security: allow Yama to be unconditionally stacked
[linux-3.10.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/integrity.h>
20 #include <linux/ima.h>
21 #include <linux/evm.h>
22 #include <linux/fsnotify.h>
23 #include <linux/mman.h>
24 #include <linux/mount.h>
25 #include <linux/personality.h>
26 #include <linux/backing-dev.h>
27 #include <net/flow.h>
28
29 #define MAX_LSM_EVM_XATTR       2
30
31 /* Boot-time LSM user choice */
32 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
33         CONFIG_DEFAULT_SECURITY;
34
35 static struct security_operations *security_ops;
36 static struct security_operations default_security_ops = {
37         .name   = "default",
38 };
39
40 static inline int __init verify(struct security_operations *ops)
41 {
42         /* verify the security_operations structure exists */
43         if (!ops)
44                 return -EINVAL;
45         security_fixup_ops(ops);
46         return 0;
47 }
48
49 static void __init do_security_initcalls(void)
50 {
51         initcall_t *call;
52         call = __security_initcall_start;
53         while (call < __security_initcall_end) {
54                 (*call) ();
55                 call++;
56         }
57 }
58
59 /**
60  * security_init - initializes the security framework
61  *
62  * This should be called early in the kernel initialization sequence.
63  */
64 int __init security_init(void)
65 {
66         printk(KERN_INFO "Security Framework initialized\n");
67
68         security_fixup_ops(&default_security_ops);
69         security_ops = &default_security_ops;
70         do_security_initcalls();
71
72         return 0;
73 }
74
75 void reset_security_ops(void)
76 {
77         security_ops = &default_security_ops;
78 }
79
80 /* Save user chosen LSM */
81 static int __init choose_lsm(char *str)
82 {
83         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
84         return 1;
85 }
86 __setup("security=", choose_lsm);
87
88 /**
89  * security_module_enable - Load given security module on boot ?
90  * @ops: a pointer to the struct security_operations that is to be checked.
91  *
92  * Each LSM must pass this method before registering its own operations
93  * to avoid security registration races. This method may also be used
94  * to check if your LSM is currently loaded during kernel initialization.
95  *
96  * Return true if:
97  *      -The passed LSM is the one chosen by user at boot time,
98  *      -or the passed LSM is configured as the default and the user did not
99  *       choose an alternate LSM at boot time.
100  * Otherwise, return false.
101  */
102 int __init security_module_enable(struct security_operations *ops)
103 {
104         return !strcmp(ops->name, chosen_lsm);
105 }
106
107 /**
108  * register_security - registers a security framework with the kernel
109  * @ops: a pointer to the struct security_options that is to be registered
110  *
111  * This function allows a security module to register itself with the
112  * kernel security subsystem.  Some rudimentary checking is done on the @ops
113  * value passed to this function. You'll need to check first if your LSM
114  * is allowed to register its @ops by calling security_module_enable(@ops).
115  *
116  * If there is already a security module registered with the kernel,
117  * an error will be returned.  Otherwise %0 is returned on success.
118  */
119 int __init register_security(struct security_operations *ops)
120 {
121         if (verify(ops)) {
122                 printk(KERN_DEBUG "%s could not verify "
123                        "security_operations structure.\n", __func__);
124                 return -EINVAL;
125         }
126
127         if (security_ops != &default_security_ops)
128                 return -EAGAIN;
129
130         security_ops = ops;
131
132         return 0;
133 }
134
135 /* Security operations */
136
137 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
138 {
139 #ifdef CONFIG_SECURITY_YAMA_STACKED
140         int rc;
141         rc = yama_ptrace_access_check(child, mode);
142         if (rc)
143                 return rc;
144 #endif
145         return security_ops->ptrace_access_check(child, mode);
146 }
147
148 int security_ptrace_traceme(struct task_struct *parent)
149 {
150 #ifdef CONFIG_SECURITY_YAMA_STACKED
151         int rc;
152         rc = yama_ptrace_traceme(parent);
153         if (rc)
154                 return rc;
155 #endif
156         return security_ops->ptrace_traceme(parent);
157 }
158
159 int security_capget(struct task_struct *target,
160                      kernel_cap_t *effective,
161                      kernel_cap_t *inheritable,
162                      kernel_cap_t *permitted)
163 {
164         return security_ops->capget(target, effective, inheritable, permitted);
165 }
166
167 int security_capset(struct cred *new, const struct cred *old,
168                     const kernel_cap_t *effective,
169                     const kernel_cap_t *inheritable,
170                     const kernel_cap_t *permitted)
171 {
172         return security_ops->capset(new, old,
173                                     effective, inheritable, permitted);
174 }
175
176 int security_capable(const struct cred *cred, struct user_namespace *ns,
177                      int cap)
178 {
179         return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
180 }
181
182 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
183                              int cap)
184 {
185         return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
186 }
187
188 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
189 {
190         return security_ops->quotactl(cmds, type, id, sb);
191 }
192
193 int security_quota_on(struct dentry *dentry)
194 {
195         return security_ops->quota_on(dentry);
196 }
197
198 int security_syslog(int type)
199 {
200         return security_ops->syslog(type);
201 }
202
203 int security_settime(const struct timespec *ts, const struct timezone *tz)
204 {
205         return security_ops->settime(ts, tz);
206 }
207
208 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
209 {
210         return security_ops->vm_enough_memory(mm, pages);
211 }
212
213 int security_bprm_set_creds(struct linux_binprm *bprm)
214 {
215         return security_ops->bprm_set_creds(bprm);
216 }
217
218 int security_bprm_check(struct linux_binprm *bprm)
219 {
220         int ret;
221
222         ret = security_ops->bprm_check_security(bprm);
223         if (ret)
224                 return ret;
225         return ima_bprm_check(bprm);
226 }
227
228 void security_bprm_committing_creds(struct linux_binprm *bprm)
229 {
230         security_ops->bprm_committing_creds(bprm);
231 }
232
233 void security_bprm_committed_creds(struct linux_binprm *bprm)
234 {
235         security_ops->bprm_committed_creds(bprm);
236 }
237
238 int security_bprm_secureexec(struct linux_binprm *bprm)
239 {
240         return security_ops->bprm_secureexec(bprm);
241 }
242
243 int security_sb_alloc(struct super_block *sb)
244 {
245         return security_ops->sb_alloc_security(sb);
246 }
247
248 void security_sb_free(struct super_block *sb)
249 {
250         security_ops->sb_free_security(sb);
251 }
252
253 int security_sb_copy_data(char *orig, char *copy)
254 {
255         return security_ops->sb_copy_data(orig, copy);
256 }
257 EXPORT_SYMBOL(security_sb_copy_data);
258
259 int security_sb_remount(struct super_block *sb, void *data)
260 {
261         return security_ops->sb_remount(sb, data);
262 }
263
264 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
265 {
266         return security_ops->sb_kern_mount(sb, flags, data);
267 }
268
269 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
270 {
271         return security_ops->sb_show_options(m, sb);
272 }
273
274 int security_sb_statfs(struct dentry *dentry)
275 {
276         return security_ops->sb_statfs(dentry);
277 }
278
279 int security_sb_mount(char *dev_name, struct path *path,
280                        char *type, unsigned long flags, void *data)
281 {
282         return security_ops->sb_mount(dev_name, path, type, flags, data);
283 }
284
285 int security_sb_umount(struct vfsmount *mnt, int flags)
286 {
287         return security_ops->sb_umount(mnt, flags);
288 }
289
290 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
291 {
292         return security_ops->sb_pivotroot(old_path, new_path);
293 }
294
295 int security_sb_set_mnt_opts(struct super_block *sb,
296                                 struct security_mnt_opts *opts)
297 {
298         return security_ops->sb_set_mnt_opts(sb, opts);
299 }
300 EXPORT_SYMBOL(security_sb_set_mnt_opts);
301
302 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
303                                 struct super_block *newsb)
304 {
305         security_ops->sb_clone_mnt_opts(oldsb, newsb);
306 }
307 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
308
309 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
310 {
311         return security_ops->sb_parse_opts_str(options, opts);
312 }
313 EXPORT_SYMBOL(security_sb_parse_opts_str);
314
315 int security_inode_alloc(struct inode *inode)
316 {
317         inode->i_security = NULL;
318         return security_ops->inode_alloc_security(inode);
319 }
320
321 void security_inode_free(struct inode *inode)
322 {
323         integrity_inode_free(inode);
324         security_ops->inode_free_security(inode);
325 }
326
327 int security_inode_init_security(struct inode *inode, struct inode *dir,
328                                  const struct qstr *qstr,
329                                  const initxattrs initxattrs, void *fs_data)
330 {
331         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
332         struct xattr *lsm_xattr, *evm_xattr, *xattr;
333         int ret;
334
335         if (unlikely(IS_PRIVATE(inode)))
336                 return 0;
337
338         memset(new_xattrs, 0, sizeof new_xattrs);
339         if (!initxattrs)
340                 return security_ops->inode_init_security(inode, dir, qstr,
341                                                          NULL, NULL, NULL);
342         lsm_xattr = new_xattrs;
343         ret = security_ops->inode_init_security(inode, dir, qstr,
344                                                 &lsm_xattr->name,
345                                                 &lsm_xattr->value,
346                                                 &lsm_xattr->value_len);
347         if (ret)
348                 goto out;
349
350         evm_xattr = lsm_xattr + 1;
351         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
352         if (ret)
353                 goto out;
354         ret = initxattrs(inode, new_xattrs, fs_data);
355 out:
356         for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
357                 kfree(xattr->name);
358                 kfree(xattr->value);
359         }
360         return (ret == -EOPNOTSUPP) ? 0 : ret;
361 }
362 EXPORT_SYMBOL(security_inode_init_security);
363
364 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
365                                      const struct qstr *qstr, char **name,
366                                      void **value, size_t *len)
367 {
368         if (unlikely(IS_PRIVATE(inode)))
369                 return -EOPNOTSUPP;
370         return security_ops->inode_init_security(inode, dir, qstr, name, value,
371                                                  len);
372 }
373 EXPORT_SYMBOL(security_old_inode_init_security);
374
375 #ifdef CONFIG_SECURITY_PATH
376 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
377                         unsigned int dev)
378 {
379         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
380                 return 0;
381         return security_ops->path_mknod(dir, dentry, mode, dev);
382 }
383 EXPORT_SYMBOL(security_path_mknod);
384
385 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
386 {
387         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
388                 return 0;
389         return security_ops->path_mkdir(dir, dentry, mode);
390 }
391 EXPORT_SYMBOL(security_path_mkdir);
392
393 int security_path_rmdir(struct path *dir, struct dentry *dentry)
394 {
395         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
396                 return 0;
397         return security_ops->path_rmdir(dir, dentry);
398 }
399
400 int security_path_unlink(struct path *dir, struct dentry *dentry)
401 {
402         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
403                 return 0;
404         return security_ops->path_unlink(dir, dentry);
405 }
406 EXPORT_SYMBOL(security_path_unlink);
407
408 int security_path_symlink(struct path *dir, struct dentry *dentry,
409                           const char *old_name)
410 {
411         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
412                 return 0;
413         return security_ops->path_symlink(dir, dentry, old_name);
414 }
415
416 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
417                        struct dentry *new_dentry)
418 {
419         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
420                 return 0;
421         return security_ops->path_link(old_dentry, new_dir, new_dentry);
422 }
423
424 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
425                          struct path *new_dir, struct dentry *new_dentry)
426 {
427         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
428                      (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
429                 return 0;
430         return security_ops->path_rename(old_dir, old_dentry, new_dir,
431                                          new_dentry);
432 }
433 EXPORT_SYMBOL(security_path_rename);
434
435 int security_path_truncate(struct path *path)
436 {
437         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
438                 return 0;
439         return security_ops->path_truncate(path);
440 }
441
442 int security_path_chmod(struct path *path, umode_t mode)
443 {
444         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
445                 return 0;
446         return security_ops->path_chmod(path, mode);
447 }
448
449 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
450 {
451         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
452                 return 0;
453         return security_ops->path_chown(path, uid, gid);
454 }
455
456 int security_path_chroot(struct path *path)
457 {
458         return security_ops->path_chroot(path);
459 }
460 #endif
461
462 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
463 {
464         if (unlikely(IS_PRIVATE(dir)))
465                 return 0;
466         return security_ops->inode_create(dir, dentry, mode);
467 }
468 EXPORT_SYMBOL_GPL(security_inode_create);
469
470 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
471                          struct dentry *new_dentry)
472 {
473         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
474                 return 0;
475         return security_ops->inode_link(old_dentry, dir, new_dentry);
476 }
477
478 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
479 {
480         if (unlikely(IS_PRIVATE(dentry->d_inode)))
481                 return 0;
482         return security_ops->inode_unlink(dir, dentry);
483 }
484
485 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
486                             const char *old_name)
487 {
488         if (unlikely(IS_PRIVATE(dir)))
489                 return 0;
490         return security_ops->inode_symlink(dir, dentry, old_name);
491 }
492
493 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
494 {
495         if (unlikely(IS_PRIVATE(dir)))
496                 return 0;
497         return security_ops->inode_mkdir(dir, dentry, mode);
498 }
499 EXPORT_SYMBOL_GPL(security_inode_mkdir);
500
501 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
502 {
503         if (unlikely(IS_PRIVATE(dentry->d_inode)))
504                 return 0;
505         return security_ops->inode_rmdir(dir, dentry);
506 }
507
508 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
509 {
510         if (unlikely(IS_PRIVATE(dir)))
511                 return 0;
512         return security_ops->inode_mknod(dir, dentry, mode, dev);
513 }
514
515 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
516                            struct inode *new_dir, struct dentry *new_dentry)
517 {
518         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
519             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
520                 return 0;
521         return security_ops->inode_rename(old_dir, old_dentry,
522                                            new_dir, new_dentry);
523 }
524
525 int security_inode_readlink(struct dentry *dentry)
526 {
527         if (unlikely(IS_PRIVATE(dentry->d_inode)))
528                 return 0;
529         return security_ops->inode_readlink(dentry);
530 }
531
532 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
533 {
534         if (unlikely(IS_PRIVATE(dentry->d_inode)))
535                 return 0;
536         return security_ops->inode_follow_link(dentry, nd);
537 }
538
539 int security_inode_permission(struct inode *inode, int mask)
540 {
541         if (unlikely(IS_PRIVATE(inode)))
542                 return 0;
543         return security_ops->inode_permission(inode, mask);
544 }
545
546 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
547 {
548         int ret;
549
550         if (unlikely(IS_PRIVATE(dentry->d_inode)))
551                 return 0;
552         ret = security_ops->inode_setattr(dentry, attr);
553         if (ret)
554                 return ret;
555         return evm_inode_setattr(dentry, attr);
556 }
557 EXPORT_SYMBOL_GPL(security_inode_setattr);
558
559 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
560 {
561         if (unlikely(IS_PRIVATE(dentry->d_inode)))
562                 return 0;
563         return security_ops->inode_getattr(mnt, dentry);
564 }
565
566 int security_inode_setxattr(struct dentry *dentry, const char *name,
567                             const void *value, size_t size, int flags)
568 {
569         int ret;
570
571         if (unlikely(IS_PRIVATE(dentry->d_inode)))
572                 return 0;
573         ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
574         if (ret)
575                 return ret;
576         return evm_inode_setxattr(dentry, name, value, size);
577 }
578
579 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
580                                   const void *value, size_t size, int flags)
581 {
582         if (unlikely(IS_PRIVATE(dentry->d_inode)))
583                 return;
584         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
585         evm_inode_post_setxattr(dentry, name, value, size);
586 }
587
588 int security_inode_getxattr(struct dentry *dentry, const char *name)
589 {
590         if (unlikely(IS_PRIVATE(dentry->d_inode)))
591                 return 0;
592         return security_ops->inode_getxattr(dentry, name);
593 }
594
595 int security_inode_listxattr(struct dentry *dentry)
596 {
597         if (unlikely(IS_PRIVATE(dentry->d_inode)))
598                 return 0;
599         return security_ops->inode_listxattr(dentry);
600 }
601
602 int security_inode_removexattr(struct dentry *dentry, const char *name)
603 {
604         int ret;
605
606         if (unlikely(IS_PRIVATE(dentry->d_inode)))
607                 return 0;
608         ret = security_ops->inode_removexattr(dentry, name);
609         if (ret)
610                 return ret;
611         return evm_inode_removexattr(dentry, name);
612 }
613
614 int security_inode_need_killpriv(struct dentry *dentry)
615 {
616         return security_ops->inode_need_killpriv(dentry);
617 }
618
619 int security_inode_killpriv(struct dentry *dentry)
620 {
621         return security_ops->inode_killpriv(dentry);
622 }
623
624 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
625 {
626         if (unlikely(IS_PRIVATE(inode)))
627                 return -EOPNOTSUPP;
628         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
629 }
630
631 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
632 {
633         if (unlikely(IS_PRIVATE(inode)))
634                 return -EOPNOTSUPP;
635         return security_ops->inode_setsecurity(inode, name, value, size, flags);
636 }
637
638 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
639 {
640         if (unlikely(IS_PRIVATE(inode)))
641                 return 0;
642         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
643 }
644
645 void security_inode_getsecid(const struct inode *inode, u32 *secid)
646 {
647         security_ops->inode_getsecid(inode, secid);
648 }
649
650 int security_file_permission(struct file *file, int mask)
651 {
652         int ret;
653
654         ret = security_ops->file_permission(file, mask);
655         if (ret)
656                 return ret;
657
658         return fsnotify_perm(file, mask);
659 }
660
661 int security_file_alloc(struct file *file)
662 {
663         return security_ops->file_alloc_security(file);
664 }
665
666 void security_file_free(struct file *file)
667 {
668         security_ops->file_free_security(file);
669 }
670
671 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
672 {
673         return security_ops->file_ioctl(file, cmd, arg);
674 }
675
676 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
677 {
678         /*
679          * Does we have PROT_READ and does the application expect
680          * it to imply PROT_EXEC?  If not, nothing to talk about...
681          */
682         if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
683                 return prot;
684         if (!(current->personality & READ_IMPLIES_EXEC))
685                 return prot;
686         /*
687          * if that's an anonymous mapping, let it.
688          */
689         if (!file)
690                 return prot | PROT_EXEC;
691         /*
692          * ditto if it's not on noexec mount, except that on !MMU we need
693          * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
694          */
695         if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
696 #ifndef CONFIG_MMU
697                 unsigned long caps = 0;
698                 struct address_space *mapping = file->f_mapping;
699                 if (mapping && mapping->backing_dev_info)
700                         caps = mapping->backing_dev_info->capabilities;
701                 if (!(caps & BDI_CAP_EXEC_MAP))
702                         return prot;
703 #endif
704                 return prot | PROT_EXEC;
705         }
706         /* anything on noexec mount won't get PROT_EXEC */
707         return prot;
708 }
709
710 int security_mmap_file(struct file *file, unsigned long prot,
711                         unsigned long flags)
712 {
713         int ret;
714         ret = security_ops->mmap_file(file, prot,
715                                         mmap_prot(file, prot), flags);
716         if (ret)
717                 return ret;
718         return ima_file_mmap(file, prot);
719 }
720
721 int security_mmap_addr(unsigned long addr)
722 {
723         return security_ops->mmap_addr(addr);
724 }
725
726 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
727                             unsigned long prot)
728 {
729         return security_ops->file_mprotect(vma, reqprot, prot);
730 }
731
732 int security_file_lock(struct file *file, unsigned int cmd)
733 {
734         return security_ops->file_lock(file, cmd);
735 }
736
737 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
738 {
739         return security_ops->file_fcntl(file, cmd, arg);
740 }
741
742 int security_file_set_fowner(struct file *file)
743 {
744         return security_ops->file_set_fowner(file);
745 }
746
747 int security_file_send_sigiotask(struct task_struct *tsk,
748                                   struct fown_struct *fown, int sig)
749 {
750         return security_ops->file_send_sigiotask(tsk, fown, sig);
751 }
752
753 int security_file_receive(struct file *file)
754 {
755         return security_ops->file_receive(file);
756 }
757
758 int security_file_open(struct file *file, const struct cred *cred)
759 {
760         int ret;
761
762         ret = security_ops->file_open(file, cred);
763         if (ret)
764                 return ret;
765
766         return fsnotify_perm(file, MAY_OPEN);
767 }
768
769 int security_task_create(unsigned long clone_flags)
770 {
771         return security_ops->task_create(clone_flags);
772 }
773
774 void security_task_free(struct task_struct *task)
775 {
776 #ifdef CONFIG_SECURITY_YAMA_STACKED
777         yama_task_free(task);
778 #endif
779         security_ops->task_free(task);
780 }
781
782 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
783 {
784         return security_ops->cred_alloc_blank(cred, gfp);
785 }
786
787 void security_cred_free(struct cred *cred)
788 {
789         security_ops->cred_free(cred);
790 }
791
792 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
793 {
794         return security_ops->cred_prepare(new, old, gfp);
795 }
796
797 void security_transfer_creds(struct cred *new, const struct cred *old)
798 {
799         security_ops->cred_transfer(new, old);
800 }
801
802 int security_kernel_act_as(struct cred *new, u32 secid)
803 {
804         return security_ops->kernel_act_as(new, secid);
805 }
806
807 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
808 {
809         return security_ops->kernel_create_files_as(new, inode);
810 }
811
812 int security_kernel_module_request(char *kmod_name)
813 {
814         return security_ops->kernel_module_request(kmod_name);
815 }
816
817 int security_task_fix_setuid(struct cred *new, const struct cred *old,
818                              int flags)
819 {
820         return security_ops->task_fix_setuid(new, old, flags);
821 }
822
823 int security_task_setpgid(struct task_struct *p, pid_t pgid)
824 {
825         return security_ops->task_setpgid(p, pgid);
826 }
827
828 int security_task_getpgid(struct task_struct *p)
829 {
830         return security_ops->task_getpgid(p);
831 }
832
833 int security_task_getsid(struct task_struct *p)
834 {
835         return security_ops->task_getsid(p);
836 }
837
838 void security_task_getsecid(struct task_struct *p, u32 *secid)
839 {
840         security_ops->task_getsecid(p, secid);
841 }
842 EXPORT_SYMBOL(security_task_getsecid);
843
844 int security_task_setnice(struct task_struct *p, int nice)
845 {
846         return security_ops->task_setnice(p, nice);
847 }
848
849 int security_task_setioprio(struct task_struct *p, int ioprio)
850 {
851         return security_ops->task_setioprio(p, ioprio);
852 }
853
854 int security_task_getioprio(struct task_struct *p)
855 {
856         return security_ops->task_getioprio(p);
857 }
858
859 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
860                 struct rlimit *new_rlim)
861 {
862         return security_ops->task_setrlimit(p, resource, new_rlim);
863 }
864
865 int security_task_setscheduler(struct task_struct *p)
866 {
867         return security_ops->task_setscheduler(p);
868 }
869
870 int security_task_getscheduler(struct task_struct *p)
871 {
872         return security_ops->task_getscheduler(p);
873 }
874
875 int security_task_movememory(struct task_struct *p)
876 {
877         return security_ops->task_movememory(p);
878 }
879
880 int security_task_kill(struct task_struct *p, struct siginfo *info,
881                         int sig, u32 secid)
882 {
883         return security_ops->task_kill(p, info, sig, secid);
884 }
885
886 int security_task_wait(struct task_struct *p)
887 {
888         return security_ops->task_wait(p);
889 }
890
891 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
892                          unsigned long arg4, unsigned long arg5)
893 {
894 #ifdef CONFIG_SECURITY_YAMA_STACKED
895         int rc;
896         rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
897         if (rc != -ENOSYS)
898                 return rc;
899 #endif
900         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
901 }
902
903 void security_task_to_inode(struct task_struct *p, struct inode *inode)
904 {
905         security_ops->task_to_inode(p, inode);
906 }
907
908 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
909 {
910         return security_ops->ipc_permission(ipcp, flag);
911 }
912
913 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
914 {
915         security_ops->ipc_getsecid(ipcp, secid);
916 }
917
918 int security_msg_msg_alloc(struct msg_msg *msg)
919 {
920         return security_ops->msg_msg_alloc_security(msg);
921 }
922
923 void security_msg_msg_free(struct msg_msg *msg)
924 {
925         security_ops->msg_msg_free_security(msg);
926 }
927
928 int security_msg_queue_alloc(struct msg_queue *msq)
929 {
930         return security_ops->msg_queue_alloc_security(msq);
931 }
932
933 void security_msg_queue_free(struct msg_queue *msq)
934 {
935         security_ops->msg_queue_free_security(msq);
936 }
937
938 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
939 {
940         return security_ops->msg_queue_associate(msq, msqflg);
941 }
942
943 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
944 {
945         return security_ops->msg_queue_msgctl(msq, cmd);
946 }
947
948 int security_msg_queue_msgsnd(struct msg_queue *msq,
949                                struct msg_msg *msg, int msqflg)
950 {
951         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
952 }
953
954 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
955                                struct task_struct *target, long type, int mode)
956 {
957         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
958 }
959
960 int security_shm_alloc(struct shmid_kernel *shp)
961 {
962         return security_ops->shm_alloc_security(shp);
963 }
964
965 void security_shm_free(struct shmid_kernel *shp)
966 {
967         security_ops->shm_free_security(shp);
968 }
969
970 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
971 {
972         return security_ops->shm_associate(shp, shmflg);
973 }
974
975 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
976 {
977         return security_ops->shm_shmctl(shp, cmd);
978 }
979
980 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
981 {
982         return security_ops->shm_shmat(shp, shmaddr, shmflg);
983 }
984
985 int security_sem_alloc(struct sem_array *sma)
986 {
987         return security_ops->sem_alloc_security(sma);
988 }
989
990 void security_sem_free(struct sem_array *sma)
991 {
992         security_ops->sem_free_security(sma);
993 }
994
995 int security_sem_associate(struct sem_array *sma, int semflg)
996 {
997         return security_ops->sem_associate(sma, semflg);
998 }
999
1000 int security_sem_semctl(struct sem_array *sma, int cmd)
1001 {
1002         return security_ops->sem_semctl(sma, cmd);
1003 }
1004
1005 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1006                         unsigned nsops, int alter)
1007 {
1008         return security_ops->sem_semop(sma, sops, nsops, alter);
1009 }
1010
1011 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1012 {
1013         if (unlikely(inode && IS_PRIVATE(inode)))
1014                 return;
1015         security_ops->d_instantiate(dentry, inode);
1016 }
1017 EXPORT_SYMBOL(security_d_instantiate);
1018
1019 int security_getprocattr(struct task_struct *p, char *name, char **value)
1020 {
1021         return security_ops->getprocattr(p, name, value);
1022 }
1023
1024 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1025 {
1026         return security_ops->setprocattr(p, name, value, size);
1027 }
1028
1029 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1030 {
1031         return security_ops->netlink_send(sk, skb);
1032 }
1033
1034 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1035 {
1036         return security_ops->secid_to_secctx(secid, secdata, seclen);
1037 }
1038 EXPORT_SYMBOL(security_secid_to_secctx);
1039
1040 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1041 {
1042         return security_ops->secctx_to_secid(secdata, seclen, secid);
1043 }
1044 EXPORT_SYMBOL(security_secctx_to_secid);
1045
1046 void security_release_secctx(char *secdata, u32 seclen)
1047 {
1048         security_ops->release_secctx(secdata, seclen);
1049 }
1050 EXPORT_SYMBOL(security_release_secctx);
1051
1052 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1053 {
1054         return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1055 }
1056 EXPORT_SYMBOL(security_inode_notifysecctx);
1057
1058 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1059 {
1060         return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1061 }
1062 EXPORT_SYMBOL(security_inode_setsecctx);
1063
1064 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1065 {
1066         return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1067 }
1068 EXPORT_SYMBOL(security_inode_getsecctx);
1069
1070 #ifdef CONFIG_SECURITY_NETWORK
1071
1072 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1073 {
1074         return security_ops->unix_stream_connect(sock, other, newsk);
1075 }
1076 EXPORT_SYMBOL(security_unix_stream_connect);
1077
1078 int security_unix_may_send(struct socket *sock,  struct socket *other)
1079 {
1080         return security_ops->unix_may_send(sock, other);
1081 }
1082 EXPORT_SYMBOL(security_unix_may_send);
1083
1084 int security_socket_create(int family, int type, int protocol, int kern)
1085 {
1086         return security_ops->socket_create(family, type, protocol, kern);
1087 }
1088
1089 int security_socket_post_create(struct socket *sock, int family,
1090                                 int type, int protocol, int kern)
1091 {
1092         return security_ops->socket_post_create(sock, family, type,
1093                                                 protocol, kern);
1094 }
1095
1096 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1097 {
1098         return security_ops->socket_bind(sock, address, addrlen);
1099 }
1100
1101 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1102 {
1103         return security_ops->socket_connect(sock, address, addrlen);
1104 }
1105
1106 int security_socket_listen(struct socket *sock, int backlog)
1107 {
1108         return security_ops->socket_listen(sock, backlog);
1109 }
1110
1111 int security_socket_accept(struct socket *sock, struct socket *newsock)
1112 {
1113         return security_ops->socket_accept(sock, newsock);
1114 }
1115
1116 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1117 {
1118         return security_ops->socket_sendmsg(sock, msg, size);
1119 }
1120
1121 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1122                             int size, int flags)
1123 {
1124         return security_ops->socket_recvmsg(sock, msg, size, flags);
1125 }
1126
1127 int security_socket_getsockname(struct socket *sock)
1128 {
1129         return security_ops->socket_getsockname(sock);
1130 }
1131
1132 int security_socket_getpeername(struct socket *sock)
1133 {
1134         return security_ops->socket_getpeername(sock);
1135 }
1136
1137 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1138 {
1139         return security_ops->socket_getsockopt(sock, level, optname);
1140 }
1141
1142 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1143 {
1144         return security_ops->socket_setsockopt(sock, level, optname);
1145 }
1146
1147 int security_socket_shutdown(struct socket *sock, int how)
1148 {
1149         return security_ops->socket_shutdown(sock, how);
1150 }
1151
1152 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1153 {
1154         return security_ops->socket_sock_rcv_skb(sk, skb);
1155 }
1156 EXPORT_SYMBOL(security_sock_rcv_skb);
1157
1158 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1159                                       int __user *optlen, unsigned len)
1160 {
1161         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1162 }
1163
1164 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1165 {
1166         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1167 }
1168 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1169
1170 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1171 {
1172         return security_ops->sk_alloc_security(sk, family, priority);
1173 }
1174
1175 void security_sk_free(struct sock *sk)
1176 {
1177         security_ops->sk_free_security(sk);
1178 }
1179
1180 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1181 {
1182         security_ops->sk_clone_security(sk, newsk);
1183 }
1184 EXPORT_SYMBOL(security_sk_clone);
1185
1186 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1187 {
1188         security_ops->sk_getsecid(sk, &fl->flowi_secid);
1189 }
1190 EXPORT_SYMBOL(security_sk_classify_flow);
1191
1192 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1193 {
1194         security_ops->req_classify_flow(req, fl);
1195 }
1196 EXPORT_SYMBOL(security_req_classify_flow);
1197
1198 void security_sock_graft(struct sock *sk, struct socket *parent)
1199 {
1200         security_ops->sock_graft(sk, parent);
1201 }
1202 EXPORT_SYMBOL(security_sock_graft);
1203
1204 int security_inet_conn_request(struct sock *sk,
1205                         struct sk_buff *skb, struct request_sock *req)
1206 {
1207         return security_ops->inet_conn_request(sk, skb, req);
1208 }
1209 EXPORT_SYMBOL(security_inet_conn_request);
1210
1211 void security_inet_csk_clone(struct sock *newsk,
1212                         const struct request_sock *req)
1213 {
1214         security_ops->inet_csk_clone(newsk, req);
1215 }
1216
1217 void security_inet_conn_established(struct sock *sk,
1218                         struct sk_buff *skb)
1219 {
1220         security_ops->inet_conn_established(sk, skb);
1221 }
1222
1223 int security_secmark_relabel_packet(u32 secid)
1224 {
1225         return security_ops->secmark_relabel_packet(secid);
1226 }
1227 EXPORT_SYMBOL(security_secmark_relabel_packet);
1228
1229 void security_secmark_refcount_inc(void)
1230 {
1231         security_ops->secmark_refcount_inc();
1232 }
1233 EXPORT_SYMBOL(security_secmark_refcount_inc);
1234
1235 void security_secmark_refcount_dec(void)
1236 {
1237         security_ops->secmark_refcount_dec();
1238 }
1239 EXPORT_SYMBOL(security_secmark_refcount_dec);
1240
1241 int security_tun_dev_create(void)
1242 {
1243         return security_ops->tun_dev_create();
1244 }
1245 EXPORT_SYMBOL(security_tun_dev_create);
1246
1247 void security_tun_dev_post_create(struct sock *sk)
1248 {
1249         return security_ops->tun_dev_post_create(sk);
1250 }
1251 EXPORT_SYMBOL(security_tun_dev_post_create);
1252
1253 int security_tun_dev_attach(struct sock *sk)
1254 {
1255         return security_ops->tun_dev_attach(sk);
1256 }
1257 EXPORT_SYMBOL(security_tun_dev_attach);
1258
1259 #endif  /* CONFIG_SECURITY_NETWORK */
1260
1261 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1262
1263 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1264 {
1265         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1266 }
1267 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1268
1269 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1270                               struct xfrm_sec_ctx **new_ctxp)
1271 {
1272         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1273 }
1274
1275 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1276 {
1277         security_ops->xfrm_policy_free_security(ctx);
1278 }
1279 EXPORT_SYMBOL(security_xfrm_policy_free);
1280
1281 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1282 {
1283         return security_ops->xfrm_policy_delete_security(ctx);
1284 }
1285
1286 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1287 {
1288         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1289 }
1290 EXPORT_SYMBOL(security_xfrm_state_alloc);
1291
1292 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1293                                       struct xfrm_sec_ctx *polsec, u32 secid)
1294 {
1295         if (!polsec)
1296                 return 0;
1297         /*
1298          * We want the context to be taken from secid which is usually
1299          * from the sock.
1300          */
1301         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1302 }
1303
1304 int security_xfrm_state_delete(struct xfrm_state *x)
1305 {
1306         return security_ops->xfrm_state_delete_security(x);
1307 }
1308 EXPORT_SYMBOL(security_xfrm_state_delete);
1309
1310 void security_xfrm_state_free(struct xfrm_state *x)
1311 {
1312         security_ops->xfrm_state_free_security(x);
1313 }
1314
1315 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1316 {
1317         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1318 }
1319
1320 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1321                                        struct xfrm_policy *xp,
1322                                        const struct flowi *fl)
1323 {
1324         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1325 }
1326
1327 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1328 {
1329         return security_ops->xfrm_decode_session(skb, secid, 1);
1330 }
1331
1332 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1333 {
1334         int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1335
1336         BUG_ON(rc);
1337 }
1338 EXPORT_SYMBOL(security_skb_classify_flow);
1339
1340 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1341
1342 #ifdef CONFIG_KEYS
1343
1344 int security_key_alloc(struct key *key, const struct cred *cred,
1345                        unsigned long flags)
1346 {
1347         return security_ops->key_alloc(key, cred, flags);
1348 }
1349
1350 void security_key_free(struct key *key)
1351 {
1352         security_ops->key_free(key);
1353 }
1354
1355 int security_key_permission(key_ref_t key_ref,
1356                             const struct cred *cred, key_perm_t perm)
1357 {
1358         return security_ops->key_permission(key_ref, cred, perm);
1359 }
1360
1361 int security_key_getsecurity(struct key *key, char **_buffer)
1362 {
1363         return security_ops->key_getsecurity(key, _buffer);
1364 }
1365
1366 #endif  /* CONFIG_KEYS */
1367
1368 #ifdef CONFIG_AUDIT
1369
1370 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1371 {
1372         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1373 }
1374
1375 int security_audit_rule_known(struct audit_krule *krule)
1376 {
1377         return security_ops->audit_rule_known(krule);
1378 }
1379
1380 void security_audit_rule_free(void *lsmrule)
1381 {
1382         security_ops->audit_rule_free(lsmrule);
1383 }
1384
1385 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1386                               struct audit_context *actx)
1387 {
1388         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1389 }
1390
1391 #endif /* CONFIG_AUDIT */