IMA: only allocate iint when needed
[linux-3.10.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/ima.h>
20
21 /* Boot-time LSM user choice */
22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
23         CONFIG_DEFAULT_SECURITY;
24
25 /* things that live in capability.c */
26 extern void __init security_fixup_ops(struct security_operations *ops);
27
28 static struct security_operations *security_ops;
29 static struct security_operations default_security_ops = {
30         .name   = "default",
31 };
32
33 static inline int __init verify(struct security_operations *ops)
34 {
35         /* verify the security_operations structure exists */
36         if (!ops)
37                 return -EINVAL;
38         security_fixup_ops(ops);
39         return 0;
40 }
41
42 static void __init do_security_initcalls(void)
43 {
44         initcall_t *call;
45         call = __security_initcall_start;
46         while (call < __security_initcall_end) {
47                 (*call) ();
48                 call++;
49         }
50 }
51
52 /**
53  * security_init - initializes the security framework
54  *
55  * This should be called early in the kernel initialization sequence.
56  */
57 int __init security_init(void)
58 {
59         printk(KERN_INFO "Security Framework initialized\n");
60
61         security_fixup_ops(&default_security_ops);
62         security_ops = &default_security_ops;
63         do_security_initcalls();
64
65         return 0;
66 }
67
68 void reset_security_ops(void)
69 {
70         security_ops = &default_security_ops;
71 }
72
73 /* Save user chosen LSM */
74 static int __init choose_lsm(char *str)
75 {
76         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
77         return 1;
78 }
79 __setup("security=", choose_lsm);
80
81 /**
82  * security_module_enable - Load given security module on boot ?
83  * @ops: a pointer to the struct security_operations that is to be checked.
84  *
85  * Each LSM must pass this method before registering its own operations
86  * to avoid security registration races. This method may also be used
87  * to check if your LSM is currently loaded during kernel initialization.
88  *
89  * Return true if:
90  *      -The passed LSM is the one chosen by user at boot time,
91  *      -or the passed LSM is configured as the default and the user did not
92  *       choose an alternate LSM at boot time,
93  *      -or there is no default LSM set and the user didn't specify a
94  *       specific LSM and we're the first to ask for registration permission,
95  *      -or the passed LSM is currently loaded.
96  * Otherwise, return false.
97  */
98 int __init security_module_enable(struct security_operations *ops)
99 {
100         if (!*chosen_lsm)
101                 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
102         else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
103                 return 0;
104
105         return 1;
106 }
107
108 /**
109  * register_security - registers a security framework with the kernel
110  * @ops: a pointer to the struct security_options that is to be registered
111  *
112  * This function allows a security module to register itself with the
113  * kernel security subsystem.  Some rudimentary checking is done on the @ops
114  * value passed to this function. You'll need to check first if your LSM
115  * is allowed to register its @ops by calling security_module_enable(@ops).
116  *
117  * If there is already a security module registered with the kernel,
118  * an error will be returned.  Otherwise %0 is returned on success.
119  */
120 int __init register_security(struct security_operations *ops)
121 {
122         if (verify(ops)) {
123                 printk(KERN_DEBUG "%s could not verify "
124                        "security_operations structure.\n", __func__);
125                 return -EINVAL;
126         }
127
128         if (security_ops != &default_security_ops)
129                 return -EAGAIN;
130
131         security_ops = ops;
132
133         return 0;
134 }
135
136 /* Security operations */
137
138 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
139 {
140         return security_ops->ptrace_access_check(child, mode);
141 }
142
143 int security_ptrace_traceme(struct task_struct *parent)
144 {
145         return security_ops->ptrace_traceme(parent);
146 }
147
148 int security_capget(struct task_struct *target,
149                      kernel_cap_t *effective,
150                      kernel_cap_t *inheritable,
151                      kernel_cap_t *permitted)
152 {
153         return security_ops->capget(target, effective, inheritable, permitted);
154 }
155
156 int security_capset(struct cred *new, const struct cred *old,
157                     const kernel_cap_t *effective,
158                     const kernel_cap_t *inheritable,
159                     const kernel_cap_t *permitted)
160 {
161         return security_ops->capset(new, old,
162                                     effective, inheritable, permitted);
163 }
164
165 int security_capable(int cap)
166 {
167         return security_ops->capable(current, current_cred(), cap,
168                                      SECURITY_CAP_AUDIT);
169 }
170
171 int security_real_capable(struct task_struct *tsk, int cap)
172 {
173         const struct cred *cred;
174         int ret;
175
176         cred = get_task_cred(tsk);
177         ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
178         put_cred(cred);
179         return ret;
180 }
181
182 int security_real_capable_noaudit(struct task_struct *tsk, int cap)
183 {
184         const struct cred *cred;
185         int ret;
186
187         cred = get_task_cred(tsk);
188         ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
189         put_cred(cred);
190         return ret;
191 }
192
193 int security_sysctl(struct ctl_table *table, int op)
194 {
195         return security_ops->sysctl(table, op);
196 }
197
198 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
199 {
200         return security_ops->quotactl(cmds, type, id, sb);
201 }
202
203 int security_quota_on(struct dentry *dentry)
204 {
205         return security_ops->quota_on(dentry);
206 }
207
208 int security_syslog(int type, bool from_file)
209 {
210         return security_ops->syslog(type, from_file);
211 }
212
213 int security_settime(struct timespec *ts, struct timezone *tz)
214 {
215         return security_ops->settime(ts, tz);
216 }
217
218 int security_vm_enough_memory(long pages)
219 {
220         WARN_ON(current->mm == NULL);
221         return security_ops->vm_enough_memory(current->mm, pages);
222 }
223
224 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
225 {
226         WARN_ON(mm == NULL);
227         return security_ops->vm_enough_memory(mm, pages);
228 }
229
230 int security_vm_enough_memory_kern(long pages)
231 {
232         /* If current->mm is a kernel thread then we will pass NULL,
233            for this specific case that is fine */
234         return security_ops->vm_enough_memory(current->mm, pages);
235 }
236
237 int security_bprm_set_creds(struct linux_binprm *bprm)
238 {
239         return security_ops->bprm_set_creds(bprm);
240 }
241
242 int security_bprm_check(struct linux_binprm *bprm)
243 {
244         int ret;
245
246         ret = security_ops->bprm_check_security(bprm);
247         if (ret)
248                 return ret;
249         return ima_bprm_check(bprm);
250 }
251
252 void security_bprm_committing_creds(struct linux_binprm *bprm)
253 {
254         security_ops->bprm_committing_creds(bprm);
255 }
256
257 void security_bprm_committed_creds(struct linux_binprm *bprm)
258 {
259         security_ops->bprm_committed_creds(bprm);
260 }
261
262 int security_bprm_secureexec(struct linux_binprm *bprm)
263 {
264         return security_ops->bprm_secureexec(bprm);
265 }
266
267 int security_sb_alloc(struct super_block *sb)
268 {
269         return security_ops->sb_alloc_security(sb);
270 }
271
272 void security_sb_free(struct super_block *sb)
273 {
274         security_ops->sb_free_security(sb);
275 }
276
277 int security_sb_copy_data(char *orig, char *copy)
278 {
279         return security_ops->sb_copy_data(orig, copy);
280 }
281 EXPORT_SYMBOL(security_sb_copy_data);
282
283 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
284 {
285         return security_ops->sb_kern_mount(sb, flags, data);
286 }
287
288 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
289 {
290         return security_ops->sb_show_options(m, sb);
291 }
292
293 int security_sb_statfs(struct dentry *dentry)
294 {
295         return security_ops->sb_statfs(dentry);
296 }
297
298 int security_sb_mount(char *dev_name, struct path *path,
299                        char *type, unsigned long flags, void *data)
300 {
301         return security_ops->sb_mount(dev_name, path, type, flags, data);
302 }
303
304 int security_sb_umount(struct vfsmount *mnt, int flags)
305 {
306         return security_ops->sb_umount(mnt, flags);
307 }
308
309 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
310 {
311         return security_ops->sb_pivotroot(old_path, new_path);
312 }
313
314 int security_sb_set_mnt_opts(struct super_block *sb,
315                                 struct security_mnt_opts *opts)
316 {
317         return security_ops->sb_set_mnt_opts(sb, opts);
318 }
319 EXPORT_SYMBOL(security_sb_set_mnt_opts);
320
321 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
322                                 struct super_block *newsb)
323 {
324         security_ops->sb_clone_mnt_opts(oldsb, newsb);
325 }
326 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
327
328 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
329 {
330         return security_ops->sb_parse_opts_str(options, opts);
331 }
332 EXPORT_SYMBOL(security_sb_parse_opts_str);
333
334 int security_inode_alloc(struct inode *inode)
335 {
336         inode->i_security = NULL;
337         return security_ops->inode_alloc_security(inode);
338 }
339
340 void security_inode_free(struct inode *inode)
341 {
342         ima_inode_free(inode);
343         security_ops->inode_free_security(inode);
344 }
345
346 int security_inode_init_security(struct inode *inode, struct inode *dir,
347                                   char **name, void **value, size_t *len)
348 {
349         if (unlikely(IS_PRIVATE(inode)))
350                 return -EOPNOTSUPP;
351         return security_ops->inode_init_security(inode, dir, name, value, len);
352 }
353 EXPORT_SYMBOL(security_inode_init_security);
354
355 #ifdef CONFIG_SECURITY_PATH
356 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
357                         unsigned int dev)
358 {
359         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
360                 return 0;
361         return security_ops->path_mknod(dir, dentry, mode, dev);
362 }
363 EXPORT_SYMBOL(security_path_mknod);
364
365 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
366 {
367         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
368                 return 0;
369         return security_ops->path_mkdir(dir, dentry, mode);
370 }
371
372 int security_path_rmdir(struct path *dir, struct dentry *dentry)
373 {
374         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
375                 return 0;
376         return security_ops->path_rmdir(dir, dentry);
377 }
378
379 int security_path_unlink(struct path *dir, struct dentry *dentry)
380 {
381         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
382                 return 0;
383         return security_ops->path_unlink(dir, dentry);
384 }
385
386 int security_path_symlink(struct path *dir, struct dentry *dentry,
387                           const char *old_name)
388 {
389         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
390                 return 0;
391         return security_ops->path_symlink(dir, dentry, old_name);
392 }
393
394 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
395                        struct dentry *new_dentry)
396 {
397         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
398                 return 0;
399         return security_ops->path_link(old_dentry, new_dir, new_dentry);
400 }
401
402 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
403                          struct path *new_dir, struct dentry *new_dentry)
404 {
405         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
406                      (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
407                 return 0;
408         return security_ops->path_rename(old_dir, old_dentry, new_dir,
409                                          new_dentry);
410 }
411
412 int security_path_truncate(struct path *path)
413 {
414         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
415                 return 0;
416         return security_ops->path_truncate(path);
417 }
418
419 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
420                         mode_t mode)
421 {
422         if (unlikely(IS_PRIVATE(dentry->d_inode)))
423                 return 0;
424         return security_ops->path_chmod(dentry, mnt, mode);
425 }
426
427 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
428 {
429         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
430                 return 0;
431         return security_ops->path_chown(path, uid, gid);
432 }
433
434 int security_path_chroot(struct path *path)
435 {
436         return security_ops->path_chroot(path);
437 }
438 #endif
439
440 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
441 {
442         if (unlikely(IS_PRIVATE(dir)))
443                 return 0;
444         return security_ops->inode_create(dir, dentry, mode);
445 }
446 EXPORT_SYMBOL_GPL(security_inode_create);
447
448 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
449                          struct dentry *new_dentry)
450 {
451         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
452                 return 0;
453         return security_ops->inode_link(old_dentry, dir, new_dentry);
454 }
455
456 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
457 {
458         if (unlikely(IS_PRIVATE(dentry->d_inode)))
459                 return 0;
460         return security_ops->inode_unlink(dir, dentry);
461 }
462
463 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
464                             const char *old_name)
465 {
466         if (unlikely(IS_PRIVATE(dir)))
467                 return 0;
468         return security_ops->inode_symlink(dir, dentry, old_name);
469 }
470
471 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
472 {
473         if (unlikely(IS_PRIVATE(dir)))
474                 return 0;
475         return security_ops->inode_mkdir(dir, dentry, mode);
476 }
477 EXPORT_SYMBOL_GPL(security_inode_mkdir);
478
479 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
480 {
481         if (unlikely(IS_PRIVATE(dentry->d_inode)))
482                 return 0;
483         return security_ops->inode_rmdir(dir, dentry);
484 }
485
486 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
487 {
488         if (unlikely(IS_PRIVATE(dir)))
489                 return 0;
490         return security_ops->inode_mknod(dir, dentry, mode, dev);
491 }
492
493 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
494                            struct inode *new_dir, struct dentry *new_dentry)
495 {
496         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
497             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
498                 return 0;
499         return security_ops->inode_rename(old_dir, old_dentry,
500                                            new_dir, new_dentry);
501 }
502
503 int security_inode_readlink(struct dentry *dentry)
504 {
505         if (unlikely(IS_PRIVATE(dentry->d_inode)))
506                 return 0;
507         return security_ops->inode_readlink(dentry);
508 }
509
510 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
511 {
512         if (unlikely(IS_PRIVATE(dentry->d_inode)))
513                 return 0;
514         return security_ops->inode_follow_link(dentry, nd);
515 }
516
517 int security_inode_permission(struct inode *inode, int mask)
518 {
519         if (unlikely(IS_PRIVATE(inode)))
520                 return 0;
521         return security_ops->inode_permission(inode, mask);
522 }
523
524 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
525 {
526         if (unlikely(IS_PRIVATE(dentry->d_inode)))
527                 return 0;
528         return security_ops->inode_setattr(dentry, attr);
529 }
530 EXPORT_SYMBOL_GPL(security_inode_setattr);
531
532 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
533 {
534         if (unlikely(IS_PRIVATE(dentry->d_inode)))
535                 return 0;
536         return security_ops->inode_getattr(mnt, dentry);
537 }
538
539 int security_inode_setxattr(struct dentry *dentry, const char *name,
540                             const void *value, size_t size, int flags)
541 {
542         if (unlikely(IS_PRIVATE(dentry->d_inode)))
543                 return 0;
544         return security_ops->inode_setxattr(dentry, name, value, size, flags);
545 }
546
547 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
548                                   const void *value, size_t size, int flags)
549 {
550         if (unlikely(IS_PRIVATE(dentry->d_inode)))
551                 return;
552         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
553 }
554
555 int security_inode_getxattr(struct dentry *dentry, const char *name)
556 {
557         if (unlikely(IS_PRIVATE(dentry->d_inode)))
558                 return 0;
559         return security_ops->inode_getxattr(dentry, name);
560 }
561
562 int security_inode_listxattr(struct dentry *dentry)
563 {
564         if (unlikely(IS_PRIVATE(dentry->d_inode)))
565                 return 0;
566         return security_ops->inode_listxattr(dentry);
567 }
568
569 int security_inode_removexattr(struct dentry *dentry, const char *name)
570 {
571         if (unlikely(IS_PRIVATE(dentry->d_inode)))
572                 return 0;
573         return security_ops->inode_removexattr(dentry, name);
574 }
575
576 int security_inode_need_killpriv(struct dentry *dentry)
577 {
578         return security_ops->inode_need_killpriv(dentry);
579 }
580
581 int security_inode_killpriv(struct dentry *dentry)
582 {
583         return security_ops->inode_killpriv(dentry);
584 }
585
586 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
587 {
588         if (unlikely(IS_PRIVATE(inode)))
589                 return -EOPNOTSUPP;
590         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
591 }
592
593 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
594 {
595         if (unlikely(IS_PRIVATE(inode)))
596                 return -EOPNOTSUPP;
597         return security_ops->inode_setsecurity(inode, name, value, size, flags);
598 }
599
600 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
601 {
602         if (unlikely(IS_PRIVATE(inode)))
603                 return 0;
604         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
605 }
606
607 void security_inode_getsecid(const struct inode *inode, u32 *secid)
608 {
609         security_ops->inode_getsecid(inode, secid);
610 }
611
612 int security_file_permission(struct file *file, int mask)
613 {
614         int ret;
615
616         ret = security_ops->file_permission(file, mask);
617         if (ret)
618                 return ret;
619
620         return fsnotify_perm(file, mask);
621 }
622
623 int security_file_alloc(struct file *file)
624 {
625         return security_ops->file_alloc_security(file);
626 }
627
628 void security_file_free(struct file *file)
629 {
630         security_ops->file_free_security(file);
631 }
632
633 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
634 {
635         return security_ops->file_ioctl(file, cmd, arg);
636 }
637
638 int security_file_mmap(struct file *file, unsigned long reqprot,
639                         unsigned long prot, unsigned long flags,
640                         unsigned long addr, unsigned long addr_only)
641 {
642         int ret;
643
644         ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
645         if (ret)
646                 return ret;
647         return ima_file_mmap(file, prot);
648 }
649
650 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
651                             unsigned long prot)
652 {
653         return security_ops->file_mprotect(vma, reqprot, prot);
654 }
655
656 int security_file_lock(struct file *file, unsigned int cmd)
657 {
658         return security_ops->file_lock(file, cmd);
659 }
660
661 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
662 {
663         return security_ops->file_fcntl(file, cmd, arg);
664 }
665
666 int security_file_set_fowner(struct file *file)
667 {
668         return security_ops->file_set_fowner(file);
669 }
670
671 int security_file_send_sigiotask(struct task_struct *tsk,
672                                   struct fown_struct *fown, int sig)
673 {
674         return security_ops->file_send_sigiotask(tsk, fown, sig);
675 }
676
677 int security_file_receive(struct file *file)
678 {
679         return security_ops->file_receive(file);
680 }
681
682 int security_dentry_open(struct file *file, const struct cred *cred)
683 {
684         int ret;
685
686         ret = security_ops->dentry_open(file, cred);
687         if (ret)
688                 return ret;
689
690         return fsnotify_perm(file, MAY_OPEN);
691 }
692
693 int security_task_create(unsigned long clone_flags)
694 {
695         return security_ops->task_create(clone_flags);
696 }
697
698 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
699 {
700         return security_ops->cred_alloc_blank(cred, gfp);
701 }
702
703 void security_cred_free(struct cred *cred)
704 {
705         security_ops->cred_free(cred);
706 }
707
708 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
709 {
710         return security_ops->cred_prepare(new, old, gfp);
711 }
712
713 void security_transfer_creds(struct cred *new, const struct cred *old)
714 {
715         security_ops->cred_transfer(new, old);
716 }
717
718 int security_kernel_act_as(struct cred *new, u32 secid)
719 {
720         return security_ops->kernel_act_as(new, secid);
721 }
722
723 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
724 {
725         return security_ops->kernel_create_files_as(new, inode);
726 }
727
728 int security_kernel_module_request(char *kmod_name)
729 {
730         return security_ops->kernel_module_request(kmod_name);
731 }
732
733 int security_task_fix_setuid(struct cred *new, const struct cred *old,
734                              int flags)
735 {
736         return security_ops->task_fix_setuid(new, old, flags);
737 }
738
739 int security_task_setpgid(struct task_struct *p, pid_t pgid)
740 {
741         return security_ops->task_setpgid(p, pgid);
742 }
743
744 int security_task_getpgid(struct task_struct *p)
745 {
746         return security_ops->task_getpgid(p);
747 }
748
749 int security_task_getsid(struct task_struct *p)
750 {
751         return security_ops->task_getsid(p);
752 }
753
754 void security_task_getsecid(struct task_struct *p, u32 *secid)
755 {
756         security_ops->task_getsecid(p, secid);
757 }
758 EXPORT_SYMBOL(security_task_getsecid);
759
760 int security_task_setnice(struct task_struct *p, int nice)
761 {
762         return security_ops->task_setnice(p, nice);
763 }
764
765 int security_task_setioprio(struct task_struct *p, int ioprio)
766 {
767         return security_ops->task_setioprio(p, ioprio);
768 }
769
770 int security_task_getioprio(struct task_struct *p)
771 {
772         return security_ops->task_getioprio(p);
773 }
774
775 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
776                 struct rlimit *new_rlim)
777 {
778         return security_ops->task_setrlimit(p, resource, new_rlim);
779 }
780
781 int security_task_setscheduler(struct task_struct *p,
782                                 int policy, struct sched_param *lp)
783 {
784         return security_ops->task_setscheduler(p, policy, lp);
785 }
786
787 int security_task_getscheduler(struct task_struct *p)
788 {
789         return security_ops->task_getscheduler(p);
790 }
791
792 int security_task_movememory(struct task_struct *p)
793 {
794         return security_ops->task_movememory(p);
795 }
796
797 int security_task_kill(struct task_struct *p, struct siginfo *info,
798                         int sig, u32 secid)
799 {
800         return security_ops->task_kill(p, info, sig, secid);
801 }
802
803 int security_task_wait(struct task_struct *p)
804 {
805         return security_ops->task_wait(p);
806 }
807
808 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
809                          unsigned long arg4, unsigned long arg5)
810 {
811         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
812 }
813
814 void security_task_to_inode(struct task_struct *p, struct inode *inode)
815 {
816         security_ops->task_to_inode(p, inode);
817 }
818
819 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
820 {
821         return security_ops->ipc_permission(ipcp, flag);
822 }
823
824 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
825 {
826         security_ops->ipc_getsecid(ipcp, secid);
827 }
828
829 int security_msg_msg_alloc(struct msg_msg *msg)
830 {
831         return security_ops->msg_msg_alloc_security(msg);
832 }
833
834 void security_msg_msg_free(struct msg_msg *msg)
835 {
836         security_ops->msg_msg_free_security(msg);
837 }
838
839 int security_msg_queue_alloc(struct msg_queue *msq)
840 {
841         return security_ops->msg_queue_alloc_security(msq);
842 }
843
844 void security_msg_queue_free(struct msg_queue *msq)
845 {
846         security_ops->msg_queue_free_security(msq);
847 }
848
849 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
850 {
851         return security_ops->msg_queue_associate(msq, msqflg);
852 }
853
854 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
855 {
856         return security_ops->msg_queue_msgctl(msq, cmd);
857 }
858
859 int security_msg_queue_msgsnd(struct msg_queue *msq,
860                                struct msg_msg *msg, int msqflg)
861 {
862         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
863 }
864
865 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
866                                struct task_struct *target, long type, int mode)
867 {
868         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
869 }
870
871 int security_shm_alloc(struct shmid_kernel *shp)
872 {
873         return security_ops->shm_alloc_security(shp);
874 }
875
876 void security_shm_free(struct shmid_kernel *shp)
877 {
878         security_ops->shm_free_security(shp);
879 }
880
881 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
882 {
883         return security_ops->shm_associate(shp, shmflg);
884 }
885
886 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
887 {
888         return security_ops->shm_shmctl(shp, cmd);
889 }
890
891 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
892 {
893         return security_ops->shm_shmat(shp, shmaddr, shmflg);
894 }
895
896 int security_sem_alloc(struct sem_array *sma)
897 {
898         return security_ops->sem_alloc_security(sma);
899 }
900
901 void security_sem_free(struct sem_array *sma)
902 {
903         security_ops->sem_free_security(sma);
904 }
905
906 int security_sem_associate(struct sem_array *sma, int semflg)
907 {
908         return security_ops->sem_associate(sma, semflg);
909 }
910
911 int security_sem_semctl(struct sem_array *sma, int cmd)
912 {
913         return security_ops->sem_semctl(sma, cmd);
914 }
915
916 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
917                         unsigned nsops, int alter)
918 {
919         return security_ops->sem_semop(sma, sops, nsops, alter);
920 }
921
922 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
923 {
924         if (unlikely(inode && IS_PRIVATE(inode)))
925                 return;
926         security_ops->d_instantiate(dentry, inode);
927 }
928 EXPORT_SYMBOL(security_d_instantiate);
929
930 int security_getprocattr(struct task_struct *p, char *name, char **value)
931 {
932         return security_ops->getprocattr(p, name, value);
933 }
934
935 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
936 {
937         return security_ops->setprocattr(p, name, value, size);
938 }
939
940 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
941 {
942         return security_ops->netlink_send(sk, skb);
943 }
944
945 int security_netlink_recv(struct sk_buff *skb, int cap)
946 {
947         return security_ops->netlink_recv(skb, cap);
948 }
949 EXPORT_SYMBOL(security_netlink_recv);
950
951 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
952 {
953         return security_ops->secid_to_secctx(secid, secdata, seclen);
954 }
955 EXPORT_SYMBOL(security_secid_to_secctx);
956
957 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
958 {
959         return security_ops->secctx_to_secid(secdata, seclen, secid);
960 }
961 EXPORT_SYMBOL(security_secctx_to_secid);
962
963 void security_release_secctx(char *secdata, u32 seclen)
964 {
965         security_ops->release_secctx(secdata, seclen);
966 }
967 EXPORT_SYMBOL(security_release_secctx);
968
969 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
970 {
971         return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
972 }
973 EXPORT_SYMBOL(security_inode_notifysecctx);
974
975 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
976 {
977         return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
978 }
979 EXPORT_SYMBOL(security_inode_setsecctx);
980
981 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
982 {
983         return security_ops->inode_getsecctx(inode, ctx, ctxlen);
984 }
985 EXPORT_SYMBOL(security_inode_getsecctx);
986
987 #ifdef CONFIG_SECURITY_NETWORK
988
989 int security_unix_stream_connect(struct socket *sock, struct socket *other,
990                                  struct sock *newsk)
991 {
992         return security_ops->unix_stream_connect(sock, other, newsk);
993 }
994 EXPORT_SYMBOL(security_unix_stream_connect);
995
996 int security_unix_may_send(struct socket *sock,  struct socket *other)
997 {
998         return security_ops->unix_may_send(sock, other);
999 }
1000 EXPORT_SYMBOL(security_unix_may_send);
1001
1002 int security_socket_create(int family, int type, int protocol, int kern)
1003 {
1004         return security_ops->socket_create(family, type, protocol, kern);
1005 }
1006
1007 int security_socket_post_create(struct socket *sock, int family,
1008                                 int type, int protocol, int kern)
1009 {
1010         return security_ops->socket_post_create(sock, family, type,
1011                                                 protocol, kern);
1012 }
1013
1014 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1015 {
1016         return security_ops->socket_bind(sock, address, addrlen);
1017 }
1018
1019 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1020 {
1021         return security_ops->socket_connect(sock, address, addrlen);
1022 }
1023
1024 int security_socket_listen(struct socket *sock, int backlog)
1025 {
1026         return security_ops->socket_listen(sock, backlog);
1027 }
1028
1029 int security_socket_accept(struct socket *sock, struct socket *newsock)
1030 {
1031         return security_ops->socket_accept(sock, newsock);
1032 }
1033
1034 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1035 {
1036         return security_ops->socket_sendmsg(sock, msg, size);
1037 }
1038
1039 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1040                             int size, int flags)
1041 {
1042         return security_ops->socket_recvmsg(sock, msg, size, flags);
1043 }
1044
1045 int security_socket_getsockname(struct socket *sock)
1046 {
1047         return security_ops->socket_getsockname(sock);
1048 }
1049
1050 int security_socket_getpeername(struct socket *sock)
1051 {
1052         return security_ops->socket_getpeername(sock);
1053 }
1054
1055 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1056 {
1057         return security_ops->socket_getsockopt(sock, level, optname);
1058 }
1059
1060 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1061 {
1062         return security_ops->socket_setsockopt(sock, level, optname);
1063 }
1064
1065 int security_socket_shutdown(struct socket *sock, int how)
1066 {
1067         return security_ops->socket_shutdown(sock, how);
1068 }
1069
1070 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1071 {
1072         return security_ops->socket_sock_rcv_skb(sk, skb);
1073 }
1074 EXPORT_SYMBOL(security_sock_rcv_skb);
1075
1076 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1077                                       int __user *optlen, unsigned len)
1078 {
1079         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1080 }
1081
1082 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1083 {
1084         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1085 }
1086 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1087
1088 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1089 {
1090         return security_ops->sk_alloc_security(sk, family, priority);
1091 }
1092
1093 void security_sk_free(struct sock *sk)
1094 {
1095         security_ops->sk_free_security(sk);
1096 }
1097
1098 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1099 {
1100         security_ops->sk_clone_security(sk, newsk);
1101 }
1102
1103 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1104 {
1105         security_ops->sk_getsecid(sk, &fl->secid);
1106 }
1107 EXPORT_SYMBOL(security_sk_classify_flow);
1108
1109 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1110 {
1111         security_ops->req_classify_flow(req, fl);
1112 }
1113 EXPORT_SYMBOL(security_req_classify_flow);
1114
1115 void security_sock_graft(struct sock *sk, struct socket *parent)
1116 {
1117         security_ops->sock_graft(sk, parent);
1118 }
1119 EXPORT_SYMBOL(security_sock_graft);
1120
1121 int security_inet_conn_request(struct sock *sk,
1122                         struct sk_buff *skb, struct request_sock *req)
1123 {
1124         return security_ops->inet_conn_request(sk, skb, req);
1125 }
1126 EXPORT_SYMBOL(security_inet_conn_request);
1127
1128 void security_inet_csk_clone(struct sock *newsk,
1129                         const struct request_sock *req)
1130 {
1131         security_ops->inet_csk_clone(newsk, req);
1132 }
1133
1134 void security_inet_conn_established(struct sock *sk,
1135                         struct sk_buff *skb)
1136 {
1137         security_ops->inet_conn_established(sk, skb);
1138 }
1139
1140 int security_tun_dev_create(void)
1141 {
1142         return security_ops->tun_dev_create();
1143 }
1144 EXPORT_SYMBOL(security_tun_dev_create);
1145
1146 void security_tun_dev_post_create(struct sock *sk)
1147 {
1148         return security_ops->tun_dev_post_create(sk);
1149 }
1150 EXPORT_SYMBOL(security_tun_dev_post_create);
1151
1152 int security_tun_dev_attach(struct sock *sk)
1153 {
1154         return security_ops->tun_dev_attach(sk);
1155 }
1156 EXPORT_SYMBOL(security_tun_dev_attach);
1157
1158 #endif  /* CONFIG_SECURITY_NETWORK */
1159
1160 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1161
1162 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1163 {
1164         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1165 }
1166 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1167
1168 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1169                               struct xfrm_sec_ctx **new_ctxp)
1170 {
1171         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1172 }
1173
1174 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1175 {
1176         security_ops->xfrm_policy_free_security(ctx);
1177 }
1178 EXPORT_SYMBOL(security_xfrm_policy_free);
1179
1180 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1181 {
1182         return security_ops->xfrm_policy_delete_security(ctx);
1183 }
1184
1185 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1186 {
1187         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1188 }
1189 EXPORT_SYMBOL(security_xfrm_state_alloc);
1190
1191 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1192                                       struct xfrm_sec_ctx *polsec, u32 secid)
1193 {
1194         if (!polsec)
1195                 return 0;
1196         /*
1197          * We want the context to be taken from secid which is usually
1198          * from the sock.
1199          */
1200         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1201 }
1202
1203 int security_xfrm_state_delete(struct xfrm_state *x)
1204 {
1205         return security_ops->xfrm_state_delete_security(x);
1206 }
1207 EXPORT_SYMBOL(security_xfrm_state_delete);
1208
1209 void security_xfrm_state_free(struct xfrm_state *x)
1210 {
1211         security_ops->xfrm_state_free_security(x);
1212 }
1213
1214 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1215 {
1216         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1217 }
1218
1219 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1220                                        struct xfrm_policy *xp, struct flowi *fl)
1221 {
1222         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1223 }
1224
1225 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1226 {
1227         return security_ops->xfrm_decode_session(skb, secid, 1);
1228 }
1229
1230 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1231 {
1232         int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1233
1234         BUG_ON(rc);
1235 }
1236 EXPORT_SYMBOL(security_skb_classify_flow);
1237
1238 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1239
1240 #ifdef CONFIG_KEYS
1241
1242 int security_key_alloc(struct key *key, const struct cred *cred,
1243                        unsigned long flags)
1244 {
1245         return security_ops->key_alloc(key, cred, flags);
1246 }
1247
1248 void security_key_free(struct key *key)
1249 {
1250         security_ops->key_free(key);
1251 }
1252
1253 int security_key_permission(key_ref_t key_ref,
1254                             const struct cred *cred, key_perm_t perm)
1255 {
1256         return security_ops->key_permission(key_ref, cred, perm);
1257 }
1258
1259 int security_key_getsecurity(struct key *key, char **_buffer)
1260 {
1261         return security_ops->key_getsecurity(key, _buffer);
1262 }
1263
1264 #endif  /* CONFIG_KEYS */
1265
1266 #ifdef CONFIG_AUDIT
1267
1268 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1269 {
1270         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1271 }
1272
1273 int security_audit_rule_known(struct audit_krule *krule)
1274 {
1275         return security_ops->audit_rule_known(krule);
1276 }
1277
1278 void security_audit_rule_free(void *lsmrule)
1279 {
1280         security_ops->audit_rule_free(lsmrule);
1281 }
1282
1283 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1284                               struct audit_context *actx)
1285 {
1286         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1287 }
1288
1289 #endif /* CONFIG_AUDIT */