ARM: tegra: dvfs: Removed rail dfll mode thermal trips
[linux-3.10.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19
20
21 /**
22  * DOC: Wireless regulatory infrastructure
23  *
24  * The usual implementation is for a driver to read a device EEPROM to
25  * determine which regulatory domain it should be operating under, then
26  * looking up the allowable channels in a driver-local table and finally
27  * registering those channels in the wiphy structure.
28  *
29  * Another set of compliance enforcement is for drivers to use their
30  * own compliance limits which can be stored on the EEPROM. The host
31  * driver or firmware may ensure these are used.
32  *
33  * In addition to all this we provide an extra layer of regulatory
34  * conformance. For drivers which do not have any regulatory
35  * information CRDA provides the complete regulatory solution.
36  * For others it provides a community effort on further restrictions
37  * to enhance compliance.
38  *
39  * Note: When number of rules --> infinity we will not be able to
40  * index on alpha2 any more, instead we'll probably have to
41  * rely on some SHA1 checksum of the regdomain for example.
42  *
43  */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...)                  \
63         printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67
68 enum reg_request_treatment {
69         REG_REQ_OK,
70         REG_REQ_IGNORE,
71         REG_REQ_INTERSECT,
72         REG_REQ_ALREADY_SET,
73 };
74
75 static struct regulatory_request core_request_world = {
76         .initiator = NL80211_REGDOM_SET_BY_CORE,
77         .alpha2[0] = '0',
78         .alpha2[1] = '0',
79         .intersect = false,
80         .processed = true,
81         .country_ie_env = ENVIRON_ANY,
82 };
83
84 /* Receipt of information from last regulatory request */
85 static struct regulatory_request __rcu *last_request =
86         (void __rcu *)&core_request_world;
87
88 /* To trigger userspace events */
89 static struct platform_device *reg_pdev;
90
91 static struct device_type reg_device_type = {
92         .uevent = reg_device_uevent,
93 };
94
95 /*
96  * Central wireless core regulatory domains, we only need two,
97  * the current one and a world regulatory domain in case we have no
98  * information to give us an alpha2.
99  */
100 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
101
102 /*
103  * Protects static reg.c components:
104  *      - cfg80211_regdomain (if not used with RCU)
105  *      - cfg80211_world_regdom
106  *      - last_request (if not used with RCU)
107  *      - reg_num_devs_support_basehint
108  */
109 static DEFINE_MUTEX(reg_mutex);
110
111 /*
112  * Number of devices that registered to the core
113  * that support cellular base station regulatory hints
114  */
115 static int reg_num_devs_support_basehint;
116
117 static inline void assert_reg_lock(void)
118 {
119         lockdep_assert_held(&reg_mutex);
120 }
121
122 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
123 {
124         return rcu_dereference_protected(cfg80211_regdomain,
125                                          lockdep_is_held(&reg_mutex));
126 }
127
128 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
129 {
130         return rcu_dereference_protected(wiphy->regd,
131                                          lockdep_is_held(&reg_mutex));
132 }
133
134 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
135 {
136         if (!r)
137                 return;
138         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
139 }
140
141 static struct regulatory_request *get_last_request(void)
142 {
143         return rcu_dereference_check(last_request,
144                                      lockdep_is_held(&reg_mutex));
145 }
146
147 /* Used to queue up regulatory hints */
148 static LIST_HEAD(reg_requests_list);
149 static spinlock_t reg_requests_lock;
150
151 /* Used to queue up beacon hints for review */
152 static LIST_HEAD(reg_pending_beacons);
153 static spinlock_t reg_pending_beacons_lock;
154
155 /* Used to keep track of processed beacon hints */
156 static LIST_HEAD(reg_beacon_list);
157
158 struct reg_beacon {
159         struct list_head list;
160         struct ieee80211_channel chan;
161 };
162
163 static void reg_todo(struct work_struct *work);
164 static DECLARE_WORK(reg_work, reg_todo);
165
166 static void reg_timeout_work(struct work_struct *work);
167 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
168
169 /* We keep a static world regulatory domain in case of the absence of CRDA */
170 static const struct ieee80211_regdomain world_regdom = {
171         .n_reg_rules = 6,
172         .alpha2 =  "00",
173         .reg_rules = {
174                 /* IEEE 802.11b/g, channels 1..11 */
175                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
176                 /* IEEE 802.11b/g, channels 12..13. */
177                 REG_RULE(2467-10, 2472+10, 40, 6, 20,
178                         NL80211_RRF_PASSIVE_SCAN |
179                         NL80211_RRF_NO_IBSS),
180                 /* IEEE 802.11 channel 14 - Only JP enables
181                  * this and for 802.11b only */
182                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
183                         NL80211_RRF_PASSIVE_SCAN |
184                         NL80211_RRF_NO_IBSS |
185                         NL80211_RRF_NO_OFDM),
186                 /* IEEE 802.11a, channel 36..48 */
187                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
188                         NL80211_RRF_PASSIVE_SCAN |
189                         NL80211_RRF_NO_IBSS),
190
191                 /* NB: 5260 MHz - 5700 MHz requires DFS */
192
193                 /* IEEE 802.11a, channel 149..165 */
194                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
195                         NL80211_RRF_PASSIVE_SCAN |
196                         NL80211_RRF_NO_IBSS),
197
198                 /* IEEE 802.11ad (60gHz), channels 1..3 */
199                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
200         }
201 };
202
203 static const struct ieee80211_regdomain *cfg80211_world_regdom =
204         &world_regdom;
205
206 static char *ieee80211_regdom = "00";
207 static char user_alpha2[2];
208
209 module_param(ieee80211_regdom, charp, 0444);
210 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
211
212 static void reset_regdomains(bool full_reset,
213                              const struct ieee80211_regdomain *new_regdom)
214 {
215         const struct ieee80211_regdomain *r;
216         struct regulatory_request *lr;
217
218         assert_reg_lock();
219
220         r = get_cfg80211_regdom();
221
222         /* avoid freeing static information or freeing something twice */
223         if (r == cfg80211_world_regdom)
224                 r = NULL;
225         if (cfg80211_world_regdom == &world_regdom)
226                 cfg80211_world_regdom = NULL;
227         if (r == &world_regdom)
228                 r = NULL;
229
230         rcu_free_regdom(r);
231         rcu_free_regdom(cfg80211_world_regdom);
232
233         cfg80211_world_regdom = &world_regdom;
234         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
235
236         if (!full_reset)
237                 return;
238
239         lr = get_last_request();
240         if (lr != &core_request_world && lr)
241                 kfree_rcu(lr, rcu_head);
242         rcu_assign_pointer(last_request, &core_request_world);
243 }
244
245 /*
246  * Dynamic world regulatory domain requested by the wireless
247  * core upon initialization
248  */
249 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
250 {
251         struct regulatory_request *lr;
252
253         lr = get_last_request();
254
255         WARN_ON(!lr);
256
257         reset_regdomains(false, rd);
258
259         cfg80211_world_regdom = rd;
260 }
261
262 bool is_world_regdom(const char *alpha2)
263 {
264         if (!alpha2)
265                 return false;
266         return alpha2[0] == '0' && alpha2[1] == '0';
267 }
268
269 static bool is_alpha2_set(const char *alpha2)
270 {
271         if (!alpha2)
272                 return false;
273         return alpha2[0] && alpha2[1];
274 }
275
276 static bool is_unknown_alpha2(const char *alpha2)
277 {
278         if (!alpha2)
279                 return false;
280         /*
281          * Special case where regulatory domain was built by driver
282          * but a specific alpha2 cannot be determined
283          */
284         return alpha2[0] == '9' && alpha2[1] == '9';
285 }
286
287 static bool is_intersected_alpha2(const char *alpha2)
288 {
289         if (!alpha2)
290                 return false;
291         /*
292          * Special case where regulatory domain is the
293          * result of an intersection between two regulatory domain
294          * structures
295          */
296         return alpha2[0] == '9' && alpha2[1] == '8';
297 }
298
299 static bool is_an_alpha2(const char *alpha2)
300 {
301         if (!alpha2)
302                 return false;
303         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
304 }
305
306 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
307 {
308         if (!alpha2_x || !alpha2_y)
309                 return false;
310         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
311 }
312
313 static bool regdom_changes(const char *alpha2)
314 {
315         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
316
317         if (!r)
318                 return true;
319         return !alpha2_equal(r->alpha2, alpha2);
320 }
321
322 /*
323  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
324  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
325  * has ever been issued.
326  */
327 static bool is_user_regdom_saved(void)
328 {
329         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
330                 return false;
331
332         /* This would indicate a mistake on the design */
333         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
334                  "Unexpected user alpha2: %c%c\n",
335                  user_alpha2[0], user_alpha2[1]))
336                 return false;
337
338         return true;
339 }
340
341 static const struct ieee80211_regdomain *
342 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
343 {
344         struct ieee80211_regdomain *regd;
345         int size_of_regd;
346         unsigned int i;
347
348         size_of_regd =
349                 sizeof(struct ieee80211_regdomain) +
350                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
351
352         regd = kzalloc(size_of_regd, GFP_KERNEL);
353         if (!regd)
354                 return ERR_PTR(-ENOMEM);
355
356         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
357
358         for (i = 0; i < src_regd->n_reg_rules; i++)
359                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
360                        sizeof(struct ieee80211_reg_rule));
361
362         return regd;
363 }
364
365 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
366 struct reg_regdb_search_request {
367         char alpha2[2];
368         struct list_head list;
369 };
370
371 static LIST_HEAD(reg_regdb_search_list);
372 static DEFINE_MUTEX(reg_regdb_search_mutex);
373
374 static void reg_regdb_search(struct work_struct *work)
375 {
376         struct reg_regdb_search_request *request;
377         const struct ieee80211_regdomain *curdom, *regdom = NULL;
378         int i;
379
380         mutex_lock(&cfg80211_mutex);
381
382         mutex_lock(&reg_regdb_search_mutex);
383         while (!list_empty(&reg_regdb_search_list)) {
384                 request = list_first_entry(&reg_regdb_search_list,
385                                            struct reg_regdb_search_request,
386                                            list);
387                 list_del(&request->list);
388
389                 for (i = 0; i < reg_regdb_size; i++) {
390                         curdom = reg_regdb[i];
391
392                         if (alpha2_equal(request->alpha2, curdom->alpha2)) {
393                                 regdom = reg_copy_regd(curdom);
394                                 break;
395                         }
396                 }
397
398                 kfree(request);
399         }
400         mutex_unlock(&reg_regdb_search_mutex);
401
402         if (!IS_ERR_OR_NULL(regdom))
403                 set_regdom(regdom);
404
405         mutex_unlock(&cfg80211_mutex);
406 }
407
408 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
409
410 static void reg_regdb_query(const char *alpha2)
411 {
412         struct reg_regdb_search_request *request;
413
414         if (!alpha2)
415                 return;
416
417         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
418         if (!request)
419                 return;
420
421         memcpy(request->alpha2, alpha2, 2);
422
423         mutex_lock(&reg_regdb_search_mutex);
424         list_add_tail(&request->list, &reg_regdb_search_list);
425         mutex_unlock(&reg_regdb_search_mutex);
426
427         schedule_work(&reg_regdb_work);
428 }
429
430 /* Feel free to add any other sanity checks here */
431 static void reg_regdb_size_check(void)
432 {
433         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
434         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
435 }
436 #else
437 static inline void reg_regdb_size_check(void) {}
438 static inline void reg_regdb_query(const char *alpha2) {}
439 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
440
441 /*
442  * This lets us keep regulatory code which is updated on a regulatory
443  * basis in userspace. Country information is filled in by
444  * reg_device_uevent
445  */
446 static int call_crda(const char *alpha2)
447 {
448         if (!is_world_regdom((char *) alpha2))
449                 pr_info("Calling CRDA for country: %c%c\n",
450                         alpha2[0], alpha2[1]);
451         else
452                 pr_info("Calling CRDA to update world regulatory domain\n");
453
454         /* query internal regulatory database (if it exists) */
455         reg_regdb_query(alpha2);
456
457         return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
458 }
459
460 static bool reg_is_valid_request(const char *alpha2)
461 {
462         struct regulatory_request *lr = get_last_request();
463
464         if (!lr || lr->processed)
465                 return false;
466
467         return alpha2_equal(lr->alpha2, alpha2);
468 }
469
470 /* Sanity check on a regulatory rule */
471 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
472 {
473         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
474         u32 freq_diff;
475
476         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
477                 return false;
478
479         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
480                 return false;
481
482         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
483
484         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
485             freq_range->max_bandwidth_khz > freq_diff)
486                 return false;
487
488         return true;
489 }
490
491 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
492 {
493         const struct ieee80211_reg_rule *reg_rule = NULL;
494         unsigned int i;
495
496         if (!rd->n_reg_rules)
497                 return false;
498
499         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
500                 return false;
501
502         for (i = 0; i < rd->n_reg_rules; i++) {
503                 reg_rule = &rd->reg_rules[i];
504                 if (!is_valid_reg_rule(reg_rule))
505                         return false;
506         }
507
508         return true;
509 }
510
511 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
512                             u32 center_freq_khz, u32 bw_khz)
513 {
514         u32 start_freq_khz, end_freq_khz;
515
516         start_freq_khz = center_freq_khz - (bw_khz/2);
517         end_freq_khz = center_freq_khz + (bw_khz/2);
518
519         if (start_freq_khz >= freq_range->start_freq_khz &&
520             end_freq_khz <= freq_range->end_freq_khz)
521                 return true;
522
523         return false;
524 }
525
526 /**
527  * freq_in_rule_band - tells us if a frequency is in a frequency band
528  * @freq_range: frequency rule we want to query
529  * @freq_khz: frequency we are inquiring about
530  *
531  * This lets us know if a specific frequency rule is or is not relevant to
532  * a specific frequency's band. Bands are device specific and artificial
533  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
534  * however it is safe for now to assume that a frequency rule should not be
535  * part of a frequency's band if the start freq or end freq are off by more
536  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
537  * 60 GHz band.
538  * This resolution can be lowered and should be considered as we add
539  * regulatory rule support for other "bands".
540  **/
541 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
542                               u32 freq_khz)
543 {
544 #define ONE_GHZ_IN_KHZ  1000000
545         /*
546          * From 802.11ad: directional multi-gigabit (DMG):
547          * Pertaining to operation in a frequency band containing a channel
548          * with the Channel starting frequency above 45 GHz.
549          */
550         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
551                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
552         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
553                 return true;
554         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
555                 return true;
556         return false;
557 #undef ONE_GHZ_IN_KHZ
558 }
559
560 /*
561  * Helper for regdom_intersect(), this does the real
562  * mathematical intersection fun
563  */
564 static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1,
565                                const struct ieee80211_reg_rule *rule2,
566                                struct ieee80211_reg_rule *intersected_rule)
567 {
568         const struct ieee80211_freq_range *freq_range1, *freq_range2;
569         struct ieee80211_freq_range *freq_range;
570         const struct ieee80211_power_rule *power_rule1, *power_rule2;
571         struct ieee80211_power_rule *power_rule;
572         u32 freq_diff;
573
574         freq_range1 = &rule1->freq_range;
575         freq_range2 = &rule2->freq_range;
576         freq_range = &intersected_rule->freq_range;
577
578         power_rule1 = &rule1->power_rule;
579         power_rule2 = &rule2->power_rule;
580         power_rule = &intersected_rule->power_rule;
581
582         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
583                                          freq_range2->start_freq_khz);
584         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
585                                        freq_range2->end_freq_khz);
586         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
587                                             freq_range2->max_bandwidth_khz);
588
589         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
590         if (freq_range->max_bandwidth_khz > freq_diff)
591                 freq_range->max_bandwidth_khz = freq_diff;
592
593         power_rule->max_eirp = min(power_rule1->max_eirp,
594                 power_rule2->max_eirp);
595         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
596                 power_rule2->max_antenna_gain);
597
598         intersected_rule->flags = rule1->flags | rule2->flags;
599
600         if (!is_valid_reg_rule(intersected_rule))
601                 return -EINVAL;
602
603         return 0;
604 }
605
606 /**
607  * regdom_intersect - do the intersection between two regulatory domains
608  * @rd1: first regulatory domain
609  * @rd2: second regulatory domain
610  *
611  * Use this function to get the intersection between two regulatory domains.
612  * Once completed we will mark the alpha2 for the rd as intersected, "98",
613  * as no one single alpha2 can represent this regulatory domain.
614  *
615  * Returns a pointer to the regulatory domain structure which will hold the
616  * resulting intersection of rules between rd1 and rd2. We will
617  * kzalloc() this structure for you.
618  */
619 static struct ieee80211_regdomain *
620 regdom_intersect(const struct ieee80211_regdomain *rd1,
621                  const struct ieee80211_regdomain *rd2)
622 {
623         int r, size_of_regd;
624         unsigned int x, y;
625         unsigned int num_rules = 0, rule_idx = 0;
626         const struct ieee80211_reg_rule *rule1, *rule2;
627         struct ieee80211_reg_rule *intersected_rule;
628         struct ieee80211_regdomain *rd;
629         /* This is just a dummy holder to help us count */
630         struct ieee80211_reg_rule dummy_rule;
631
632         if (!rd1 || !rd2)
633                 return NULL;
634
635         /*
636          * First we get a count of the rules we'll need, then we actually
637          * build them. This is to so we can malloc() and free() a
638          * regdomain once. The reason we use reg_rules_intersect() here
639          * is it will return -EINVAL if the rule computed makes no sense.
640          * All rules that do check out OK are valid.
641          */
642
643         for (x = 0; x < rd1->n_reg_rules; x++) {
644                 rule1 = &rd1->reg_rules[x];
645                 for (y = 0; y < rd2->n_reg_rules; y++) {
646                         rule2 = &rd2->reg_rules[y];
647                         if (!reg_rules_intersect(rule1, rule2, &dummy_rule))
648                                 num_rules++;
649                 }
650         }
651
652         if (!num_rules)
653                 return NULL;
654
655         size_of_regd = sizeof(struct ieee80211_regdomain) +
656                        num_rules * sizeof(struct ieee80211_reg_rule);
657
658         rd = kzalloc(size_of_regd, GFP_KERNEL);
659         if (!rd)
660                 return NULL;
661
662         for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
663                 rule1 = &rd1->reg_rules[x];
664                 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
665                         rule2 = &rd2->reg_rules[y];
666                         /*
667                          * This time around instead of using the stack lets
668                          * write to the target rule directly saving ourselves
669                          * a memcpy()
670                          */
671                         intersected_rule = &rd->reg_rules[rule_idx];
672                         r = reg_rules_intersect(rule1, rule2, intersected_rule);
673                         /*
674                          * No need to memset here the intersected rule here as
675                          * we're not using the stack anymore
676                          */
677                         if (r)
678                                 continue;
679                         rule_idx++;
680                 }
681         }
682
683         if (rule_idx != num_rules) {
684                 kfree(rd);
685                 return NULL;
686         }
687
688         rd->n_reg_rules = num_rules;
689         rd->alpha2[0] = '9';
690         rd->alpha2[1] = '8';
691
692         return rd;
693 }
694
695 /*
696  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
697  * want to just have the channel structure use these
698  */
699 static u32 map_regdom_flags(u32 rd_flags)
700 {
701         u32 channel_flags = 0;
702         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
703                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
704         if (rd_flags & NL80211_RRF_NO_IBSS)
705                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
706         if (rd_flags & NL80211_RRF_DFS)
707                 channel_flags |= IEEE80211_CHAN_RADAR;
708         if (rd_flags & NL80211_RRF_NO_OFDM)
709                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
710         return channel_flags;
711 }
712
713 static const struct ieee80211_reg_rule *
714 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
715                    const struct ieee80211_regdomain *regd)
716 {
717         int i;
718         bool band_rule_found = false;
719         bool bw_fits = false;
720
721         if (!regd)
722                 return ERR_PTR(-EINVAL);
723
724         for (i = 0; i < regd->n_reg_rules; i++) {
725                 const struct ieee80211_reg_rule *rr;
726                 const struct ieee80211_freq_range *fr = NULL;
727
728                 rr = &regd->reg_rules[i];
729                 fr = &rr->freq_range;
730
731                 /*
732                  * We only need to know if one frequency rule was
733                  * was in center_freq's band, that's enough, so lets
734                  * not overwrite it once found
735                  */
736                 if (!band_rule_found)
737                         band_rule_found = freq_in_rule_band(fr, center_freq);
738
739                 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
740
741                 if (band_rule_found && bw_fits)
742                         return rr;
743         }
744
745         if (!band_rule_found)
746                 return ERR_PTR(-ERANGE);
747
748         return ERR_PTR(-EINVAL);
749 }
750
751 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
752                                                u32 center_freq)
753 {
754         const struct ieee80211_regdomain *regd;
755         struct regulatory_request *lr = get_last_request();
756
757         /*
758          * Follow the driver's regulatory domain, if present, unless a country
759          * IE has been processed or a user wants to help complaince further
760          */
761         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
762             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
763             wiphy->regd)
764                 regd = get_wiphy_regdom(wiphy);
765         else
766                 regd = get_cfg80211_regdom();
767
768         return freq_reg_info_regd(wiphy, center_freq, regd);
769 }
770 EXPORT_SYMBOL(freq_reg_info);
771
772 #ifdef CONFIG_CFG80211_REG_DEBUG
773 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
774 {
775         switch (initiator) {
776         case NL80211_REGDOM_SET_BY_CORE:
777                 return "Set by core";
778         case NL80211_REGDOM_SET_BY_USER:
779                 return "Set by user";
780         case NL80211_REGDOM_SET_BY_DRIVER:
781                 return "Set by driver";
782         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
783                 return "Set by country IE";
784         default:
785                 WARN_ON(1);
786                 return "Set by bug";
787         }
788 }
789
790 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
791                                     const struct ieee80211_reg_rule *reg_rule)
792 {
793         const struct ieee80211_power_rule *power_rule;
794         const struct ieee80211_freq_range *freq_range;
795         char max_antenna_gain[32];
796
797         power_rule = &reg_rule->power_rule;
798         freq_range = &reg_rule->freq_range;
799
800         if (!power_rule->max_antenna_gain)
801                 snprintf(max_antenna_gain, 32, "N/A");
802         else
803                 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
804
805         REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
806                       chan->center_freq);
807
808         REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
809                       freq_range->start_freq_khz, freq_range->end_freq_khz,
810                       freq_range->max_bandwidth_khz, max_antenna_gain,
811                       power_rule->max_eirp);
812 }
813 #else
814 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
815                                     const struct ieee80211_reg_rule *reg_rule)
816 {
817         return;
818 }
819 #endif
820
821 /*
822  * Note that right now we assume the desired channel bandwidth
823  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
824  * per channel, the primary and the extension channel).
825  */
826 static void handle_channel(struct wiphy *wiphy,
827                            enum nl80211_reg_initiator initiator,
828                            struct ieee80211_channel *chan)
829 {
830         u32 flags, bw_flags = 0;
831         const struct ieee80211_reg_rule *reg_rule = NULL;
832         const struct ieee80211_power_rule *power_rule = NULL;
833         const struct ieee80211_freq_range *freq_range = NULL;
834         struct wiphy *request_wiphy = NULL;
835         struct regulatory_request *lr = get_last_request();
836
837         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
838
839         flags = chan->orig_flags;
840
841         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
842         if (IS_ERR(reg_rule)) {
843                 /*
844                  * We will disable all channels that do not match our
845                  * received regulatory rule unless the hint is coming
846                  * from a Country IE and the Country IE had no information
847                  * about a band. The IEEE 802.11 spec allows for an AP
848                  * to send only a subset of the regulatory rules allowed,
849                  * so an AP in the US that only supports 2.4 GHz may only send
850                  * a country IE with information for the 2.4 GHz band
851                  * while 5 GHz is still supported.
852                  */
853                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
854                     PTR_ERR(reg_rule) == -ERANGE)
855                         return;
856
857                 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
858                 chan->flags |= IEEE80211_CHAN_DISABLED;
859                 return;
860         }
861
862         chan_reg_rule_print_dbg(chan, reg_rule);
863
864         power_rule = &reg_rule->power_rule;
865         freq_range = &reg_rule->freq_range;
866
867         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
868                 bw_flags = IEEE80211_CHAN_NO_HT40;
869         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
870                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
871         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
872                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
873
874         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
875             request_wiphy && request_wiphy == wiphy &&
876             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
877                 /*
878                  * This guarantees the driver's requested regulatory domain
879                  * will always be used as a base for further regulatory
880                  * settings
881                  */
882                 chan->flags = chan->orig_flags =
883                         map_regdom_flags(reg_rule->flags) | bw_flags;
884                 chan->max_antenna_gain = chan->orig_mag =
885                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
886                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
887                         (int) MBM_TO_DBM(power_rule->max_eirp);
888                 return;
889         }
890
891         chan->dfs_state = NL80211_DFS_USABLE;
892         chan->dfs_state_entered = jiffies;
893
894         chan->beacon_found = false;
895         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
896         chan->max_antenna_gain =
897                 min_t(int, chan->orig_mag,
898                       MBI_TO_DBI(power_rule->max_antenna_gain));
899         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
900         if (chan->orig_mpwr) {
901                 /*
902                  * Devices that have their own custom regulatory domain
903                  * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
904                  * passed country IE power settings.
905                  */
906                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
907                     wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
908                     wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
909                         chan->max_power = chan->max_reg_power;
910                 else
911                         chan->max_power = min(chan->orig_mpwr,
912                                               chan->max_reg_power);
913         } else
914                 chan->max_power = chan->max_reg_power;
915 }
916
917 static void handle_band(struct wiphy *wiphy,
918                         enum nl80211_reg_initiator initiator,
919                         struct ieee80211_supported_band *sband)
920 {
921         unsigned int i;
922
923         if (!sband)
924                 return;
925
926         for (i = 0; i < sband->n_channels; i++)
927                 handle_channel(wiphy, initiator, &sband->channels[i]);
928 }
929
930 static bool reg_request_cell_base(struct regulatory_request *request)
931 {
932         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
933                 return false;
934         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
935 }
936
937 bool reg_last_request_cell_base(void)
938 {
939         bool val;
940
941         mutex_lock(&reg_mutex);
942         val = reg_request_cell_base(get_last_request());
943         mutex_unlock(&reg_mutex);
944
945         return val;
946 }
947
948 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
949 /* Core specific check */
950 static enum reg_request_treatment
951 reg_ignore_cell_hint(struct regulatory_request *pending_request)
952 {
953         struct regulatory_request *lr = get_last_request();
954
955         if (!reg_num_devs_support_basehint)
956                 return REG_REQ_IGNORE;
957
958         if (reg_request_cell_base(lr) &&
959             !regdom_changes(pending_request->alpha2))
960                 return REG_REQ_ALREADY_SET;
961
962         return REG_REQ_OK;
963 }
964
965 /* Device specific check */
966 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
967 {
968         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
969 }
970 #else
971 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
972 {
973         return REG_REQ_IGNORE;
974 }
975
976 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
977 {
978         return true;
979 }
980 #endif
981
982
983 static bool ignore_reg_update(struct wiphy *wiphy,
984                               enum nl80211_reg_initiator initiator)
985 {
986         struct regulatory_request *lr = get_last_request();
987
988         if (!lr) {
989                 REG_DBG_PRINT("Ignoring regulatory request %s since last_request is not set\n",
990                               reg_initiator_name(initiator));
991                 return true;
992         }
993
994         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
995             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
996                 REG_DBG_PRINT("Ignoring regulatory request %s since the driver uses its own custom regulatory domain\n",
997                               reg_initiator_name(initiator));
998                 return true;
999         }
1000
1001         /*
1002          * wiphy->regd will be set once the device has its own
1003          * desired regulatory domain set
1004          */
1005         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1006             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1007             !is_world_regdom(lr->alpha2)) {
1008                 REG_DBG_PRINT("Ignoring regulatory request %s since the driver requires its own regulatory domain to be set first\n",
1009                               reg_initiator_name(initiator));
1010                 return true;
1011         }
1012
1013         if (reg_request_cell_base(lr))
1014                 return reg_dev_ignore_cell_hint(wiphy);
1015
1016         return false;
1017 }
1018
1019 static bool reg_is_world_roaming(struct wiphy *wiphy)
1020 {
1021         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1022         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1023         struct regulatory_request *lr = get_last_request();
1024
1025         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1026                 return true;
1027
1028         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1029             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1030                 return true;
1031
1032         return false;
1033 }
1034
1035 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1036                               struct reg_beacon *reg_beacon)
1037 {
1038         struct ieee80211_supported_band *sband;
1039         struct ieee80211_channel *chan;
1040         bool channel_changed = false;
1041         struct ieee80211_channel chan_before;
1042
1043         sband = wiphy->bands[reg_beacon->chan.band];
1044         chan = &sband->channels[chan_idx];
1045
1046         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1047                 return;
1048
1049         if (chan->beacon_found)
1050                 return;
1051
1052         chan->beacon_found = true;
1053
1054         if (!reg_is_world_roaming(wiphy))
1055                 return;
1056
1057         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1058                 return;
1059
1060         chan_before.center_freq = chan->center_freq;
1061         chan_before.flags = chan->flags;
1062
1063         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1064                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1065                 channel_changed = true;
1066         }
1067
1068         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1069                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1070                 channel_changed = true;
1071         }
1072
1073         if (channel_changed)
1074                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1075 }
1076
1077 /*
1078  * Called when a scan on a wiphy finds a beacon on
1079  * new channel
1080  */
1081 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1082                                     struct reg_beacon *reg_beacon)
1083 {
1084         unsigned int i;
1085         struct ieee80211_supported_band *sband;
1086
1087         if (!wiphy->bands[reg_beacon->chan.band])
1088                 return;
1089
1090         sband = wiphy->bands[reg_beacon->chan.band];
1091
1092         for (i = 0; i < sband->n_channels; i++)
1093                 handle_reg_beacon(wiphy, i, reg_beacon);
1094 }
1095
1096 /*
1097  * Called upon reg changes or a new wiphy is added
1098  */
1099 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1100 {
1101         unsigned int i;
1102         struct ieee80211_supported_band *sband;
1103         struct reg_beacon *reg_beacon;
1104
1105         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1106                 if (!wiphy->bands[reg_beacon->chan.band])
1107                         continue;
1108                 sband = wiphy->bands[reg_beacon->chan.band];
1109                 for (i = 0; i < sband->n_channels; i++)
1110                         handle_reg_beacon(wiphy, i, reg_beacon);
1111         }
1112 }
1113
1114 /* Reap the advantages of previously found beacons */
1115 static void reg_process_beacons(struct wiphy *wiphy)
1116 {
1117         /*
1118          * Means we are just firing up cfg80211, so no beacons would
1119          * have been processed yet.
1120          */
1121         if (!last_request)
1122                 return;
1123         wiphy_update_beacon_reg(wiphy);
1124 }
1125
1126 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1127 {
1128         if (!chan)
1129                 return false;
1130         if (chan->flags & IEEE80211_CHAN_DISABLED)
1131                 return false;
1132         /* This would happen when regulatory rules disallow HT40 completely */
1133         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1134                 return false;
1135         return true;
1136 }
1137
1138 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1139                                          struct ieee80211_channel *channel)
1140 {
1141         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1142         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1143         unsigned int i;
1144
1145         if (!is_ht40_allowed(channel)) {
1146                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1147                 return;
1148         }
1149
1150         /*
1151          * We need to ensure the extension channels exist to
1152          * be able to use HT40- or HT40+, this finds them (or not)
1153          */
1154         for (i = 0; i < sband->n_channels; i++) {
1155                 struct ieee80211_channel *c = &sband->channels[i];
1156
1157                 if (c->center_freq == (channel->center_freq - 20))
1158                         channel_before = c;
1159                 if (c->center_freq == (channel->center_freq + 20))
1160                         channel_after = c;
1161         }
1162
1163         /*
1164          * Please note that this assumes target bandwidth is 20 MHz,
1165          * if that ever changes we also need to change the below logic
1166          * to include that as well.
1167          */
1168         if (!is_ht40_allowed(channel_before))
1169                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1170         else
1171                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1172
1173         if (!is_ht40_allowed(channel_after))
1174                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1175         else
1176                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1177 }
1178
1179 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1180                                       struct ieee80211_supported_band *sband)
1181 {
1182         unsigned int i;
1183
1184         if (!sband)
1185                 return;
1186
1187         for (i = 0; i < sband->n_channels; i++)
1188                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1189 }
1190
1191 static void reg_process_ht_flags(struct wiphy *wiphy)
1192 {
1193         enum ieee80211_band band;
1194
1195         if (!wiphy)
1196                 return;
1197
1198         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1199                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1200 }
1201
1202 static void wiphy_update_regulatory(struct wiphy *wiphy,
1203                                     enum nl80211_reg_initiator initiator)
1204 {
1205         enum ieee80211_band band;
1206         struct regulatory_request *lr = get_last_request();
1207
1208         if (ignore_reg_update(wiphy, initiator))
1209                 return;
1210
1211         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1212
1213         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1214                 handle_band(wiphy, initiator, wiphy->bands[band]);
1215
1216         reg_process_beacons(wiphy);
1217         reg_process_ht_flags(wiphy);
1218
1219         if (wiphy->reg_notifier)
1220                 wiphy->reg_notifier(wiphy, lr);
1221 }
1222
1223 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1224 {
1225         struct cfg80211_registered_device *rdev;
1226         struct wiphy *wiphy;
1227
1228         assert_cfg80211_lock();
1229
1230         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1231                 wiphy = &rdev->wiphy;
1232                 wiphy_update_regulatory(wiphy, initiator);
1233                 /*
1234                  * Regulatory updates set by CORE are ignored for custom
1235                  * regulatory cards. Let us notify the changes to the driver,
1236                  * as some drivers used this to restore its orig_* reg domain.
1237                  */
1238                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1239                     wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1240                     wiphy->reg_notifier)
1241                         wiphy->reg_notifier(wiphy, get_last_request());
1242         }
1243 }
1244
1245 static void handle_channel_custom(struct wiphy *wiphy,
1246                                   struct ieee80211_channel *chan,
1247                                   const struct ieee80211_regdomain *regd)
1248 {
1249         u32 bw_flags = 0;
1250         const struct ieee80211_reg_rule *reg_rule = NULL;
1251         const struct ieee80211_power_rule *power_rule = NULL;
1252         const struct ieee80211_freq_range *freq_range = NULL;
1253
1254         reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1255                                       regd);
1256
1257         if (IS_ERR(reg_rule)) {
1258                 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1259                               chan->center_freq);
1260                 chan->flags = IEEE80211_CHAN_DISABLED;
1261                 return;
1262         }
1263
1264         chan_reg_rule_print_dbg(chan, reg_rule);
1265
1266         power_rule = &reg_rule->power_rule;
1267         freq_range = &reg_rule->freq_range;
1268
1269         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1270                 bw_flags = IEEE80211_CHAN_NO_HT40;
1271         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
1272                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1273         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
1274                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1275
1276         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1277         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1278         chan->max_reg_power = chan->max_power =
1279                 (int) MBM_TO_DBM(power_rule->max_eirp);
1280 }
1281
1282 static void handle_band_custom(struct wiphy *wiphy,
1283                                struct ieee80211_supported_band *sband,
1284                                const struct ieee80211_regdomain *regd)
1285 {
1286         unsigned int i;
1287
1288         if (!sband)
1289                 return;
1290
1291         for (i = 0; i < sband->n_channels; i++)
1292                 handle_channel_custom(wiphy, &sband->channels[i], regd);
1293 }
1294
1295 /* Used by drivers prior to wiphy registration */
1296 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1297                                    const struct ieee80211_regdomain *regd)
1298 {
1299         enum ieee80211_band band;
1300         unsigned int bands_set = 0;
1301
1302         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1303                 if (!wiphy->bands[band])
1304                         continue;
1305                 handle_band_custom(wiphy, wiphy->bands[band], regd);
1306                 bands_set++;
1307         }
1308
1309         /*
1310          * no point in calling this if it won't have any effect
1311          * on your device's supported bands.
1312          */
1313         WARN_ON(!bands_set);
1314 }
1315 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1316
1317 /* This has the logic which determines when a new request
1318  * should be ignored. */
1319 static enum reg_request_treatment
1320 get_reg_request_treatment(struct wiphy *wiphy,
1321                           struct regulatory_request *pending_request)
1322 {
1323         struct wiphy *last_wiphy = NULL;
1324         struct regulatory_request *lr = get_last_request();
1325
1326         /* All initial requests are respected */
1327         if (!lr)
1328                 return REG_REQ_OK;
1329
1330         switch (pending_request->initiator) {
1331         case NL80211_REGDOM_SET_BY_CORE:
1332                 return REG_REQ_OK;
1333         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1334                 if (reg_request_cell_base(lr)) {
1335                         /* Trust a Cell base station over the AP's country IE */
1336                         if (regdom_changes(pending_request->alpha2))
1337                                 return REG_REQ_IGNORE;
1338                         return REG_REQ_ALREADY_SET;
1339                 }
1340
1341                 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1342
1343                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1344                         return -EINVAL;
1345                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1346                         if (last_wiphy != wiphy) {
1347                                 /*
1348                                  * Two cards with two APs claiming different
1349                                  * Country IE alpha2s. We could
1350                                  * intersect them, but that seems unlikely
1351                                  * to be correct. Reject second one for now.
1352                                  */
1353                                 if (regdom_changes(pending_request->alpha2))
1354                                         return REG_REQ_IGNORE;
1355                                 return REG_REQ_ALREADY_SET;
1356                         }
1357                         /*
1358                          * Two consecutive Country IE hints on the same wiphy.
1359                          * This should be picked up early by the driver/stack
1360                          */
1361                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1362                                 return REG_REQ_OK;
1363                         return REG_REQ_ALREADY_SET;
1364                 }
1365                 return 0;
1366         case NL80211_REGDOM_SET_BY_DRIVER:
1367                 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1368                         if (regdom_changes(pending_request->alpha2))
1369                                 return REG_REQ_OK;
1370                         return REG_REQ_ALREADY_SET;
1371                 }
1372
1373                 /*
1374                  * This would happen if you unplug and plug your card
1375                  * back in or if you add a new device for which the previously
1376                  * loaded card also agrees on the regulatory domain.
1377                  */
1378                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1379                     !regdom_changes(pending_request->alpha2))
1380                         return REG_REQ_ALREADY_SET;
1381
1382                 return REG_REQ_INTERSECT;
1383         case NL80211_REGDOM_SET_BY_USER:
1384                 if (reg_request_cell_base(pending_request))
1385                         return reg_ignore_cell_hint(pending_request);
1386
1387                 if (reg_request_cell_base(lr))
1388                         return REG_REQ_IGNORE;
1389
1390                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1391                         return REG_REQ_INTERSECT;
1392                 /*
1393                  * If the user knows better the user should set the regdom
1394                  * to their country before the IE is picked up
1395                  */
1396                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1397                     lr->intersect)
1398                         return REG_REQ_IGNORE;
1399                 /*
1400                  * Process user requests only after previous user/driver/core
1401                  * requests have been processed
1402                  */
1403                 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1404                      lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1405                      lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1406                     regdom_changes(lr->alpha2))
1407                         return REG_REQ_IGNORE;
1408
1409                 if (!regdom_changes(pending_request->alpha2))
1410                         return REG_REQ_ALREADY_SET;
1411
1412                 return REG_REQ_OK;
1413         }
1414
1415         return REG_REQ_IGNORE;
1416 }
1417
1418 static void reg_set_request_processed(void)
1419 {
1420         bool need_more_processing = false;
1421         struct regulatory_request *lr = get_last_request();
1422
1423         lr->processed = true;
1424
1425         spin_lock(&reg_requests_lock);
1426         if (!list_empty(&reg_requests_list))
1427                 need_more_processing = true;
1428         spin_unlock(&reg_requests_lock);
1429
1430         if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1431                 cancel_delayed_work(&reg_timeout);
1432
1433         if (need_more_processing)
1434                 schedule_work(&reg_work);
1435 }
1436
1437 /**
1438  * __regulatory_hint - hint to the wireless core a regulatory domain
1439  * @wiphy: if the hint comes from country information from an AP, this
1440  *      is required to be set to the wiphy that received the information
1441  * @pending_request: the regulatory request currently being processed
1442  *
1443  * The Wireless subsystem can use this function to hint to the wireless core
1444  * what it believes should be the current regulatory domain.
1445  *
1446  * Returns one of the different reg request treatment values.
1447  *
1448  * Caller must hold &reg_mutex
1449  */
1450 static enum reg_request_treatment
1451 __regulatory_hint(struct wiphy *wiphy,
1452                   struct regulatory_request *pending_request)
1453 {
1454         const struct ieee80211_regdomain *regd;
1455         bool intersect = false;
1456         enum reg_request_treatment treatment;
1457         struct regulatory_request *lr;
1458
1459         treatment = get_reg_request_treatment(wiphy, pending_request);
1460
1461         switch (treatment) {
1462         case REG_REQ_INTERSECT:
1463                 if (pending_request->initiator ==
1464                     NL80211_REGDOM_SET_BY_DRIVER) {
1465                         regd = reg_copy_regd(get_cfg80211_regdom());
1466                         if (IS_ERR(regd)) {
1467                                 kfree(pending_request);
1468                                 return PTR_ERR(regd);
1469                         }
1470                         rcu_assign_pointer(wiphy->regd, regd);
1471                 }
1472                 intersect = true;
1473                 break;
1474         case REG_REQ_OK:
1475                 break;
1476         default:
1477                 /*
1478                  * If the regulatory domain being requested by the
1479                  * driver has already been set just copy it to the
1480                  * wiphy
1481                  */
1482                 if (treatment == REG_REQ_ALREADY_SET &&
1483                     pending_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
1484                         regd = reg_copy_regd(get_cfg80211_regdom());
1485                         if (IS_ERR(regd)) {
1486                                 kfree(pending_request);
1487                                 return REG_REQ_IGNORE;
1488                         }
1489                         treatment = REG_REQ_ALREADY_SET;
1490                         rcu_assign_pointer(wiphy->regd, regd);
1491                         goto new_request;
1492                 }
1493                 kfree(pending_request);
1494                 return treatment;
1495         }
1496
1497 new_request:
1498         lr = get_last_request();
1499         if (lr != &core_request_world && lr)
1500                 kfree_rcu(lr, rcu_head);
1501
1502         pending_request->intersect = intersect;
1503         pending_request->processed = false;
1504         rcu_assign_pointer(last_request, pending_request);
1505         lr = pending_request;
1506
1507         pending_request = NULL;
1508
1509         if (lr->initiator == NL80211_REGDOM_SET_BY_USER) {
1510                 user_alpha2[0] = lr->alpha2[0];
1511                 user_alpha2[1] = lr->alpha2[1];
1512         }
1513
1514         /* When r == REG_REQ_INTERSECT we do need to call CRDA */
1515         if (treatment != REG_REQ_OK && treatment != REG_REQ_INTERSECT) {
1516                 /*
1517                  * Since CRDA will not be called in this case as we already
1518                  * have applied the requested regulatory domain before we just
1519                  * inform userspace we have processed the request
1520                  */
1521                 if (treatment == REG_REQ_ALREADY_SET) {
1522                         nl80211_send_reg_change_event(lr);
1523                         reg_set_request_processed();
1524                 }
1525                 return treatment;
1526         }
1527
1528         if (call_crda(lr->alpha2))
1529                 return REG_REQ_IGNORE;
1530         return REG_REQ_OK;
1531 }
1532
1533 /* This processes *all* regulatory hints */
1534 static void reg_process_hint(struct regulatory_request *reg_request,
1535                              enum nl80211_reg_initiator reg_initiator)
1536 {
1537         struct wiphy *wiphy = NULL;
1538
1539         if (WARN_ON(!reg_request->alpha2))
1540                 return;
1541
1542         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1543                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1544
1545         if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER && !wiphy) {
1546                 kfree(reg_request);
1547                 return;
1548         }
1549
1550         switch (__regulatory_hint(wiphy, reg_request)) {
1551         case REG_REQ_ALREADY_SET:
1552                 /* This is required so that the orig_* parameters are saved */
1553                 if (wiphy && wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1554                         wiphy_update_regulatory(wiphy, reg_initiator);
1555                 break;
1556         default:
1557                 if (reg_initiator == NL80211_REGDOM_SET_BY_USER)
1558                         schedule_delayed_work(&reg_timeout,
1559                                               msecs_to_jiffies(3142));
1560                 break;
1561         }
1562 }
1563
1564 /*
1565  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1566  * Regulatory hints come on a first come first serve basis and we
1567  * must process each one atomically.
1568  */
1569 static void reg_process_pending_hints(void)
1570 {
1571         struct regulatory_request *reg_request, *lr;
1572
1573         mutex_lock(&cfg80211_mutex);
1574         mutex_lock(&reg_mutex);
1575         lr = get_last_request();
1576
1577         /* When last_request->processed becomes true this will be rescheduled */
1578         if (lr && !lr->processed) {
1579                 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1580                 goto out;
1581         }
1582
1583         spin_lock(&reg_requests_lock);
1584
1585         if (list_empty(&reg_requests_list)) {
1586                 spin_unlock(&reg_requests_lock);
1587                 goto out;
1588         }
1589
1590         reg_request = list_first_entry(&reg_requests_list,
1591                                        struct regulatory_request,
1592                                        list);
1593         list_del_init(&reg_request->list);
1594
1595         spin_unlock(&reg_requests_lock);
1596
1597         reg_process_hint(reg_request, reg_request->initiator);
1598
1599 out:
1600         mutex_unlock(&reg_mutex);
1601         mutex_unlock(&cfg80211_mutex);
1602 }
1603
1604 /* Processes beacon hints -- this has nothing to do with country IEs */
1605 static void reg_process_pending_beacon_hints(void)
1606 {
1607         struct cfg80211_registered_device *rdev;
1608         struct reg_beacon *pending_beacon, *tmp;
1609
1610         mutex_lock(&cfg80211_mutex);
1611         mutex_lock(&reg_mutex);
1612
1613         /* This goes through the _pending_ beacon list */
1614         spin_lock_bh(&reg_pending_beacons_lock);
1615
1616         list_for_each_entry_safe(pending_beacon, tmp,
1617                                  &reg_pending_beacons, list) {
1618                 list_del_init(&pending_beacon->list);
1619
1620                 /* Applies the beacon hint to current wiphys */
1621                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1622                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1623
1624                 /* Remembers the beacon hint for new wiphys or reg changes */
1625                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1626         }
1627
1628         spin_unlock_bh(&reg_pending_beacons_lock);
1629         mutex_unlock(&reg_mutex);
1630         mutex_unlock(&cfg80211_mutex);
1631 }
1632
1633 static void reg_todo(struct work_struct *work)
1634 {
1635         reg_process_pending_hints();
1636         reg_process_pending_beacon_hints();
1637 }
1638
1639 static void queue_regulatory_request(struct regulatory_request *request)
1640 {
1641         request->alpha2[0] = toupper(request->alpha2[0]);
1642         request->alpha2[1] = toupper(request->alpha2[1]);
1643
1644         spin_lock(&reg_requests_lock);
1645         list_add_tail(&request->list, &reg_requests_list);
1646         spin_unlock(&reg_requests_lock);
1647
1648         schedule_work(&reg_work);
1649 }
1650
1651 /*
1652  * Core regulatory hint -- happens during cfg80211_init()
1653  * and when we restore regulatory settings.
1654  */
1655 static int regulatory_hint_core(const char *alpha2)
1656 {
1657         struct regulatory_request *request;
1658
1659         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1660         if (!request)
1661                 return -ENOMEM;
1662
1663         request->alpha2[0] = alpha2[0];
1664         request->alpha2[1] = alpha2[1];
1665         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1666
1667         queue_regulatory_request(request);
1668
1669         return 0;
1670 }
1671
1672 /* User hints */
1673 int regulatory_hint_user(const char *alpha2,
1674                          enum nl80211_user_reg_hint_type user_reg_hint_type)
1675 {
1676         struct regulatory_request *request;
1677
1678         if (WARN_ON(!alpha2))
1679                 return -EINVAL;
1680
1681         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1682         if (!request)
1683                 return -ENOMEM;
1684
1685         request->wiphy_idx = WIPHY_IDX_INVALID;
1686         request->alpha2[0] = alpha2[0];
1687         request->alpha2[1] = alpha2[1];
1688         request->initiator = NL80211_REGDOM_SET_BY_USER;
1689         request->user_reg_hint_type = user_reg_hint_type;
1690
1691         queue_regulatory_request(request);
1692
1693         return 0;
1694 }
1695
1696 /* Driver hints */
1697 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1698 {
1699         struct regulatory_request *request;
1700
1701         if (WARN_ON(!alpha2 || !wiphy))
1702                 return -EINVAL;
1703
1704         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1705         if (!request)
1706                 return -ENOMEM;
1707
1708         request->wiphy_idx = get_wiphy_idx(wiphy);
1709
1710         request->alpha2[0] = alpha2[0];
1711         request->alpha2[1] = alpha2[1];
1712         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1713
1714         queue_regulatory_request(request);
1715
1716         return 0;
1717 }
1718 EXPORT_SYMBOL(regulatory_hint);
1719
1720 /*
1721  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1722  * therefore cannot iterate over the rdev list here.
1723  */
1724 void regulatory_hint_11d(struct wiphy *wiphy, enum ieee80211_band band,
1725                          const u8 *country_ie, u8 country_ie_len)
1726 {
1727         char alpha2[2];
1728         enum environment_cap env = ENVIRON_ANY;
1729         struct regulatory_request *request, *lr;
1730
1731         mutex_lock(&reg_mutex);
1732         lr = get_last_request();
1733
1734         if (unlikely(!lr))
1735                 goto out;
1736
1737         /* IE len must be evenly divisible by 2 */
1738         if (country_ie_len & 0x01)
1739                 goto out;
1740
1741         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1742                 goto out;
1743
1744         alpha2[0] = country_ie[0];
1745         alpha2[1] = country_ie[1];
1746
1747         if (country_ie[2] == 'I')
1748                 env = ENVIRON_INDOOR;
1749         else if (country_ie[2] == 'O')
1750                 env = ENVIRON_OUTDOOR;
1751
1752         /*
1753          * We will run this only upon a successful connection on cfg80211.
1754          * We leave conflict resolution to the workqueue, where can hold
1755          * cfg80211_mutex.
1756          */
1757         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1758             lr->wiphy_idx != WIPHY_IDX_INVALID)
1759                 goto out;
1760
1761         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1762         if (!request)
1763                 goto out;
1764
1765         request->wiphy_idx = get_wiphy_idx(wiphy);
1766         request->alpha2[0] = alpha2[0];
1767         request->alpha2[1] = alpha2[1];
1768         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1769         request->country_ie_env = env;
1770
1771         queue_regulatory_request(request);
1772 out:
1773         mutex_unlock(&reg_mutex);
1774 }
1775
1776 static void restore_alpha2(char *alpha2, bool reset_user)
1777 {
1778         /* indicates there is no alpha2 to consider for restoration */
1779         alpha2[0] = '9';
1780         alpha2[1] = '7';
1781
1782         /* The user setting has precedence over the module parameter */
1783         if (is_user_regdom_saved()) {
1784                 /* Unless we're asked to ignore it and reset it */
1785                 if (reset_user) {
1786                         REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
1787                         user_alpha2[0] = '9';
1788                         user_alpha2[1] = '7';
1789
1790                         /*
1791                          * If we're ignoring user settings, we still need to
1792                          * check the module parameter to ensure we put things
1793                          * back as they were for a full restore.
1794                          */
1795                         if (!is_world_regdom(ieee80211_regdom)) {
1796                                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1797                                               ieee80211_regdom[0], ieee80211_regdom[1]);
1798                                 alpha2[0] = ieee80211_regdom[0];
1799                                 alpha2[1] = ieee80211_regdom[1];
1800                         }
1801                 } else {
1802                         REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
1803                                       user_alpha2[0], user_alpha2[1]);
1804                         alpha2[0] = user_alpha2[0];
1805                         alpha2[1] = user_alpha2[1];
1806                 }
1807         } else if (!is_world_regdom(ieee80211_regdom)) {
1808                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1809                               ieee80211_regdom[0], ieee80211_regdom[1]);
1810                 alpha2[0] = ieee80211_regdom[0];
1811                 alpha2[1] = ieee80211_regdom[1];
1812         } else
1813                 REG_DBG_PRINT("Restoring regulatory settings\n");
1814 }
1815
1816 static void restore_custom_reg_settings(struct wiphy *wiphy)
1817 {
1818         struct ieee80211_supported_band *sband;
1819         enum ieee80211_band band;
1820         struct ieee80211_channel *chan;
1821         int i;
1822
1823         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1824                 sband = wiphy->bands[band];
1825                 if (!sband)
1826                         continue;
1827                 for (i = 0; i < sband->n_channels; i++) {
1828                         chan = &sband->channels[i];
1829                         chan->flags = chan->orig_flags;
1830                         chan->max_antenna_gain = chan->orig_mag;
1831                         chan->max_power = chan->orig_mpwr;
1832                         chan->beacon_found = false;
1833                 }
1834         }
1835 }
1836
1837 /*
1838  * Restoring regulatory settings involves ingoring any
1839  * possibly stale country IE information and user regulatory
1840  * settings if so desired, this includes any beacon hints
1841  * learned as we could have traveled outside to another country
1842  * after disconnection. To restore regulatory settings we do
1843  * exactly what we did at bootup:
1844  *
1845  *   - send a core regulatory hint
1846  *   - send a user regulatory hint if applicable
1847  *
1848  * Device drivers that send a regulatory hint for a specific country
1849  * keep their own regulatory domain on wiphy->regd so that does does
1850  * not need to be remembered.
1851  */
1852 static void restore_regulatory_settings(bool reset_user)
1853 {
1854         char alpha2[2];
1855         char world_alpha2[2];
1856         struct reg_beacon *reg_beacon, *btmp;
1857         struct regulatory_request *reg_request, *tmp;
1858         LIST_HEAD(tmp_reg_req_list);
1859         struct cfg80211_registered_device *rdev;
1860
1861         mutex_lock(&cfg80211_mutex);
1862         mutex_lock(&reg_mutex);
1863
1864         reset_regdomains(true, &world_regdom);
1865         restore_alpha2(alpha2, reset_user);
1866
1867         /*
1868          * If there's any pending requests we simply
1869          * stash them to a temporary pending queue and
1870          * add then after we've restored regulatory
1871          * settings.
1872          */
1873         spin_lock(&reg_requests_lock);
1874         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
1875                 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
1876                         continue;
1877                 list_move_tail(&reg_request->list, &tmp_reg_req_list);
1878         }
1879         spin_unlock(&reg_requests_lock);
1880
1881         /* Clear beacon hints */
1882         spin_lock_bh(&reg_pending_beacons_lock);
1883         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
1884                 list_del(&reg_beacon->list);
1885                 kfree(reg_beacon);
1886         }
1887         spin_unlock_bh(&reg_pending_beacons_lock);
1888
1889         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
1890                 list_del(&reg_beacon->list);
1891                 kfree(reg_beacon);
1892         }
1893
1894         /* First restore to the basic regulatory settings */
1895         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
1896         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
1897
1898         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1899                 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1900                         restore_custom_reg_settings(&rdev->wiphy);
1901         }
1902
1903         regulatory_hint_core(world_alpha2);
1904
1905         /*
1906          * This restores the ieee80211_regdom module parameter
1907          * preference or the last user requested regulatory
1908          * settings, user regulatory settings takes precedence.
1909          */
1910         if (is_an_alpha2(alpha2))
1911                 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
1912
1913         spin_lock(&reg_requests_lock);
1914         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
1915         spin_unlock(&reg_requests_lock);
1916
1917         mutex_unlock(&reg_mutex);
1918         mutex_unlock(&cfg80211_mutex);
1919
1920         REG_DBG_PRINT("Kicking the queue\n");
1921
1922         schedule_work(&reg_work);
1923 }
1924
1925 void regulatory_hint_disconnect(void)
1926 {
1927         REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
1928         restore_regulatory_settings(false);
1929 }
1930
1931 static bool freq_is_chan_12_13_14(u16 freq)
1932 {
1933         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1934             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1935             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1936                 return true;
1937         return false;
1938 }
1939
1940 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
1941 {
1942         struct reg_beacon *pending_beacon;
1943
1944         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
1945                 if (beacon_chan->center_freq ==
1946                     pending_beacon->chan.center_freq)
1947                         return true;
1948         return false;
1949 }
1950
1951 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1952                                  struct ieee80211_channel *beacon_chan,
1953                                  gfp_t gfp)
1954 {
1955         struct reg_beacon *reg_beacon;
1956         bool processing;
1957
1958         if (beacon_chan->beacon_found ||
1959             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
1960             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1961              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
1962                 return 0;
1963
1964         spin_lock_bh(&reg_pending_beacons_lock);
1965         processing = pending_reg_beacon(beacon_chan);
1966         spin_unlock_bh(&reg_pending_beacons_lock);
1967
1968         if (processing)
1969                 return 0;
1970
1971         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1972         if (!reg_beacon)
1973                 return -ENOMEM;
1974
1975         REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
1976                       beacon_chan->center_freq,
1977                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
1978                       wiphy_name(wiphy));
1979
1980         memcpy(&reg_beacon->chan, beacon_chan,
1981                sizeof(struct ieee80211_channel));
1982
1983         /*
1984          * Since we can be called from BH or and non-BH context
1985          * we must use spin_lock_bh()
1986          */
1987         spin_lock_bh(&reg_pending_beacons_lock);
1988         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1989         spin_unlock_bh(&reg_pending_beacons_lock);
1990
1991         schedule_work(&reg_work);
1992
1993         return 0;
1994 }
1995
1996 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1997 {
1998         unsigned int i;
1999         const struct ieee80211_reg_rule *reg_rule = NULL;
2000         const struct ieee80211_freq_range *freq_range = NULL;
2001         const struct ieee80211_power_rule *power_rule = NULL;
2002
2003         pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2004
2005         for (i = 0; i < rd->n_reg_rules; i++) {
2006                 reg_rule = &rd->reg_rules[i];
2007                 freq_range = &reg_rule->freq_range;
2008                 power_rule = &reg_rule->power_rule;
2009
2010                 /*
2011                  * There may not be documentation for max antenna gain
2012                  * in certain regions
2013                  */
2014                 if (power_rule->max_antenna_gain)
2015                         pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2016                                 freq_range->start_freq_khz,
2017                                 freq_range->end_freq_khz,
2018                                 freq_range->max_bandwidth_khz,
2019                                 power_rule->max_antenna_gain,
2020                                 power_rule->max_eirp);
2021                 else
2022                         pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2023                                 freq_range->start_freq_khz,
2024                                 freq_range->end_freq_khz,
2025                                 freq_range->max_bandwidth_khz,
2026                                 power_rule->max_eirp);
2027         }
2028 }
2029
2030 bool reg_supported_dfs_region(u8 dfs_region)
2031 {
2032         switch (dfs_region) {
2033         case NL80211_DFS_UNSET:
2034         case NL80211_DFS_FCC:
2035         case NL80211_DFS_ETSI:
2036         case NL80211_DFS_JP:
2037                 return true;
2038         default:
2039                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2040                               dfs_region);
2041                 return false;
2042         }
2043 }
2044
2045 static void print_dfs_region(u8 dfs_region)
2046 {
2047         if (!dfs_region)
2048                 return;
2049
2050         switch (dfs_region) {
2051         case NL80211_DFS_FCC:
2052                 pr_info(" DFS Master region FCC");
2053                 break;
2054         case NL80211_DFS_ETSI:
2055                 pr_info(" DFS Master region ETSI");
2056                 break;
2057         case NL80211_DFS_JP:
2058                 pr_info(" DFS Master region JP");
2059                 break;
2060         default:
2061                 pr_info(" DFS Master region Unknown");
2062                 break;
2063         }
2064 }
2065
2066 static void print_regdomain(const struct ieee80211_regdomain *rd)
2067 {
2068         struct regulatory_request *lr = get_last_request();
2069
2070         if (is_intersected_alpha2(rd->alpha2)) {
2071                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2072                         struct cfg80211_registered_device *rdev;
2073                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2074                         if (rdev) {
2075                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2076                                         rdev->country_ie_alpha2[0],
2077                                         rdev->country_ie_alpha2[1]);
2078                         } else
2079                                 pr_info("Current regulatory domain intersected:\n");
2080                 } else
2081                         pr_info("Current regulatory domain intersected:\n");
2082         } else if (is_world_regdom(rd->alpha2)) {
2083                 pr_info("World regulatory domain updated:\n");
2084         } else {
2085                 if (is_unknown_alpha2(rd->alpha2))
2086                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2087                 else {
2088                         if (reg_request_cell_base(lr))
2089                                 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2090                                         rd->alpha2[0], rd->alpha2[1]);
2091                         else
2092                                 pr_info("Regulatory domain changed to country: %c%c\n",
2093                                         rd->alpha2[0], rd->alpha2[1]);
2094                 }
2095         }
2096
2097         print_dfs_region(rd->dfs_region);
2098         print_rd_rules(rd);
2099 }
2100
2101 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2102 {
2103         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2104         print_rd_rules(rd);
2105 }
2106
2107 /* Takes ownership of rd only if it doesn't fail */
2108 static int __set_regdom(const struct ieee80211_regdomain *rd)
2109 {
2110         const struct ieee80211_regdomain *regd;
2111         const struct ieee80211_regdomain *intersected_rd = NULL;
2112         struct wiphy *request_wiphy;
2113         struct regulatory_request *lr = get_last_request();
2114
2115         /* Some basic sanity checks first */
2116
2117         if (!reg_is_valid_request(rd->alpha2))
2118                 return -EINVAL;
2119
2120         if (is_world_regdom(rd->alpha2)) {
2121                 update_world_regdomain(rd);
2122                 return 0;
2123         }
2124
2125         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2126             !is_unknown_alpha2(rd->alpha2))
2127                 return -EINVAL;
2128
2129         /*
2130          * Lets only bother proceeding on the same alpha2 if the current
2131          * rd is non static (it means CRDA was present and was used last)
2132          * and the pending request came in from a country IE
2133          */
2134         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2135                 /*
2136                  * If someone else asked us to change the rd lets only bother
2137                  * checking if the alpha2 changes if CRDA was already called
2138                  */
2139                 if (!regdom_changes(rd->alpha2))
2140                         return -EALREADY;
2141         }
2142
2143         /*
2144          * Now lets set the regulatory domain, update all driver channels
2145          * and finally inform them of what we have done, in case they want
2146          * to review or adjust their own settings based on their own
2147          * internal EEPROM data
2148          */
2149
2150         if (!is_valid_rd(rd)) {
2151                 pr_err("Invalid regulatory domain detected:\n");
2152                 print_regdomain_info(rd);
2153                 return -EINVAL;
2154         }
2155
2156         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2157         if (!request_wiphy &&
2158             (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2159              lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2160                 schedule_delayed_work(&reg_timeout, 0);
2161                 return -ENODEV;
2162         }
2163
2164         if (!lr->intersect) {
2165                 if (lr->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2166                         reset_regdomains(false, rd);
2167                         return 0;
2168                 }
2169
2170                 /*
2171                  * For a driver hint, lets copy the regulatory domain the
2172                  * driver wanted to the wiphy to deal with conflicts
2173                  */
2174
2175                 /*
2176                  * Userspace could have sent two replies with only
2177                  * one kernel request.
2178                  */
2179                 if (request_wiphy->regd)
2180                         return -EALREADY;
2181
2182                 regd = reg_copy_regd(rd);
2183                 if (IS_ERR(regd))
2184                         return PTR_ERR(regd);
2185
2186                 rcu_assign_pointer(request_wiphy->regd, regd);
2187                 reset_regdomains(false, rd);
2188                 return 0;
2189         }
2190
2191         /* Intersection requires a bit more work */
2192
2193         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2194                 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2195                 if (!intersected_rd)
2196                         return -EINVAL;
2197
2198                 /*
2199                  * We can trash what CRDA provided now.
2200                  * However if a driver requested this specific regulatory
2201                  * domain we keep it for its private use
2202                  */
2203                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
2204                         const struct ieee80211_regdomain *tmp;
2205
2206                         tmp = get_wiphy_regdom(request_wiphy);
2207                         rcu_assign_pointer(request_wiphy->regd, rd);
2208                         rcu_free_regdom(tmp);
2209                 } else {
2210                         kfree(rd);
2211                 }
2212
2213                 rd = NULL;
2214
2215                 reset_regdomains(false, intersected_rd);
2216
2217                 return 0;
2218         }
2219
2220         return -EINVAL;
2221 }
2222
2223
2224 /*
2225  * Use this call to set the current regulatory domain. Conflicts with
2226  * multiple drivers can be ironed out later. Caller must've already
2227  * kmalloc'd the rd structure.
2228  */
2229 int set_regdom(const struct ieee80211_regdomain *rd)
2230 {
2231         struct regulatory_request *lr;
2232         int r;
2233
2234         mutex_lock(&reg_mutex);
2235         lr = get_last_request();
2236
2237         /* Note that this doesn't update the wiphys, this is done below */
2238         r = __set_regdom(rd);
2239         if (r) {
2240                 if (r == -EALREADY)
2241                         reg_set_request_processed();
2242
2243                 kfree(rd);
2244                 goto out;
2245         }
2246
2247         /* This would make this whole thing pointless */
2248         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) {
2249                 r = -EINVAL;
2250                 goto out;
2251         }
2252
2253         /* update all wiphys now with the new established regulatory domain */
2254         update_all_wiphy_regulatory(lr->initiator);
2255
2256         print_regdomain(get_cfg80211_regdom());
2257
2258         nl80211_send_reg_change_event(lr);
2259
2260         reg_set_request_processed();
2261
2262  out:
2263         mutex_unlock(&reg_mutex);
2264
2265         return r;
2266 }
2267
2268 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2269 {
2270         struct regulatory_request *lr;
2271         u8 alpha2[2];
2272         bool add = false;
2273
2274         rcu_read_lock();
2275         lr = get_last_request();
2276         if (lr && !lr->processed) {
2277                 memcpy(alpha2, lr->alpha2, 2);
2278                 add = true;
2279         }
2280         rcu_read_unlock();
2281
2282         if (add)
2283                 return add_uevent_var(env, "COUNTRY=%c%c",
2284                                       alpha2[0], alpha2[1]);
2285         return 0;
2286 }
2287
2288 void wiphy_regulatory_register(struct wiphy *wiphy)
2289 {
2290         mutex_lock(&reg_mutex);
2291
2292         if (!reg_dev_ignore_cell_hint(wiphy))
2293                 reg_num_devs_support_basehint++;
2294
2295         wiphy_update_regulatory(wiphy, NL80211_REGDOM_SET_BY_CORE);
2296
2297         mutex_unlock(&reg_mutex);
2298 }
2299
2300 /* Caller must hold cfg80211_mutex */
2301 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2302 {
2303         struct wiphy *request_wiphy = NULL;
2304         struct regulatory_request *lr;
2305
2306         mutex_lock(&reg_mutex);
2307         lr = get_last_request();
2308
2309         if (!reg_dev_ignore_cell_hint(wiphy))
2310                 reg_num_devs_support_basehint--;
2311
2312         rcu_free_regdom(get_wiphy_regdom(wiphy));
2313         rcu_assign_pointer(wiphy->regd, NULL);
2314
2315         if (lr)
2316                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2317
2318         if (!request_wiphy || request_wiphy != wiphy)
2319                 goto out;
2320
2321         lr->wiphy_idx = WIPHY_IDX_INVALID;
2322         lr->country_ie_env = ENVIRON_ANY;
2323 out:
2324         mutex_unlock(&reg_mutex);
2325 }
2326
2327 static void reg_timeout_work(struct work_struct *work)
2328 {
2329         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2330         restore_regulatory_settings(true);
2331 }
2332
2333 int __init regulatory_init(void)
2334 {
2335         int err = 0;
2336
2337         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2338         if (IS_ERR(reg_pdev))
2339                 return PTR_ERR(reg_pdev);
2340
2341         reg_pdev->dev.type = &reg_device_type;
2342
2343         spin_lock_init(&reg_requests_lock);
2344         spin_lock_init(&reg_pending_beacons_lock);
2345
2346         reg_regdb_size_check();
2347
2348         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2349
2350         user_alpha2[0] = '9';
2351         user_alpha2[1] = '7';
2352
2353         /* We always try to get an update for the static regdomain */
2354         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2355         if (err) {
2356                 if (err == -ENOMEM)
2357                         return err;
2358                 /*
2359                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2360                  * memory which is handled and propagated appropriately above
2361                  * but it can also fail during a netlink_broadcast() or during
2362                  * early boot for call_usermodehelper(). For now treat these
2363                  * errors as non-fatal.
2364                  */
2365                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2366         }
2367
2368         /*
2369          * Finally, if the user set the module parameter treat it
2370          * as a user hint.
2371          */
2372         if (!is_world_regdom(ieee80211_regdom))
2373                 regulatory_hint_user(ieee80211_regdom,
2374                                      NL80211_USER_REG_HINT_USER);
2375
2376         return 0;
2377 }
2378
2379 void regulatory_exit(void)
2380 {
2381         struct regulatory_request *reg_request, *tmp;
2382         struct reg_beacon *reg_beacon, *btmp;
2383
2384         cancel_work_sync(&reg_work);
2385         cancel_delayed_work_sync(&reg_timeout);
2386
2387         /* Lock to suppress warnings */
2388         mutex_lock(&reg_mutex);
2389         reset_regdomains(true, NULL);
2390         mutex_unlock(&reg_mutex);
2391
2392         dev_set_uevent_suppress(&reg_pdev->dev, true);
2393
2394         platform_device_unregister(reg_pdev);
2395
2396         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2397                 list_del(&reg_beacon->list);
2398                 kfree(reg_beacon);
2399         }
2400
2401         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2402                 list_del(&reg_beacon->list);
2403                 kfree(reg_beacon);
2404         }
2405
2406         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2407                 list_del(&reg_request->list);
2408                 kfree(reg_request);
2409         }
2410 }