)
1603 {
1604         u32 sid = task_sid(ctx);
1605
1606         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1607 }
1608
1609 #define MAY_LINK        0
1610 #define MAY_UNLINK      1
1611 #define MAY_RMDIR       2
1612
1613 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1614 static int may_link(struct inode *dir,
1615                     struct dentry *dentry,
1616                     int kind)
1617
1618 {
1619         struct inode_security_struct *dsec, *isec;
1620         struct common_audit_data ad;
1621         u32 sid = current_sid();
1622         u32 av;
1623         int rc;
1624
1625         dsec = dir->i_security;
1626         isec = dentry->d_inode->i_security;
1627
1628         ad.type = LSM_AUDIT_DATA_DENTRY;
1629         ad.u.dentry = dentry;
1630
1631         av = DIR__SEARCH;
1632         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1633         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1634         if (rc)
1635                 return rc;
1636
1637         switch (kind) {
1638         case MAY_LINK:
1639                 av = FILE__LINK;
1640                 break;
1641         case MAY_UNLINK:
1642                 av = FILE__UNLINK;
1643                 break;
1644         case MAY_RMDIR:
1645                 av = DIR__RMDIR;
1646                 break;
1647         default:
1648                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1649                         __func__, kind);
1650                 return 0;
1651         }
1652
1653         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1654         return rc;
1655 }
1656
1657 static inline int may_rename(struct inode *old_dir,
1658                              struct dentry *old_dentry,
1659                              struct inode *new_dir,
1660                              struct dentry *new_dentry)
1661 {
1662         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1663         struct common_audit_data ad;
1664         u32 sid = current_sid();
1665         u32 av;
1666         int old_is_dir, new_is_dir;
1667         int rc;
1668
1669         old_dsec = old_dir->i_security;
1670         old_isec = old_dentry->d_inode->i_security;
1671         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1672         new_dsec = new_dir->i_security;
1673
1674         ad.type = LSM_AUDIT_DATA_DENTRY;
1675
1676         ad.u.dentry = old_dentry;
1677         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1678                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1679         if (rc)
1680                 return rc;
1681         rc = avc_has_perm(sid, old_isec->sid,
1682                           old_isec->sclass, FILE__RENAME, &ad);
1683         if (rc)
1684                 return rc;
1685         if (old_is_dir && new_dir != old_dir) {
1686                 rc = avc_has_perm(sid, old_isec->sid,
1687                                   old_isec->sclass, DIR__REPARENT, &ad);
1688                 if (rc)
1689                         return rc;
1690         }
1691
1692         ad.u.dentry = new_dentry;
1693         av = DIR__ADD_NAME | DIR__SEARCH;
1694         if (new_dentry->d_inode)
1695                 av |= DIR__REMOVE_NAME;
1696         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1697         if (rc)
1698                 return rc;
1699         if (new_dentry->d_inode) {
1700                 new_isec = new_dentry->d_inode->i_security;
1701                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1702                 rc = avc_has_perm(sid, new_isec->sid,
1703                                   new_isec->sclass,
1704                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1705                 if (rc)
1706                         return rc;
1707         }
1708
1709         return 0;
1710 }
1711
1712 /* Check whether a task can perform a filesystem operation. */
1713 static int superblock_has_perm(const struct cred *cred,
1714                                struct super_block *sb,
1715                                u32 perms,
1716                                struct common_audit_data *ad)
1717 {
1718         struct superblock_security_struct *sbsec;
1719         u32 sid = cred_sid(cred);
1720
1721         sbsec = sb->s_security;
1722         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1723 }
1724
1725 /* Convert a Linux mode and permission mask to an access vector. */
1726 static inline u32 file_mask_to_av(int mode, int mask)
1727 {
1728         u32 av = 0;
1729
1730         if (!S_ISDIR(mode)) {
1731                 if (mask & MAY_EXEC)
1732                         av |= FILE__EXECUTE;
1733                 if (mask & MAY_READ)
1734                         av |= FILE__READ;
1735
1736                 if (mask & MAY_APPEND)
1737                         av |= FILE__APPEND;
1738                 else if (mask & MAY_WRITE)
1739                         av |= FILE__WRITE;
1740
1741         } else {
1742                 if (mask & MAY_EXEC)
1743                         av |= DIR__SEARCH;
1744                 if (mask & MAY_WRITE)
1745                         av |= DIR__WRITE;
1746                 if (mask & MAY_READ)
1747                         av |= DIR__READ;
1748         }
1749
1750         return av;
1751 }
1752
1753 /* Convert a Linux file to an access vector. */
1754 static inline u32 file_to_av(struct file *file)
1755 {
1756         u32 av = 0;
1757
1758         if (file->f_mode & FMODE_READ)
1759                 av |= FILE__READ;
1760         if (file->f_mode & FMODE_WRITE) {
1761                 if (file->f_flags & O_APPEND)
1762                         av |= FILE__APPEND;
1763                 else
1764                         av |= FILE__WRITE;
1765         }
1766         if (!av) {
1767                 /*
1768                  * Special file opened with flags 3 for ioctl-only use.
1769                  */
1770                 av = FILE__IOCTL;
1771         }
1772
1773         return av;
1774 }
1775
1776 /*
1777  * Convert a file to an access vector and include the correct open
1778  * open permission.
1779  */
1780 static inline u32 open_file_to_av(struct file *file)
1781 {
1782         u32 av = file_to_av(file);
1783
1784         if (selinux_policycap_openperm)
1785                 av |= FILE__OPEN;
1786
1787         return av;
1788 }
1789
1790 /* Hook functions begin here. */
1791
1792 static int selinux_ptrace_access_check(struct task_struct *child,
1793                                      unsigned int mode)
1794 {
1795         int rc;
1796
1797         rc = cap_ptrace_access_check(child, mode);
1798         if (rc)
1799                 return rc;
1800
1801         if (mode & PTRACE_MODE_READ) {
1802                 u32 sid = current_sid();
1803                 u32 csid = task_sid(child);
1804                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1805         }
1806
1807         return current_has_perm(child, PROCESS__PTRACE);
1808 }
1809
1810 static int selinux_ptrace_traceme(struct task_struct *parent)
1811 {
1812         int rc;
1813
1814         rc = cap_ptrace_traceme(parent);
1815         if (rc)
1816                 return rc;
1817
1818         return task_has_perm(parent, current, PROCESS__PTRACE);
1819 }
1820
1821 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1822                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1823 {
1824         int error;
1825
1826         error = current_has_perm(target, PROCESS__GETCAP);
1827         if (error)
1828                 return error;
1829
1830         return cap_capget(target, effective, inheritable, permitted);
1831 }
1832
1833 static int selinux_capset(struct cred *new, const struct cred *old,
1834                           const kernel_cap_t *effective,
1835                           const kernel_cap_t *inheritable,
1836                           const kernel_cap_t *permitted)
1837 {
1838         int error;
1839
1840         error = cap_capset(new, old,
1841                                       effective, inheritable, permitted);
1842         if (error)
1843                 return error;
1844
1845         return cred_has_perm(old, new, PROCESS__SETCAP);
1846 }
1847
1848 /*
1849  * (This comment used to live with the selinux_task_setuid hook,
1850  * which was removed).
1851  *
1852  * Since setuid only affects the current process, and since the SELinux
1853  * controls are not based on the Linux identity attributes, SELinux does not
1854  * need to control this operation.  However, SELinux does control the use of
1855  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1856  */
1857
1858 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1859                            int cap, int audit)
1860 {
1861         int rc;
1862
1863         rc = cap_capable(cred, ns, cap, audit);
1864         if (rc)
1865                 return rc;
1866
1867         return cred_has_capability(cred, cap, audit);
1868 }
1869
1870 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1871 {
1872         const struct cred *cred = current_cred();
1873         int rc = 0;
1874
1875         if (!sb)
1876                 return 0;
1877
1878         switch (cmds) {
1879         case Q_SYNC:
1880         case Q_QUOTAON:
1881         case Q_QUOTAOFF:
1882         case Q_SETINFO:
1883         case Q_SETQUOTA:
1884                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1885                 break;
1886         case Q_GETFMT:
1887         case Q_GETINFO:
1888         case Q_GETQUOTA:
1889                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1890                 break;
1891         default:
1892                 rc = 0;  /* let the kernel handle invalid cmds */
1893                 break;
1894         }
1895         return rc;
1896 }
1897
1898 static int selinux_quota_on(struct dentry *dentry)
1899 {
1900         const struct cred *cred = current_cred();
1901
1902         return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1903 }
1904
1905 static int selinux_syslog(int type)
1906 {
1907         int rc;
1908
1909         switch (type) {
1910         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
1911         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
1912                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1913                 break;
1914         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
1915         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
1916         /* Set level of messages printed to console */
1917         case SYSLOG_ACTION_CONSOLE_LEVEL:
1918                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1919                 break;
1920         case SYSLOG_ACTION_CLOSE:       /* Close log */
1921         case SYSLOG_ACTION_OPEN:        /* Open log */
1922         case SYSLOG_ACTION_READ:        /* Read from log */
1923         case SYSLOG_ACTION_READ_CLEAR:  /* Read/clear last kernel messages */
1924         case SYSLOG_ACTION_CLEAR:       /* Clear ring buffer */
1925         default:
1926                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1927                 break;
1928         }
1929         return rc;
1930 }
1931
1932 /*
1933  * Check that a process has enough memory to allocate a new virtual
1934  * mapping. 0 means there is enough memory for the allocation to
1935  * succeed and -ENOMEM implies there is not.
1936  *
1937  * Do not audit the selinux permission check, as this is applied to all
1938  * processes that allocate mappings.
1939  */
1940 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1941 {
1942         int rc, cap_sys_admin = 0;
1943
1944         rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
1945                              SECURITY_CAP_NOAUDIT);
1946         if (rc == 0)
1947                 cap_sys_admin = 1;
1948
1949         return __vm_enough_memory(mm, pages, cap_sys_admin);
1950 }
1951
1952 /* binprm security operations */
1953
1954 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
1955 {
1956         const struct task_security_struct *old_tsec;
1957         struct task_security_struct *new_tsec;
1958         struct inode_security_struct *isec;
1959         struct common_audit_data ad;
1960         struct inode *inode = file_inode(bprm->file);
1961         int rc;
1962
1963         rc = cap_bprm_set_creds(bprm);
1964         if (rc)
1965                 return rc;
1966
1967         /* SELinux context only depends on initial program or script and not
1968          * the script interpreter */
1969         if (bprm->cred_prepared)
1970                 return 0;
1971
1972         old_tsec = current_security();
1973         new_tsec = bprm->cred->security;
1974         isec = inode->i_security;
1975
1976         /* Default to the current task SID. */
1977         new_tsec->sid = old_tsec->sid;
1978         new_tsec->osid = old_tsec->sid;
1979
1980         /* Reset fs, key, and sock SIDs on execve. */
1981         new_tsec->create_sid = 0;
1982         new_tsec->keycreate_sid = 0;
1983         new_tsec->sockcreate_sid = 0;
1984
1985         if (old_tsec->exec_sid) {
1986                 new_tsec->sid = old_tsec->exec_sid;
1987                 /* Reset exec SID on execve. */
1988                 new_tsec->exec_sid = 0;
1989
1990                 /*
1991                  * Minimize confusion: if no_new_privs and a transition is
1992                  * explicitly requested, then fail the exec.
1993                  */
1994                 if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
1995                         return -EPERM;
1996         } else {
1997                 /* Check for a default transition on this program. */
1998                 rc = security_transition_sid(old_tsec->sid, isec->sid,
1999                                              SECCLASS_PROCESS, NULL,
2000                                              &new_tsec->sid);
2001                 if (rc)
2002                         return rc;
2003         }
2004
2005         ad.type = LSM_AUDIT_DATA_PATH;
2006         ad.u.path = bprm->file->f_path;
2007
2008         if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2009             (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2010                 new_tsec->sid = old_tsec->sid;
2011
2012         if (new_tsec->sid == old_tsec->sid) {
2013                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2014                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2015                 if (rc)
2016                         return rc;
2017         } else {
2018                 /* Check permissions for the transition. */
2019                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2020                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2021                 if (rc)
2022                         return rc;
2023
2024                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2025                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2026                 if (rc)
2027                         return rc;
2028
2029                 /* Check for shared state */
2030                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2031                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2032                                           SECCLASS_PROCESS, PROCESS__SHARE,
2033                                           NULL);
2034                         if (rc)
2035                                 return -EPERM;
2036                 }
2037
2038                 /* Make sure that anyone attempting to ptrace over a task that
2039                  * changes its SID has the appropriate permit */
2040                 if (bprm->unsafe &
2041                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2042                         struct task_struct *tracer;
2043                         struct task_security_struct *sec;
2044                         u32 ptsid = 0;
2045
2046                         rcu_read_lock();
2047                         tracer = ptrace_parent(current);
2048                         if (likely(tracer != NULL)) {
2049                                 sec = __task_cred(tracer)->security;
2050                                 ptsid = sec->sid;
2051                         }
2052                         rcu_read_unlock();
2053
2054                         if (ptsid != 0) {
2055                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2056                                                   SECCLASS_PROCESS,
2057                                                   PROCESS__PTRACE, NULL);
2058                                 if (rc)
2059                                         return -EPERM;
2060                         }
2061                 }
2062
2063                 /* Clear any possibly unsafe personality bits on exec: */
2064                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2065         }
2066
2067         return 0;
2068 }
2069
2070 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2071 {
2072         const struct task_security_struct *tsec = current_security();
2073         u32 sid, osid;
2074         int atsecure = 0;
2075
2076         sid = tsec->sid;
2077         osid = tsec->osid;
2078
2079         if (osid != sid) {
2080                 /* Enable secure mode for SIDs transitions unless
2081                    the noatsecure permission is granted between
2082                    the two SIDs, i.e. ahp returns 0. */
2083                 atsecure = avc_has_perm(osid, sid,
2084                                         SECCLASS_PROCESS,
2085                                         PROCESS__NOATSECURE, NULL);
2086         }
2087
2088         return (atsecure || cap_bprm_secureexec(bprm));
2089 }
2090
2091 static int match_file(const void *p, struct file *file, unsigned fd)
2092 {
2093         return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2094 }
2095
2096 /* Derived from fs/exec.c:flush_old_files. */
2097 static inline void flush_unauthorized_files(const struct cred *cred,
2098                                             struct files_struct *files)
2099 {
2100         struct file *file, *devnull = NULL;
2101         struct tty_struct *tty;
2102         int drop_tty = 0;
2103         unsigned n;
2104
2105         tty = get_current_tty();
2106         if (tty) {
2107                 spin_lock(&tty_files_lock);
2108                 if (!list_empty(&tty->tty_files)) {
2109                         struct tty_file_private *file_priv;
2110
2111                         /* Revalidate access to controlling tty.
2112                            Use path_has_perm on the tty path directly rather
2113                            than using file_has_perm, as this particular open
2114                            file may belong to another process and we are only
2115                            interested in the inode-based check here. */
2116                         file_priv = list_first_entry(&tty->tty_files,
2117                                                 struct tty_file_private, list);
2118                         file = file_priv->file;
2119                         if (path_has_perm(cred, &file->f_path, FILE__READ | FILE__WRITE))
2120                                 drop_tty = 1;
2121                 }
2122                 spin_unlock(&tty_files_lock);
2123                 tty_kref_put(tty);
2124         }
2125         /* Reset controlling tty. */
2126         if (drop_tty)
2127                 no_tty();
2128
2129         /* Revalidate access to inherited open files. */
2130         n = iterate_fd(files, 0, match_file, cred);
2131         if (!n) /* none found? */
2132                 return;
2133
2134         devnull = dentry_open(&selinux_null, O_RDWR, cred);
2135         if (IS_ERR(devnull))
2136                 devnull = NULL;
2137         /* replace all the matching ones with this */
2138         do {
2139                 replace_fd(n - 1, devnull, 0);
2140         } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2141         if (devnull)
2142                 fput(devnull);
2143 }
2144
2145 /*
2146  * Prepare a process for imminent new credential changes due to exec
2147  */
2148 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2149 {
2150         struct task_security_struct *new_tsec;
2151         struct rlimit *rlim, *initrlim;
2152         int rc, i;
2153
2154         new_tsec = bprm->cred->security;
2155         if (new_tsec->sid == new_tsec->osid)
2156                 return;
2157
2158         /* Close files for which the new task SID is not authorized. */
2159         flush_unauthorized_files(bprm->cred, current->files);
2160
2161         /* Always clear parent death signal on SID transitions. */
2162         current->pdeath_signal = 0;
2163
2164         /* Check whether the new SID can inherit resource limits from the old
2165          * SID.  If not, reset all soft limits to the lower of the current
2166          * task's hard limit and the init task's soft limit.
2167          *
2168          * Note that the setting of hard limits (even to lower them) can be
2169          * controlled by the setrlimit check.  The inclusion of the init task's
2170          * soft limit into the computation is to avoid resetting soft limits
2171          * higher than the default soft limit for cases where the default is
2172          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2173          */
2174         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2175                           PROCESS__RLIMITINH, NULL);
2176         if (rc) {
2177                 /* protect against do_prlimit() */
2178                 task_lock(current);
2179                 for (i = 0; i < RLIM_NLIMITS; i++) {
2180                         rlim = current->signal->rlim + i;
2181                         initrlim = init_task.signal->rlim + i;
2182                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2183                 }
2184                 task_unlock(current);
2185                 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2186         }
2187 }
2188
2189 /*
2190  * Clean up the process immediately after the installation of new credentials
2191  * due to exec
2192  */
2193 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2194 {
2195         const struct task_security_struct *tsec = current_security();
2196         struct itimerval itimer;
2197         u32 osid, sid;
2198         int rc, i;
2199
2200         osid = tsec->osid;
2201         sid = tsec->sid;
2202
2203         if (sid == osid)
2204                 return;
2205
2206         /* Check whether the new SID can inherit signal state from the old SID.
2207          * If not, clear itimers to avoid subsequent signal generation and
2208          * flush and unblock signals.
2209          *
2210          * This must occur _after_ the task SID has been updated so that any
2211          * kill done after the flush will be checked against the new SID.
2212          */
2213         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2214         if (rc) {
2215                 memset(&itimer, 0, sizeof itimer);
2216                 for (i = 0; i < 3; i++)
2217                         do_setitimer(i, &itimer, NULL);
2218                 spin_lock_irq(&current->sighand->siglock);
2219                 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2220                         __flush_signals(current);
2221                         flush_signal_handlers(current, 1);
2222                         sigemptyset(&current->blocked);
2223                 }
2224                 spin_unlock_irq(&current->sighand->siglock);
2225         }
2226
2227         /* Wake up the parent if it is waiting so that it can recheck
2228          * wait permission to the new task SID. */
2229         read_lock(&tasklist_lock);
2230         __wake_up_parent(current, current->real_parent);
2231         read_unlock(&tasklist_lock);
2232 }
2233
2234 /* superblock security operations */
2235
2236 static int selinux_sb_alloc_security(struct super_block *sb)
2237 {
2238         return superblock_alloc_security(sb);
2239 }
2240
2241 static void selinux_sb_free_security(struct super_block *sb)
2242 {
2243         superblock_free_security(sb);
2244 }
2245
2246 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2247 {
2248         if (plen > olen)
2249                 return 0;
2250
2251         return !memcmp(prefix, option, plen);
2252 }
2253
2254 static inline int selinux_option(char *option, int len)
2255 {
2256         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2257                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2258                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2259                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2260                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2261 }
2262
2263 static inline void take_option(char **to, char *from, int *first, int len)
2264 {
2265         if (!*first) {
2266                 **to = ',';
2267                 *to += 1;
2268         } else
2269                 *first = 0;
2270         memcpy(*to, from, len);
2271         *to += len;
2272 }
2273
2274 static inline void take_selinux_option(char **to, char *from, int *first,
2275                                        int len)
2276 {
2277         int current_size = 0;
2278
2279         if (!*first) {
2280                 **to = '|';
2281                 *to += 1;
2282         } else
2283                 *first = 0;
2284
2285         while (current_size < len) {
2286                 if (*from != '"') {
2287                         **to = *from;
2288                         *to += 1;
2289                 }
2290                 from += 1;
2291                 current_size += 1;
2292         }
2293 }
2294
2295 static int selinux_sb_copy_data(char *orig, char *copy)
2296 {
2297         int fnosec, fsec, rc = 0;
2298         char *in_save, *in_curr, *in_end;
2299         char *sec_curr, *nosec_save, *nosec;
2300         int open_quote = 0;
2301
2302         in_curr = orig;
2303         sec_curr = copy;
2304
2305         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2306         if (!nosec) {
2307                 rc = -ENOMEM;
2308                 goto out;
2309         }
2310
2311         nosec_save = nosec;
2312         fnosec = fsec = 1;
2313         in_save = in_end = orig;
2314
2315         do {
2316                 if (*in_end == '"')
2317                         open_quote = !open_quote;
2318                 if ((*in_end == ',' && open_quote == 0) ||
2319                                 *in_end == '\0') {
2320                         int len = in_end - in_curr;
2321
2322                         if (selinux_option(in_curr, len))
2323                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2324                         else
2325                                 take_option(&nosec, in_curr, &fnosec, len);
2326
2327                         in_curr = in_end + 1;
2328                 }
2329         } while (*in_end++);
2330
2331         strcpy(in_save, nosec_save);
2332         free_page((unsigned long)nosec_save);
2333 out:
2334         return rc;
2335 }
2336
2337 static int selinux_sb_remount(struct super_block *sb, void *data)
2338 {
2339         int rc, i, *flags;
2340         struct security_mnt_opts opts;
2341         char *secdata, **mount_options;
2342         struct superblock_security_struct *sbsec = sb->s_security;
2343
2344         if (!(sbsec->flags & SE_SBINITIALIZED))
2345                 return 0;
2346
2347         if (!data)
2348                 return 0;
2349
2350         if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2351                 return 0;
2352
2353         security_init_mnt_opts(&opts);
2354         secdata = alloc_secdata();
2355         if (!secdata)
2356                 return -ENOMEM;
2357         rc = selinux_sb_copy_data(data, secdata);
2358         if (rc)
2359                 goto out_free_secdata;
2360
2361         rc = selinux_parse_opts_str(secdata, &opts);
2362         if (rc)
2363                 goto out_free_secdata;
2364
2365         mount_options = opts.mnt_opts;
2366         flags = opts.mnt_opts_flags;
2367
2368         for (i = 0; i < opts.num_mnt_opts; i++) {
2369                 u32 sid;
2370                 size_t len;
2371
2372                 if (flags[i] == SE_SBLABELSUPP)
2373                         continue;
2374                 len = strlen(mount_options[i]);
2375                 rc = security_context_to_sid(mount_options[i], len, &sid);
2376                 if (rc) {
2377                         printk(KERN_WARNING "SELinux: security_context_to_sid"
2378                                "(%s) failed for (dev %s, type %s) errno=%d\n",
2379                                mount_options[i], sb->s_id, sb->s_type->name, rc);
2380                         goto out_free_opts;
2381                 }
2382                 rc = -EINVAL;
2383                 switch (flags[i]) {
2384                 case FSCONTEXT_MNT:
2385                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2386                                 goto out_bad_option;
2387                         break;
2388                 case CONTEXT_MNT:
2389                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2390                                 goto out_bad_option;
2391                         break;
2392                 case ROOTCONTEXT_MNT: {
2393                         struct inode_security_struct *root_isec;
2394                         root_isec = sb->s_root->d_inode->i_security;
2395
2396                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2397                                 goto out_bad_option;
2398                         break;
2399                 }
2400                 case DEFCONTEXT_MNT:
2401                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2402                                 goto out_bad_option;
2403                         break;
2404                 default:
2405                         goto out_free_opts;
2406                 }
2407         }
2408
2409         rc = 0;
2410 out_free_opts:
2411         security_free_mnt_opts(&opts);
2412 out_free_secdata:
2413         free_secdata(secdata);
2414         return rc;
2415 out_bad_option:
2416         printk(KERN_WARNING "SELinux: unable to change security options "
2417                "during remount (dev %s, type=%s)\n", sb->s_id,
2418                sb->s_type->name);
2419         goto out_free_opts;
2420 }
2421
2422 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2423 {
2424         const struct cred *cred = current_cred();
2425         struct common_audit_data ad;
2426         int rc;
2427
2428         rc = superblock_doinit(sb, data);
2429         if (rc)
2430                 return rc;
2431
2432         /* Allow all mounts performed by the kernel */
2433         if (flags & MS_KERNMOUNT)
2434                 return 0;
2435
2436         ad.type = LSM_AUDIT_DATA_DENTRY;
2437         ad.u.dentry = sb->s_root;
2438         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2439 }
2440
2441 static int selinux_sb_statfs(struct dentry *dentry)
2442 {
2443         const struct cred *cred = current_cred();
2444         struct common_audit_data ad;
2445
2446         ad.type = LSM_AUDIT_DATA_DENTRY;
2447         ad.u.dentry = dentry->d_sb->s_root;
2448         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2449 }
2450
2451 static int selinux_mount(const char *dev_name,
2452                          struct path *path,
2453                          const char *type,
2454                          unsigned long flags,
2455                          void *data)
2456 {
2457         const struct cred *cred = current_cred();
2458
2459         if (flags & MS_REMOUNT)
2460                 return superblock_has_perm(cred, path->dentry->d_sb,
2461                                            FILESYSTEM__REMOUNT, NULL);
2462         else
2463                 return path_has_perm(cred, path, FILE__MOUNTON);
2464 }
2465
2466 static int selinux_umount(struct vfsmount *mnt, int flags)
2467 {
2468         const struct cred *cred = current_cred();
2469
2470         return superblock_has_perm(cred, mnt->mnt_sb,
2471                                    FILESYSTEM__UNMOUNT, NULL);
2472 }
2473
2474 /* inode security operations */
2475
2476 static int selinux_inode_alloc_security(struct inode *inode)
2477 {
2478         return inode_alloc_security(inode);
2479 }
2480
2481 static void selinux_inode_free_security(struct inode *inode)
2482 {
2483         inode_free_security(inode);
2484 }
2485
2486 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2487                                        const struct qstr *qstr, char **name,
2488                                        void **value, size_t *len)
2489 {
2490         const struct task_security_struct *tsec = current_security();
2491         struct inode_security_struct *dsec;
2492         struct superblock_security_struct *sbsec;
2493         u32 sid, newsid, clen;
2494         int rc;
2495         char *namep = NULL, *context;
2496
2497         dsec = dir->i_security;
2498         sbsec = dir->i_sb->s_security;
2499
2500         sid = tsec->sid;
2501         newsid = tsec->create_sid;
2502
2503         if ((sbsec->flags & SE_SBINITIALIZED) &&
2504             (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2505                 newsid = sbsec->mntpoint_sid;
2506         else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2507                 rc = security_transition_sid(sid, dsec->sid,
2508                                              inode_mode_to_security_class(inode->i_mode),
2509                                              qstr, &newsid);
2510                 if (rc) {
2511                         printk(KERN_WARNING "%s:  "
2512                                "security_transition_sid failed, rc=%d (dev=%s "
2513                                "ino=%ld)\n",
2514                                __func__,
2515                                -rc, inode->i_sb->s_id, inode->i_ino);
2516                         return rc;
2517                 }
2518         }
2519
2520         /* Possibly defer initialization to selinux_complete_init. */
2521         if (sbsec->flags & SE_SBINITIALIZED) {
2522                 struct inode_security_struct *isec = inode->i_security;
2523                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2524                 isec->sid = newsid;
2525                 isec->initialized = 1;
2526         }
2527
2528         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2529                 return -EOPNOTSUPP;
2530
2531         if (name) {
2532                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2533                 if (!namep)
2534                         return -ENOMEM;
2535                 *name = namep;
2536         }
2537
2538         if (value && len) {
2539                 rc = security_sid_to_context_force(newsid, &context, &clen);
2540                 if (rc) {
2541                         kfree(namep);
2542                         return rc;
2543                 }
2544                 *value = context;
2545                 *len = clen;
2546         }
2547
2548         return 0;
2549 }
2550
2551 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2552 {
2553         return may_create(dir, dentry, SECCLASS_FILE);
2554 }
2555
2556 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2557 {
2558         return may_link(dir, old_dentry, MAY_LINK);
2559 }
2560
2561 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2562 {
2563         return may_link(dir, dentry, MAY_UNLINK);
2564 }
2565
2566 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2567 {
2568         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2569 }
2570
2571 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2572 {
2573         return may_create(dir, dentry, SECCLASS_DIR);
2574 }
2575
2576 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2577 {
2578         return may_link(dir, dentry, MAY_RMDIR);
2579 }
2580
2581 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2582 {
2583         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2584 }
2585
2586 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2587                                 struct inode *new_inode, struct dentry *new_dentry)
2588 {
2589         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2590 }
2591
2592 static int selinux_inode_readlink(struct dentry *dentry)
2593 {
2594         const struct cred *cred = current_cred();
2595
2596         return dentry_has_perm(cred, dentry, FILE__READ);
2597 }
2598
2599 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2600 {
2601         const struct cred *cred = current_cred();
2602
2603         return dentry_has_perm(cred, dentry, FILE__READ);
2604 }
2605
2606 static noinline int audit_inode_permission(struct inode *inode,
2607                                            u32 perms, u32 audited, u32 denied,
2608                                            unsigned flags)
2609 {
2610         struct common_audit_data ad;
2611         struct inode_security_struct *isec = inode->i_security;
2612         int rc;
2613
2614         ad.type = LSM_AUDIT_DATA_INODE;
2615         ad.u.inode = inode;
2616
2617         rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2618                             audited, denied, &ad, flags);
2619         if (rc)
2620                 return rc;
2621         return 0;
2622 }
2623
2624 static int selinux_inode_permission(struct inode *inode, int mask)
2625 {
2626         const struct cred *cred = current_cred();
2627         u32 perms;
2628         bool from_access;
2629         unsigned flags = mask & MAY_NOT_BLOCK;
2630         struct inode_security_struct *isec;
2631         u32 sid;
2632         struct av_decision avd;
2633         int rc, rc2;
2634         u32 audited, denied;
2635
2636         from_access = mask & MAY_ACCESS;
2637         mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2638
2639         /* No permission to check.  Existence test. */
2640         if (!mask)
2641                 return 0;
2642
2643         validate_creds(cred);
2644
2645         if (unlikely(IS_PRIVATE(inode)))
2646                 return 0;
2647
2648         perms = file_mask_to_av(inode->i_mode, mask);
2649
2650         sid = cred_sid(cred);
2651         isec = inode->i_security;
2652
2653         rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2654         audited = avc_audit_required(perms, &avd, rc,
2655                                      from_access ? FILE__AUDIT_ACCESS : 0,
2656                                      &denied);
2657         if (likely(!audited))
2658                 return rc;
2659
2660         rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2661         if (rc2)
2662                 return rc2;
2663         return rc;
2664 }
2665
2666 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2667 {
2668         const struct cred *cred = current_cred();
2669         unsigned int ia_valid = iattr->ia_valid;
2670         __u32 av = FILE__WRITE;
2671
2672         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2673         if (ia_valid & ATTR_FORCE) {
2674                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2675                               ATTR_FORCE);
2676                 if (!ia_valid)
2677                         return 0;
2678         }
2679
2680         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2681                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2682                 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2683
2684         if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2685                 av |= FILE__OPEN;
2686
2687         return dentry_has_perm(cred, dentry, av);
2688 }
2689
2690 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2691 {
2692         const struct cred *cred = current_cred();
2693         struct path path;
2694
2695         path.dentry = dentry;
2696         path.mnt = mnt;
2697
2698         return path_has_perm(cred, &path, FILE__GETATTR);
2699 }
2700
2701 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2702 {
2703         const struct cred *cred = current_cred();
2704
2705         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2706                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2707                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2708                         if (!capable(CAP_SETFCAP))
2709                                 return -EPERM;
2710                 } else if (!capable(CAP_SYS_ADMIN)) {
2711                         /* A different attribute in the security namespace.
2712                            Restrict to administrator. */
2713                         return -EPERM;
2714                 }
2715         }
2716
2717         /* Not an attribute we recognize, so just check the
2718            ordinary setattr permission. */
2719         return dentry_has_perm(cred, dentry, FILE__SETATTR);
2720 }
2721
2722 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2723                                   const void *value, size_t size, int flags)
2724 {
2725         struct inode *inode = dentry->d_inode;
2726         struct inode_security_struct *isec = inode->i_security;
2727         struct superblock_security_struct *sbsec;
2728         struct common_audit_data ad;
2729         u32 newsid, sid = current_sid();
2730         int rc = 0;
2731
2732         if (strcmp(name, XATTR_NAME_SELINUX))
2733                 return selinux_inode_setotherxattr(dentry, name);
2734
2735         sbsec = inode->i_sb->s_security;
2736         if (!(sbsec->flags & SE_SBLABELSUPP))
2737                 return -EOPNOTSUPP;
2738
2739         if (!inode_owner_or_capable(inode))
2740                 return -EPERM;
2741
2742         ad.type = LSM_AUDIT_DATA_DENTRY;
2743         ad.u.dentry = dentry;
2744
2745         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2746                           FILE__RELABELFROM, &ad);
2747         if (rc)
2748                 return rc;
2749
2750         rc = security_context_to_sid(value, size, &newsid);
2751         if (rc == -EINVAL) {
2752                 if (!capable(CAP_MAC_ADMIN)) {
2753                         struct audit_buffer *ab;
2754                         size_t audit_size;
2755                         const char *str;
2756
2757                         /* We strip a nul only if it is at the end, otherwise the
2758                          * context contains a nul and we should audit that */
2759                         if (value) {
2760                                 str = value;
2761                                 if (str[size - 1] == '\0')
2762                                         audit_size = size - 1;
2763                                 else
2764                                         audit_size = size;
2765                         } else {
2766                                 str = "";
2767                                 audit_size = 0;
2768                         }
2769                         ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2770                         audit_log_format(ab, "op=setxattr invalid_context=");
2771                         audit_log_n_untrustedstring(ab, value, audit_size);
2772                         audit_log_end(ab);
2773
2774                         return rc;
2775                 }
2776                 rc = security_context_to_sid_force(value, size, &newsid);
2777         }
2778         if (rc)
2779                 return rc;
2780
2781         rc = avc_has_perm(sid, newsid, isec->sclass,
2782                           FILE__RELABELTO, &ad);
2783         if (rc)
2784                 return rc;
2785
2786         rc = security_validate_transition(isec->sid, newsid, sid,
2787                                           isec->sclass);
2788         if (rc)
2789                 return rc;
2790
2791         return avc_has_perm(newsid,
2792                             sbsec->sid,
2793                             SECCLASS_FILESYSTEM,
2794                             FILESYSTEM__ASSOCIATE,
2795                             &ad);
2796 }
2797
2798 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2799                                         const void *value, size_t size,
2800                                         int flags)
2801 {
2802         struct inode *inode = dentry->d_inode;
2803         struct inode_security_struct *isec = inode->i_security;
2804         u32 newsid;
2805         int rc;
2806
2807         if (strcmp(name, XATTR_NAME_SELINUX)) {
2808                 /* Not an attribute we recognize, so nothing to do. */
2809                 return;
2810         }
2811
2812         rc = security_context_to_sid_force(value, size, &newsid);
2813         if (rc) {
2814                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2815                        "for (%s, %lu), rc=%d\n",
2816                        inode->i_sb->s_id, inode->i_ino, -rc);
2817                 return;
2818         }
2819
2820         isec->sid = newsid;
2821         return;
2822 }
2823
2824 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2825 {
2826         const struct cred *cred = current_cred();
2827
2828         return dentry_has_perm(cred, dentry, FILE__GETATTR);
2829 }
2830
2831 static int selinux_inode_listxattr(struct dentry *dentry)
2832 {
2833         const struct cred *cred = current_cred();
2834
2835         return dentry_has_perm(cred, dentry, FILE__GETATTR);
2836 }
2837
2838 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2839 {
2840         if (strcmp(name, XATTR_NAME_SELINUX))
2841                 return selinux_inode_setotherxattr(dentry, name);
2842
2843         /* No one is allowed to remove a SELinux security label.
2844            You can change the label, but all data must be labeled. */
2845         return -EACCES;
2846 }
2847
2848 /*
2849  * Copy the inode security context value to the user.
2850  *
2851  * Permission check is handled by selinux_inode_getxattr hook.
2852  */
2853 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2854 {
2855         u32 size;
2856         int error;
2857         char *context = NULL;
2858         struct inode_security_struct *isec = inode->i_security;
2859
2860         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2861                 return -EOPNOTSUPP;
2862
2863         /*
2864          * If the caller has CAP_MAC_ADMIN, then get the raw context
2865          * value even if it is not defined by current policy; otherwise,
2866          * use the in-core value under current policy.
2867          * Use the non-auditing forms of the permission checks since
2868          * getxattr may be called by unprivileged processes commonly
2869          * and lack of permission just means that we fall back to the
2870          * in-core context value, not a denial.
2871          */
2872         error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
2873                                 SECURITY_CAP_NOAUDIT);
2874         if (!error)
2875                 error = security_sid_to_context_force(isec->sid, &context,
2876                                                       &size);
2877         else
2878                 error = security_sid_to_context(isec->sid, &context, &size);
2879         if (error)
2880                 return error;
2881         error = size;
2882         if (alloc) {
2883                 *buffer = context;
2884                 goto out_nofree;
2885         }
2886         kfree(context);
2887 out_nofree:
2888         return error;
2889 }
2890
2891 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2892                                      const void *value, size_t size, int flags)
2893 {
2894         struct inode_security_struct *isec = inode->i_security;
2895         u32 newsid;
2896         int rc;
2897
2898         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2899                 return -EOPNOTSUPP;
2900
2901         if (!value || !size)
2902                 return -EACCES;
2903
2904         rc = security_context_to_sid((void *)value, size, &newsid);
2905         if (rc)
2906                 return rc;
2907
2908         isec->sid = newsid;
2909         isec->initialized = 1;
2910         return 0;
2911 }
2912
2913 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2914 {
2915         const int len = sizeof(XATTR_NAME_SELINUX);
2916         if (buffer && len <= buffer_size)
2917                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2918         return len;
2919 }
2920
2921 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2922 {
2923         struct inode_security_struct *isec = inode->i_security;
2924         *secid = isec->sid;
2925 }
2926
2927 /* file security operations */
2928
2929 static int selinux_revalidate_file_permission(struct file *file, int mask)
2930 {
2931         const struct cred *cred = current_cred();
2932         struct inode *inode = file_inode(file);
2933
2934         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2935         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2936                 mask |= MAY_APPEND;
2937
2938         return file_has_perm(cred, file,
2939                              file_mask_to_av(inode->i_mode, mask));
2940 }
2941
2942 static int selinux_file_permission(struct file *file, int mask)
2943 {
2944         struct inode *inode = file_inode(file);
2945         struct file_security_struct *fsec = file->f_security;
2946         struct inode_security_struct *isec = inode->i_security;
2947         u32 sid = current_sid();
2948
2949         if (!mask)
2950                 /* No permission to check.  Existence test. */
2951                 return 0;
2952
2953         if (sid == fsec->sid && fsec->isid == isec->sid &&
2954             fsec->pseqno == avc_policy_seqno())
2955                 /* No change since file_open check. */
2956                 return 0;
2957
2958         return selinux_revalidate_file_permission(file, mask);
2959 }
2960
2961 static int selinux_file_alloc_security(struct file *file)
2962 {
2963         return file_alloc_security(file);
2964 }
2965
2966 static void selinux_file_free_security(struct file *file)
2967 {
2968         file_free_security(file);
2969 }
2970
2971 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2972                               unsigned long arg)
2973 {
2974         const struct cred *cred = current_cred();
2975         int error = 0;
2976
2977         switch (cmd) {
2978         case FIONREAD:
2979         /* fall through */
2980         case FIBMAP:
2981         /* fall through */
2982         case FIGETBSZ:
2983         /* fall through */
2984         case FS_IOC_GETFLAGS:
2985         /* fall through */
2986         case FS_IOC_GETVERSION:
2987                 error = file_has_perm(cred, file, FILE__GETATTR);
2988                 break;
2989
2990         case FS_IOC_SETFLAGS:
2991         /* fall through */
2992         case FS_IOC_SETVERSION:
2993                 error = file_has_perm(cred, file, FILE__SETATTR);
2994                 break;
2995
2996         /* sys_ioctl() checks */
2997         case FIONBIO:
2998         /* fall through */
2999         case FIOASYNC:
3000                 error = file_has_perm(cred, file, 0);
3001                 break;
3002
3003         case KDSKBENT:
3004         case KDSKBSENT:
3005                 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3006                                             SECURITY_CAP_AUDIT);
3007                 break;
3008
3009         /* default case assumes that the command will go
3010          * to the file's ioctl() function.
3011          */
3012         default:
3013                 error = file_has_perm(cred, file, FILE__IOCTL);
3014         }
3015         return error;
3016 }
3017
3018 static int default_noexec;
3019
3020 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3021 {
3022         const struct cred *cred = current_cred();
3023         int rc = 0;
3024
3025         if (default_noexec &&
3026             (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3027                 /*
3028                  * We are making executable an anonymous mapping or a
3029                  * private file mapping that will also be writable.
3030                  * This has an additional check.
3031                  */
3032                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3033                 if (rc)
3034                         goto error;
3035         }
3036
3037         if (file) {
3038                 /* read access is always possible with a mapping */
3039                 u32 av = FILE__READ;
3040
3041                 /* write access only matters if the mapping is shared */
3042                 if (shared && (prot & PROT_WRITE))
3043                         av |= FILE__WRITE;
3044
3045                 if (prot & PROT_EXEC)
3046                         av |= FILE__EXECUTE;
3047
3048                 return file_has_perm(cred, file, av);
3049         }
3050
3051 error:
3052         return rc;
3053 }
3054
3055 static int selinux_mmap_addr(unsigned long addr)
3056 {
3057         int rc = 0;
3058         u32 sid = current_sid();
3059
3060         /*
3061          * notice that we are intentionally putting the SELinux check before
3062          * the secondary cap_file_mmap check.  This is such a likely attempt
3063          * at bad behaviour/exploit that we always want to get the AVC, even
3064          * if DAC would have also denied the operation.
3065          */
3066         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3067                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3068                                   MEMPROTECT__MMAP_ZERO, NULL);
3069                 if (rc)
3070                         return rc;
3071         }
3072
3073         /* do DAC check on address space usage */
3074         return cap_mmap_addr(addr);
3075 }
3076
3077 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3078                              unsigned long prot, unsigned long flags)
3079 {
3080         if (selinux_checkreqprot)
3081                 prot = reqprot;
3082
3083         return file_map_prot_check(file, prot,
3084                                    (flags & MAP_TYPE) == MAP_SHARED);
3085 }
3086
3087 static int selinux_file_mprotect(struct vm_area_struct *vma,
3088                                  unsigned long reqprot,
3089                                  unsigned long prot)
3090 {
3091         const struct cred *cred = current_cred();
3092
3093         if (selinux_checkreqprot)
3094                 prot = reqprot;
3095
3096         if (default_noexec &&
3097             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3098                 int rc = 0;
3099                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3100                     vma->vm_end <= vma->vm_mm->brk) {
3101                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3102                 } else if (!vma->vm_file &&
3103                            vma->vm_start <= vma->vm_mm->start_stack &&
3104                            vma->vm_end >= vma->vm_mm->start_stack) {
3105                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3106                 } else if (vma->vm_file && vma->anon_vma) {
3107                         /*
3108                          * We are making executable a file mapping that has
3109                          * had some COW done. Since pages might have been
3110                          * written, check ability to execute the possibly
3111                          * modified content.  This typically should only
3112                          * occur for text relocations.
3113                          */
3114                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3115                 }
3116                 if (rc)
3117                         return rc;
3118         }
3119
3120         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3121 }
3122
3123 static int selinux_file_lock(struct file *file, unsigned int cmd)
3124 {
3125         const struct cred *cred = current_cred();
3126
3127         return file_has_perm(cred, file, FILE__LOCK);
3128 }
3129
3130 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3131                               unsigned long arg)
3132 {
3133         const struct cred *cred = current_cred();
3134         int err = 0;
3135
3136         switch (cmd) {
3137         case F_SETFL:
3138                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3139                         err = file_has_perm(cred, file, FILE__WRITE);
3140                         break;
3141                 }
3142                 /* fall through */
3143         case F_SETOWN:
3144         case F_SETSIG:
3145         case F_GETFL:
3146         case F_GETOWN:
3147         case F_GETSIG:
3148         case F_GETOWNER_UIDS:
3149                 /* Just check FD__USE permission */
3150                 err = file_has_perm(cred, file, 0);
3151                 break;
3152         case F_GETLK:
3153         case F_SETLK:
3154         case F_SETLKW:
3155 #if BITS_PER_LONG == 32
3156         case F_GETLK64:
3157         case F_SETLK64:
3158         case F_SETLKW64:
3159 #endif
3160                 err = file_has_perm(cred, file, FILE__LOCK);
3161                 break;
3162         }
3163
3164         return err;
3165 }
3166
3167 static int selinux_file_set_fowner(struct file *file)
3168 {
3169         struct file_security_struct *fsec;
3170
3171         fsec = file->f_security;
3172         fsec->fown_sid = current_sid();
3173
3174         return 0;
3175 }
3176
3177 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3178                                        struct fown_struct *fown, int signum)
3179 {
3180         struct file *file;
3181         u32 sid = task_sid(tsk);
3182         u32 perm;
3183         struct file_security_struct *fsec;
3184
3185         /* struct fown_struct is never outside the context of a struct file */
3186         file = container_of(fown, struct file, f_owner);
3187
3188         fsec = file->f_security;
3189
3190         if (!signum)
3191                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3192         else
3193                 perm = signal_to_av(signum);
3194
3195         return avc_has_perm(fsec->fown_sid, sid,
3196                             SECCLASS_PROCESS, perm, NULL);
3197 }
3198
3199 static int selinux_file_receive(struct file *file)
3200 {
3201         const struct cred *cred = current_cred();
3202
3203         return file_has_perm(cred, file, file_to_av(file));
3204 }
3205
3206 static int selinux_file_open(struct file *file, const struct cred *cred)
3207 {
3208         struct file_security_struct *fsec;
3209         struct inode_security_struct *isec;
3210
3211         fsec = file->f_security;
3212         isec = file_inode(file)->i_security;
3213         /*
3214          * Save inode label and policy sequence number
3215          * at open-time so that selinux_file_permission
3216          * can determine whether revalidation is necessary.
3217          * Task label is already saved in the file security
3218          * struct as its SID.
3219          */
3220         fsec->isid = isec->sid;
3221         fsec->pseqno = avc_policy_seqno();
3222         /*
3223          * Since the inode label or policy seqno may have changed
3224          * between the selinux_inode_permission check and the saving
3225          * of state above, recheck that access is still permitted.
3226          * Otherwise, access might never be revalidated against the
3227          * new inode label or new policy.
3228          * This check is not redundant - do not remove.
3229          */
3230         return path_has_perm(cred, &file->f_path, open_file_to_av(file));
3231 }
3232
3233 /* task security operations */
3234
3235 static int selinux_task_create(unsigned long clone_flags)
3236 {
3237         return current_has_perm(current, PROCESS__FORK);
3238 }
3239
3240 /*
3241  * allocate the SELinux part of blank credentials
3242  */
3243 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3244 {
3245         struct task_security_struct *tsec;
3246
3247         tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3248         if (!tsec)
3249                 return -ENOMEM;
3250
3251         cred->security = tsec;
3252         return 0;
3253 }
3254
3255 /*
3256  * detach and free the LSM part of a set of credentials
3257  */
3258 static void selinux_cred_free(struct cred *cred)
3259 {
3260         struct task_security_struct *tsec = cred->security;
3261
3262         /*
3263          * cred->security == NULL if security_cred_alloc_blank() or
3264          * security_prepare_creds() returned an error.
3265          */
3266         BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3267         cred->security = (void *) 0x7UL;
3268         kfree(tsec);
3269 }
3270
3271 /*
3272  * prepare a new set of credentials for modification
3273  */
3274 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3275                                 gfp_t gfp)
3276 {
3277         const struct task_security_struct *old_tsec;
3278         struct task_security_struct *tsec;
3279
3280         old_tsec = old->security;
3281
3282         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3283         if (!tsec)
3284                 return -ENOMEM;
3285
3286         new->security = tsec;
3287         return 0;
3288 }
3289
3290 /*
3291  * transfer the SELinux data to a blank set of creds
3292  */
3293 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3294 {
3295         const struct task_security_struct *old_tsec = old->security;
3296         struct task_security_struct *tsec = new->security;
3297
3298         *tsec = *old_tsec;
3299 }
3300
3301 /*
3302  * set the security data for a kernel service
3303  * - all the creation contexts are set to unlabelled
3304  */
3305 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3306 {
3307         struct task_security_struct *tsec = new->security;
3308         u32 sid = current_sid();
3309         int ret;
3310
3311         ret = avc_has_perm(sid, secid,
3312                            SECCLASS_KERNEL_SERVICE,
3313                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3314                            NULL);
3315         if (ret == 0) {
3316                 tsec->sid = secid;
3317                 tsec->create_sid = 0;
3318                 tsec->keycreate_sid = 0;
3319                 tsec->sockcreate_sid = 0;
3320         }
3321         return ret;
3322 }
3323
3324 /*
3325  * set the file creation context in a security record to the same as the
3326  * objective context of the specified inode
3327  */
3328 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3329 {
3330         struct inode_security_struct *isec = inode->i_security;
3331         struct task_security_struct *tsec = new->security;
3332         u32 sid = current_sid();
3333         int ret;
3334
3335         ret = avc_has_perm(sid, isec->sid,
3336                            SECCLASS_KERNEL_SERVICE,
3337                            KERNEL_SERVICE__CREATE_FILES_AS,
3338                            NULL);
3339
3340         if (ret == 0)
3341                 tsec->create_sid = isec->sid;
3342         return ret;
3343 }
3344
3345 static int selinux_kernel_module_request(char *kmod_name)
3346 {
3347         u32 sid;
3348         struct common_audit_data ad;
3349
3350         sid = task_sid(current);
3351
3352         ad.type = LSM_AUDIT_DATA_KMOD;
3353         ad.u.kmod_name = kmod_name;
3354
3355         return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3356                             SYSTEM__MODULE_REQUEST, &ad);
3357 }
3358
3359 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3360 {
3361         return current_has_perm(p, PROCESS__SETPGID);
3362 }
3363
3364 static int selinux_task_getpgid(struct task_struct *p)
3365 {
3366         return current_has_perm(p, PROCESS__GETPGID);
3367 }
3368
3369 static int selinux_task_getsid(struct task_struct *p)
3370 {
3371         return current_has_perm(p, PROCESS__GETSESSION);
3372 }
3373
3374 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3375 {
3376         *secid = task_sid(p);
3377 }
3378
3379 static int selinux_task_setnice(struct task_struct *p, int nice)
3380 {
3381         int rc;
3382
3383         rc = cap_task_setnice(p, nice);
3384         if (rc)
3385                 return rc;
3386
3387         return current_has_perm(p, PROCESS__SETSCHED);
3388 }
3389
3390 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3391 {
3392         int rc;
3393
3394         rc = cap_task_setioprio(p, ioprio);
3395         if (rc)
3396                 return rc;
3397
3398         return current_has_perm(p, PROCESS__SETSCHED);
3399 }
3400
3401 static int selinux_task_getioprio(struct task_struct *p)
3402 {
3403         return current_has_perm(p, PROCESS__GETSCHED);
3404 }
3405
3406 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3407                 struct rlimit *new_rlim)
3408 {
3409         struct rlimit *old_rlim = p->signal->rlim + resource;
3410
3411         /* Control the ability to change the hard limit (whether
3412            lowering or raising it), so that the hard limit can
3413            later be used as a safe reset point for the soft limit
3414            upon context transitions.  See selinux_bprm_committing_creds. */
3415         if (old_rlim->rlim_max != new_rlim->rlim_max)
3416                 return current_has_perm(p, PROCESS__SETRLIMIT);
3417
3418         return 0;
3419 }
3420
3421 static int selinux_task_setscheduler(struct task_struct *p)
3422 {
3423         int rc;
3424
3425         rc = cap_task_setscheduler(p);
3426         if (rc)
3427                 return rc;
3428
3429         return current_has_perm(p, PROCESS__SETSCHED);
3430 }
3431
3432 static int selinux_task_getscheduler(struct task_struct *p)
3433 {
3434         return current_has_perm(p, PROCESS__GETSCHED);
3435 }
3436
3437 static int selinux_task_movememory(struct task_struct *p)
3438 {
3439         return current_has_perm(p, PROCESS__SETSCHED);
3440 }
3441
3442 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3443                                 int sig, u32 secid)
3444 {
3445         u32 perm;
3446         int rc;
3447
3448         if (!sig)
3449                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3450         else
3451                 perm = signal_to_av(sig);
3452         if (secid)
3453                 rc = avc_has_perm(secid, task_sid(p),
3454                                   SECCLASS_PROCESS, perm, NULL);
3455         else
3456                 rc = current_has_perm(p, perm);
3457         return rc;
3458 }
3459
3460 static int selinux_task_wait(struct task_struct *p)
3461 {
3462         return task_has_perm(p, current, PROCESS__SIGCHLD);
3463 }
3464
3465 static void selinux_task_to_inode(struct task_struct *p,
3466                                   struct inode *inode)
3467 {
3468         struct inode_security_struct *isec = inode->i_security;
3469         u32 sid = task_sid(p);
3470
3471         isec->sid = sid;
3472         isec->initialized = 1;
3473 }
3474
3475 /* Returns error only if unable to parse addresses */
3476 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3477                         struct common_audit_data *ad, u8 *proto)
3478 {
3479         int offset, ihlen, ret = -EINVAL;
3480         struct iphdr _iph, *ih;
3481
3482         offset = skb_network_offset(skb);
3483         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3484         if (ih == NULL)
3485                 goto out;
3486
3487         ihlen = ih->ihl * 4;
3488         if (ihlen < sizeof(_iph))
3489                 goto out;
3490
3491         ad->u.net->v4info.saddr = ih->saddr;
3492         ad->u.net->v4info.daddr = ih->daddr;
3493         ret = 0;
3494
3495         if (proto)
3496                 *proto = ih->protocol;
3497
3498         switch (ih->protocol) {
3499         case IPPROTO_TCP: {
3500                 struct tcphdr _tcph, *th;
3501
3502                 if (ntohs(ih->frag_off) & IP_OFFSET)
3503                         break;
3504
3505                 offset += ihlen;
3506                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3507                 if (th == NULL)
3508                         break;
3509
3510                 ad->u.net->sport = th->source;
3511                 ad->u.net->dport = th->dest;
3512                 break;
3513         }
3514
3515         case IPPROTO_UDP: {
3516                 struct udphdr _udph, *uh;
3517
3518                 if (ntohs(ih->frag_off) & IP_OFFSET)
3519                         break;
3520
3521                 offset += ihlen;
3522                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3523                 if (uh == NULL)
3524                         break;
3525
3526                 ad->u.net->sport = uh->source;
3527                 ad->u.net->dport = uh->dest;
3528                 break;
3529         }
3530
3531         case IPPROTO_DCCP: {
3532                 struct dccp_hdr _dccph, *dh;
3533
3534                 if (ntohs(ih->frag_off) & IP_OFFSET)
3535                         break;
3536
3537                 offset += ihlen;
3538                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3539                 if (dh == NULL)
3540                         break;
3541
3542                 ad->u.net->sport = dh->dccph_sport;
3543                 ad->u.net->dport = dh->dccph_dport;
3544                 break;
3545         }
3546
3547         default:
3548                 break;
3549         }
3550 out:
3551         return ret;
3552 }
3553
3554 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3555
3556 /* Returns error only if unable to parse addresses */
3557 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3558                         struct common_audit_data *ad, u8 *proto)
3559 {
3560         u8 nexthdr;
3561         int ret = -EINVAL, offset;
3562         struct ipv6hdr _ipv6h, *ip6;
3563         __be16 frag_off;
3564
3565         offset = skb_network_offset(skb);
3566         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3567         if (ip6 == NULL)
3568                 goto out;
3569
3570         ad->u.net->v6info.saddr = ip6->saddr;
3571         ad->u.net->v6info.daddr = ip6->daddr;
3572         ret = 0;
3573
3574         nexthdr = ip6->nexthdr;
3575         offset += sizeof(_ipv6h);
3576         offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3577         if (offset < 0)
3578                 goto out;
3579
3580         if (proto)
3581                 *proto = nexthdr;
3582
3583         switch (nexthdr) {
3584         case IPPROTO_TCP: {
3585                 struct tcphdr _tcph, *th;
3586
3587                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3588                 if (th == NULL)
3589                         break;
3590
3591                 ad->u.net->sport = th->source;
3592                 ad->u.net->dport = th->dest;
3593                 break;
3594         }
3595
3596         case IPPROTO_UDP: {
3597                 struct udphdr _udph, *uh;
3598
3599                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3600                 if (uh == NULL)
3601                         break;
3602
3603                 ad->u.net->sport = uh->source;
3604                 ad->u.net->dport = uh->dest;
3605                 break;
3606         }
3607
3608         case IPPROTO_DCCP: {
3609                 struct dccp_hdr _dccph, *dh;
3610
3611                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3612                 if (dh == NULL)
3613                         break;
3614
3615                 ad->u.net->sport = dh->dccph_sport;
3616                 ad->u.net->dport = dh->dccph_dport;
3617                 break;
3618         }
3619
3620         /* includes fragments */
3621         default:
3622                 break;
3623         }
3624 out:
3625         return ret;
3626 }
3627
3628 #endif /* IPV6 */
3629
3630 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3631                              char **_addrp, int src, u8 *proto)
3632 {
3633         char *addrp;
3634         int ret;
3635
3636         switch (ad->u.net->family) {
3637         case PF_INET:
3638                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3639                 if (ret)
3640                         goto parse_error;
3641                 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3642                                        &ad->u.net->v4info.daddr);
3643                 goto okay;
3644
3645 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3646         case PF_INET6:
3647                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3648                 if (ret)
3649                         goto parse_error;
3650                 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3651                                        &ad->u.net->v6info.daddr);
3652                 goto okay;
3653 #endif  /* IPV6 */
3654         default:
3655                 addrp = NULL;
3656                 goto okay;
3657         }
3658
3659 parse_error:
3660         printk(KERN_WARNING
3661                "SELinux: failure in selinux_parse_skb(),"
3662                " unable to parse packet\n");
3663         return ret;
3664
3665 okay:
3666         if (_addrp)
3667                 *_addrp = addrp;
3668         return 0;
3669 }
3670
3671 /**
3672  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3673  * @skb: the packet
3674  * @family: protocol family
3675  * @sid: the packet's peer label SID
3676  *
3677  * Description:
3678  * Check the various different forms of network peer labeling and determine
3679  * the peer label/SID for the packet; most of the magic actually occurs in
3680  * the security server function security_net_peersid_cmp().  The function
3681  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3682  * or -EACCES if @sid is invalid due to inconsistencies with the different
3683  * peer labels.
3684  *
3685  */
3686 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3687 {
3688         int err;
3689         u32 xfrm_sid;
3690         u32 nlbl_sid;
3691         u32 nlbl_type;
3692
3693         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3694         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3695
3696         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3697         if (unlikely(err)) {
3698                 printk(KERN_WARNING
3699                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3700                        " unable to determine packet's peer label\n");
3701                 return -EACCES;
3702         }
3703
3704         return 0;
3705 }
3706
3707 /* socket security operations */
3708
3709 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3710                                  u16 secclass, u32 *socksid)
3711 {
3712         if (tsec->sockcreate_sid > SECSID_NULL) {
3713                 *socksid = tsec->sockcreate_sid;
3714                 return 0;
3715         }
3716
3717         return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3718                                        socksid);
3719 }
3720
3721 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3722 {
3723         struct sk_security_struct *sksec = sk->sk_security;
3724         struct common_audit_data ad;
3725         struct lsm_network_audit net = {0,};
3726         u32 tsid = task_sid(task);
3727
3728         if (sksec->sid == SECINITSID_KERNEL)
3729                 return 0;
3730
3731         ad.type = LSM_AUDIT_DATA_NET;
3732         ad.u.net = &net;
3733         ad.u.net->sk = sk;
3734
3735         return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3736 }
3737
3738 static int selinux_socket_create(int family, int type,
3739                                  int protocol, int kern)
3740 {
3741         const struct task_security_struct *tsec = current_security();
3742         u32 newsid;
3743         u16 secclass;
3744         int rc;
3745
3746         if (kern)
3747                 return 0;
3748
3749         secclass = socket_type_to_security_class(family, type, protocol);
3750         rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3751         if (rc)
3752                 return rc;
3753
3754         return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3755 }
3756
3757 static int selinux_socket_post_create(struct socket *sock, int family,
3758                                       int type, int protocol, int kern)
3759 {
3760         const struct task_security_struct *tsec = current_security();
3761         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3762         struct sk_security_struct *sksec;
3763         int err = 0;
3764
3765         isec->sclass = socket_type_to_security_class(family, type, protocol);
3766
3767         if (kern)
3768                 isec->sid = SECINITSID_KERNEL;
3769         else {
3770                 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3771                 if (err)
3772                         return err;
3773         }
3774
3775         isec->initialized = 1;
3776
3777         if (sock->sk) {
3778                 sksec = sock->sk->sk_security;
3779                 sksec->sid = isec->sid;
3780                 sksec->sclass = isec->sclass;
3781                 err = selinux_netlbl_socket_post_create(sock->sk, family);
3782         }
3783
3784         return err;
3785 }
3786
3787 /* Range of port numbers used to automatically bind.
3788    Need to determine whether we should perform a name_bind
3789    permission check between the socket and the port number. */
3790
3791 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3792 {
3793         struct sock *sk = sock->sk;
3794         u16 family;
3795         int err;
3796
3797         err = sock_has_perm(current, sk, SOCKET__BIND);
3798         if (err)
3799                 goto out;
3800
3801         /*
3802          * If PF_INET or PF_INET6, check name_bind permission for the port.
3803          * Multiple address binding for SCTP is not supported yet: we just
3804          * check the first address now.
3805          */
3806         family = sk->sk_family;
3807         if (family == PF_INET || family == PF_INET6) {
3808                 char *addrp;
3809                 struct sk_security_struct *sksec = sk->sk_security;
3810                 struct common_audit_data ad;
3811                 struct lsm_network_audit net = {0,};
3812                 struct sockaddr_in *addr4 = NULL;
3813                 struct sockaddr_in6 *addr6 = NULL;
3814                 unsigned short snum;
3815                 u32 sid, node_perm;
3816
3817                 if (family == PF_INET) {
3818                         addr4 = (struct sockaddr_in *)address;
3819                         snum = ntohs(addr4->sin_port);
3820                         addrp = (char *)&addr4->sin_addr.s_addr;
3821                 } else {
3822                         addr6 = (struct sockaddr_in6 *)address;
3823                         snum = ntohs(addr6->sin6_port);
3824                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3825                 }
3826
3827                 if (snum) {
3828                         int low, high;
3829
3830                         inet_get_local_port_range(&low, &high);
3831
3832                         if (snum < max(PROT_SOCK, low) || snum > high) {
3833                                 err = sel_netport_sid(sk->sk_protocol,
3834                                                       snum, &sid);
3835                                 if (err)
3836                                         goto out;
3837                                 ad.type = LSM_AUDIT_DATA_NET;
3838                                 ad.u.net = &net;
3839                                 ad.u.net->sport = htons(snum);
3840                                 ad.u.net->family = family;
3841                                 err = avc_has_perm(sksec->sid, sid,
3842                                                    sksec->sclass,
3843                                                    SOCKET__NAME_BIND, &ad);
3844                                 if (err)
3845                                         goto out;
3846                         }
3847                 }
3848
3849                 switch (sksec->sclass) {
3850                 case SECCLASS_TCP_SOCKET:
3851                         node_perm = TCP_SOCKET__NODE_BIND;
3852                         break;
3853
3854                 case SECCLASS_UDP_SOCKET:
3855                         node_perm = UDP_SOCKET__NODE_BIND;
3856                         break;
3857
3858                 case SECCLASS_DCCP_SOCKET:
3859                         node_perm = DCCP_SOCKET__NODE_BIND;
3860                         break;
3861
3862                 default:
3863                         node_perm = RAWIP_SOCKET__NODE_BIND;
3864                         break;
3865                 }
3866
3867                 err = sel_netnode_sid(addrp, family, &sid);
3868                 if (err)
3869                         goto out;
3870
3871                 ad.type = LSM_AUDIT_DATA_NET;
3872                 ad.u.net = &net;
3873                 ad.u.net->sport = htons(snum);
3874                 ad.u.net->family = family;
3875
3876                 if (family == PF_INET)
3877                         ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
3878                 else
3879                         ad.u.net->v6info.saddr = addr6->sin6_addr;
3880
3881                 err = avc_has_perm(sksec->sid, sid,
3882                                    sksec->sclass, node_perm, &ad);
3883                 if (err)
3884                         goto out;
3885         }
3886 out:
3887         return err;
3888 }
3889
3890 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3891 {
3892         struct sock *sk = sock->sk;
3893         struct sk_security_struct *sksec = sk->sk_security;
3894         int err;
3895
3896         err = sock_has_perm(current, sk, SOCKET__CONNECT);
3897         if (err)
3898                 return err;
3899
3900         /*
3901          * If a TCP or DCCP socket, check name_connect permission for the port.
3902          */
3903         if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3904             sksec->sclass == SECCLASS_DCCP_SOCKET) {
3905                 struct common_audit_data ad;
3906                 struct lsm_network_audit net = {0,};
3907                 struct sockaddr_in *addr4 = NULL;
3908                 struct sockaddr_in6 *addr6 = NULL;
3909                 unsigned short snum;
3910                 u32 sid, perm;
3911
3912                 if (sk->sk_family == PF_INET) {
3913                         addr4 = (struct sockaddr_in *)address;
3914                         if (addrlen < sizeof(struct sockaddr_in))
3915                                 return -EINVAL;
3916                         snum = ntohs(addr4->sin_port);
3917                 } else {
3918                         addr6 = (struct sockaddr_in6 *)address;
3919                         if (addrlen < SIN6_LEN_RFC2133)
3920                                 return -EINVAL;
3921                         snum = ntohs(addr6->sin6_port);
3922                 }
3923
3924                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3925                 if (err)
3926                         goto out;
3927
3928                 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3929                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3930
3931                 ad.type = LSM_AUDIT_DATA_NET;
3932                 ad.u.net = &net;
3933                 ad.u.net->dport = htons(snum);
3934                 ad.u.net->family = sk->sk_family;
3935                 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3936                 if (err)
3937                         goto out;
3938         }
3939
3940         err = selinux_netlbl_socket_connect(sk, address);
3941
3942 out:
3943         return err;
3944 }
3945
3946 static int selinux_socket_listen(struct socket *sock, int backlog)
3947 {
3948         return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3949 }
3950
3951 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3952 {
3953         int err;
3954         struct inode_security_struct *isec;
3955         struct inode_security_struct *newisec;
3956
3957         err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
3958         if (err)
3959                 return err;
3960
3961         newisec = SOCK_INODE(newsock)->i_security;
3962
3963         isec = SOCK_INODE(sock)->i_security;
3964         newisec->sclass = isec->sclass;
3965         newisec->sid = isec->sid;
3966         newisec->initialized = 1;
3967
3968         return 0;
3969 }
3970
3971 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3972                                   int size)
3973 {
3974         return sock_has_perm(current, sock->sk, SOCKET__WRITE);
3975 }
3976
3977 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3978                                   int size, int flags)
3979 {
3980         return sock_has_perm(current, sock->sk, SOCKET__READ);
3981 }
3982
3983 static int selinux_socket_getsockname(struct socket *sock)
3984 {
3985         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3986 }
3987
3988 static int selinux_socket_getpeername(struct socket *sock)
3989 {
3990         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3991 }
3992
3993 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3994 {
3995         int err;
3996
3997         err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
3998         if (err)
3999                 return err;
4000
4001         return selinux_netlbl_socket_setsockopt(sock, level, optname);
4002 }
4003
4004 static int selinux_socket_getsockopt(struct socket *sock, int level,
4005                                      int optname)
4006 {
4007         return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4008 }
4009
4010 static int selinux_socket_shutdown(struct socket *sock, int how)
4011 {
4012         return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4013 }
4014
4015 static int selinux_socket_unix_stream_connect(struct sock *sock,
4016                                               struct sock *other,
4017                                               struct sock *newsk)
4018 {
4019         struct sk_security_struct *sksec_sock = sock->sk_security;
4020         struct sk_security_struct *sksec_other = other->sk_security;
4021         struct sk_security_struct *sksec_new = newsk->sk_security;
4022         struct common_audit_data ad;
4023         struct lsm_network_audit net = {0,};
4024         int err;
4025
4026         ad.type = LSM_AUDIT_DATA_NET;
4027         ad.u.net = &net;
4028         ad.u.net->sk = other;
4029
4030         err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4031                            sksec_other->sclass,
4032                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4033         if (err)
4034                 return err;
4035
4036         /* server child socket */
4037         sksec_new->peer_sid = sksec_sock->sid;
4038         err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4039                                     &sksec_new->sid);
4040         if (err)
4041                 return err;
4042
4043         /* connecting socket */
4044         sksec_sock->peer_sid = sksec_new->sid;
4045
4046         return 0;
4047 }
4048
4049 static int selinux_socket_unix_may_send(struct socket *sock,
4050                                         struct socket *other)
4051 {
4052         struct sk_security_struct *ssec = sock->sk->sk_security;
4053         struct sk_security_struct *osec = other->sk->sk_security;
4054         struct common_audit_data ad;
4055         struct lsm_network_audit net = {0,};
4056
4057         ad.type = LSM_AUDIT_DATA_NET;
4058         ad.u.net = &net;
4059         ad.u.net->sk = other->sk;
4060
4061         return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4062                             &ad);
4063 }
4064
4065 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4066                                     u32 peer_sid,
4067                                     struct common_audit_data *ad)
4068 {
4069         int err;
4070         u32 if_sid;
4071         u32 node_sid;
4072
4073         err = sel_netif_sid(ifindex, &if_sid);
4074         if (err)
4075                 return err;
4076         err = avc_has_perm(peer_sid, if_sid,
4077                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4078         if (err)
4079                 return err;
4080
4081         err = sel_netnode_sid(addrp, family, &node_sid);
4082         if (err)
4083                 return err;
4084         return avc_has_perm(peer_sid, node_sid,
4085                             SECCLASS_NODE, NODE__RECVFROM, ad);
4086 }
4087
4088 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4089                                        u16 family)
4090 {
4091         int err = 0;
4092         struct sk_security_struct *sksec = sk->sk_security;
4093         u32 sk_sid = sksec->sid;
4094         struct common_audit_data ad;
4095         struct lsm_network_audit net = {0,};
4096         char *addrp;
4097
4098         ad.type = LSM_AUDIT_DATA_NET;
4099         ad.u.net = &net;
4100         ad.u.net->netif = skb->skb_iif;
4101         ad.u.net->family = family;
4102         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4103         if (err)
4104                 return err;
4105
4106         if (selinux_secmark_enabled()) {
4107                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4108                                    PACKET__RECV, &ad);
4109                 if (err)
4110                         return err;
4111         }
4112
4113         err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4114         if (err)
4115                 return err;
4116         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4117
4118         return err;
4119 }
4120
4121 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4122 {
4123         int err;
4124         struct sk_security_struct *sksec = sk->sk_security;
4125         u16 family = sk->sk_family;
4126         u32 sk_sid = sksec->sid;
4127         struct common_audit_data ad;
4128         struct lsm_network_audit net = {0,};
4129         char *addrp;
4130         u8 secmark_active;
4131         u8 peerlbl_active;
4132
4133         if (family != PF_INET && family != PF_INET6)
4134                 return 0;
4135
4136         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4137         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4138                 family = PF_INET;
4139
4140         /* If any sort of compatibility mode is enabled then handoff processing
4141          * to the selinux_sock_rcv_skb_compat() function to deal with the
4142          * special handling.  We do this in an attempt to keep this function
4143          * as fast and as clean as possible. */
4144         if (!selinux_policycap_netpeer)
4145                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4146
4147         secmark_active = selinux_secmark_enabled();
4148         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4149         if (!secmark_active && !peerlbl_active)
4150                 return 0;
4151
4152         ad.type = LSM_AUDIT_DATA_NET;
4153         ad.u.net = &net;
4154         ad.u.net->netif = skb->skb_iif;
4155         ad.u.net->family = family;
4156         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4157         if (err)
4158                 return err;
4159
4160         if (peerlbl_active) {
4161                 u32 peer_sid;
4162
4163                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4164                 if (err)
4165                         return err;
4166                 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4167                                                peer_sid, &ad);
4168                 if (err) {
4169                         selinux_netlbl_err(skb, err, 0);
4170                         return err;
4171                 }
4172                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4173                                    PEER__RECV, &ad);
4174                 if (err)
4175                         selinux_netlbl_err(skb, err, 0);
4176         }
4177
4178         if (secmark_active) {
4179                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4180                                    PACKET__RECV, &ad);
4181                 if (err)
4182                         return err;
4183         }
4184
4185         return err;
4186 }
4187
4188 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4189                                             int __user *optlen, unsigned len)
4190 {
4191         int err = 0;
4192         char *scontext;
4193         u32 scontext_len;
4194         struct sk_security_struct *sksec = sock->sk->sk_security;
4195         u32 peer_sid = SECSID_NULL;
4196
4197         if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4198             sksec->sclass == SECCLASS_TCP_SOCKET)
4199                 peer_sid = sksec->peer_sid;
4200         if (peer_sid == SECSID_NULL)
4201                 return -ENOPROTOOPT;
4202
4203         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4204         if (err)
4205                 return err;
4206
4207         if (scontext_len > len) {
4208                 err = -ERANGE;
4209                 goto out_len;
4210         }
4211
4212         if (copy_to_user(optval, scontext, scontext_len))
4213                 err = -EFAULT;
4214
4215 out_len:
4216         if (put_user(scontext_len, optlen))
4217                 err = -EFAULT;
4218         kfree(scontext);
4219         return err;
4220 }
4221
4222 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4223 {
4224         u32 peer_secid = SECSID_NULL;
4225         u16 family;
4226
4227         if (skb && skb->protocol == htons(ETH_P_IP))
4228                 family = PF_INET;
4229         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4230                 family = PF_INET6;
4231         else if (sock)
4232                 family = sock->sk->sk_family;
4233         else
4234                 goto out;
4235
4236         if (sock && family == PF_UNIX)
4237                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4238         else if (skb)
4239                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4240
4241 out:
4242         *secid = peer_secid;
4243         if (peer_secid == SECSID_NULL)
4244                 return -EINVAL;
4245         return 0;
4246 }
4247
4248 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4249 {
4250         struct sk_security_struct *sksec;
4251
4252         sksec = kzalloc(sizeof(*sksec), priority);
4253         if (!sksec)
4254                 return -ENOMEM;
4255
4256         sksec->peer_sid = SECINITSID_UNLABELED;
4257         sksec->sid = SECINITSID_UNLABELED;
4258         selinux_netlbl_sk_security_reset(sksec);
4259         sk->sk_security = sksec;
4260
4261         return 0;
4262 }
4263
4264 static void selinux_sk_free_security(struct sock *sk)
4265 {
4266         struct sk_security_struct *sksec = sk->sk_security;
4267
4268         sk->sk_security = NULL;
4269         selinux_netlbl_sk_security_free(sksec);
4270         kfree(sksec);
4271 }
4272
4273 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4274 {
4275         struct sk_security_struct *sksec = sk->sk_security;
4276         struct sk_security_struct *newsksec = newsk->sk_security;
4277
4278         newsksec->sid = sksec->sid;
4279         newsksec->peer_sid = sksec->peer_sid;
4280         newsksec->sclass = sksec->sclass;
4281
4282         selinux_netlbl_sk_security_reset(newsksec);
4283 }
4284
4285 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4286 {
4287         if (!sk)
4288                 *secid = SECINITSID_ANY_SOCKET;
4289         else {
4290                 struct sk_security_struct *sksec = sk->sk_security;
4291
4292                 *secid = sksec->sid;
4293         }
4294 }
4295
4296 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4297 {
4298         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4299         struct sk_security_struct *sksec = sk->sk_security;
4300
4301         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4302             sk->sk_family == PF_UNIX)
4303                 isec->sid = sksec->sid;
4304         sksec->sclass = isec->sclass;
4305 }
4306
4307 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4308                                      struct request_sock *req)
4309 {
4310         struct sk_security_struct *sksec = sk->sk_security;
4311         int err;
4312         u16 family = sk->sk_family;
4313         u32 newsid;
4314         u32 peersid;
4315
4316         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4317         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4318                 family = PF_INET;
4319
4320         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4321         if (err)
4322                 return err;
4323         if (peersid == SECSID_NULL) {
4324                 req->secid = sksec->sid;
4325                 req->peer_secid = SECSID_NULL;
4326         } else {
4327                 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4328                 if (err)
4329                         return err;
4330                 req->secid = newsid;
4331                 req->peer_secid = peersid;
4332         }
4333
4334         return selinux_netlbl_inet_conn_request(req, family);
4335 }
4336
4337 static void selinux_inet_csk_clone(struct sock *newsk,
4338                                    const struct request_sock *req)
4339 {
4340         struct sk_security_struct *newsksec = newsk->sk_security;
4341
4342         newsksec->sid = req->secid;
4343         newsksec->peer_sid = req->peer_secid;
4344         /* NOTE: Ideally, we should also get the isec->sid for the
4345            new socket in sync, but we don't have the isec available yet.
4346            So we will wait until sock_graft to do it, by which
4347            time it will have been created and available. */
4348
4349         /* We don't need to take any sort of lock here as we are the only
4350          * thread with access to newsksec */
4351         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4352 }
4353
4354 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4355 {
4356         u16 family = sk->sk_family;
4357         struct sk_security_struct *sksec = sk->sk_security;
4358
4359         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4360         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4361                 family = PF_INET;
4362
4363         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4364 }
4365
4366 static int selinux_secmark_relabel_packet(u32 sid)
4367 {
4368         const struct task_security_struct *__tsec;
4369         u32 tsid;
4370
4371         __tsec = current_security();
4372         tsid = __tsec->sid;
4373
4374         return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4375 }
4376
4377 static void selinux_secmark_refcount_inc(void)
4378 {
4379         atomic_inc(&selinux_secmark_refcount);
4380 }
4381
4382 static void selinux_secmark_refcount_dec(void)
4383 {
4384         atomic_dec(&selinux_secmark_refcount);
4385 }
4386
4387 static void selinux_req_classify_flow(const struct request_sock *req,
4388                                       struct flowi *fl)
4389 {
4390         fl->flowi_secid = req->secid;
4391 }
4392
4393 static int selinux_tun_dev_alloc_security(void **security)
4394 {
4395         struct tun_security_struct *tunsec;
4396
4397         tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4398         if (!tunsec)
4399                 return -ENOMEM;
4400         tunsec->sid = current_sid();
4401
4402         *security = tunsec;
4403         return 0;
4404 }
4405
4406 static void selinux_tun_dev_free_security(void *security)
4407 {
4408         kfree(security);
4409 }
4410
4411 static int selinux_tun_dev_create(void)
4412 {
4413         u32 sid = current_sid();
4414
4415         /* we aren't taking into account the "sockcreate" SID since the socket
4416          * that is being created here is not a socket in the traditional sense,
4417          * instead it is a private sock, accessible only to the kernel, and
4418          * representing a wide range of network traffic spanning multiple
4419          * connections unlike traditional sockets - check the TUN driver to
4420          * get a better understanding of why this socket is special */
4421
4422         return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4423                             NULL);
4424 }
4425
4426 static int selinux_tun_dev_attach_queue(void *security)
4427 {
4428         struct tun_security_struct *tunsec = security;
4429
4430         return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4431                             TUN_SOCKET__ATTACH_QUEUE, NULL);
4432 }
4433
4434 static int selinux_tun_dev_attach(struct sock *sk, void *security)
4435 {
4436         struct tun_security_struct *tunsec = security;
4437         struct sk_security_struct *sksec = sk->sk_security;
4438
4439         /* we don't currently perform any NetLabel based labeling here and it
4440          * isn't clear that we would want to do so anyway; while we could apply
4441          * labeling without the support of the TUN user the resulting labeled
4442          * traffic from the other end of the connection would almost certainly
4443          * cause confusion to the TUN user that had no idea network labeling
4444          * protocols were being used */
4445
4446         sksec->sid = tunsec->sid;
4447         sksec->sclass = SECCLASS_TUN_SOCKET;
4448
4449         return 0;
4450 }
4451
4452 static int selinux_tun_dev_open(void *security)
4453 {
4454         struct tun_security_struct *tunsec = security;
4455         u32 sid = current_sid();
4456         int err;
4457
4458         err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4459                            TUN_SOCKET__RELABELFROM, NULL);
4460         if (err)
4461                 return err;
4462         err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4463                            TUN_SOCKET__RELABELTO, NULL);
4464         if (err)
4465                 return err;
4466         tunsec->sid = sid;
4467
4468         return 0;
4469 }
4470
4471 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4472 {
4473         int err = 0;
4474         u32 perm;
4475         struct nlmsghdr *nlh;
4476         struct sk_security_struct *sksec = sk->sk_security;
4477
4478         if (skb->len < NLMSG_SPACE(0)) {
4479                 err = -EINVAL;
4480                 goto out;
4481         }
4482         nlh = nlmsg_hdr(skb);
4483
4484         err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4485         if (err) {
4486                 if (err == -EINVAL) {
4487                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4488                                   "SELinux:  unrecognized netlink message"
4489                                   " type=%hu for sclass=%hu\n",
4490                                   nlh->nlmsg_type, sksec->sclass);
4491                         if (!selinux_enforcing || security_get_allow_unknown())
4492                                 err = 0;
4493                 }
4494
4495                 /* Ignore */
4496                 if (err == -ENOENT)
4497                         err = 0;
4498                 goto out;
4499         }
4500
4501         err = sock_has_perm(current, sk, perm);
4502 out:
4503         return err;
4504 }
4505
4506 #ifdef CONFIG_NETFILTER
4507
4508 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4509                                        u16 family)
4510 {
4511         int err;
4512         char *addrp;
4513         u32 peer_sid;
4514         struct common_audit_data ad;
4515         struct lsm_network_audit net = {0,};
4516         u8 secmark_active;
4517         u8 netlbl_active;
4518         u8 peerlbl_active;
4519
4520         if (!selinux_policycap_netpeer)
4521                 return NF_ACCEPT;
4522
4523         secmark_active = selinux_secmark_enabled();
4524         netlbl_active = netlbl_enabled();
4525         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4526         if (!secmark_active && !peerlbl_active)
4527                 return NF_ACCEPT;
4528
4529         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4530                 return NF_DROP;
4531
4532         ad.type = LSM_AUDIT_DATA_NET;
4533         ad.u.net = &net;
4534         ad.u.net->netif = ifindex;
4535         ad.u.net->family = family;
4536         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4537                 return NF_DROP;
4538
4539         if (peerlbl_active) {
4540                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4541                                                peer_sid, &ad);
4542                 if (err) {
4543                         selinux_netlbl_err(skb, err, 1);
4544                         return NF_DROP;
4545                 }
4546         }
4547
4548         if (secmark_active)
4549                 if (avc_has_perm(peer_sid, skb->secmark,
4550                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4551                         return NF_DROP;
4552
4553         if (netlbl_active)
4554                 /* we do this in the FORWARD path and not the POST_ROUTING
4555                  * path because we want to make sure we apply the necessary
4556                  * labeling before IPsec is applied so we can leverage AH
4557                  * protection */
4558                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4559                         return NF_DROP;
4560
4561         return NF_ACCEPT;
4562 }
4563
4564 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4565                                          struct sk_buff *skb,
4566                                          const struct net_device *in,
4567                                          const struct net_device *out,
4568                                          int (*okfn)(struct sk_buff *))
4569 {
4570         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4571 }
4572
4573 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4574 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4575                                          struct sk_buff *skb,
4576                                          const struct net_device *in,
4577                                          const struct net_device *out,
4578                                          int (*okfn)(struct sk_buff *))
4579 {
4580         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4581 }
4582 #endif  /* IPV6 */
4583
4584 static unsigned int selinux_ip_output(struct sk_buff *skb,
4585                                       u16 family)
4586 {
4587         u32 sid;
4588
4589         if (!netlbl_enabled())
4590                 return NF_ACCEPT;
4591
4592         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4593          * because we want to make sure we apply the necessary labeling
4594          * before IPsec is applied so we can leverage AH protection */
4595         if (skb->sk) {
4596                 struct sk_security_struct *sksec = skb->sk->sk_security;
4597                 sid = sksec->sid;
4598         } else
4599                 sid = SECINITSID_KERNEL;
4600         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4601                 return NF_DROP;
4602
4603         return NF_ACCEPT;
4604 }
4605
4606 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4607                                         struct sk_buff *skb,
4608                                         const struct net_device *in,
4609                                         const struct net_device *out,
4610                                         int (*okfn)(struct sk_buff *))
4611 {
4612         return selinux_ip_output(skb, PF_INET);
4613 }
4614
4615 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4616                                                 int ifindex,
4617                                                 u16 family)
4618 {
4619         struct sock *sk = skb->sk;
4620         struct sk_security_struct *sksec;
4621         struct common_audit_data ad;
4622         struct lsm_network_audit net = {0,};
4623         char *addrp;
4624         u8 proto;
4625
4626         if (sk == NULL)
4627                 return NF_ACCEPT;
4628         sksec = sk->sk_security;
4629
4630         ad.type = LSM_AUDIT_DATA_NET;
4631         ad.u.net = &net;
4632         ad.u.net->netif = ifindex;
4633         ad.u.net->family = family;
4634         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4635                 return NF_DROP;
4636
4637         if (selinux_secmark_enabled())
4638                 if (avc_has_perm(sksec->sid, skb->secmark,
4639                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4640                         return NF_DROP_ERR(-ECONNREFUSED);
4641
4642         if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4643                 return NF_DROP_ERR(-ECONNREFUSED);
4644
4645         return NF_ACCEPT;
4646 }
4647
4648 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4649                                          u16 family)
4650 {
4651         u32 secmark_perm;
4652         u32 peer_sid;
4653         struct sock *sk;
4654         struct common_audit_data ad;
4655         struct lsm_network_audit net = {0,};
4656         char *addrp;
4657         u8 secmark_active;
4658         u8 peerlbl_active;
4659
4660         /* If any sort of compatibility mode is enabled then handoff processing
4661          * to the selinux_ip_postroute_compat() function to deal with the
4662          * special handling.  We do this in an attempt to keep this function
4663          * as fast and as clean as possible. */
4664         if (!selinux_policycap_netpeer)
4665                 return selinux_ip_postroute_compat(skb, ifindex, family);
4666 #ifdef CONFIG_XFRM
4667         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4668          * packet transformation so allow the packet to pass without any checks
4669          * since we'll have another chance to perform access control checks
4670          * when the packet is on it's final way out.
4671          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4672          *       is NULL, in this case go ahead and apply access control. */
4673         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4674                 return NF_ACCEPT;
4675 #endif
4676         secmark_active = selinux_secmark_enabled();
4677         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4678         if (!secmark_active && !peerlbl_active)
4679                 return NF_ACCEPT;
4680
4681         /* if the packet is being forwarded then get the peer label from the
4682          * packet itself; otherwise check to see if it is from a local
4683          * application or the kernel, if from an application get the peer label
4684          * from the sending socket, otherwise use the kernel's sid */
4685         sk = skb->sk;
4686         if (sk == NULL) {
4687                 if (skb->skb_iif) {
4688                         secmark_perm = PACKET__FORWARD_OUT;
4689                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4690                                 return NF_DROP;
4691                 } else {
4692                         secmark_perm = PACKET__SEND;
4693                         peer_sid = SECINITSID_KERNEL;
4694                 }
4695         } else {
4696                 struct sk_security_struct *sksec = sk->sk_security;
4697                 peer_sid = sksec->sid;
4698                 secmark_perm = PACKET__SEND;
4699         }
4700
4701         ad.type = LSM_AUDIT_DATA_NET;
4702         ad.u.net = &net;
4703         ad.u.net->netif = ifindex;
4704         ad.u.net->family = family;
4705         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4706                 return NF_DROP;
4707
4708         if (secmark_active)
4709                 if (avc_has_perm(peer_sid, skb->secmark,
4710                                  SECCLASS_PACKET, secmark_perm, &ad))
4711                         return NF_DROP_ERR(-ECONNREFUSED);
4712
4713         if (peerlbl_active) {
4714                 u32 if_sid;
4715                 u32 node_sid;
4716
4717                 if (sel_netif_sid(ifindex, &if_sid))
4718                         return NF_DROP;
4719                 if (avc_has_perm(peer_sid, if_sid,
4720                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4721                         return NF_DROP_ERR(-ECONNREFUSED);
4722
4723                 if (sel_netnode_sid(addrp, family, &node_sid))
4724                         return NF_DROP;
4725                 if (avc_has_perm(peer_sid, node_sid,
4726                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4727                         return NF_DROP_ERR(-ECONNREFUSED);
4728         }
4729
4730         return NF_ACCEPT;
4731 }
4732
4733 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4734                                            struct sk_buff *skb,
4735                                            const struct net_device *in,
4736                                            const struct net_device *out,
4737                                            int (*okfn)(struct sk_buff *))
4738 {
4739         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4740 }
4741
4742 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4743 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4744                                            struct sk_buff *skb,
4745                                            const struct net_device *in,
4746                                            const struct net_device *out,
4747                                            int (*okfn)(struct sk_buff *))
4748 {
4749         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4750 }
4751 #endif  /* IPV6 */
4752
4753 #endif  /* CONFIG_NETFILTER */
4754
4755 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4756 {
4757         int err;
4758
4759         err = cap_netlink_send(sk, skb);
4760         if (err)
4761                 return err;
4762
4763         return selinux_nlmsg_perm(sk, skb);
4764 }
4765
4766 static int ipc_alloc_security(struct task_struct *task,
4767                               struct kern_ipc_perm *perm,
4768                               u16 sclass)
4769 {
4770         struct ipc_security_struct *isec;
4771         u32 sid;
4772
4773         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4774         if (!isec)
4775                 return -ENOMEM;
4776
4777         sid = task_sid(task);
4778         isec->sclass = sclass;
4779         isec->sid = sid;
4780         perm->security = isec;
4781
4782         return 0;
4783 }
4784
4785 static void ipc_free_security(struct kern_ipc_perm *perm)
4786 {
4787         struct ipc_security_struct *isec = perm->security;
4788         perm->security = NULL;
4789         kfree(isec);
4790 }
4791
4792 static int msg_msg_alloc_security(struct msg_msg *msg)
4793 {
4794         struct msg_security_struct *msec;
4795
4796         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4797         if (!msec)
4798                 return -ENOMEM;
4799
4800         msec->sid = SECINITSID_UNLABELED;
4801         msg->security = msec;
4802
4803         return 0;
4804 }
4805
4806 static void msg_msg_free_security(struct msg_msg *msg)
4807 {
4808         struct msg_security_struct *msec = msg->security;
4809
4810         msg->security = NULL;
4811         kfree(msec);
4812 }
4813
4814 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4815                         u32 perms)
4816 {
4817         struct ipc_security_struct *isec;
4818         struct common_audit_data ad;
4819         u32 sid = current_sid();
4820
4821         isec = ipc_perms->security;
4822
4823         ad.type = LSM_AUDIT_DATA_IPC;
4824         ad.u.ipc_id = ipc_perms->key;
4825
4826         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4827 }
4828
4829 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4830 {
4831         return msg_msg_alloc_security(msg);
4832 }
4833
4834 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4835 {
4836         msg_msg_free_security(msg);
4837 }
4838
4839 /* message queue security operations */
4840 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4841 {
4842         struct ipc_security_struct *isec;
4843         struct common_audit_data ad;
4844         u32 sid = current_sid();
4845         int rc;
4846
4847         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4848         if (rc)
4849                 return rc;
4850
4851         isec = msq->q_perm.security;
4852
4853         ad.type = LSM_AUDIT_DATA_IPC;
4854         ad.u.ipc_id = msq->q_perm.key;
4855
4856         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4857                           MSGQ__CREATE, &ad);
4858         if (rc) {
4859                 ipc_free_security(&msq->q_perm);
4860                 return rc;
4861         }
4862         return 0;
4863 }
4864
4865 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4866 {
4867         ipc_free_security(&msq->q_perm);
4868 }
4869
4870 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4871 {
4872         struct ipc_security_struct *isec;
4873         struct common_audit_data ad;
4874         u32 sid = current_sid();
4875
4876         isec = msq->q_perm.security;
4877
4878         ad.type = LSM_AUDIT_DATA_IPC;
4879         ad.u.ipc_id = msq->q_perm.key;
4880
4881         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4882                             MSGQ__ASSOCIATE, &ad);
4883 }
4884
4885 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4886 {
4887         int err;
4888         int perms;
4889
4890         switch (cmd) {
4891         case IPC_INFO:
4892         case MSG_INFO:
4893                 /* No specific object, just general system-wide information. */
4894                 return task_has_system(current, SYSTEM__IPC_INFO);
4895         case IPC_STAT:
4896         case MSG_STAT:
4897                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4898                 break;
4899         case IPC_SET:
4900                 perms = MSGQ__SETATTR;
4901                 break;
4902         case IPC_RMID:
4903                 perms = MSGQ__DESTROY;
4904                 break;
4905         default:
4906                 return 0;
4907         }
4908
4909         err = ipc_has_perm(&msq->q_perm, perms);
4910         return err;
4911 }
4912
4913 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4914 {
4915         struct ipc_security_struct *isec;
4916         struct msg_security_struct *msec;
4917         struct common_audit_data ad;
4918         u32 sid = current_sid();
4919         int rc;
4920
4921         isec = msq->q_perm.security;
4922         msec = msg->security;
4923
4924         /*
4925          * First time through, need to assign label to the message
4926          */
4927         if (msec->sid == SECINITSID_UNLABELED) {
4928                 /*
4929                  * Compute new sid based on current process and
4930                  * message queue this message will be stored in
4931                  */
4932                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4933                                              NULL, &msec->sid);
4934                 if (rc)
4935                         return rc;
4936         }
4937
4938         ad.type = LSM_AUDIT_DATA_IPC;
4939         ad.u.ipc_id = msq->q_perm.key;
4940
4941         /* Can this process write to the queue? */
4942         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4943                           MSGQ__WRITE, &ad);
4944         if (!rc)
4945                 /* Can this process send the message */
4946                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4947                                   MSG__SEND, &ad);
4948         if (!rc)
4949                 /* Can the message be put in the queue? */
4950                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4951                                   MSGQ__ENQUEUE, &ad);
4952
4953         return rc;
4954 }
4955
4956 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4957                                     struct task_struct *target,
4958                                     long type, int mode)
4959 {
4960         struct ipc_security_struct *isec;
4961         struct msg_security_struct *msec;
4962         struct common_audit_data ad;
4963         u32 sid = task_sid(target);
4964         int rc;
4965
4966         isec = msq->q_perm.security;
4967         msec = msg->security;
4968
4969         ad.type = LSM_AUDIT_DATA_IPC;
4970         ad.u.ipc_id = msq->q_perm.key;
4971
4972         rc = avc_has_perm(sid, isec->sid,
4973                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4974         if (!rc)
4975                 rc = avc_has_perm(sid, msec->sid,
4976                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4977         return rc;
4978 }
4979
4980 /* Shared Memory security operations */
4981 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4982 {
4983         struct ipc_security_struct *isec;
4984         struct common_audit_data ad;
4985         u32 sid = current_sid();
4986         int rc;
4987
4988         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4989         if (rc)
4990                 return rc;
4991
4992         isec = shp->shm_perm.security;
4993
4994         ad.type = LSM_AUDIT_DATA_IPC;
4995         ad.u.ipc_id = shp->shm_perm.key;
4996
4997         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4998                           SHM__CREATE, &ad);
4999         if (rc) {
5000                 ipc_free_security(&shp->shm_perm);
5001                 return rc;
5002         }
5003         return 0;
5004 }
5005
5006 static void selinux_shm_free_security(struct shmid_kernel *shp)
5007 {
5008         ipc_free_security(&shp->shm_perm);
5009 }
5010
5011 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5012 {
5013         struct ipc_security_struct *isec;
5014         struct common_audit_data ad;
5015         u32 sid = current_sid();
5016
5017         isec = shp->shm_perm.security;
5018
5019         ad.type = LSM_AUDIT_DATA_IPC;
5020         ad.u.ipc_id = shp->shm_perm.key;
5021
5022         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5023                             SHM__ASSOCIATE, &ad);
5024 }
5025
5026 /* Note, at this point, shp is locked down */
5027 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5028 {
5029         int perms;
5030         int err;
5031
5032         switch (cmd) {
5033         case IPC_INFO:
5034         case SHM_INFO:
5035                 /* No specific object, just general system-wide information. */
5036                 return task_has_system(current, SYSTEM__IPC_INFO);
5037         case IPC_STAT:
5038         case SHM_STAT:
5039                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5040                 break;
5041         case IPC_SET:
5042                 perms = SHM__SETATTR;
5043                 break;
5044         case SHM_LOCK:
5045         case SHM_UNLOCK:
5046                 perms = SHM__LOCK;
5047                 break;
5048         case IPC_RMID:
5049                 perms = SHM__DESTROY;
5050                 break;
5051         default:
5052                 return 0;
5053         }
5054
5055         err = ipc_has_perm(&shp->shm_perm, perms);
5056         return err;
5057 }
5058
5059 static int selinux_shm_shmat(struct shmid_kernel *shp,
5060                              char __user *shmaddr, int shmflg)
5061 {
5062         u32 perms;
5063
5064         if (shmflg & SHM_RDONLY)
5065                 perms = SHM__READ;
5066         else
5067                 perms = SHM__READ | SHM__WRITE;
5068
5069         return ipc_has_perm(&shp->shm_perm, perms);
5070 }
5071
5072 /* Semaphore security operations */
5073 static int selinux_sem_alloc_security(struct sem_array *sma)
5074 {
5075         struct ipc_security_struct *isec;
5076         struct common_audit_data ad;
5077         u32 sid = current_sid();
5078         int rc;
5079
5080         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5081         if (rc)
5082                 return rc;
5083
5084         isec = sma->sem_perm.security;
5085
5086         ad.type = LSM_AUDIT_DATA_IPC;
5087         ad.u.ipc_id = sma->sem_perm.key;
5088
5089         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5090                           SEM__CREATE, &ad);
5091         if (rc) {
5092                 ipc_free_security(&sma->sem_perm);
5093                 return rc;
5094         }
5095         return 0;
5096 }
5097
5098 static void selinux_sem_free_security(struct sem_array *sma)
5099 {
5100         ipc_free_security(&sma->sem_perm);
5101 }
5102
5103 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5104 {
5105         struct ipc_security_struct *isec;
5106         struct common_audit_data ad;
5107         u32 sid = current_sid();
5108
5109         isec = sma->sem_perm.security;
5110
5111         ad.type = LSM_AUDIT_DATA_IPC;
5112         ad.u.ipc_id = sma->sem_perm.key;
5113
5114         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5115                             SEM__ASSOCIATE, &ad);
5116 }
5117
5118 /* Note, at this point, sma is locked down */
5119 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5120 {
5121         int err;
5122         u32 perms;
5123
5124         switch (cmd) {
5125         case IPC_INFO:
5126         case SEM_INFO:
5127                 /* No specific object, just general system-wide information. */
5128                 return task_has_system(current, SYSTEM__IPC_INFO);
5129         case GETPID:
5130         case GETNCNT:
5131         case GETZCNT:
5132                 perms = SEM__GETATTR;
5133                 break;
5134         case GETVAL:
5135         case GETALL:
5136                 perms = SEM__READ;
5137                 break;
5138         case SETVAL:
5139         case SETALL:
5140                 perms = SEM__WRITE;
5141                 break;
5142         case IPC_RMID:
5143                 perms = SEM__DESTROY;
5144                 break;
5145         case IPC_SET:
5146                 perms = SEM__SETATTR;
5147                 break;
5148         case IPC_STAT:
5149         case SEM_STAT:
5150                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5151                 break;
5152         default:
5153                 return 0;
5154         }
5155
5156         err = ipc_has_perm(&sma->sem_perm, perms);
5157         return err;
5158 }
5159
5160 static int selinux_sem_semop(struct sem_array *sma,
5161                              struct sembuf *sops, unsigned nsops, int alter)
5162 {
5163         u32 perms;
5164
5165         if (alter)
5166                 perms = SEM__READ | SEM__WRITE;
5167         else
5168                 perms = SEM__READ;
5169
5170         return ipc_has_perm(&sma->sem_perm, perms);
5171 }
5172
5173 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5174 {
5175         u32 av = 0;
5176
5177         av = 0;
5178         if (flag & S_IRUGO)
5179                 av |= IPC__UNIX_READ;
5180         if (flag & S_IWUGO)
5181                 av |= IPC__UNIX_WRITE;
5182
5183         if (av == 0)
5184                 return 0;
5185
5186         return ipc_has_perm(ipcp, av);
5187 }
5188
5189 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5190 {
5191         struct ipc_security_struct *isec = ipcp->security;
5192         *secid = isec->sid;
5193 }
5194
5195 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5196 {
5197         if (inode)
5198                 inode_doinit_with_dentry(inode, dentry);
5199 }
5200
5201 static int selinux_getprocattr(struct task_struct *p,
5202                                char *name, char **value)
5203 {
5204         const struct task_security_struct *__tsec;
5205         u32 sid;
5206         int error;
5207         unsigned len;
5208
5209         if (current != p) {
5210                 error = current_has_perm(p, PROCESS__GETATTR);
5211                 if (error)
5212                         return error;
5213         }
5214
5215         rcu_read_lock();
5216         __tsec = __task_cred(p)->security;
5217
5218         if (!strcmp(name, "current"))
5219                 sid = __tsec->sid;
5220         else if (!strcmp(name, "prev"))
5221                 sid = __tsec->osid;
5222         else if (!strcmp(name, "exec"))
5223                 sid = __tsec->exec_sid;
5224         else if (!strcmp(name, "fscreate"))
5225                 sid = __tsec->create_sid;
5226         else if (!strcmp(name, "keycreate"))
5227                 sid = __tsec->keycreate_sid;
5228         else if (!strcmp(name, "sockcreate"))
5229                 sid = __tsec->sockcreate_sid;
5230         else
5231                 goto invalid;
5232         rcu_read_unlock();
5233
5234         if (!sid)
5235                 return 0;
5236
5237         error = security_sid_to_context(sid, value, &len);
5238         if (error)
5239                 return error;
5240         return len;
5241
5242 invalid:
5243         rcu_read_unlock();
5244         return -EINVAL;
5245 }
5246
5247 static int selinux_setprocattr(struct task_struct *p,
5248                                char *name, void *value, size_t size)
5249 {
5250         struct task_security_struct *tsec;
5251         struct task_struct *tracer;
5252         struct cred *new;
5253         u32 sid = 0, ptsid;
5254         int error;
5255         char *str = value;
5256
5257         if (current != p) {
5258                 /* SELinux only allows a process to change its own
5259                    security attributes. */
5260                 return -EACCES;
5261         }
5262
5263         /*
5264          * Basic control over ability to set these attributes at all.
5265          * current == p, but we'll pass them separately in case the
5266          * above restriction is ever removed.
5267          */
5268         if (!strcmp(name, "exec"))
5269                 error = current_has_perm(p, PROCESS__SETEXEC);
5270         else if (!strcmp(name, "fscreate"))
5271                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5272         else if (!strcmp(name, "keycreate"))
5273                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5274         else if (!strcmp(name, "sockcreate"))
5275                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5276         else if (!strcmp(name, "current"))
5277                 error = current_has_perm(p, PROCESS__SETCURRENT);
5278         else
5279                 error = -EINVAL;
5280         if (error)
5281                 return error;
5282
5283         /* Obtain a SID for the context, if one was specified. */
5284         if (size && str[1] && str[1] != '\n') {
5285                 if (str[size-1] == '\n') {
5286                         str[size-1] = 0;
5287                         size--;
5288                 }
5289                 error = security_context_to_sid(value, size, &sid);
5290                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5291                         if (!capable(CAP_MAC_ADMIN)) {
5292                                 struct audit_buffer *ab;
5293                                 size_t audit_size;
5294
5295                                 /* We strip a nul only if it is at the end, otherwise the
5296                                  * context contains a nul and we should audit that */
5297                                 if (str[size - 1] == '\0')
5298                                         audit_size = size - 1;
5299                                 else
5300                                         audit_size = size;
5301                                 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5302                                 audit_log_format(ab, "op=fscreate invalid_context=");
5303                                 audit_log_n_untrustedstring(ab, value, audit_size);
5304                                 audit_log_end(ab);
5305
5306                                 return error;
5307                         }
5308                         error = security_context_to_sid_force(value, size,
5309                                                               &sid);
5310                 }
5311                 if (error)
5312                         return error;
5313         }
5314
5315         new = prepare_creds();
5316         if (!new)
5317                 return -ENOMEM;
5318
5319         /* Permission checking based on the specified context is
5320            performed during the actual operation (execve,
5321            open/mkdir/...), when we know the full context of the
5322            operation.  See selinux_bprm_set_creds for the execve
5323            checks and may_create for the file creation checks. The
5324            operation will then fail if the context is not permitted. */
5325         tsec = new->security;
5326         if (!strcmp(name, "exec")) {
5327                 tsec->exec_sid = sid;
5328         } else if (!strcmp(name, "fscreate")) {
5329                 tsec->create_sid = sid;
5330         } else if (!strcmp(name, "keycreate")) {
5331                 error = may_create_key(sid, p);
5332                 if (error)
5333                         goto abort_change;
5334                 tsec->keycreate_sid = sid;
5335         } else if (!strcmp(name, "sockcreate")) {
5336                 tsec->sockcreate_sid = sid;
5337         } else if (!strcmp(name, "current")) {
5338                 error = -EINVAL;
5339                 if (sid == 0)
5340                         goto abort_change;
5341
5342                 /* Only allow single threaded processes to change context */
5343                 error = -EPERM;
5344                 if (!current_is_single_threaded()) {
5345                         error = security_bounded_transition(tsec->sid, sid);
5346                         if (error)
5347                                 goto abort_change;
5348                 }
5349
5350                 /* Check permissions for the transition. */
5351                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5352                                      PROCESS__DYNTRANSITION, NULL);
5353                 if (error)
5354                         goto abort_change;
5355
5356                 /* Check for ptracing, and update the task SID if ok.
5357                    Otherwise, leave SID unchanged and fail. */
5358                 ptsid = 0;
5359                 task_lock(p);
5360                 tracer = ptrace_parent(p);
5361                 if (tracer)
5362                         ptsid = task_sid(tracer);
5363                 task_unlock(p);
5364
5365                 if (tracer) {
5366                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5367                                              PROCESS__PTRACE, NULL);
5368                         if (error)
5369                                 goto abort_change;
5370                 }
5371
5372                 tsec->sid = sid;
5373         } else {
5374                 error = -EINVAL;
5375                 goto abort_change;
5376         }
5377
5378         commit_creds(new);
5379         return size;
5380
5381 abort_change:
5382         abort_creds(new);
5383         return error;
5384 }
5385
5386 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5387 {
5388         return security_sid_to_context(secid, secdata, seclen);
5389 }
5390
5391 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5392 {
5393         return security_context_to_sid(secdata, seclen, secid);
5394 }
5395
5396 static void selinux_release_secctx(char *secdata, u32 seclen)
5397 {
5398         kfree(secdata);
5399 }
5400
5401 /*
5402  *      called with inode->i_mutex locked
5403  */
5404 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5405 {
5406         return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5407 }
5408
5409 /*
5410  *      called with inode->i_mutex locked
5411  */
5412 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5413 {
5414         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5415 }
5416
5417 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5418 {
5419         int len = 0;
5420         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5421                                                 ctx, true);
5422         if (len < 0)
5423                 return len;
5424         *ctxlen = len;
5425         return 0;
5426 }
5427 #ifdef CONFIG_KEYS
5428
5429 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5430                              unsigned long flags)
5431 {
5432         const struct task_security_struct *tsec;
5433         struct key_security_struct *ksec;
5434
5435         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5436         if (!ksec)
5437                 return -ENOMEM;
5438
5439         tsec = cred->security;
5440         if (tsec->keycreate_sid)
5441                 ksec->sid = tsec->keycreate_sid;
5442         else
5443                 ksec->sid = tsec->sid;
5444
5445         k->security = ksec;
5446         return 0;
5447 }
5448
5449 static void selinux_key_free(struct key *k)
5450 {
5451         struct key_security_struct *ksec = k->security;
5452
5453         k->security = NULL;
5454         kfree(ksec);
5455 }
5456
5457 static int selinux_key_permission(key_ref_t key_ref,
5458                                   const struct cred *cred,
5459                                   key_perm_t perm)
5460 {
5461         struct key *key;
5462         struct key_security_struct *ksec;
5463         u32 sid;
5464
5465         /* if no specific permissions are requested, we skip the
5466            permission check. No serious, additional covert channels
5467            appear to be created. */
5468         if (perm == 0)
5469                 return 0;
5470
5471         sid = cred_sid(cred);
5472
5473         key = key_ref_to_ptr(key_ref);
5474         ksec = key->security;
5475
5476         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5477 }
5478
5479 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5480 {
5481         struct key_security_struct *ksec = key->security;
5482         char *context = NULL;
5483         unsigned len;
5484         int rc;
5485
5486         rc = security_sid_to_context(ksec->sid, &context, &len);
5487         if (!rc)
5488                 rc = len;
5489         *_buffer = context;
5490         return rc;
5491 }
5492
5493 #endif
5494
5495 static struct security_operations selinux_ops = {
5496         .name =                         "selinux",
5497
5498         .ptrace_access_check =          selinux_ptrace_access_check,
5499         .ptrace_traceme =               selinux_ptrace_traceme,
5500         .capget =                       selinux_capget,
5501         .capset =                       selinux_capset,
5502         .capable =                      selinux_capable,
5503         .quotactl =                     selinux_quotactl,
5504         .quota_on =                     selinux_quota_on,
5505         .syslog =                       selinux_syslog,
5506         .vm_enough_memory =             selinux_vm_enough_memory,
5507
5508         .netlink_send =                 selinux_netlink_send,
5509
5510         .bprm_set_creds =               selinux_bprm_set_creds,
5511         .bprm_committing_creds =        selinux_bprm_committing_creds,
5512         .bprm_committed_creds =         selinux_bprm_committed_creds,
5513         .bprm_secureexec =              selinux_bprm_secureexec,
5514
5515         .sb_alloc_security =            selinux_sb_alloc_security,
5516         .sb_free_security =             selinux_sb_free_security,
5517         .sb_copy_data =                 selinux_sb_copy_data,
5518         .sb_remount =                   selinux_sb_remount,
5519         .sb_kern_mount =                selinux_sb_kern_mount,
5520         .sb_show_options =              selinux_sb_show_options,
5521         .sb_statfs =                    selinux_sb_statfs,
5522         .sb_mount =                     selinux_mount,
5523         .sb_umount =                    selinux_umount,
5524         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5525         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5526         .sb_parse_opts_str =            selinux_parse_opts_str,
5527
5528
5529         .inode_alloc_security =         selinux_inode_alloc_security,
5530         .inode_free_security =          selinux_inode_free_security,
5531         .inode_init_security =          selinux_inode_init_security,
5532         .inode_create =                 selinux_inode_create,
5533         .inode_link =                   selinux_inode_link,
5534         .inode_unlink =                 selinux_inode_unlink,
5535         .inode_symlink =                selinux_inode_symlink,
5536         .inode_mkdir =                  selinux_inode_mkdir,
5537         .inode_rmdir =                  selinux_inode_rmdir,
5538         .inode_mknod =                  selinux_inode_mknod,
5539         .inode_rename =                 selinux_inode_rename,
5540         .inode_readlink =               selinux_inode_readlink,
5541         .inode_follow_link =            selinux_inode_follow_link,
5542         .inode_permission =             selinux_inode_permission,
5543         .inode_setattr =                selinux_inode_setattr,
5544         .inode_getattr =                selinux_inode_getattr,
5545         .inode_setxattr =               selinux_inode_setxattr,
5546         .inode_post_setxattr =          selinux_inode_post_setxattr,
5547         .inode_getxattr =               selinux_inode_getxattr,
5548         .inode_listxattr =              selinux_inode_listxattr,
5549         .inode_removexattr =            selinux_inode_removexattr,
5550         .inode_getsecurity =            selinux_inode_getsecurity,
5551         .inode_setsecurity =            selinux_inode_setsecurity,
5552         .inode_listsecurity =           selinux_inode_listsecurity,
5553         .inode_getsecid =               selinux_inode_getsecid,
5554
5555         .file_permission =              selinux_file_permission,
5556         .file_alloc_security =          selinux_file_alloc_security,
5557         .file_free_security =           selinux_file_free_security,
5558         .file_ioctl =                   selinux_file_ioctl,
5559         .mmap_file =                    selinux_mmap_file,
5560         .mmap_addr =                    selinux_mmap_addr,
5561         .file_mprotect =                selinux_file_mprotect,
5562         .file_lock =                    selinux_file_lock,
5563         .file_fcntl =                   selinux_file_fcntl,
5564         .file_set_fowner =              selinux_file_set_fowner,
5565         .file_send_sigiotask =          selinux_file_send_sigiotask,
5566         .file_receive =                 selinux_file_receive,
5567
5568         .file_open =                    selinux_file_open,
5569
5570         .task_create =                  selinux_task_create,
5571         .cred_alloc_blank =             selinux_cred_alloc_blank,
5572         .cred_free =                    selinux_cred_free,
5573         .cred_prepare =                 selinux_cred_prepare,
5574         .cred_transfer =                selinux_cred_transfer,
5575         .kernel_act_as =                selinux_kernel_act_as,
5576         .kernel_create_files_as =       selinux_kernel_create_files_as,
5577         .kernel_module_request =        selinux_kernel_module_request,
5578         .task_setpgid =                 selinux_task_setpgid,
5579         .task_getpgid =                 selinux_task_getpgid,
5580         .task_getsid =                  selinux_task_getsid,
5581         .task_getsecid =                selinux_task_getsecid,
5582         .task_setnice =                 selinux_task_setnice,
5583         .task_setioprio =               selinux_task_setioprio,
5584         .task_getioprio =               selinux_task_getioprio,
5585         .task_setrlimit =               selinux_task_setrlimit,
5586         .task_setscheduler =            selinux_task_setscheduler,
5587         .task_getscheduler =            selinux_task_getscheduler,
5588         .task_movememory =              selinux_task_movememory,
5589         .task_kill =                    selinux_task_kill,
5590         .task_wait =                    selinux_task_wait,
5591         .task_to_inode =                selinux_task_to_inode,
5592
5593         .ipc_permission =               selinux_ipc_permission,
5594         .ipc_getsecid =                 selinux_ipc_getsecid,
5595
5596         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5597         .msg_msg_free_security =        selinux_msg_msg_free_security,
5598
5599         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5600         .msg_queue_free_security =      selinux_msg_queue_free_security,
5601         .msg_queue_associate =          selinux_msg_queue_associate,
5602         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5603         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5604         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5605
5606         .shm_alloc_security =           selinux_shm_alloc_security,
5607         .shm_free_security =            selinux_shm_free_security,
5608         .shm_associate =                selinux_shm_associate,
5609         .shm_shmctl =                   selinux_shm_shmctl,
5610         .shm_shmat =                    selinux_shm_shmat,
5611
5612         .sem_alloc_security =           selinux_sem_alloc_security,
5613         .sem_free_security =            selinux_sem_free_security,
5614         .sem_associate =                selinux_sem_associate,
5615         .sem_semctl =                   selinux_sem_semctl,
5616         .sem_semop =                    selinux_sem_semop,
5617
5618         .d_instantiate =                selinux_d_instantiate,
5619
5620         .getprocattr =                  selinux_getprocattr,
5621         .setprocattr =                  selinux_setprocattr,
5622
5623         .secid_to_secctx =              selinux_secid_to_secctx,
5624         .secctx_to_secid =              selinux_secctx_to_secid,
5625         .release_secctx =               selinux_release_secctx,
5626         .inode_notifysecctx =           selinux_inode_notifysecctx,
5627         .inode_setsecctx =              selinux_inode_setsecctx,
5628         .inode_getsecctx =              selinux_inode_getsecctx,
5629
5630         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5631         .unix_may_send =                selinux_socket_unix_may_send,
5632
5633         .socket_create =                selinux_socket_create,
5634         .socket_post_create =           selinux_socket_post_create,
5635         .socket_bind =                  selinux_socket_bind,
5636         .socket_connect =               selinux_socket_connect,
5637         .socket_listen =                selinux_socket_listen,
5638         .socket_accept =                selinux_socket_accept,
5639         .socket_sendmsg =               selinux_socket_sendmsg,
5640         .socket_recvmsg =               selinux_socket_recvmsg,
5641         .socket_getsockname =           selinux_socket_getsockname,
5642         .socket_getpeername =           selinux_socket_getpeername,
5643         .socket_getsockopt =            selinux_socket_getsockopt,
5644         .socket_setsockopt =            selinux_socket_setsockopt,
5645         .socket_shutdown =              selinux_socket_shutdown,
5646         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5647         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5648         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5649         .sk_alloc_security =            selinux_sk_alloc_security,
5650         .sk_free_security =             selinux_sk_free_security,
5651         .sk_clone_security =            selinux_sk_clone_security,
5652         .sk_getsecid =                  selinux_sk_getsecid,
5653         .sock_graft =                   selinux_sock_graft,
5654         .inet_conn_request =            selinux_inet_conn_request,
5655         .inet_csk_clone =               selinux_inet_csk_clone,
5656         .inet_conn_established =        selinux_inet_conn_established,
5657         .secmark_relabel_packet =       selinux_secmark_relabel_packet,
5658         .secmark_refcount_inc =         selinux_secmark_refcount_inc,
5659         .secmark_refcount_dec =         selinux_secmark_refcount_dec,
5660         .req_classify_flow =            selinux_req_classify_flow,
5661         .tun_dev_alloc_security =       selinux_tun_dev_alloc_security,
5662         .tun_dev_free_security =        selinux_tun_dev_free_security,
5663         .tun_dev_create =               selinux_tun_dev_create,
5664         .tun_dev_attach_queue =         selinux_tun_dev_attach_queue,
5665         .tun_dev_attach =               selinux_tun_dev_attach,
5666         .tun_dev_open =                 selinux_tun_dev_open,
5667
5668 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5669         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5670         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5671         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5672         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5673         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5674         .xfrm_state_free_security =     selinux_xfrm_state_free,
5675         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5676         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5677         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5678         .xfrm_decode_session =          selinux_xfrm_decode_session,
5679 #endif
5680
5681 #ifdef CONFIG_KEYS
5682         .key_alloc =                    selinux_key_alloc,
5683         .key_free =                     selinux_key_free,
5684         .key_permission =               selinux_key_permission,
5685         .key_getsecurity =              selinux_key_getsecurity,
5686 #endif
5687
5688 #ifdef CONFIG_AUDIT
5689         .audit_rule_init =              selinux_audit_rule_init,
5690         .audit_rule_known =             selinux_audit_rule_known,
5691         .audit_rule_match =             selinux_audit_rule_match,
5692         .audit_rule_free =              selinux_audit_rule_free,
5693 #endif
5694 };
5695
5696 static __init int selinux_init(void)
5697 {
5698         if (!security_module_enable(&selinux_ops)) {
5699                 selinux_enabled = 0;
5700                 return 0;
5701         }
5702
5703         if (!selinux_enabled) {
5704                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5705                 return 0;
5706         }
5707
5708         printk(KERN_INFO "SELinux:  Initializing.\n");
5709
5710         /* Set the security state for the initial task. */
5711         cred_init_security();
5712
5713         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5714
5715         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5716                                             sizeof(struct inode_security_struct),
5717                                             0, SLAB_PANIC, NULL);
5718         avc_init();
5719
5720         if (register_security(&selinux_ops))
5721                 panic("SELinux: Unable to register with kernel.\n");
5722
5723         if (selinux_enforcing)
5724                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5725         else
5726                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5727
5728         return 0;
5729 }
5730
5731 static void delayed_superblock_init(struct super_block *sb, void *unused)
5732 {
5733         superblock_doinit(sb, NULL);
5734 }
5735
5736 void selinux_complete_init(void)
5737 {
5738         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5739
5740         /* Set up any superblocks initialized prior to the policy load. */
5741         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5742         iterate_supers(delayed_superblock_init, NULL);
5743 }
5744
5745 /* SELinux requires early initialization in order to label
5746    all processes and objects when they are created. */
5747 security_initcall(selinux_init);
5748
5749 #if defined(CONFIG_NETFILTER)
5750
5751 static struct nf_hook_ops selinux_ipv4_ops[] = {
5752         {
5753                 .hook =         selinux_ipv4_postroute,
5754                 .owner =        THIS_MODULE,
5755                 .pf =           NFPROTO_IPV4,
5756                 .hooknum =      NF_INET_POST_ROUTING,
5757                 .priority =     NF_IP_PRI_SELINUX_LAST,
5758         },
5759         {
5760                 .hook =         selinux_ipv4_forward,
5761                 .owner =        THIS_MODULE,
5762                 .pf =           NFPROTO_IPV4,
5763                 .hooknum =      NF_INET_FORWARD,
5764                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5765         },
5766         {
5767                 .hook =         selinux_ipv4_output,
5768                 .owner =        THIS_MODULE,
5769                 .pf =           NFPROTO_IPV4,
5770                 .hooknum =      NF_INET_LOCAL_OUT,
5771                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5772         }
5773 };
5774
5775 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5776
5777 static struct nf_hook_ops selinux_ipv6_ops[] = {
5778         {
5779                 .hook =         selinux_ipv6_postroute,
5780                 .owner =        THIS_MODULE,
5781                 .pf =           NFPROTO_IPV6,
5782                 .hooknum =      NF_INET_POST_ROUTING,
5783                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5784         },
5785         {
5786                 .hook =         selinux_ipv6_forward,
5787                 .owner =        THIS_MODULE,
5788                 .pf =           NFPROTO_IPV6,
5789                 .hooknum =      NF_INET_FORWARD,
5790                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5791         }
5792 };
5793
5794 #endif  /* IPV6 */
5795
5796 static int __init selinux_nf_ip_init(void)
5797 {
5798         int err = 0;
5799
5800         if (!selinux_enabled)
5801                 goto out;
5802
5803         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5804
5805         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5806         if (err)
5807                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5808
5809 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5810         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5811         if (err)
5812                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5813 #endif  /* IPV6 */
5814
5815 out:
5816         return err;
5817 }
5818
5819 __initcall(selinux_nf_ip_init);
5820
5821 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5822 static void selinux_nf_ip_exit(void)
5823 {
5824         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5825
5826         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5827 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5828         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5829 #endif  /* IPV6 */
5830 }
5831 #endif
5832
5833 #else /* CONFIG_NETFILTER */
5834
5835 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5836 #define selinux_nf_ip_exit()
5837 #endif
5838
5839 #endif /* CONFIG_NETFILTER */
5840
5841 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5842 static int selinux_disabled;
5843
5844 int selinux_disable(void)
5845 {
5846         if (ss_initialized) {
5847                 /* Not permitted after initial policy load. */
5848                 return -EINVAL;
5849         }
5850
5851         if (selinux_disabled) {
5852                 /* Only do this once. */
5853                 return -EINVAL;
5854         }
5855
5856         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5857
5858         selinux_disabled = 1;
5859         selinux_enabled = 0;
5860
5861         reset_security_ops();
5862
5863         /* Try to destroy the avc node cache */
5864         avc_disable();
5865
5866         /* Unregister netfilter hooks. */
5867         selinux_nf_ip_exit();
5868
5869         /* Unregister selinuxfs. */
5870         exit_sel_fs();
5871
5872         return 0;
5873 }
5874 #endif