security: imbed evm calls in security hooks
[linux-3.10.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/integrity.h>
20 #include <linux/ima.h>
21 #include <linux/evm.h>
22
23 #define MAX_LSM_XATTR   1
24
25 /* Boot-time LSM user choice */
26 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
27         CONFIG_DEFAULT_SECURITY;
28
29 /* things that live in capability.c */
30 extern void __init security_fixup_ops(struct security_operations *ops);
31
32 static struct security_operations *security_ops;
33 static struct security_operations default_security_ops = {
34         .name   = "default",
35 };
36
37 static inline int __init verify(struct security_operations *ops)
38 {
39         /* verify the security_operations structure exists */
40         if (!ops)
41                 return -EINVAL;
42         security_fixup_ops(ops);
43         return 0;
44 }
45
46 static void __init do_security_initcalls(void)
47 {
48         initcall_t *call;
49         call = __security_initcall_start;
50         while (call < __security_initcall_end) {
51                 (*call) ();
52                 call++;
53         }
54 }
55
56 /**
57  * security_init - initializes the security framework
58  *
59  * This should be called early in the kernel initialization sequence.
60  */
61 int __init security_init(void)
62 {
63         printk(KERN_INFO "Security Framework initialized\n");
64
65         security_fixup_ops(&default_security_ops);
66         security_ops = &default_security_ops;
67         do_security_initcalls();
68
69         return 0;
70 }
71
72 void reset_security_ops(void)
73 {
74         security_ops = &default_security_ops;
75 }
76
77 /* Save user chosen LSM */
78 static int __init choose_lsm(char *str)
79 {
80         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
81         return 1;
82 }
83 __setup("security=", choose_lsm);
84
85 /**
86  * security_module_enable - Load given security module on boot ?
87  * @ops: a pointer to the struct security_operations that is to be checked.
88  *
89  * Each LSM must pass this method before registering its own operations
90  * to avoid security registration races. This method may also be used
91  * to check if your LSM is currently loaded during kernel initialization.
92  *
93  * Return true if:
94  *      -The passed LSM is the one chosen by user at boot time,
95  *      -or the passed LSM is configured as the default and the user did not
96  *       choose an alternate LSM at boot time.
97  * Otherwise, return false.
98  */
99 int __init security_module_enable(struct security_operations *ops)
100 {
101         return !strcmp(ops->name, chosen_lsm);
102 }
103
104 /**
105  * register_security - registers a security framework with the kernel
106  * @ops: a pointer to the struct security_options that is to be registered
107  *
108  * This function allows a security module to register itself with the
109  * kernel security subsystem.  Some rudimentary checking is done on the @ops
110  * value passed to this function. You'll need to check first if your LSM
111  * is allowed to register its @ops by calling security_module_enable(@ops).
112  *
113  * If there is already a security module registered with the kernel,
114  * an error will be returned.  Otherwise %0 is returned on success.
115  */
116 int __init register_security(struct security_operations *ops)
117 {
118         if (verify(ops)) {
119                 printk(KERN_DEBUG "%s could not verify "
120                        "security_operations structure.\n", __func__);
121                 return -EINVAL;
122         }
123
124         if (security_ops != &default_security_ops)
125                 return -EAGAIN;
126
127         security_ops = ops;
128
129         return 0;
130 }
131
132 /* Security operations */
133
134 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
135 {
136         return security_ops->ptrace_access_check(child, mode);
137 }
138
139 int security_ptrace_traceme(struct task_struct *parent)
140 {
141         return security_ops->ptrace_traceme(parent);
142 }
143
144 int security_capget(struct task_struct *target,
145                      kernel_cap_t *effective,
146                      kernel_cap_t *inheritable,
147                      kernel_cap_t *permitted)
148 {
149         return security_ops->capget(target, effective, inheritable, permitted);
150 }
151
152 int security_capset(struct cred *new, const struct cred *old,
153                     const kernel_cap_t *effective,
154                     const kernel_cap_t *inheritable,
155                     const kernel_cap_t *permitted)
156 {
157         return security_ops->capset(new, old,
158                                     effective, inheritable, permitted);
159 }
160
161 int security_capable(struct user_namespace *ns, const struct cred *cred,
162                      int cap)
163 {
164         return security_ops->capable(current, cred, ns, cap,
165                                      SECURITY_CAP_AUDIT);
166 }
167
168 int security_real_capable(struct task_struct *tsk, struct user_namespace *ns,
169                           int cap)
170 {
171         const struct cred *cred;
172         int ret;
173
174         cred = get_task_cred(tsk);
175         ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_AUDIT);
176         put_cred(cred);
177         return ret;
178 }
179
180 int security_real_capable_noaudit(struct task_struct *tsk,
181                                   struct user_namespace *ns, int cap)
182 {
183         const struct cred *cred;
184         int ret;
185
186         cred = get_task_cred(tsk);
187         ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_NOAUDIT);
188         put_cred(cred);
189         return ret;
190 }
191
192 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
193 {
194         return security_ops->quotactl(cmds, type, id, sb);
195 }
196
197 int security_quota_on(struct dentry *dentry)
198 {
199         return security_ops->quota_on(dentry);
200 }
201
202 int security_syslog(int type)
203 {
204         return security_ops->syslog(type);
205 }
206
207 int security_settime(const struct timespec *ts, const struct timezone *tz)
208 {
209         return security_ops->settime(ts, tz);
210 }
211
212 int security_vm_enough_memory(long pages)
213 {
214         WARN_ON(current->mm == NULL);
215         return security_ops->vm_enough_memory(current->mm, pages);
216 }
217
218 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
219 {
220         WARN_ON(mm == NULL);
221         return security_ops->vm_enough_memory(mm, pages);
222 }
223
224 int security_vm_enough_memory_kern(long pages)
225 {
226         /* If current->mm is a kernel thread then we will pass NULL,
227            for this specific case that is fine */
228         return security_ops->vm_enough_memory(current->mm, pages);
229 }
230
231 int security_bprm_set_creds(struct linux_binprm *bprm)
232 {
233         return security_ops->bprm_set_creds(bprm);
234 }
235
236 int security_bprm_check(struct linux_binprm *bprm)
237 {
238         int ret;
239
240         ret = security_ops->bprm_check_security(bprm);
241         if (ret)
242                 return ret;
243         return ima_bprm_check(bprm);
244 }
245
246 void security_bprm_committing_creds(struct linux_binprm *bprm)
247 {
248         security_ops->bprm_committing_creds(bprm);
249 }
250
251 void security_bprm_committed_creds(struct linux_binprm *bprm)
252 {
253         security_ops->bprm_committed_creds(bprm);
254 }
255
256 int security_bprm_secureexec(struct linux_binprm *bprm)
257 {
258         return security_ops->bprm_secureexec(bprm);
259 }
260
261 int security_sb_alloc(struct super_block *sb)
262 {
263         return security_ops->sb_alloc_security(sb);
264 }
265
266 void security_sb_free(struct super_block *sb)
267 {
268         security_ops->sb_free_security(sb);
269 }
270
271 int security_sb_copy_data(char *orig, char *copy)
272 {
273         return security_ops->sb_copy_data(orig, copy);
274 }
275 EXPORT_SYMBOL(security_sb_copy_data);
276
277 int security_sb_remount(struct super_block *sb, void *data)
278 {
279         return security_ops->sb_remount(sb, data);
280 }
281
282 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
283 {
284         return security_ops->sb_kern_mount(sb, flags, data);
285 }
286
287 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
288 {
289         return security_ops->sb_show_options(m, sb);
290 }
291
292 int security_sb_statfs(struct dentry *dentry)
293 {
294         return security_ops->sb_statfs(dentry);
295 }
296
297 int security_sb_mount(char *dev_name, struct path *path,
298                        char *type, unsigned long flags, void *data)
299 {
300         return security_ops->sb_mount(dev_name, path, type, flags, data);
301 }
302
303 int security_sb_umount(struct vfsmount *mnt, int flags)
304 {
305         return security_ops->sb_umount(mnt, flags);
306 }
307
308 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
309 {
310         return security_ops->sb_pivotroot(old_path, new_path);
311 }
312
313 int security_sb_set_mnt_opts(struct super_block *sb,
314                                 struct security_mnt_opts *opts)
315 {
316         return security_ops->sb_set_mnt_opts(sb, opts);
317 }
318 EXPORT_SYMBOL(security_sb_set_mnt_opts);
319
320 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
321                                 struct super_block *newsb)
322 {
323         security_ops->sb_clone_mnt_opts(oldsb, newsb);
324 }
325 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
326
327 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
328 {
329         return security_ops->sb_parse_opts_str(options, opts);
330 }
331 EXPORT_SYMBOL(security_sb_parse_opts_str);
332
333 int security_inode_alloc(struct inode *inode)
334 {
335         inode->i_security = NULL;
336         return security_ops->inode_alloc_security(inode);
337 }
338
339 void security_inode_free(struct inode *inode)
340 {
341         integrity_inode_free(inode);
342         security_ops->inode_free_security(inode);
343 }
344
345 int security_inode_init_security(struct inode *inode, struct inode *dir,
346                                  const struct qstr *qstr,
347                                  const initxattrs initxattrs, void *fs_data)
348 {
349         struct xattr new_xattrs[MAX_LSM_XATTR + 1];
350         struct xattr *lsm_xattr;
351         int ret;
352
353         if (unlikely(IS_PRIVATE(inode)))
354                 return -EOPNOTSUPP;
355
356         memset(new_xattrs, 0, sizeof new_xattrs);
357         if (!initxattrs)
358                 return security_ops->inode_init_security(inode, dir, qstr,
359                                                          NULL, NULL, NULL);
360         lsm_xattr = new_xattrs;
361         ret = security_ops->inode_init_security(inode, dir, qstr,
362                                                 &lsm_xattr->name,
363                                                 &lsm_xattr->value,
364                                                 &lsm_xattr->value_len);
365         if (ret)
366                 goto out;
367         ret = initxattrs(inode, new_xattrs, fs_data);
368 out:
369         kfree(lsm_xattr->name);
370         kfree(lsm_xattr->value);
371
372         return (ret == -EOPNOTSUPP) ? 0 : ret;
373 }
374 EXPORT_SYMBOL(security_inode_init_security);
375
376 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
377                                      const struct qstr *qstr, char **name,
378                                      void **value, size_t *len)
379 {
380         if (unlikely(IS_PRIVATE(inode)))
381                 return -EOPNOTSUPP;
382         return security_ops->inode_init_security(inode, dir, qstr, name, value,
383                                                  len);
384 }
385 EXPORT_SYMBOL(security_old_inode_init_security);
386
387 #ifdef CONFIG_SECURITY_PATH
388 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
389                         unsigned int dev)
390 {
391         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
392                 return 0;
393         return security_ops->path_mknod(dir, dentry, mode, dev);
394 }
395 EXPORT_SYMBOL(security_path_mknod);
396
397 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
398 {
399         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
400                 return 0;
401         return security_ops->path_mkdir(dir, dentry, mode);
402 }
403 EXPORT_SYMBOL(security_path_mkdir);
404
405 int security_path_rmdir(struct path *dir, struct dentry *dentry)
406 {
407         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
408                 return 0;
409         return security_ops->path_rmdir(dir, dentry);
410 }
411
412 int security_path_unlink(struct path *dir, struct dentry *dentry)
413 {
414         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
415                 return 0;
416         return security_ops->path_unlink(dir, dentry);
417 }
418 EXPORT_SYMBOL(security_path_unlink);
419
420 int security_path_symlink(struct path *dir, struct dentry *dentry,
421                           const char *old_name)
422 {
423         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
424                 return 0;
425         return security_ops->path_symlink(dir, dentry, old_name);
426 }
427
428 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
429                        struct dentry *new_dentry)
430 {
431         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
432                 return 0;
433         return security_ops->path_link(old_dentry, new_dir, new_dentry);
434 }
435
436 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
437                          struct path *new_dir, struct dentry *new_dentry)
438 {
439         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
440                      (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
441                 return 0;
442         return security_ops->path_rename(old_dir, old_dentry, new_dir,
443                                          new_dentry);
444 }
445 EXPORT_SYMBOL(security_path_rename);
446
447 int security_path_truncate(struct path *path)
448 {
449         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
450                 return 0;
451         return security_ops->path_truncate(path);
452 }
453
454 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
455                         mode_t mode)
456 {
457         if (unlikely(IS_PRIVATE(dentry->d_inode)))
458                 return 0;
459         return security_ops->path_chmod(dentry, mnt, mode);
460 }
461
462 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
463 {
464         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
465                 return 0;
466         return security_ops->path_chown(path, uid, gid);
467 }
468
469 int security_path_chroot(struct path *path)
470 {
471         return security_ops->path_chroot(path);
472 }
473 #endif
474
475 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
476 {
477         if (unlikely(IS_PRIVATE(dir)))
478                 return 0;
479         return security_ops->inode_create(dir, dentry, mode);
480 }
481 EXPORT_SYMBOL_GPL(security_inode_create);
482
483 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
484                          struct dentry *new_dentry)
485 {
486         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
487                 return 0;
488         return security_ops->inode_link(old_dentry, dir, new_dentry);
489 }
490
491 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
492 {
493         if (unlikely(IS_PRIVATE(dentry->d_inode)))
494                 return 0;
495         return security_ops->inode_unlink(dir, dentry);
496 }
497
498 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
499                             const char *old_name)
500 {
501         if (unlikely(IS_PRIVATE(dir)))
502                 return 0;
503         return security_ops->inode_symlink(dir, dentry, old_name);
504 }
505
506 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
507 {
508         if (unlikely(IS_PRIVATE(dir)))
509                 return 0;
510         return security_ops->inode_mkdir(dir, dentry, mode);
511 }
512 EXPORT_SYMBOL_GPL(security_inode_mkdir);
513
514 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
515 {
516         if (unlikely(IS_PRIVATE(dentry->d_inode)))
517                 return 0;
518         return security_ops->inode_rmdir(dir, dentry);
519 }
520
521 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
522 {
523         if (unlikely(IS_PRIVATE(dir)))
524                 return 0;
525         return security_ops->inode_mknod(dir, dentry, mode, dev);
526 }
527
528 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
529                            struct inode *new_dir, struct dentry *new_dentry)
530 {
531         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
532             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
533                 return 0;
534         return security_ops->inode_rename(old_dir, old_dentry,
535                                            new_dir, new_dentry);
536 }
537
538 int security_inode_readlink(struct dentry *dentry)
539 {
540         if (unlikely(IS_PRIVATE(dentry->d_inode)))
541                 return 0;
542         return security_ops->inode_readlink(dentry);
543 }
544
545 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
546 {
547         if (unlikely(IS_PRIVATE(dentry->d_inode)))
548                 return 0;
549         return security_ops->inode_follow_link(dentry, nd);
550 }
551
552 int security_inode_permission(struct inode *inode, int mask)
553 {
554         if (unlikely(IS_PRIVATE(inode)))
555                 return 0;
556         return security_ops->inode_permission(inode, mask, 0);
557 }
558
559 int security_inode_exec_permission(struct inode *inode, unsigned int flags)
560 {
561         if (unlikely(IS_PRIVATE(inode)))
562                 return 0;
563         return security_ops->inode_permission(inode, MAY_EXEC, flags);
564 }
565
566 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
567 {
568         if (unlikely(IS_PRIVATE(dentry->d_inode)))
569                 return 0;
570         return security_ops->inode_setattr(dentry, attr);
571 }
572 EXPORT_SYMBOL_GPL(security_inode_setattr);
573
574 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
575 {
576         if (unlikely(IS_PRIVATE(dentry->d_inode)))
577                 return 0;
578         return security_ops->inode_getattr(mnt, dentry);
579 }
580
581 int security_inode_setxattr(struct dentry *dentry, const char *name,
582                             const void *value, size_t size, int flags)
583 {
584         int ret;
585
586         if (unlikely(IS_PRIVATE(dentry->d_inode)))
587                 return 0;
588         ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
589         if (ret)
590                 return ret;
591         return evm_inode_setxattr(dentry, name, value, size);
592 }
593
594 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
595                                   const void *value, size_t size, int flags)
596 {
597         if (unlikely(IS_PRIVATE(dentry->d_inode)))
598                 return;
599         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
600         evm_inode_post_setxattr(dentry, name, value, size);
601 }
602
603 int security_inode_getxattr(struct dentry *dentry, const char *name)
604 {
605         if (unlikely(IS_PRIVATE(dentry->d_inode)))
606                 return 0;
607         return security_ops->inode_getxattr(dentry, name);
608 }
609
610 int security_inode_listxattr(struct dentry *dentry)
611 {
612         if (unlikely(IS_PRIVATE(dentry->d_inode)))
613                 return 0;
614         return security_ops->inode_listxattr(dentry);
615 }
616
617 int security_inode_removexattr(struct dentry *dentry, const char *name)
618 {
619         int ret;
620
621         if (unlikely(IS_PRIVATE(dentry->d_inode)))
622                 return 0;
623         ret = security_ops->inode_removexattr(dentry, name);
624         if (ret)
625                 return ret;
626         return evm_inode_removexattr(dentry, name);
627 }
628
629 int security_inode_need_killpriv(struct dentry *dentry)
630 {
631         return security_ops->inode_need_killpriv(dentry);
632 }
633
634 int security_inode_killpriv(struct dentry *dentry)
635 {
636         return security_ops->inode_killpriv(dentry);
637 }
638
639 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
640 {
641         if (unlikely(IS_PRIVATE(inode)))
642                 return -EOPNOTSUPP;
643         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
644 }
645
646 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
647 {
648         if (unlikely(IS_PRIVATE(inode)))
649                 return -EOPNOTSUPP;
650         return security_ops->inode_setsecurity(inode, name, value, size, flags);
651 }
652
653 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
654 {
655         if (unlikely(IS_PRIVATE(inode)))
656                 return 0;
657         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
658 }
659
660 void security_inode_getsecid(const struct inode *inode, u32 *secid)
661 {
662         security_ops->inode_getsecid(inode, secid);
663 }
664
665 int security_file_permission(struct file *file, int mask)
666 {
667         int ret;
668
669         ret = security_ops->file_permission(file, mask);
670         if (ret)
671                 return ret;
672
673         return fsnotify_perm(file, mask);
674 }
675
676 int security_file_alloc(struct file *file)
677 {
678         return security_ops->file_alloc_security(file);
679 }
680
681 void security_file_free(struct file *file)
682 {
683         security_ops->file_free_security(file);
684 }
685
686 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
687 {
688         return security_ops->file_ioctl(file, cmd, arg);
689 }
690
691 int security_file_mmap(struct file *file, unsigned long reqprot,
692                         unsigned long prot, unsigned long flags,
693                         unsigned long addr, unsigned long addr_only)
694 {
695         int ret;
696
697         ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
698         if (ret)
699                 return ret;
700         return ima_file_mmap(file, prot);
701 }
702
703 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
704                             unsigned long prot)
705 {
706         return security_ops->file_mprotect(vma, reqprot, prot);
707 }
708
709 int security_file_lock(struct file *file, unsigned int cmd)
710 {
711         return security_ops->file_lock(file, cmd);
712 }
713
714 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
715 {
716         return security_ops->file_fcntl(file, cmd, arg);
717 }
718
719 int security_file_set_fowner(struct file *file)
720 {
721         return security_ops->file_set_fowner(file);
722 }
723
724 int security_file_send_sigiotask(struct task_struct *tsk,
725                                   struct fown_struct *fown, int sig)
726 {
727         return security_ops->file_send_sigiotask(tsk, fown, sig);
728 }
729
730 int security_file_receive(struct file *file)
731 {
732         return security_ops->file_receive(file);
733 }
734
735 int security_dentry_open(struct file *file, const struct cred *cred)
736 {
737         int ret;
738
739         ret = security_ops->dentry_open(file, cred);
740         if (ret)
741                 return ret;
742
743         return fsnotify_perm(file, MAY_OPEN);
744 }
745
746 int security_task_create(unsigned long clone_flags)
747 {
748         return security_ops->task_create(clone_flags);
749 }
750
751 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
752 {
753         return security_ops->cred_alloc_blank(cred, gfp);
754 }
755
756 void security_cred_free(struct cred *cred)
757 {
758         security_ops->cred_free(cred);
759 }
760
761 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
762 {
763         return security_ops->cred_prepare(new, old, gfp);
764 }
765
766 void security_transfer_creds(struct cred *new, const struct cred *old)
767 {
768         security_ops->cred_transfer(new, old);
769 }
770
771 int security_kernel_act_as(struct cred *new, u32 secid)
772 {
773         return security_ops->kernel_act_as(new, secid);
774 }
775
776 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
777 {
778         return security_ops->kernel_create_files_as(new, inode);
779 }
780
781 int security_kernel_module_request(char *kmod_name)
782 {
783         return security_ops->kernel_module_request(kmod_name);
784 }
785
786 int security_task_fix_setuid(struct cred *new, const struct cred *old,
787                              int flags)
788 {
789         return security_ops->task_fix_setuid(new, old, flags);
790 }
791
792 int security_task_setpgid(struct task_struct *p, pid_t pgid)
793 {
794         return security_ops->task_setpgid(p, pgid);
795 }
796
797 int security_task_getpgid(struct task_struct *p)
798 {
799         return security_ops->task_getpgid(p);
800 }
801
802 int security_task_getsid(struct task_struct *p)
803 {
804         return security_ops->task_getsid(p);
805 }
806
807 void security_task_getsecid(struct task_struct *p, u32 *secid)
808 {
809         security_ops->task_getsecid(p, secid);
810 }
811 EXPORT_SYMBOL(security_task_getsecid);
812
813 int security_task_setnice(struct task_struct *p, int nice)
814 {
815         return security_ops->task_setnice(p, nice);
816 }
817
818 int security_task_setioprio(struct task_struct *p, int ioprio)
819 {
820         return security_ops->task_setioprio(p, ioprio);
821 }
822
823 int security_task_getioprio(struct task_struct *p)
824 {
825         return security_ops->task_getioprio(p);
826 }
827
828 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
829                 struct rlimit *new_rlim)
830 {
831         return security_ops->task_setrlimit(p, resource, new_rlim);
832 }
833
834 int security_task_setscheduler(struct task_struct *p)
835 {
836         return security_ops->task_setscheduler(p);
837 }
838
839 int security_task_getscheduler(struct task_struct *p)
840 {
841         return security_ops->task_getscheduler(p);
842 }
843
844 int security_task_movememory(struct task_struct *p)
845 {
846         return security_ops->task_movememory(p);
847 }
848
849 int security_task_kill(struct task_struct *p, struct siginfo *info,
850                         int sig, u32 secid)
851 {
852         return security_ops->task_kill(p, info, sig, secid);
853 }
854
855 int security_task_wait(struct task_struct *p)
856 {
857         return security_ops->task_wait(p);
858 }
859
860 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
861                          unsigned long arg4, unsigned long arg5)
862 {
863         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
864 }
865
866 void security_task_to_inode(struct task_struct *p, struct inode *inode)
867 {
868         security_ops->task_to_inode(p, inode);
869 }
870
871 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
872 {
873         return security_ops->ipc_permission(ipcp, flag);
874 }
875
876 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
877 {
878         security_ops->ipc_getsecid(ipcp, secid);
879 }
880
881 int security_msg_msg_alloc(struct msg_msg *msg)
882 {
883         return security_ops->msg_msg_alloc_security(msg);
884 }
885
886 void security_msg_msg_free(struct msg_msg *msg)
887 {
888         security_ops->msg_msg_free_security(msg);
889 }
890
891 int security_msg_queue_alloc(struct msg_queue *msq)
892 {
893         return security_ops->msg_queue_alloc_security(msq);
894 }
895
896 void security_msg_queue_free(struct msg_queue *msq)
897 {
898         security_ops->msg_queue_free_security(msq);
899 }
900
901 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
902 {
903         return security_ops->msg_queue_associate(msq, msqflg);
904 }
905
906 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
907 {
908         return security_ops->msg_queue_msgctl(msq, cmd);
909 }
910
911 int security_msg_queue_msgsnd(struct msg_queue *msq,
912                                struct msg_msg *msg, int msqflg)
913 {
914         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
915 }
916
917 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
918                                struct task_struct *target, long type, int mode)
919 {
920         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
921 }
922
923 int security_shm_alloc(struct shmid_kernel *shp)
924 {
925         return security_ops->shm_alloc_security(shp);
926 }
927
928 void security_shm_free(struct shmid_kernel *shp)
929 {
930         security_ops->shm_free_security(shp);
931 }
932
933 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
934 {
935         return security_ops->shm_associate(shp, shmflg);
936 }
937
938 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
939 {
940         return security_ops->shm_shmctl(shp, cmd);
941 }
942
943 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
944 {
945         return security_ops->shm_shmat(shp, shmaddr, shmflg);
946 }
947
948 int security_sem_alloc(struct sem_array *sma)
949 {
950         return security_ops->sem_alloc_security(sma);
951 }
952
953 void security_sem_free(struct sem_array *sma)
954 {
955         security_ops->sem_free_security(sma);
956 }
957
958 int security_sem_associate(struct sem_array *sma, int semflg)
959 {
960         return security_ops->sem_associate(sma, semflg);
961 }
962
963 int security_sem_semctl(struct sem_array *sma, int cmd)
964 {
965         return security_ops->sem_semctl(sma, cmd);
966 }
967
968 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
969                         unsigned nsops, int alter)
970 {
971         return security_ops->sem_semop(sma, sops, nsops, alter);
972 }
973
974 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
975 {
976         if (unlikely(inode && IS_PRIVATE(inode)))
977                 return;
978         security_ops->d_instantiate(dentry, inode);
979 }
980 EXPORT_SYMBOL(security_d_instantiate);
981
982 int security_getprocattr(struct task_struct *p, char *name, char **value)
983 {
984         return security_ops->getprocattr(p, name, value);
985 }
986
987 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
988 {
989         return security_ops->setprocattr(p, name, value, size);
990 }
991
992 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
993 {
994         return security_ops->netlink_send(sk, skb);
995 }
996
997 int security_netlink_recv(struct sk_buff *skb, int cap)
998 {
999         return security_ops->netlink_recv(skb, cap);
1000 }
1001 EXPORT_SYMBOL(security_netlink_recv);
1002
1003 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1004 {
1005         return security_ops->secid_to_secctx(secid, secdata, seclen);
1006 }
1007 EXPORT_SYMBOL(security_secid_to_secctx);
1008
1009 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1010 {
1011         return security_ops->secctx_to_secid(secdata, seclen, secid);
1012 }
1013 EXPORT_SYMBOL(security_secctx_to_secid);
1014
1015 void security_release_secctx(char *secdata, u32 seclen)
1016 {
1017         security_ops->release_secctx(secdata, seclen);
1018 }
1019 EXPORT_SYMBOL(security_release_secctx);
1020
1021 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1022 {
1023         return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1024 }
1025 EXPORT_SYMBOL(security_inode_notifysecctx);
1026
1027 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1028 {
1029         return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1030 }
1031 EXPORT_SYMBOL(security_inode_setsecctx);
1032
1033 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1034 {
1035         return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1036 }
1037 EXPORT_SYMBOL(security_inode_getsecctx);
1038
1039 #ifdef CONFIG_SECURITY_NETWORK
1040
1041 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1042 {
1043         return security_ops->unix_stream_connect(sock, other, newsk);
1044 }
1045 EXPORT_SYMBOL(security_unix_stream_connect);
1046
1047 int security_unix_may_send(struct socket *sock,  struct socket *other)
1048 {
1049         return security_ops->unix_may_send(sock, other);
1050 }
1051 EXPORT_SYMBOL(security_unix_may_send);
1052
1053 int security_socket_create(int family, int type, int protocol, int kern)
1054 {
1055         return security_ops->socket_create(family, type, protocol, kern);
1056 }
1057
1058 int security_socket_post_create(struct socket *sock, int family,
1059                                 int type, int protocol, int kern)
1060 {
1061         return security_ops->socket_post_create(sock, family, type,
1062                                                 protocol, kern);
1063 }
1064
1065 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1066 {
1067         return security_ops->socket_bind(sock, address, addrlen);
1068 }
1069
1070 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1071 {
1072         return security_ops->socket_connect(sock, address, addrlen);
1073 }
1074
1075 int security_socket_listen(struct socket *sock, int backlog)
1076 {
1077         return security_ops->socket_listen(sock, backlog);
1078 }
1079
1080 int security_socket_accept(struct socket *sock, struct socket *newsock)
1081 {
1082         return security_ops->socket_accept(sock, newsock);
1083 }
1084
1085 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1086 {
1087         return security_ops->socket_sendmsg(sock, msg, size);
1088 }
1089
1090 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1091                             int size, int flags)
1092 {
1093         return security_ops->socket_recvmsg(sock, msg, size, flags);
1094 }
1095
1096 int security_socket_getsockname(struct socket *sock)
1097 {
1098         return security_ops->socket_getsockname(sock);
1099 }
1100
1101 int security_socket_getpeername(struct socket *sock)
1102 {
1103         return security_ops->socket_getpeername(sock);
1104 }
1105
1106 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1107 {
1108         return security_ops->socket_getsockopt(sock, level, optname);
1109 }
1110
1111 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1112 {
1113         return security_ops->socket_setsockopt(sock, level, optname);
1114 }
1115
1116 int security_socket_shutdown(struct socket *sock, int how)
1117 {
1118         return security_ops->socket_shutdown(sock, how);
1119 }
1120
1121 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1122 {
1123         return security_ops->socket_sock_rcv_skb(sk, skb);
1124 }
1125 EXPORT_SYMBOL(security_sock_rcv_skb);
1126
1127 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1128                                       int __user *optlen, unsigned len)
1129 {
1130         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1131 }
1132
1133 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1134 {
1135         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1136 }
1137 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1138
1139 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1140 {
1141         return security_ops->sk_alloc_security(sk, family, priority);
1142 }
1143
1144 void security_sk_free(struct sock *sk)
1145 {
1146         security_ops->sk_free_security(sk);
1147 }
1148
1149 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1150 {
1151         security_ops->sk_clone_security(sk, newsk);
1152 }
1153
1154 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1155 {
1156         security_ops->sk_getsecid(sk, &fl->flowi_secid);
1157 }
1158 EXPORT_SYMBOL(security_sk_classify_flow);
1159
1160 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1161 {
1162         security_ops->req_classify_flow(req, fl);
1163 }
1164 EXPORT_SYMBOL(security_req_classify_flow);
1165
1166 void security_sock_graft(struct sock *sk, struct socket *parent)
1167 {
1168         security_ops->sock_graft(sk, parent);
1169 }
1170 EXPORT_SYMBOL(security_sock_graft);
1171
1172 int security_inet_conn_request(struct sock *sk,
1173                         struct sk_buff *skb, struct request_sock *req)
1174 {
1175         return security_ops->inet_conn_request(sk, skb, req);
1176 }
1177 EXPORT_SYMBOL(security_inet_conn_request);
1178
1179 void security_inet_csk_clone(struct sock *newsk,
1180                         const struct request_sock *req)
1181 {
1182         security_ops->inet_csk_clone(newsk, req);
1183 }
1184
1185 void security_inet_conn_established(struct sock *sk,
1186                         struct sk_buff *skb)
1187 {
1188         security_ops->inet_conn_established(sk, skb);
1189 }
1190
1191 int security_secmark_relabel_packet(u32 secid)
1192 {
1193         return security_ops->secmark_relabel_packet(secid);
1194 }
1195 EXPORT_SYMBOL(security_secmark_relabel_packet);
1196
1197 void security_secmark_refcount_inc(void)
1198 {
1199         security_ops->secmark_refcount_inc();
1200 }
1201 EXPORT_SYMBOL(security_secmark_refcount_inc);
1202
1203 void security_secmark_refcount_dec(void)
1204 {
1205         security_ops->secmark_refcount_dec();
1206 }
1207 EXPORT_SYMBOL(security_secmark_refcount_dec);
1208
1209 int security_tun_dev_create(void)
1210 {
1211         return security_ops->tun_dev_create();
1212 }
1213 EXPORT_SYMBOL(security_tun_dev_create);
1214
1215 void security_tun_dev_post_create(struct sock *sk)
1216 {
1217         return security_ops->tun_dev_post_create(sk);
1218 }
1219 EXPORT_SYMBOL(security_tun_dev_post_create);
1220
1221 int security_tun_dev_attach(struct sock *sk)
1222 {
1223         return security_ops->tun_dev_attach(sk);
1224 }
1225 EXPORT_SYMBOL(security_tun_dev_attach);
1226
1227 #endif  /* CONFIG_SECURITY_NETWORK */
1228
1229 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1230
1231 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1232 {
1233         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1234 }
1235 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1236
1237 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1238                               struct xfrm_sec_ctx **new_ctxp)
1239 {
1240         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1241 }
1242
1243 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1244 {
1245         security_ops->xfrm_policy_free_security(ctx);
1246 }
1247 EXPORT_SYMBOL(security_xfrm_policy_free);
1248
1249 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1250 {
1251         return security_ops->xfrm_policy_delete_security(ctx);
1252 }
1253
1254 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1255 {
1256         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1257 }
1258 EXPORT_SYMBOL(security_xfrm_state_alloc);
1259
1260 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1261                                       struct xfrm_sec_ctx *polsec, u32 secid)
1262 {
1263         if (!polsec)
1264                 return 0;
1265         /*
1266          * We want the context to be taken from secid which is usually
1267          * from the sock.
1268          */
1269         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1270 }
1271
1272 int security_xfrm_state_delete(struct xfrm_state *x)
1273 {
1274         return security_ops->xfrm_state_delete_security(x);
1275 }
1276 EXPORT_SYMBOL(security_xfrm_state_delete);
1277
1278 void security_xfrm_state_free(struct xfrm_state *x)
1279 {
1280         security_ops->xfrm_state_free_security(x);
1281 }
1282
1283 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1284 {
1285         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1286 }
1287
1288 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1289                                        struct xfrm_policy *xp,
1290                                        const struct flowi *fl)
1291 {
1292         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1293 }
1294
1295 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1296 {
1297         return security_ops->xfrm_decode_session(skb, secid, 1);
1298 }
1299
1300 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1301 {
1302         int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1303
1304         BUG_ON(rc);
1305 }
1306 EXPORT_SYMBOL(security_skb_classify_flow);
1307
1308 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1309
1310 #ifdef CONFIG_KEYS
1311
1312 int security_key_alloc(struct key *key, const struct cred *cred,
1313                        unsigned long flags)
1314 {
1315         return security_ops->key_alloc(key, cred, flags);
1316 }
1317
1318 void security_key_free(struct key *key)
1319 {
1320         security_ops->key_free(key);
1321 }
1322
1323 int security_key_permission(key_ref_t key_ref,
1324                             const struct cred *cred, key_perm_t perm)
1325 {
1326         return security_ops->key_permission(key_ref, cred, perm);
1327 }
1328
1329 int security_key_getsecurity(struct key *key, char **_buffer)
1330 {
1331         return security_ops->key_getsecurity(key, _buffer);
1332 }
1333
1334 #endif  /* CONFIG_KEYS */
1335
1336 #ifdef CONFIG_AUDIT
1337
1338 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1339 {
1340         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1341 }
1342
1343 int security_audit_rule_known(struct audit_krule *krule)
1344 {
1345         return security_ops->audit_rule_known(krule);
1346 }
1347
1348 void security_audit_rule_free(void *lsmrule)
1349 {
1350         security_ops->audit_rule_free(lsmrule);
1351 }
1352
1353 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1354                               struct audit_context *actx)
1355 {
1356         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1357 }
1358
1359 #endif /* CONFIG_AUDIT */