]> nv-tegra.nvidia Code Review - linux-3.10.git/blob - net/wireless/reg.c
cfg80211: prefix REG_DBG_PRINT() with cfg80211
[linux-3.10.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 #include <linux/kernel.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/random.h>
39 #include <linux/ctype.h>
40 #include <linux/nl80211.h>
41 #include <linux/platform_device.h>
42 #include <net/cfg80211.h>
43 #include "core.h"
44 #include "reg.h"
45 #include "regdb.h"
46 #include "nl80211.h"
47
48 #ifdef CONFIG_CFG80211_REG_DEBUG
49 #define REG_DBG_PRINT(format, args...) \
50         do { \
51                 printk(KERN_DEBUG "cfg80211: " format , ## args); \
52         } while (0)
53 #else
54 #define REG_DBG_PRINT(args...)
55 #endif
56
57 /* Receipt of information from last regulatory request */
58 static struct regulatory_request *last_request;
59
60 /* To trigger userspace events */
61 static struct platform_device *reg_pdev;
62
63 /*
64  * Central wireless core regulatory domains, we only need two,
65  * the current one and a world regulatory domain in case we have no
66  * information to give us an alpha2
67  */
68 const struct ieee80211_regdomain *cfg80211_regdomain;
69
70 /*
71  * Protects static reg.c components:
72  *     - cfg80211_world_regdom
73  *     - cfg80211_regdom
74  *     - last_request
75  */
76 static DEFINE_MUTEX(reg_mutex);
77
78 static inline void assert_reg_lock(void)
79 {
80         lockdep_assert_held(&reg_mutex);
81 }
82
83 /* Used to queue up regulatory hints */
84 static LIST_HEAD(reg_requests_list);
85 static spinlock_t reg_requests_lock;
86
87 /* Used to queue up beacon hints for review */
88 static LIST_HEAD(reg_pending_beacons);
89 static spinlock_t reg_pending_beacons_lock;
90
91 /* Used to keep track of processed beacon hints */
92 static LIST_HEAD(reg_beacon_list);
93
94 struct reg_beacon {
95         struct list_head list;
96         struct ieee80211_channel chan;
97 };
98
99 /* We keep a static world regulatory domain in case of the absence of CRDA */
100 static const struct ieee80211_regdomain world_regdom = {
101         .n_reg_rules = 5,
102         .alpha2 =  "00",
103         .reg_rules = {
104                 /* IEEE 802.11b/g, channels 1..11 */
105                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
106                 /* IEEE 802.11b/g, channels 12..13. No HT40
107                  * channel fits here. */
108                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
109                         NL80211_RRF_PASSIVE_SCAN |
110                         NL80211_RRF_NO_IBSS),
111                 /* IEEE 802.11 channel 14 - Only JP enables
112                  * this and for 802.11b only */
113                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
114                         NL80211_RRF_PASSIVE_SCAN |
115                         NL80211_RRF_NO_IBSS |
116                         NL80211_RRF_NO_OFDM),
117                 /* IEEE 802.11a, channel 36..48 */
118                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
119                         NL80211_RRF_PASSIVE_SCAN |
120                         NL80211_RRF_NO_IBSS),
121
122                 /* NB: 5260 MHz - 5700 MHz requies DFS */
123
124                 /* IEEE 802.11a, channel 149..165 */
125                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
126                         NL80211_RRF_PASSIVE_SCAN |
127                         NL80211_RRF_NO_IBSS),
128         }
129 };
130
131 static const struct ieee80211_regdomain *cfg80211_world_regdom =
132         &world_regdom;
133
134 static char *ieee80211_regdom = "00";
135 static char user_alpha2[2];
136
137 module_param(ieee80211_regdom, charp, 0444);
138 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
139
140 static void reset_regdomains(void)
141 {
142         /* avoid freeing static information or freeing something twice */
143         if (cfg80211_regdomain == cfg80211_world_regdom)
144                 cfg80211_regdomain = NULL;
145         if (cfg80211_world_regdom == &world_regdom)
146                 cfg80211_world_regdom = NULL;
147         if (cfg80211_regdomain == &world_regdom)
148                 cfg80211_regdomain = NULL;
149
150         kfree(cfg80211_regdomain);
151         kfree(cfg80211_world_regdom);
152
153         cfg80211_world_regdom = &world_regdom;
154         cfg80211_regdomain = NULL;
155 }
156
157 /*
158  * Dynamic world regulatory domain requested by the wireless
159  * core upon initialization
160  */
161 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
162 {
163         BUG_ON(!last_request);
164
165         reset_regdomains();
166
167         cfg80211_world_regdom = rd;
168         cfg80211_regdomain = rd;
169 }
170
171 bool is_world_regdom(const char *alpha2)
172 {
173         if (!alpha2)
174                 return false;
175         if (alpha2[0] == '0' && alpha2[1] == '0')
176                 return true;
177         return false;
178 }
179
180 static bool is_alpha2_set(const char *alpha2)
181 {
182         if (!alpha2)
183                 return false;
184         if (alpha2[0] != 0 && alpha2[1] != 0)
185                 return true;
186         return false;
187 }
188
189 static bool is_unknown_alpha2(const char *alpha2)
190 {
191         if (!alpha2)
192                 return false;
193         /*
194          * Special case where regulatory domain was built by driver
195          * but a specific alpha2 cannot be determined
196          */
197         if (alpha2[0] == '9' && alpha2[1] == '9')
198                 return true;
199         return false;
200 }
201
202 static bool is_intersected_alpha2(const char *alpha2)
203 {
204         if (!alpha2)
205                 return false;
206         /*
207          * Special case where regulatory domain is the
208          * result of an intersection between two regulatory domain
209          * structures
210          */
211         if (alpha2[0] == '9' && alpha2[1] == '8')
212                 return true;
213         return false;
214 }
215
216 static bool is_an_alpha2(const char *alpha2)
217 {
218         if (!alpha2)
219                 return false;
220         if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
221                 return true;
222         return false;
223 }
224
225 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
226 {
227         if (!alpha2_x || !alpha2_y)
228                 return false;
229         if (alpha2_x[0] == alpha2_y[0] &&
230                 alpha2_x[1] == alpha2_y[1])
231                 return true;
232         return false;
233 }
234
235 static bool regdom_changes(const char *alpha2)
236 {
237         assert_cfg80211_lock();
238
239         if (!cfg80211_regdomain)
240                 return true;
241         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
242                 return false;
243         return true;
244 }
245
246 /*
247  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
248  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
249  * has ever been issued.
250  */
251 static bool is_user_regdom_saved(void)
252 {
253         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
254                 return false;
255
256         /* This would indicate a mistake on the design */
257         if (WARN((!is_world_regdom(user_alpha2) &&
258                   !is_an_alpha2(user_alpha2)),
259                  "Unexpected user alpha2: %c%c\n",
260                  user_alpha2[0],
261                  user_alpha2[1]))
262                 return false;
263
264         return true;
265 }
266
267 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
268                          const struct ieee80211_regdomain *src_regd)
269 {
270         struct ieee80211_regdomain *regd;
271         int size_of_regd = 0;
272         unsigned int i;
273
274         size_of_regd = sizeof(struct ieee80211_regdomain) +
275           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
276
277         regd = kzalloc(size_of_regd, GFP_KERNEL);
278         if (!regd)
279                 return -ENOMEM;
280
281         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
282
283         for (i = 0; i < src_regd->n_reg_rules; i++)
284                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
285                         sizeof(struct ieee80211_reg_rule));
286
287         *dst_regd = regd;
288         return 0;
289 }
290
291 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
292 struct reg_regdb_search_request {
293         char alpha2[2];
294         struct list_head list;
295 };
296
297 static LIST_HEAD(reg_regdb_search_list);
298 static DEFINE_MUTEX(reg_regdb_search_mutex);
299
300 static void reg_regdb_search(struct work_struct *work)
301 {
302         struct reg_regdb_search_request *request;
303         const struct ieee80211_regdomain *curdom, *regdom;
304         int i, r;
305
306         mutex_lock(&reg_regdb_search_mutex);
307         while (!list_empty(&reg_regdb_search_list)) {
308                 request = list_first_entry(&reg_regdb_search_list,
309                                            struct reg_regdb_search_request,
310                                            list);
311                 list_del(&request->list);
312
313                 for (i=0; i<reg_regdb_size; i++) {
314                         curdom = reg_regdb[i];
315
316                         if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
317                                 r = reg_copy_regd(&regdom, curdom);
318                                 if (r)
319                                         break;
320                                 mutex_lock(&cfg80211_mutex);
321                                 set_regdom(regdom);
322                                 mutex_unlock(&cfg80211_mutex);
323                                 break;
324                         }
325                 }
326
327                 kfree(request);
328         }
329         mutex_unlock(&reg_regdb_search_mutex);
330 }
331
332 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
333
334 static void reg_regdb_query(const char *alpha2)
335 {
336         struct reg_regdb_search_request *request;
337
338         if (!alpha2)
339                 return;
340
341         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
342         if (!request)
343                 return;
344
345         memcpy(request->alpha2, alpha2, 2);
346
347         mutex_lock(&reg_regdb_search_mutex);
348         list_add_tail(&request->list, &reg_regdb_search_list);
349         mutex_unlock(&reg_regdb_search_mutex);
350
351         schedule_work(&reg_regdb_work);
352 }
353 #else
354 static inline void reg_regdb_query(const char *alpha2) {}
355 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
356
357 /*
358  * This lets us keep regulatory code which is updated on a regulatory
359  * basis in userspace.
360  */
361 static int call_crda(const char *alpha2)
362 {
363         char country_env[9 + 2] = "COUNTRY=";
364         char *envp[] = {
365                 country_env,
366                 NULL
367         };
368
369         if (!is_world_regdom((char *) alpha2))
370                 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
371                         alpha2[0], alpha2[1]);
372         else
373                 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
374                         "regulatory domain\n");
375
376         /* query internal regulatory database (if it exists) */
377         reg_regdb_query(alpha2);
378
379         country_env[8] = alpha2[0];
380         country_env[9] = alpha2[1];
381
382         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
383 }
384
385 /* Used by nl80211 before kmalloc'ing our regulatory domain */
386 bool reg_is_valid_request(const char *alpha2)
387 {
388         assert_cfg80211_lock();
389
390         if (!last_request)
391                 return false;
392
393         return alpha2_equal(last_request->alpha2, alpha2);
394 }
395
396 /* Sanity check on a regulatory rule */
397 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
398 {
399         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
400         u32 freq_diff;
401
402         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
403                 return false;
404
405         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
406                 return false;
407
408         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
409
410         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
411                         freq_range->max_bandwidth_khz > freq_diff)
412                 return false;
413
414         return true;
415 }
416
417 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
418 {
419         const struct ieee80211_reg_rule *reg_rule = NULL;
420         unsigned int i;
421
422         if (!rd->n_reg_rules)
423                 return false;
424
425         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
426                 return false;
427
428         for (i = 0; i < rd->n_reg_rules; i++) {
429                 reg_rule = &rd->reg_rules[i];
430                 if (!is_valid_reg_rule(reg_rule))
431                         return false;
432         }
433
434         return true;
435 }
436
437 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
438                             u32 center_freq_khz,
439                             u32 bw_khz)
440 {
441         u32 start_freq_khz, end_freq_khz;
442
443         start_freq_khz = center_freq_khz - (bw_khz/2);
444         end_freq_khz = center_freq_khz + (bw_khz/2);
445
446         if (start_freq_khz >= freq_range->start_freq_khz &&
447             end_freq_khz <= freq_range->end_freq_khz)
448                 return true;
449
450         return false;
451 }
452
453 /**
454  * freq_in_rule_band - tells us if a frequency is in a frequency band
455  * @freq_range: frequency rule we want to query
456  * @freq_khz: frequency we are inquiring about
457  *
458  * This lets us know if a specific frequency rule is or is not relevant to
459  * a specific frequency's band. Bands are device specific and artificial
460  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
461  * safe for now to assume that a frequency rule should not be part of a
462  * frequency's band if the start freq or end freq are off by more than 2 GHz.
463  * This resolution can be lowered and should be considered as we add
464  * regulatory rule support for other "bands".
465  **/
466 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
467         u32 freq_khz)
468 {
469 #define ONE_GHZ_IN_KHZ  1000000
470         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
471                 return true;
472         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
473                 return true;
474         return false;
475 #undef ONE_GHZ_IN_KHZ
476 }
477
478 /*
479  * Helper for regdom_intersect(), this does the real
480  * mathematical intersection fun
481  */
482 static int reg_rules_intersect(
483         const struct ieee80211_reg_rule *rule1,
484         const struct ieee80211_reg_rule *rule2,
485         struct ieee80211_reg_rule *intersected_rule)
486 {
487         const struct ieee80211_freq_range *freq_range1, *freq_range2;
488         struct ieee80211_freq_range *freq_range;
489         const struct ieee80211_power_rule *power_rule1, *power_rule2;
490         struct ieee80211_power_rule *power_rule;
491         u32 freq_diff;
492
493         freq_range1 = &rule1->freq_range;
494         freq_range2 = &rule2->freq_range;
495         freq_range = &intersected_rule->freq_range;
496
497         power_rule1 = &rule1->power_rule;
498         power_rule2 = &rule2->power_rule;
499         power_rule = &intersected_rule->power_rule;
500
501         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
502                 freq_range2->start_freq_khz);
503         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
504                 freq_range2->end_freq_khz);
505         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
506                 freq_range2->max_bandwidth_khz);
507
508         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
509         if (freq_range->max_bandwidth_khz > freq_diff)
510                 freq_range->max_bandwidth_khz = freq_diff;
511
512         power_rule->max_eirp = min(power_rule1->max_eirp,
513                 power_rule2->max_eirp);
514         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
515                 power_rule2->max_antenna_gain);
516
517         intersected_rule->flags = (rule1->flags | rule2->flags);
518
519         if (!is_valid_reg_rule(intersected_rule))
520                 return -EINVAL;
521
522         return 0;
523 }
524
525 /**
526  * regdom_intersect - do the intersection between two regulatory domains
527  * @rd1: first regulatory domain
528  * @rd2: second regulatory domain
529  *
530  * Use this function to get the intersection between two regulatory domains.
531  * Once completed we will mark the alpha2 for the rd as intersected, "98",
532  * as no one single alpha2 can represent this regulatory domain.
533  *
534  * Returns a pointer to the regulatory domain structure which will hold the
535  * resulting intersection of rules between rd1 and rd2. We will
536  * kzalloc() this structure for you.
537  */
538 static struct ieee80211_regdomain *regdom_intersect(
539         const struct ieee80211_regdomain *rd1,
540         const struct ieee80211_regdomain *rd2)
541 {
542         int r, size_of_regd;
543         unsigned int x, y;
544         unsigned int num_rules = 0, rule_idx = 0;
545         const struct ieee80211_reg_rule *rule1, *rule2;
546         struct ieee80211_reg_rule *intersected_rule;
547         struct ieee80211_regdomain *rd;
548         /* This is just a dummy holder to help us count */
549         struct ieee80211_reg_rule irule;
550
551         /* Uses the stack temporarily for counter arithmetic */
552         intersected_rule = &irule;
553
554         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
555
556         if (!rd1 || !rd2)
557                 return NULL;
558
559         /*
560          * First we get a count of the rules we'll need, then we actually
561          * build them. This is to so we can malloc() and free() a
562          * regdomain once. The reason we use reg_rules_intersect() here
563          * is it will return -EINVAL if the rule computed makes no sense.
564          * All rules that do check out OK are valid.
565          */
566
567         for (x = 0; x < rd1->n_reg_rules; x++) {
568                 rule1 = &rd1->reg_rules[x];
569                 for (y = 0; y < rd2->n_reg_rules; y++) {
570                         rule2 = &rd2->reg_rules[y];
571                         if (!reg_rules_intersect(rule1, rule2,
572                                         intersected_rule))
573                                 num_rules++;
574                         memset(intersected_rule, 0,
575                                         sizeof(struct ieee80211_reg_rule));
576                 }
577         }
578
579         if (!num_rules)
580                 return NULL;
581
582         size_of_regd = sizeof(struct ieee80211_regdomain) +
583                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
584
585         rd = kzalloc(size_of_regd, GFP_KERNEL);
586         if (!rd)
587                 return NULL;
588
589         for (x = 0; x < rd1->n_reg_rules; x++) {
590                 rule1 = &rd1->reg_rules[x];
591                 for (y = 0; y < rd2->n_reg_rules; y++) {
592                         rule2 = &rd2->reg_rules[y];
593                         /*
594                          * This time around instead of using the stack lets
595                          * write to the target rule directly saving ourselves
596                          * a memcpy()
597                          */
598                         intersected_rule = &rd->reg_rules[rule_idx];
599                         r = reg_rules_intersect(rule1, rule2,
600                                 intersected_rule);
601                         /*
602                          * No need to memset here the intersected rule here as
603                          * we're not using the stack anymore
604                          */
605                         if (r)
606                                 continue;
607                         rule_idx++;
608                 }
609         }
610
611         if (rule_idx != num_rules) {
612                 kfree(rd);
613                 return NULL;
614         }
615
616         rd->n_reg_rules = num_rules;
617         rd->alpha2[0] = '9';
618         rd->alpha2[1] = '8';
619
620         return rd;
621 }
622
623 /*
624  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
625  * want to just have the channel structure use these
626  */
627 static u32 map_regdom_flags(u32 rd_flags)
628 {
629         u32 channel_flags = 0;
630         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
631                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
632         if (rd_flags & NL80211_RRF_NO_IBSS)
633                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
634         if (rd_flags & NL80211_RRF_DFS)
635                 channel_flags |= IEEE80211_CHAN_RADAR;
636         return channel_flags;
637 }
638
639 static int freq_reg_info_regd(struct wiphy *wiphy,
640                               u32 center_freq,
641                               u32 desired_bw_khz,
642                               const struct ieee80211_reg_rule **reg_rule,
643                               const struct ieee80211_regdomain *custom_regd)
644 {
645         int i;
646         bool band_rule_found = false;
647         const struct ieee80211_regdomain *regd;
648         bool bw_fits = false;
649
650         if (!desired_bw_khz)
651                 desired_bw_khz = MHZ_TO_KHZ(20);
652
653         regd = custom_regd ? custom_regd : cfg80211_regdomain;
654
655         /*
656          * Follow the driver's regulatory domain, if present, unless a country
657          * IE has been processed or a user wants to help complaince further
658          */
659         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
660             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
661             wiphy->regd)
662                 regd = wiphy->regd;
663
664         if (!regd)
665                 return -EINVAL;
666
667         for (i = 0; i < regd->n_reg_rules; i++) {
668                 const struct ieee80211_reg_rule *rr;
669                 const struct ieee80211_freq_range *fr = NULL;
670                 const struct ieee80211_power_rule *pr = NULL;
671
672                 rr = &regd->reg_rules[i];
673                 fr = &rr->freq_range;
674                 pr = &rr->power_rule;
675
676                 /*
677                  * We only need to know if one frequency rule was
678                  * was in center_freq's band, that's enough, so lets
679                  * not overwrite it once found
680                  */
681                 if (!band_rule_found)
682                         band_rule_found = freq_in_rule_band(fr, center_freq);
683
684                 bw_fits = reg_does_bw_fit(fr,
685                                           center_freq,
686                                           desired_bw_khz);
687
688                 if (band_rule_found && bw_fits) {
689                         *reg_rule = rr;
690                         return 0;
691                 }
692         }
693
694         if (!band_rule_found)
695                 return -ERANGE;
696
697         return -EINVAL;
698 }
699
700 int freq_reg_info(struct wiphy *wiphy,
701                   u32 center_freq,
702                   u32 desired_bw_khz,
703                   const struct ieee80211_reg_rule **reg_rule)
704 {
705         assert_cfg80211_lock();
706         return freq_reg_info_regd(wiphy,
707                                   center_freq,
708                                   desired_bw_khz,
709                                   reg_rule,
710                                   NULL);
711 }
712 EXPORT_SYMBOL(freq_reg_info);
713
714 #ifdef CONFIG_CFG80211_REG_DEBUG
715 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
716 {
717         switch (initiator) {
718         case NL80211_REGDOM_SET_BY_CORE:
719                 return "Set by core";
720         case NL80211_REGDOM_SET_BY_USER:
721                 return "Set by user";
722         case NL80211_REGDOM_SET_BY_DRIVER:
723                 return "Set by driver";
724         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
725                 return "Set by country IE";
726         default:
727                 WARN_ON(1);
728                 return "Set by bug";
729         }
730 }
731
732 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
733                                     u32 desired_bw_khz,
734                                     const struct ieee80211_reg_rule *reg_rule)
735 {
736         const struct ieee80211_power_rule *power_rule;
737         const struct ieee80211_freq_range *freq_range;
738         char max_antenna_gain[32];
739
740         power_rule = &reg_rule->power_rule;
741         freq_range = &reg_rule->freq_range;
742
743         if (!power_rule->max_antenna_gain)
744                 snprintf(max_antenna_gain, 32, "N/A");
745         else
746                 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
747
748         REG_DBG_PRINT("Updating information on frequency %d MHz "
749                       "for %d a MHz width channel with regulatory rule:\n",
750                       chan->center_freq,
751                       KHZ_TO_MHZ(desired_bw_khz));
752
753         REG_DBG_PRINT("%d KHz - %d KHz @  KHz), (%s mBi, %d mBm)\n",
754                       freq_range->start_freq_khz,
755                       freq_range->end_freq_khz,
756                       max_antenna_gain,
757                       power_rule->max_eirp);
758 }
759 #else
760 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
761                                     u32 desired_bw_khz,
762                                     const struct ieee80211_reg_rule *reg_rule)
763 {
764         return;
765 }
766 #endif
767
768 /*
769  * Note that right now we assume the desired channel bandwidth
770  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
771  * per channel, the primary and the extension channel). To support
772  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
773  * new ieee80211_channel.target_bw and re run the regulatory check
774  * on the wiphy with the target_bw specified. Then we can simply use
775  * that below for the desired_bw_khz below.
776  */
777 static void handle_channel(struct wiphy *wiphy,
778                            enum nl80211_reg_initiator initiator,
779                            enum ieee80211_band band,
780                            unsigned int chan_idx)
781 {
782         int r;
783         u32 flags, bw_flags = 0;
784         u32 desired_bw_khz = MHZ_TO_KHZ(20);
785         const struct ieee80211_reg_rule *reg_rule = NULL;
786         const struct ieee80211_power_rule *power_rule = NULL;
787         const struct ieee80211_freq_range *freq_range = NULL;
788         struct ieee80211_supported_band *sband;
789         struct ieee80211_channel *chan;
790         struct wiphy *request_wiphy = NULL;
791
792         assert_cfg80211_lock();
793
794         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
795
796         sband = wiphy->bands[band];
797         BUG_ON(chan_idx >= sband->n_channels);
798         chan = &sband->channels[chan_idx];
799
800         flags = chan->orig_flags;
801
802         r = freq_reg_info(wiphy,
803                           MHZ_TO_KHZ(chan->center_freq),
804                           desired_bw_khz,
805                           &reg_rule);
806
807         if (r) {
808                 /*
809                  * We will disable all channels that do not match our
810                  * recieved regulatory rule unless the hint is coming
811                  * from a Country IE and the Country IE had no information
812                  * about a band. The IEEE 802.11 spec allows for an AP
813                  * to send only a subset of the regulatory rules allowed,
814                  * so an AP in the US that only supports 2.4 GHz may only send
815                  * a country IE with information for the 2.4 GHz band
816                  * while 5 GHz is still supported.
817                  */
818                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
819                     r == -ERANGE)
820                         return;
821
822                 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
823                 chan->flags = IEEE80211_CHAN_DISABLED;
824                 return;
825         }
826
827         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
828
829         power_rule = &reg_rule->power_rule;
830         freq_range = &reg_rule->freq_range;
831
832         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
833                 bw_flags = IEEE80211_CHAN_NO_HT40;
834
835         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
836             request_wiphy && request_wiphy == wiphy &&
837             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
838                 /*
839                  * This gaurantees the driver's requested regulatory domain
840                  * will always be used as a base for further regulatory
841                  * settings
842                  */
843                 chan->flags = chan->orig_flags =
844                         map_regdom_flags(reg_rule->flags) | bw_flags;
845                 chan->max_antenna_gain = chan->orig_mag =
846                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
847                 chan->max_power = chan->orig_mpwr =
848                         (int) MBM_TO_DBM(power_rule->max_eirp);
849                 return;
850         }
851
852         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
853         chan->max_antenna_gain = min(chan->orig_mag,
854                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
855         if (chan->orig_mpwr)
856                 chan->max_power = min(chan->orig_mpwr,
857                         (int) MBM_TO_DBM(power_rule->max_eirp));
858         else
859                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
860 }
861
862 static void handle_band(struct wiphy *wiphy,
863                         enum ieee80211_band band,
864                         enum nl80211_reg_initiator initiator)
865 {
866         unsigned int i;
867         struct ieee80211_supported_band *sband;
868
869         BUG_ON(!wiphy->bands[band]);
870         sband = wiphy->bands[band];
871
872         for (i = 0; i < sband->n_channels; i++)
873                 handle_channel(wiphy, initiator, band, i);
874 }
875
876 static bool ignore_reg_update(struct wiphy *wiphy,
877                               enum nl80211_reg_initiator initiator)
878 {
879         if (!last_request) {
880                 REG_DBG_PRINT("Ignoring regulatory request %s since "
881                               "last_request is not set\n",
882                               reg_initiator_name(initiator));
883                 return true;
884         }
885
886         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
887             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
888                 REG_DBG_PRINT("Ignoring regulatory request %s "
889                               "since the driver uses its own custom "
890                               "regulatory domain ",
891                               reg_initiator_name(initiator));
892                 return true;
893         }
894
895         /*
896          * wiphy->regd will be set once the device has its own
897          * desired regulatory domain set
898          */
899         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
900             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
901             !is_world_regdom(last_request->alpha2)) {
902                 REG_DBG_PRINT("Ignoring regulatory request %s "
903                               "since the driver requires its own regulaotry "
904                               "domain to be set first",
905                               reg_initiator_name(initiator));
906                 return true;
907         }
908
909         return false;
910 }
911
912 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
913 {
914         struct cfg80211_registered_device *rdev;
915
916         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
917                 wiphy_update_regulatory(&rdev->wiphy, initiator);
918 }
919
920 static void handle_reg_beacon(struct wiphy *wiphy,
921                               unsigned int chan_idx,
922                               struct reg_beacon *reg_beacon)
923 {
924         struct ieee80211_supported_band *sband;
925         struct ieee80211_channel *chan;
926         bool channel_changed = false;
927         struct ieee80211_channel chan_before;
928
929         assert_cfg80211_lock();
930
931         sband = wiphy->bands[reg_beacon->chan.band];
932         chan = &sband->channels[chan_idx];
933
934         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
935                 return;
936
937         if (chan->beacon_found)
938                 return;
939
940         chan->beacon_found = true;
941
942         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
943                 return;
944
945         chan_before.center_freq = chan->center_freq;
946         chan_before.flags = chan->flags;
947
948         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
949                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
950                 channel_changed = true;
951         }
952
953         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
954                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
955                 channel_changed = true;
956         }
957
958         if (channel_changed)
959                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
960 }
961
962 /*
963  * Called when a scan on a wiphy finds a beacon on
964  * new channel
965  */
966 static void wiphy_update_new_beacon(struct wiphy *wiphy,
967                                     struct reg_beacon *reg_beacon)
968 {
969         unsigned int i;
970         struct ieee80211_supported_band *sband;
971
972         assert_cfg80211_lock();
973
974         if (!wiphy->bands[reg_beacon->chan.band])
975                 return;
976
977         sband = wiphy->bands[reg_beacon->chan.band];
978
979         for (i = 0; i < sband->n_channels; i++)
980                 handle_reg_beacon(wiphy, i, reg_beacon);
981 }
982
983 /*
984  * Called upon reg changes or a new wiphy is added
985  */
986 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
987 {
988         unsigned int i;
989         struct ieee80211_supported_band *sband;
990         struct reg_beacon *reg_beacon;
991
992         assert_cfg80211_lock();
993
994         if (list_empty(&reg_beacon_list))
995                 return;
996
997         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
998                 if (!wiphy->bands[reg_beacon->chan.band])
999                         continue;
1000                 sband = wiphy->bands[reg_beacon->chan.band];
1001                 for (i = 0; i < sband->n_channels; i++)
1002                         handle_reg_beacon(wiphy, i, reg_beacon);
1003         }
1004 }
1005
1006 static bool reg_is_world_roaming(struct wiphy *wiphy)
1007 {
1008         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1009             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1010                 return true;
1011         if (last_request &&
1012             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1013             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1014                 return true;
1015         return false;
1016 }
1017
1018 /* Reap the advantages of previously found beacons */
1019 static void reg_process_beacons(struct wiphy *wiphy)
1020 {
1021         /*
1022          * Means we are just firing up cfg80211, so no beacons would
1023          * have been processed yet.
1024          */
1025         if (!last_request)
1026                 return;
1027         if (!reg_is_world_roaming(wiphy))
1028                 return;
1029         wiphy_update_beacon_reg(wiphy);
1030 }
1031
1032 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1033 {
1034         if (!chan)
1035                 return true;
1036         if (chan->flags & IEEE80211_CHAN_DISABLED)
1037                 return true;
1038         /* This would happen when regulatory rules disallow HT40 completely */
1039         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1040                 return true;
1041         return false;
1042 }
1043
1044 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1045                                          enum ieee80211_band band,
1046                                          unsigned int chan_idx)
1047 {
1048         struct ieee80211_supported_band *sband;
1049         struct ieee80211_channel *channel;
1050         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1051         unsigned int i;
1052
1053         assert_cfg80211_lock();
1054
1055         sband = wiphy->bands[band];
1056         BUG_ON(chan_idx >= sband->n_channels);
1057         channel = &sband->channels[chan_idx];
1058
1059         if (is_ht40_not_allowed(channel)) {
1060                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1061                 return;
1062         }
1063
1064         /*
1065          * We need to ensure the extension channels exist to
1066          * be able to use HT40- or HT40+, this finds them (or not)
1067          */
1068         for (i = 0; i < sband->n_channels; i++) {
1069                 struct ieee80211_channel *c = &sband->channels[i];
1070                 if (c->center_freq == (channel->center_freq - 20))
1071                         channel_before = c;
1072                 if (c->center_freq == (channel->center_freq + 20))
1073                         channel_after = c;
1074         }
1075
1076         /*
1077          * Please note that this assumes target bandwidth is 20 MHz,
1078          * if that ever changes we also need to change the below logic
1079          * to include that as well.
1080          */
1081         if (is_ht40_not_allowed(channel_before))
1082                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1083         else
1084                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1085
1086         if (is_ht40_not_allowed(channel_after))
1087                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1088         else
1089                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1090 }
1091
1092 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1093                                       enum ieee80211_band band)
1094 {
1095         unsigned int i;
1096         struct ieee80211_supported_band *sband;
1097
1098         BUG_ON(!wiphy->bands[band]);
1099         sband = wiphy->bands[band];
1100
1101         for (i = 0; i < sband->n_channels; i++)
1102                 reg_process_ht_flags_channel(wiphy, band, i);
1103 }
1104
1105 static void reg_process_ht_flags(struct wiphy *wiphy)
1106 {
1107         enum ieee80211_band band;
1108
1109         if (!wiphy)
1110                 return;
1111
1112         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1113                 if (wiphy->bands[band])
1114                         reg_process_ht_flags_band(wiphy, band);
1115         }
1116
1117 }
1118
1119 void wiphy_update_regulatory(struct wiphy *wiphy,
1120                              enum nl80211_reg_initiator initiator)
1121 {
1122         enum ieee80211_band band;
1123
1124         if (ignore_reg_update(wiphy, initiator))
1125                 goto out;
1126         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1127                 if (wiphy->bands[band])
1128                         handle_band(wiphy, band, initiator);
1129         }
1130 out:
1131         reg_process_beacons(wiphy);
1132         reg_process_ht_flags(wiphy);
1133         if (wiphy->reg_notifier)
1134                 wiphy->reg_notifier(wiphy, last_request);
1135 }
1136
1137 static void handle_channel_custom(struct wiphy *wiphy,
1138                                   enum ieee80211_band band,
1139                                   unsigned int chan_idx,
1140                                   const struct ieee80211_regdomain *regd)
1141 {
1142         int r;
1143         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1144         u32 bw_flags = 0;
1145         const struct ieee80211_reg_rule *reg_rule = NULL;
1146         const struct ieee80211_power_rule *power_rule = NULL;
1147         const struct ieee80211_freq_range *freq_range = NULL;
1148         struct ieee80211_supported_band *sband;
1149         struct ieee80211_channel *chan;
1150
1151         assert_reg_lock();
1152
1153         sband = wiphy->bands[band];
1154         BUG_ON(chan_idx >= sband->n_channels);
1155         chan = &sband->channels[chan_idx];
1156
1157         r = freq_reg_info_regd(wiphy,
1158                                MHZ_TO_KHZ(chan->center_freq),
1159                                desired_bw_khz,
1160                                &reg_rule,
1161                                regd);
1162
1163         if (r) {
1164                 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1165                               "regd has no rule that fits a %d MHz "
1166                               "wide channel\n",
1167                               chan->center_freq,
1168                               KHZ_TO_MHZ(desired_bw_khz));
1169                 chan->flags = IEEE80211_CHAN_DISABLED;
1170                 return;
1171         }
1172
1173         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1174
1175         power_rule = &reg_rule->power_rule;
1176         freq_range = &reg_rule->freq_range;
1177
1178         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1179                 bw_flags = IEEE80211_CHAN_NO_HT40;
1180
1181         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1182         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1183         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1184 }
1185
1186 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1187                                const struct ieee80211_regdomain *regd)
1188 {
1189         unsigned int i;
1190         struct ieee80211_supported_band *sband;
1191
1192         BUG_ON(!wiphy->bands[band]);
1193         sband = wiphy->bands[band];
1194
1195         for (i = 0; i < sband->n_channels; i++)
1196                 handle_channel_custom(wiphy, band, i, regd);
1197 }
1198
1199 /* Used by drivers prior to wiphy registration */
1200 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1201                                    const struct ieee80211_regdomain *regd)
1202 {
1203         enum ieee80211_band band;
1204         unsigned int bands_set = 0;
1205
1206         mutex_lock(&reg_mutex);
1207         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1208                 if (!wiphy->bands[band])
1209                         continue;
1210                 handle_band_custom(wiphy, band, regd);
1211                 bands_set++;
1212         }
1213         mutex_unlock(&reg_mutex);
1214
1215         /*
1216          * no point in calling this if it won't have any effect
1217          * on your device's supportd bands.
1218          */
1219         WARN_ON(!bands_set);
1220 }
1221 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1222
1223 /*
1224  * Return value which can be used by ignore_request() to indicate
1225  * it has been determined we should intersect two regulatory domains
1226  */
1227 #define REG_INTERSECT   1
1228
1229 /* This has the logic which determines when a new request
1230  * should be ignored. */
1231 static int ignore_request(struct wiphy *wiphy,
1232                           struct regulatory_request *pending_request)
1233 {
1234         struct wiphy *last_wiphy = NULL;
1235
1236         assert_cfg80211_lock();
1237
1238         /* All initial requests are respected */
1239         if (!last_request)
1240                 return 0;
1241
1242         switch (pending_request->initiator) {
1243         case NL80211_REGDOM_SET_BY_CORE:
1244                 return 0;
1245         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1246
1247                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1248
1249                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1250                         return -EINVAL;
1251                 if (last_request->initiator ==
1252                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1253                         if (last_wiphy != wiphy) {
1254                                 /*
1255                                  * Two cards with two APs claiming different
1256                                  * Country IE alpha2s. We could
1257                                  * intersect them, but that seems unlikely
1258                                  * to be correct. Reject second one for now.
1259                                  */
1260                                 if (regdom_changes(pending_request->alpha2))
1261                                         return -EOPNOTSUPP;
1262                                 return -EALREADY;
1263                         }
1264                         /*
1265                          * Two consecutive Country IE hints on the same wiphy.
1266                          * This should be picked up early by the driver/stack
1267                          */
1268                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1269                                 return 0;
1270                         return -EALREADY;
1271                 }
1272                 return 0;
1273         case NL80211_REGDOM_SET_BY_DRIVER:
1274                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1275                         if (regdom_changes(pending_request->alpha2))
1276                                 return 0;
1277                         return -EALREADY;
1278                 }
1279
1280                 /*
1281                  * This would happen if you unplug and plug your card
1282                  * back in or if you add a new device for which the previously
1283                  * loaded card also agrees on the regulatory domain.
1284                  */
1285                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1286                     !regdom_changes(pending_request->alpha2))
1287                         return -EALREADY;
1288
1289                 return REG_INTERSECT;
1290         case NL80211_REGDOM_SET_BY_USER:
1291                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1292                         return REG_INTERSECT;
1293                 /*
1294                  * If the user knows better the user should set the regdom
1295                  * to their country before the IE is picked up
1296                  */
1297                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1298                           last_request->intersect)
1299                         return -EOPNOTSUPP;
1300                 /*
1301                  * Process user requests only after previous user/driver/core
1302                  * requests have been processed
1303                  */
1304                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1305                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1306                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1307                         if (regdom_changes(last_request->alpha2))
1308                                 return -EAGAIN;
1309                 }
1310
1311                 if (!regdom_changes(pending_request->alpha2))
1312                         return -EALREADY;
1313
1314                 return 0;
1315         }
1316
1317         return -EINVAL;
1318 }
1319
1320 /**
1321  * __regulatory_hint - hint to the wireless core a regulatory domain
1322  * @wiphy: if the hint comes from country information from an AP, this
1323  *      is required to be set to the wiphy that received the information
1324  * @pending_request: the regulatory request currently being processed
1325  *
1326  * The Wireless subsystem can use this function to hint to the wireless core
1327  * what it believes should be the current regulatory domain.
1328  *
1329  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1330  * already been set or other standard error codes.
1331  *
1332  * Caller must hold &cfg80211_mutex and &reg_mutex
1333  */
1334 static int __regulatory_hint(struct wiphy *wiphy,
1335                              struct regulatory_request *pending_request)
1336 {
1337         bool intersect = false;
1338         int r = 0;
1339
1340         assert_cfg80211_lock();
1341
1342         r = ignore_request(wiphy, pending_request);
1343
1344         if (r == REG_INTERSECT) {
1345                 if (pending_request->initiator ==
1346                     NL80211_REGDOM_SET_BY_DRIVER) {
1347                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1348                         if (r) {
1349                                 kfree(pending_request);
1350                                 return r;
1351                         }
1352                 }
1353                 intersect = true;
1354         } else if (r) {
1355                 /*
1356                  * If the regulatory domain being requested by the
1357                  * driver has already been set just copy it to the
1358                  * wiphy
1359                  */
1360                 if (r == -EALREADY &&
1361                     pending_request->initiator ==
1362                     NL80211_REGDOM_SET_BY_DRIVER) {
1363                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1364                         if (r) {
1365                                 kfree(pending_request);
1366                                 return r;
1367                         }
1368                         r = -EALREADY;
1369                         goto new_request;
1370                 }
1371                 kfree(pending_request);
1372                 return r;
1373         }
1374
1375 new_request:
1376         kfree(last_request);
1377
1378         last_request = pending_request;
1379         last_request->intersect = intersect;
1380
1381         pending_request = NULL;
1382
1383         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1384                 user_alpha2[0] = last_request->alpha2[0];
1385                 user_alpha2[1] = last_request->alpha2[1];
1386         }
1387
1388         /* When r == REG_INTERSECT we do need to call CRDA */
1389         if (r < 0) {
1390                 /*
1391                  * Since CRDA will not be called in this case as we already
1392                  * have applied the requested regulatory domain before we just
1393                  * inform userspace we have processed the request
1394                  */
1395                 if (r == -EALREADY)
1396                         nl80211_send_reg_change_event(last_request);
1397                 return r;
1398         }
1399
1400         return call_crda(last_request->alpha2);
1401 }
1402
1403 /* This processes *all* regulatory hints */
1404 static void reg_process_hint(struct regulatory_request *reg_request)
1405 {
1406         int r = 0;
1407         struct wiphy *wiphy = NULL;
1408         enum nl80211_reg_initiator initiator = reg_request->initiator;
1409
1410         BUG_ON(!reg_request->alpha2);
1411
1412         mutex_lock(&cfg80211_mutex);
1413         mutex_lock(&reg_mutex);
1414
1415         if (wiphy_idx_valid(reg_request->wiphy_idx))
1416                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1417
1418         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1419             !wiphy) {
1420                 kfree(reg_request);
1421                 goto out;
1422         }
1423
1424         r = __regulatory_hint(wiphy, reg_request);
1425         /* This is required so that the orig_* parameters are saved */
1426         if (r == -EALREADY && wiphy &&
1427             wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1428                 wiphy_update_regulatory(wiphy, initiator);
1429 out:
1430         mutex_unlock(&reg_mutex);
1431         mutex_unlock(&cfg80211_mutex);
1432 }
1433
1434 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1435 static void reg_process_pending_hints(void)
1436         {
1437         struct regulatory_request *reg_request;
1438
1439         spin_lock(&reg_requests_lock);
1440         while (!list_empty(&reg_requests_list)) {
1441                 reg_request = list_first_entry(&reg_requests_list,
1442                                                struct regulatory_request,
1443                                                list);
1444                 list_del_init(&reg_request->list);
1445
1446                 spin_unlock(&reg_requests_lock);
1447                 reg_process_hint(reg_request);
1448                 spin_lock(&reg_requests_lock);
1449         }
1450         spin_unlock(&reg_requests_lock);
1451 }
1452
1453 /* Processes beacon hints -- this has nothing to do with country IEs */
1454 static void reg_process_pending_beacon_hints(void)
1455 {
1456         struct cfg80211_registered_device *rdev;
1457         struct reg_beacon *pending_beacon, *tmp;
1458
1459         /*
1460          * No need to hold the reg_mutex here as we just touch wiphys
1461          * and do not read or access regulatory variables.
1462          */
1463         mutex_lock(&cfg80211_mutex);
1464
1465         /* This goes through the _pending_ beacon list */
1466         spin_lock_bh(&reg_pending_beacons_lock);
1467
1468         if (list_empty(&reg_pending_beacons)) {
1469                 spin_unlock_bh(&reg_pending_beacons_lock);
1470                 goto out;
1471         }
1472
1473         list_for_each_entry_safe(pending_beacon, tmp,
1474                                  &reg_pending_beacons, list) {
1475
1476                 list_del_init(&pending_beacon->list);
1477
1478                 /* Applies the beacon hint to current wiphys */
1479                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1480                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1481
1482                 /* Remembers the beacon hint for new wiphys or reg changes */
1483                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1484         }
1485
1486         spin_unlock_bh(&reg_pending_beacons_lock);
1487 out:
1488         mutex_unlock(&cfg80211_mutex);
1489 }
1490
1491 static void reg_todo(struct work_struct *work)
1492 {
1493         reg_process_pending_hints();
1494         reg_process_pending_beacon_hints();
1495 }
1496
1497 static DECLARE_WORK(reg_work, reg_todo);
1498
1499 static void queue_regulatory_request(struct regulatory_request *request)
1500 {
1501         if (isalpha(request->alpha2[0]))
1502                 request->alpha2[0] = toupper(request->alpha2[0]);
1503         if (isalpha(request->alpha2[1]))
1504                 request->alpha2[1] = toupper(request->alpha2[1]);
1505
1506         spin_lock(&reg_requests_lock);
1507         list_add_tail(&request->list, &reg_requests_list);
1508         spin_unlock(&reg_requests_lock);
1509
1510         schedule_work(&reg_work);
1511 }
1512
1513 /*
1514  * Core regulatory hint -- happens during cfg80211_init()
1515  * and when we restore regulatory settings.
1516  */
1517 static int regulatory_hint_core(const char *alpha2)
1518 {
1519         struct regulatory_request *request;
1520
1521         kfree(last_request);
1522         last_request = NULL;
1523
1524         request = kzalloc(sizeof(struct regulatory_request),
1525                           GFP_KERNEL);
1526         if (!request)
1527                 return -ENOMEM;
1528
1529         request->alpha2[0] = alpha2[0];
1530         request->alpha2[1] = alpha2[1];
1531         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1532
1533         /*
1534          * This ensures last_request is populated once modules
1535          * come swinging in and calling regulatory hints and
1536          * wiphy_apply_custom_regulatory().
1537          */
1538         reg_process_hint(request);
1539
1540         return 0;
1541 }
1542
1543 /* User hints */
1544 int regulatory_hint_user(const char *alpha2)
1545 {
1546         struct regulatory_request *request;
1547
1548         BUG_ON(!alpha2);
1549
1550         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1551         if (!request)
1552                 return -ENOMEM;
1553
1554         request->wiphy_idx = WIPHY_IDX_STALE;
1555         request->alpha2[0] = alpha2[0];
1556         request->alpha2[1] = alpha2[1];
1557         request->initiator = NL80211_REGDOM_SET_BY_USER;
1558
1559         queue_regulatory_request(request);
1560
1561         return 0;
1562 }
1563
1564 /* Driver hints */
1565 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1566 {
1567         struct regulatory_request *request;
1568
1569         BUG_ON(!alpha2);
1570         BUG_ON(!wiphy);
1571
1572         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1573         if (!request)
1574                 return -ENOMEM;
1575
1576         request->wiphy_idx = get_wiphy_idx(wiphy);
1577
1578         /* Must have registered wiphy first */
1579         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1580
1581         request->alpha2[0] = alpha2[0];
1582         request->alpha2[1] = alpha2[1];
1583         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1584
1585         queue_regulatory_request(request);
1586
1587         return 0;
1588 }
1589 EXPORT_SYMBOL(regulatory_hint);
1590
1591 /*
1592  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1593  * therefore cannot iterate over the rdev list here.
1594  */
1595 void regulatory_hint_11d(struct wiphy *wiphy,
1596                          enum ieee80211_band band,
1597                          u8 *country_ie,
1598                          u8 country_ie_len)
1599 {
1600         char alpha2[2];
1601         enum environment_cap env = ENVIRON_ANY;
1602         struct regulatory_request *request;
1603
1604         mutex_lock(&reg_mutex);
1605
1606         if (unlikely(!last_request))
1607                 goto out;
1608
1609         /* IE len must be evenly divisible by 2 */
1610         if (country_ie_len & 0x01)
1611                 goto out;
1612
1613         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1614                 goto out;
1615
1616         alpha2[0] = country_ie[0];
1617         alpha2[1] = country_ie[1];
1618
1619         if (country_ie[2] == 'I')
1620                 env = ENVIRON_INDOOR;
1621         else if (country_ie[2] == 'O')
1622                 env = ENVIRON_OUTDOOR;
1623
1624         /*
1625          * We will run this only upon a successful connection on cfg80211.
1626          * We leave conflict resolution to the workqueue, where can hold
1627          * cfg80211_mutex.
1628          */
1629         if (likely(last_request->initiator ==
1630             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1631             wiphy_idx_valid(last_request->wiphy_idx)))
1632                 goto out;
1633
1634         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1635         if (!request)
1636                 goto out;
1637
1638         request->wiphy_idx = get_wiphy_idx(wiphy);
1639         request->alpha2[0] = alpha2[0];
1640         request->alpha2[1] = alpha2[1];
1641         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1642         request->country_ie_env = env;
1643
1644         mutex_unlock(&reg_mutex);
1645
1646         queue_regulatory_request(request);
1647
1648         return;
1649
1650 out:
1651         mutex_unlock(&reg_mutex);
1652 }
1653
1654 static void restore_alpha2(char *alpha2, bool reset_user)
1655 {
1656         /* indicates there is no alpha2 to consider for restoration */
1657         alpha2[0] = '9';
1658         alpha2[1] = '7';
1659
1660         /* The user setting has precedence over the module parameter */
1661         if (is_user_regdom_saved()) {
1662                 /* Unless we're asked to ignore it and reset it */
1663                 if (reset_user) {
1664                         REG_DBG_PRINT("Restoring regulatory settings "
1665                                "including user preference\n");
1666                         user_alpha2[0] = '9';
1667                         user_alpha2[1] = '7';
1668
1669                         /*
1670                          * If we're ignoring user settings, we still need to
1671                          * check the module parameter to ensure we put things
1672                          * back as they were for a full restore.
1673                          */
1674                         if (!is_world_regdom(ieee80211_regdom)) {
1675                                 REG_DBG_PRINT("Keeping preference on "
1676                                        "module parameter ieee80211_regdom: %c%c\n",
1677                                        ieee80211_regdom[0],
1678                                        ieee80211_regdom[1]);
1679                                 alpha2[0] = ieee80211_regdom[0];
1680                                 alpha2[1] = ieee80211_regdom[1];
1681                         }
1682                 } else {
1683                         REG_DBG_PRINT("Restoring regulatory settings "
1684                                "while preserving user preference for: %c%c\n",
1685                                user_alpha2[0],
1686                                user_alpha2[1]);
1687                         alpha2[0] = user_alpha2[0];
1688                         alpha2[1] = user_alpha2[1];
1689                 }
1690         } else if (!is_world_regdom(ieee80211_regdom)) {
1691                 REG_DBG_PRINT("Keeping preference on "
1692                        "module parameter ieee80211_regdom: %c%c\n",
1693                        ieee80211_regdom[0],
1694                        ieee80211_regdom[1]);
1695                 alpha2[0] = ieee80211_regdom[0];
1696                 alpha2[1] = ieee80211_regdom[1];
1697         } else
1698                 REG_DBG_PRINT("Restoring regulatory settings\n");
1699 }
1700
1701 /*
1702  * Restoring regulatory settings involves ingoring any
1703  * possibly stale country IE information and user regulatory
1704  * settings if so desired, this includes any beacon hints
1705  * learned as we could have traveled outside to another country
1706  * after disconnection. To restore regulatory settings we do
1707  * exactly what we did at bootup:
1708  *
1709  *   - send a core regulatory hint
1710  *   - send a user regulatory hint if applicable
1711  *
1712  * Device drivers that send a regulatory hint for a specific country
1713  * keep their own regulatory domain on wiphy->regd so that does does
1714  * not need to be remembered.
1715  */
1716 static void restore_regulatory_settings(bool reset_user)
1717 {
1718         char alpha2[2];
1719         struct reg_beacon *reg_beacon, *btmp;
1720
1721         mutex_lock(&cfg80211_mutex);
1722         mutex_lock(&reg_mutex);
1723
1724         reset_regdomains();
1725         restore_alpha2(alpha2, reset_user);
1726
1727         /* Clear beacon hints */
1728         spin_lock_bh(&reg_pending_beacons_lock);
1729         if (!list_empty(&reg_pending_beacons)) {
1730                 list_for_each_entry_safe(reg_beacon, btmp,
1731                                          &reg_pending_beacons, list) {
1732                         list_del(&reg_beacon->list);
1733                         kfree(reg_beacon);
1734                 }
1735         }
1736         spin_unlock_bh(&reg_pending_beacons_lock);
1737
1738         if (!list_empty(&reg_beacon_list)) {
1739                 list_for_each_entry_safe(reg_beacon, btmp,
1740                                          &reg_beacon_list, list) {
1741                         list_del(&reg_beacon->list);
1742                         kfree(reg_beacon);
1743                 }
1744         }
1745
1746         /* First restore to the basic regulatory settings */
1747         cfg80211_regdomain = cfg80211_world_regdom;
1748
1749         mutex_unlock(&reg_mutex);
1750         mutex_unlock(&cfg80211_mutex);
1751
1752         regulatory_hint_core(cfg80211_regdomain->alpha2);
1753
1754         /*
1755          * This restores the ieee80211_regdom module parameter
1756          * preference or the last user requested regulatory
1757          * settings, user regulatory settings takes precedence.
1758          */
1759         if (is_an_alpha2(alpha2))
1760                 regulatory_hint_user(user_alpha2);
1761 }
1762
1763
1764 void regulatory_hint_disconnect(void)
1765 {
1766         REG_DBG_PRINT("All devices are disconnected, going to "
1767                       "restore regulatory settings\n");
1768         restore_regulatory_settings(false);
1769 }
1770
1771 static bool freq_is_chan_12_13_14(u16 freq)
1772 {
1773         if (freq == ieee80211_channel_to_frequency(12) ||
1774             freq == ieee80211_channel_to_frequency(13) ||
1775             freq == ieee80211_channel_to_frequency(14))
1776                 return true;
1777         return false;
1778 }
1779
1780 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1781                                  struct ieee80211_channel *beacon_chan,
1782                                  gfp_t gfp)
1783 {
1784         struct reg_beacon *reg_beacon;
1785
1786         if (likely((beacon_chan->beacon_found ||
1787             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1788             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1789              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1790                 return 0;
1791
1792         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1793         if (!reg_beacon)
1794                 return -ENOMEM;
1795
1796         REG_DBG_PRINT("Found new beacon on "
1797                       "frequency: %d MHz (Ch %d) on %s\n",
1798                       beacon_chan->center_freq,
1799                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
1800                       wiphy_name(wiphy));
1801
1802         memcpy(&reg_beacon->chan, beacon_chan,
1803                 sizeof(struct ieee80211_channel));
1804
1805
1806         /*
1807          * Since we can be called from BH or and non-BH context
1808          * we must use spin_lock_bh()
1809          */
1810         spin_lock_bh(&reg_pending_beacons_lock);
1811         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1812         spin_unlock_bh(&reg_pending_beacons_lock);
1813
1814         schedule_work(&reg_work);
1815
1816         return 0;
1817 }
1818
1819 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1820 {
1821         unsigned int i;
1822         const struct ieee80211_reg_rule *reg_rule = NULL;
1823         const struct ieee80211_freq_range *freq_range = NULL;
1824         const struct ieee80211_power_rule *power_rule = NULL;
1825
1826         printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
1827                 "(max_antenna_gain, max_eirp)\n");
1828
1829         for (i = 0; i < rd->n_reg_rules; i++) {
1830                 reg_rule = &rd->reg_rules[i];
1831                 freq_range = &reg_rule->freq_range;
1832                 power_rule = &reg_rule->power_rule;
1833
1834                 /*
1835                  * There may not be documentation for max antenna gain
1836                  * in certain regions
1837                  */
1838                 if (power_rule->max_antenna_gain)
1839                         printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1840                                 "(%d mBi, %d mBm)\n",
1841                                 freq_range->start_freq_khz,
1842                                 freq_range->end_freq_khz,
1843                                 freq_range->max_bandwidth_khz,
1844                                 power_rule->max_antenna_gain,
1845                                 power_rule->max_eirp);
1846                 else
1847                         printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1848                                 "(N/A, %d mBm)\n",
1849                                 freq_range->start_freq_khz,
1850                                 freq_range->end_freq_khz,
1851                                 freq_range->max_bandwidth_khz,
1852                                 power_rule->max_eirp);
1853         }
1854 }
1855
1856 static void print_regdomain(const struct ieee80211_regdomain *rd)
1857 {
1858
1859         if (is_intersected_alpha2(rd->alpha2)) {
1860
1861                 if (last_request->initiator ==
1862                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1863                         struct cfg80211_registered_device *rdev;
1864                         rdev = cfg80211_rdev_by_wiphy_idx(
1865                                 last_request->wiphy_idx);
1866                         if (rdev) {
1867                                 printk(KERN_INFO "cfg80211: Current regulatory "
1868                                         "domain updated by AP to: %c%c\n",
1869                                         rdev->country_ie_alpha2[0],
1870                                         rdev->country_ie_alpha2[1]);
1871                         } else
1872                                 printk(KERN_INFO "cfg80211: Current regulatory "
1873                                         "domain intersected:\n");
1874                 } else
1875                         printk(KERN_INFO "cfg80211: Current regulatory "
1876                                 "domain intersected:\n");
1877         } else if (is_world_regdom(rd->alpha2))
1878                 printk(KERN_INFO "cfg80211: World regulatory "
1879                         "domain updated:\n");
1880         else {
1881                 if (is_unknown_alpha2(rd->alpha2))
1882                         printk(KERN_INFO "cfg80211: Regulatory domain "
1883                                 "changed to driver built-in settings "
1884                                 "(unknown country)\n");
1885                 else
1886                         printk(KERN_INFO "cfg80211: Regulatory domain "
1887                                 "changed to country: %c%c\n",
1888                                 rd->alpha2[0], rd->alpha2[1]);
1889         }
1890         print_rd_rules(rd);
1891 }
1892
1893 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1894 {
1895         printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
1896                 rd->alpha2[0], rd->alpha2[1]);
1897         print_rd_rules(rd);
1898 }
1899
1900 /* Takes ownership of rd only if it doesn't fail */
1901 static int __set_regdom(const struct ieee80211_regdomain *rd)
1902 {
1903         const struct ieee80211_regdomain *intersected_rd = NULL;
1904         struct cfg80211_registered_device *rdev = NULL;
1905         struct wiphy *request_wiphy;
1906         /* Some basic sanity checks first */
1907
1908         if (is_world_regdom(rd->alpha2)) {
1909                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1910                         return -EINVAL;
1911                 update_world_regdomain(rd);
1912                 return 0;
1913         }
1914
1915         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1916                         !is_unknown_alpha2(rd->alpha2))
1917                 return -EINVAL;
1918
1919         if (!last_request)
1920                 return -EINVAL;
1921
1922         /*
1923          * Lets only bother proceeding on the same alpha2 if the current
1924          * rd is non static (it means CRDA was present and was used last)
1925          * and the pending request came in from a country IE
1926          */
1927         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1928                 /*
1929                  * If someone else asked us to change the rd lets only bother
1930                  * checking if the alpha2 changes if CRDA was already called
1931                  */
1932                 if (!regdom_changes(rd->alpha2))
1933                         return -EINVAL;
1934         }
1935
1936         /*
1937          * Now lets set the regulatory domain, update all driver channels
1938          * and finally inform them of what we have done, in case they want
1939          * to review or adjust their own settings based on their own
1940          * internal EEPROM data
1941          */
1942
1943         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1944                 return -EINVAL;
1945
1946         if (!is_valid_rd(rd)) {
1947                 printk(KERN_ERR "cfg80211: Invalid "
1948                         "regulatory domain detected:\n");
1949                 print_regdomain_info(rd);
1950                 return -EINVAL;
1951         }
1952
1953         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1954
1955         if (!last_request->intersect) {
1956                 int r;
1957
1958                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1959                         reset_regdomains();
1960                         cfg80211_regdomain = rd;
1961                         return 0;
1962                 }
1963
1964                 /*
1965                  * For a driver hint, lets copy the regulatory domain the
1966                  * driver wanted to the wiphy to deal with conflicts
1967                  */
1968
1969                 /*
1970                  * Userspace could have sent two replies with only
1971                  * one kernel request.
1972                  */
1973                 if (request_wiphy->regd)
1974                         return -EALREADY;
1975
1976                 r = reg_copy_regd(&request_wiphy->regd, rd);
1977                 if (r)
1978                         return r;
1979
1980                 reset_regdomains();
1981                 cfg80211_regdomain = rd;
1982                 return 0;
1983         }
1984
1985         /* Intersection requires a bit more work */
1986
1987         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1988
1989                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
1990                 if (!intersected_rd)
1991                         return -EINVAL;
1992
1993                 /*
1994                  * We can trash what CRDA provided now.
1995                  * However if a driver requested this specific regulatory
1996                  * domain we keep it for its private use
1997                  */
1998                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
1999                         request_wiphy->regd = rd;
2000                 else
2001                         kfree(rd);
2002
2003                 rd = NULL;
2004
2005                 reset_regdomains();
2006                 cfg80211_regdomain = intersected_rd;
2007
2008                 return 0;
2009         }
2010
2011         if (!intersected_rd)
2012                 return -EINVAL;
2013
2014         rdev = wiphy_to_dev(request_wiphy);
2015
2016         rdev->country_ie_alpha2[0] = rd->alpha2[0];
2017         rdev->country_ie_alpha2[1] = rd->alpha2[1];
2018         rdev->env = last_request->country_ie_env;
2019
2020         BUG_ON(intersected_rd == rd);
2021
2022         kfree(rd);
2023         rd = NULL;
2024
2025         reset_regdomains();
2026         cfg80211_regdomain = intersected_rd;
2027
2028         return 0;
2029 }
2030
2031
2032 /*
2033  * Use this call to set the current regulatory domain. Conflicts with
2034  * multiple drivers can be ironed out later. Caller must've already
2035  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2036  */
2037 int set_regdom(const struct ieee80211_regdomain *rd)
2038 {
2039         int r;
2040
2041         assert_cfg80211_lock();
2042
2043         mutex_lock(&reg_mutex);
2044
2045         /* Note that this doesn't update the wiphys, this is done below */
2046         r = __set_regdom(rd);
2047         if (r) {
2048                 kfree(rd);
2049                 mutex_unlock(&reg_mutex);
2050                 return r;
2051         }
2052
2053         /* This would make this whole thing pointless */
2054         if (!last_request->intersect)
2055                 BUG_ON(rd != cfg80211_regdomain);
2056
2057         /* update all wiphys now with the new established regulatory domain */
2058         update_all_wiphy_regulatory(last_request->initiator);
2059
2060         print_regdomain(cfg80211_regdomain);
2061
2062         nl80211_send_reg_change_event(last_request);
2063
2064         mutex_unlock(&reg_mutex);
2065
2066         return r;
2067 }
2068
2069 /* Caller must hold cfg80211_mutex */
2070 void reg_device_remove(struct wiphy *wiphy)
2071 {
2072         struct wiphy *request_wiphy = NULL;
2073
2074         assert_cfg80211_lock();
2075
2076         mutex_lock(&reg_mutex);
2077
2078         kfree(wiphy->regd);
2079
2080         if (last_request)
2081                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2082
2083         if (!request_wiphy || request_wiphy != wiphy)
2084                 goto out;
2085
2086         last_request->wiphy_idx = WIPHY_IDX_STALE;
2087         last_request->country_ie_env = ENVIRON_ANY;
2088 out:
2089         mutex_unlock(&reg_mutex);
2090 }
2091
2092 int __init regulatory_init(void)
2093 {
2094         int err = 0;
2095
2096         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2097         if (IS_ERR(reg_pdev))
2098                 return PTR_ERR(reg_pdev);
2099
2100         spin_lock_init(&reg_requests_lock);
2101         spin_lock_init(&reg_pending_beacons_lock);
2102
2103         cfg80211_regdomain = cfg80211_world_regdom;
2104
2105         user_alpha2[0] = '9';
2106         user_alpha2[1] = '7';
2107
2108         /* We always try to get an update for the static regdomain */
2109         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2110         if (err) {
2111                 if (err == -ENOMEM)
2112                         return err;
2113                 /*
2114                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2115                  * memory which is handled and propagated appropriately above
2116                  * but it can also fail during a netlink_broadcast() or during
2117                  * early boot for call_usermodehelper(). For now treat these
2118                  * errors as non-fatal.
2119                  */
2120                 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2121                         "to call CRDA during init");
2122 #ifdef CONFIG_CFG80211_REG_DEBUG
2123                 /* We want to find out exactly why when debugging */
2124                 WARN_ON(err);
2125 #endif
2126         }
2127
2128         /*
2129          * Finally, if the user set the module parameter treat it
2130          * as a user hint.
2131          */
2132         if (!is_world_regdom(ieee80211_regdom))
2133                 regulatory_hint_user(ieee80211_regdom);
2134
2135         return 0;
2136 }
2137
2138 void /* __init_or_exit */ regulatory_exit(void)
2139 {
2140         struct regulatory_request *reg_request, *tmp;
2141         struct reg_beacon *reg_beacon, *btmp;
2142
2143         cancel_work_sync(&reg_work);
2144
2145         mutex_lock(&cfg80211_mutex);
2146         mutex_lock(&reg_mutex);
2147
2148         reset_regdomains();
2149
2150         kfree(last_request);
2151
2152         platform_device_unregister(reg_pdev);
2153
2154         spin_lock_bh(&reg_pending_beacons_lock);
2155         if (!list_empty(&reg_pending_beacons)) {
2156                 list_for_each_entry_safe(reg_beacon, btmp,
2157                                          &reg_pending_beacons, list) {
2158                         list_del(&reg_beacon->list);
2159                         kfree(reg_beacon);
2160                 }
2161         }
2162         spin_unlock_bh(&reg_pending_beacons_lock);
2163
2164         if (!list_empty(&reg_beacon_list)) {
2165                 list_for_each_entry_safe(reg_beacon, btmp,
2166                                          &reg_beacon_list, list) {
2167                         list_del(&reg_beacon->list);
2168                         kfree(reg_beacon);
2169                 }
2170         }
2171
2172         spin_lock(&reg_requests_lock);
2173         if (!list_empty(&reg_requests_list)) {
2174                 list_for_each_entry_safe(reg_request, tmp,
2175                                          &reg_requests_list, list) {
2176                         list_del(&reg_request->list);
2177                         kfree(reg_request);
2178                 }
2179         }
2180         spin_unlock(&reg_requests_lock);
2181
2182         mutex_unlock(&reg_mutex);
2183         mutex_unlock(&cfg80211_mutex);
2184 }