regulatory: use RCU to protect global and wiphy regdomains
[linux-3.10.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19
20
21 /**
22  * DOC: Wireless regulatory infrastructure
23  *
24  * The usual implementation is for a driver to read a device EEPROM to
25  * determine which regulatory domain it should be operating under, then
26  * looking up the allowable channels in a driver-local table and finally
27  * registering those channels in the wiphy structure.
28  *
29  * Another set of compliance enforcement is for drivers to use their
30  * own compliance limits which can be stored on the EEPROM. The host
31  * driver or firmware may ensure these are used.
32  *
33  * In addition to all this we provide an extra layer of regulatory
34  * conformance. For drivers which do not have any regulatory
35  * information CRDA provides the complete regulatory solution.
36  * For others it provides a community effort on further restrictions
37  * to enhance compliance.
38  *
39  * Note: When number of rules --> infinity we will not be able to
40  * index on alpha2 any more, instead we'll probably have to
41  * rely on some SHA1 checksum of the regdomain for example.
42  *
43  */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...)                  \
63         printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67
68 enum reg_request_treatment {
69         REG_REQ_OK,
70         REG_REQ_IGNORE,
71         REG_REQ_INTERSECT,
72         REG_REQ_ALREADY_SET,
73 };
74
75 static struct regulatory_request core_request_world = {
76         .initiator = NL80211_REGDOM_SET_BY_CORE,
77         .alpha2[0] = '0',
78         .alpha2[1] = '0',
79         .intersect = false,
80         .processed = true,
81         .country_ie_env = ENVIRON_ANY,
82 };
83
84 /* Receipt of information from last regulatory request */
85 static struct regulatory_request *last_request = &core_request_world;
86
87 /* To trigger userspace events */
88 static struct platform_device *reg_pdev;
89
90 static struct device_type reg_device_type = {
91         .uevent = reg_device_uevent,
92 };
93
94 /*
95  * Central wireless core regulatory domains, we only need two,
96  * the current one and a world regulatory domain in case we have no
97  * information to give us an alpha2.
98  */
99 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
100
101 /*
102  * Protects static reg.c components:
103  *      - cfg80211_regdomain (if not used with RCU)
104  *      - cfg80211_world_regdom
105  *      - last_request
106  *      - reg_num_devs_support_basehint
107  */
108 static DEFINE_MUTEX(reg_mutex);
109
110 /*
111  * Number of devices that registered to the core
112  * that support cellular base station regulatory hints
113  */
114 static int reg_num_devs_support_basehint;
115
116 static inline void assert_reg_lock(void)
117 {
118         lockdep_assert_held(&reg_mutex);
119 }
120
121 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
122 {
123         return rcu_dereference_protected(cfg80211_regdomain,
124                                          lockdep_is_held(&reg_mutex));
125 }
126
127 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
128 {
129         return rcu_dereference_protected(wiphy->regd,
130                                          lockdep_is_held(&reg_mutex));
131 }
132
133 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
134 {
135         if (!r)
136                 return;
137         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
138 }
139
140 /* Used to queue up regulatory hints */
141 static LIST_HEAD(reg_requests_list);
142 static spinlock_t reg_requests_lock;
143
144 /* Used to queue up beacon hints for review */
145 static LIST_HEAD(reg_pending_beacons);
146 static spinlock_t reg_pending_beacons_lock;
147
148 /* Used to keep track of processed beacon hints */
149 static LIST_HEAD(reg_beacon_list);
150
151 struct reg_beacon {
152         struct list_head list;
153         struct ieee80211_channel chan;
154 };
155
156 static void reg_todo(struct work_struct *work);
157 static DECLARE_WORK(reg_work, reg_todo);
158
159 static void reg_timeout_work(struct work_struct *work);
160 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
161
162 /* We keep a static world regulatory domain in case of the absence of CRDA */
163 static const struct ieee80211_regdomain world_regdom = {
164         .n_reg_rules = 6,
165         .alpha2 =  "00",
166         .reg_rules = {
167                 /* IEEE 802.11b/g, channels 1..11 */
168                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
169                 /* IEEE 802.11b/g, channels 12..13. */
170                 REG_RULE(2467-10, 2472+10, 40, 6, 20,
171                         NL80211_RRF_PASSIVE_SCAN |
172                         NL80211_RRF_NO_IBSS),
173                 /* IEEE 802.11 channel 14 - Only JP enables
174                  * this and for 802.11b only */
175                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
176                         NL80211_RRF_PASSIVE_SCAN |
177                         NL80211_RRF_NO_IBSS |
178                         NL80211_RRF_NO_OFDM),
179                 /* IEEE 802.11a, channel 36..48 */
180                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
181                         NL80211_RRF_PASSIVE_SCAN |
182                         NL80211_RRF_NO_IBSS),
183
184                 /* NB: 5260 MHz - 5700 MHz requies DFS */
185
186                 /* IEEE 802.11a, channel 149..165 */
187                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
188                         NL80211_RRF_PASSIVE_SCAN |
189                         NL80211_RRF_NO_IBSS),
190
191                 /* IEEE 802.11ad (60gHz), channels 1..3 */
192                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
193         }
194 };
195
196 static const struct ieee80211_regdomain *cfg80211_world_regdom =
197         &world_regdom;
198
199 static char *ieee80211_regdom = "00";
200 static char user_alpha2[2];
201
202 module_param(ieee80211_regdom, charp, 0444);
203 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
204
205 static void reset_regdomains(bool full_reset,
206                              const struct ieee80211_regdomain *new_regdom)
207 {
208         const struct ieee80211_regdomain *r;
209
210         assert_reg_lock();
211
212         r = get_cfg80211_regdom();
213
214         /* avoid freeing static information or freeing something twice */
215         if (r == cfg80211_world_regdom)
216                 r = NULL;
217         if (cfg80211_world_regdom == &world_regdom)
218                 cfg80211_world_regdom = NULL;
219         if (r == &world_regdom)
220                 r = NULL;
221
222         rcu_free_regdom(r);
223         rcu_free_regdom(cfg80211_world_regdom);
224
225         cfg80211_world_regdom = &world_regdom;
226         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
227
228         if (!full_reset)
229                 return;
230
231         if (last_request != &core_request_world)
232                 kfree(last_request);
233         last_request = &core_request_world;
234 }
235
236 /*
237  * Dynamic world regulatory domain requested by the wireless
238  * core upon initialization
239  */
240 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
241 {
242         WARN_ON(!last_request);
243
244         assert_reg_lock();
245
246         reset_regdomains(false, rd);
247
248         cfg80211_world_regdom = rd;
249 }
250
251 bool is_world_regdom(const char *alpha2)
252 {
253         if (!alpha2)
254                 return false;
255         return alpha2[0] == '0' && alpha2[1] == '0';
256 }
257
258 static bool is_alpha2_set(const char *alpha2)
259 {
260         if (!alpha2)
261                 return false;
262         return alpha2[0] && alpha2[1];
263 }
264
265 static bool is_unknown_alpha2(const char *alpha2)
266 {
267         if (!alpha2)
268                 return false;
269         /*
270          * Special case where regulatory domain was built by driver
271          * but a specific alpha2 cannot be determined
272          */
273         return alpha2[0] == '9' && alpha2[1] == '9';
274 }
275
276 static bool is_intersected_alpha2(const char *alpha2)
277 {
278         if (!alpha2)
279                 return false;
280         /*
281          * Special case where regulatory domain is the
282          * result of an intersection between two regulatory domain
283          * structures
284          */
285         return alpha2[0] == '9' && alpha2[1] == '8';
286 }
287
288 static bool is_an_alpha2(const char *alpha2)
289 {
290         if (!alpha2)
291                 return false;
292         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
293 }
294
295 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
296 {
297         if (!alpha2_x || !alpha2_y)
298                 return false;
299         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
300 }
301
302 static bool regdom_changes(const char *alpha2)
303 {
304         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
305
306         if (!r)
307                 return true;
308         return !alpha2_equal(r->alpha2, alpha2);
309 }
310
311 /*
312  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
313  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
314  * has ever been issued.
315  */
316 static bool is_user_regdom_saved(void)
317 {
318         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
319                 return false;
320
321         /* This would indicate a mistake on the design */
322         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
323                  "Unexpected user alpha2: %c%c\n",
324                  user_alpha2[0], user_alpha2[1]))
325                 return false;
326
327         return true;
328 }
329
330 static const struct ieee80211_regdomain *
331 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
332 {
333         struct ieee80211_regdomain *regd;
334         int size_of_regd;
335         unsigned int i;
336
337         size_of_regd =
338                 sizeof(struct ieee80211_regdomain) +
339                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
340
341         regd = kzalloc(size_of_regd, GFP_KERNEL);
342         if (!regd)
343                 return ERR_PTR(-ENOMEM);
344
345         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
346
347         for (i = 0; i < src_regd->n_reg_rules; i++)
348                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
349                        sizeof(struct ieee80211_reg_rule));
350
351         return regd;
352 }
353
354 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
355 struct reg_regdb_search_request {
356         char alpha2[2];
357         struct list_head list;
358 };
359
360 static LIST_HEAD(reg_regdb_search_list);
361 static DEFINE_MUTEX(reg_regdb_search_mutex);
362
363 static void reg_regdb_search(struct work_struct *work)
364 {
365         struct reg_regdb_search_request *request;
366         const struct ieee80211_regdomain *curdom, *regdom = NULL;
367         int i;
368
369         mutex_lock(&cfg80211_mutex);
370
371         mutex_lock(&reg_regdb_search_mutex);
372         while (!list_empty(&reg_regdb_search_list)) {
373                 request = list_first_entry(&reg_regdb_search_list,
374                                            struct reg_regdb_search_request,
375                                            list);
376                 list_del(&request->list);
377
378                 for (i = 0; i < reg_regdb_size; i++) {
379                         curdom = reg_regdb[i];
380
381                         if (alpha2_equal(request->alpha2, curdom->alpha2)) {
382                                 regdom = reg_copy_regd(curdom);
383                                 break;
384                         }
385                 }
386
387                 kfree(request);
388         }
389         mutex_unlock(&reg_regdb_search_mutex);
390
391         if (!IS_ERR_OR_NULL(regdom))
392                 set_regdom(regdom);
393
394         mutex_unlock(&cfg80211_mutex);
395 }
396
397 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
398
399 static void reg_regdb_query(const char *alpha2)
400 {
401         struct reg_regdb_search_request *request;
402
403         if (!alpha2)
404                 return;
405
406         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
407         if (!request)
408                 return;
409
410         memcpy(request->alpha2, alpha2, 2);
411
412         mutex_lock(&reg_regdb_search_mutex);
413         list_add_tail(&request->list, &reg_regdb_search_list);
414         mutex_unlock(&reg_regdb_search_mutex);
415
416         schedule_work(&reg_regdb_work);
417 }
418
419 /* Feel free to add any other sanity checks here */
420 static void reg_regdb_size_check(void)
421 {
422         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
423         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
424 }
425 #else
426 static inline void reg_regdb_size_check(void) {}
427 static inline void reg_regdb_query(const char *alpha2) {}
428 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
429
430 /*
431  * This lets us keep regulatory code which is updated on a regulatory
432  * basis in userspace. Country information is filled in by
433  * reg_device_uevent
434  */
435 static int call_crda(const char *alpha2)
436 {
437         if (!is_world_regdom((char *) alpha2))
438                 pr_info("Calling CRDA for country: %c%c\n",
439                         alpha2[0], alpha2[1]);
440         else
441                 pr_info("Calling CRDA to update world regulatory domain\n");
442
443         /* query internal regulatory database (if it exists) */
444         reg_regdb_query(alpha2);
445
446         return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
447 }
448
449 static bool reg_is_valid_request(const char *alpha2)
450 {
451         assert_reg_lock();
452
453         if (!last_request)
454                 return false;
455
456         if (last_request->processed)
457                 return false;
458
459         return alpha2_equal(last_request->alpha2, alpha2);
460 }
461
462 /* Sanity check on a regulatory rule */
463 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
464 {
465         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
466         u32 freq_diff;
467
468         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
469                 return false;
470
471         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
472                 return false;
473
474         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
475
476         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
477             freq_range->max_bandwidth_khz > freq_diff)
478                 return false;
479
480         return true;
481 }
482
483 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
484 {
485         const struct ieee80211_reg_rule *reg_rule = NULL;
486         unsigned int i;
487
488         if (!rd->n_reg_rules)
489                 return false;
490
491         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
492                 return false;
493
494         for (i = 0; i < rd->n_reg_rules; i++) {
495                 reg_rule = &rd->reg_rules[i];
496                 if (!is_valid_reg_rule(reg_rule))
497                         return false;
498         }
499
500         return true;
501 }
502
503 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
504                             u32 center_freq_khz, u32 bw_khz)
505 {
506         u32 start_freq_khz, end_freq_khz;
507
508         start_freq_khz = center_freq_khz - (bw_khz/2);
509         end_freq_khz = center_freq_khz + (bw_khz/2);
510
511         if (start_freq_khz >= freq_range->start_freq_khz &&
512             end_freq_khz <= freq_range->end_freq_khz)
513                 return true;
514
515         return false;
516 }
517
518 /**
519  * freq_in_rule_band - tells us if a frequency is in a frequency band
520  * @freq_range: frequency rule we want to query
521  * @freq_khz: frequency we are inquiring about
522  *
523  * This lets us know if a specific frequency rule is or is not relevant to
524  * a specific frequency's band. Bands are device specific and artificial
525  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
526  * however it is safe for now to assume that a frequency rule should not be
527  * part of a frequency's band if the start freq or end freq are off by more
528  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
529  * 60 GHz band.
530  * This resolution can be lowered and should be considered as we add
531  * regulatory rule support for other "bands".
532  **/
533 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
534                               u32 freq_khz)
535 {
536 #define ONE_GHZ_IN_KHZ  1000000
537         /*
538          * From 802.11ad: directional multi-gigabit (DMG):
539          * Pertaining to operation in a frequency band containing a channel
540          * with the Channel starting frequency above 45 GHz.
541          */
542         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
543                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
544         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
545                 return true;
546         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
547                 return true;
548         return false;
549 #undef ONE_GHZ_IN_KHZ
550 }
551
552 /*
553  * Helper for regdom_intersect(), this does the real
554  * mathematical intersection fun
555  */
556 static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1,
557                                const struct ieee80211_reg_rule *rule2,
558                                struct ieee80211_reg_rule *intersected_rule)
559 {
560         const struct ieee80211_freq_range *freq_range1, *freq_range2;
561         struct ieee80211_freq_range *freq_range;
562         const struct ieee80211_power_rule *power_rule1, *power_rule2;
563         struct ieee80211_power_rule *power_rule;
564         u32 freq_diff;
565
566         freq_range1 = &rule1->freq_range;
567         freq_range2 = &rule2->freq_range;
568         freq_range = &intersected_rule->freq_range;
569
570         power_rule1 = &rule1->power_rule;
571         power_rule2 = &rule2->power_rule;
572         power_rule = &intersected_rule->power_rule;
573
574         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
575                                          freq_range2->start_freq_khz);
576         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
577                                        freq_range2->end_freq_khz);
578         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
579                                             freq_range2->max_bandwidth_khz);
580
581         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
582         if (freq_range->max_bandwidth_khz > freq_diff)
583                 freq_range->max_bandwidth_khz = freq_diff;
584
585         power_rule->max_eirp = min(power_rule1->max_eirp,
586                 power_rule2->max_eirp);
587         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
588                 power_rule2->max_antenna_gain);
589
590         intersected_rule->flags = rule1->flags | rule2->flags;
591
592         if (!is_valid_reg_rule(intersected_rule))
593                 return -EINVAL;
594
595         return 0;
596 }
597
598 /**
599  * regdom_intersect - do the intersection between two regulatory domains
600  * @rd1: first regulatory domain
601  * @rd2: second regulatory domain
602  *
603  * Use this function to get the intersection between two regulatory domains.
604  * Once completed we will mark the alpha2 for the rd as intersected, "98",
605  * as no one single alpha2 can represent this regulatory domain.
606  *
607  * Returns a pointer to the regulatory domain structure which will hold the
608  * resulting intersection of rules between rd1 and rd2. We will
609  * kzalloc() this structure for you.
610  */
611 static struct ieee80211_regdomain *
612 regdom_intersect(const struct ieee80211_regdomain *rd1,
613                  const struct ieee80211_regdomain *rd2)
614 {
615         int r, size_of_regd;
616         unsigned int x, y;
617         unsigned int num_rules = 0, rule_idx = 0;
618         const struct ieee80211_reg_rule *rule1, *rule2;
619         struct ieee80211_reg_rule *intersected_rule;
620         struct ieee80211_regdomain *rd;
621         /* This is just a dummy holder to help us count */
622         struct ieee80211_reg_rule dummy_rule;
623
624         if (!rd1 || !rd2)
625                 return NULL;
626
627         /*
628          * First we get a count of the rules we'll need, then we actually
629          * build them. This is to so we can malloc() and free() a
630          * regdomain once. The reason we use reg_rules_intersect() here
631          * is it will return -EINVAL if the rule computed makes no sense.
632          * All rules that do check out OK are valid.
633          */
634
635         for (x = 0; x < rd1->n_reg_rules; x++) {
636                 rule1 = &rd1->reg_rules[x];
637                 for (y = 0; y < rd2->n_reg_rules; y++) {
638                         rule2 = &rd2->reg_rules[y];
639                         if (!reg_rules_intersect(rule1, rule2, &dummy_rule))
640                                 num_rules++;
641                 }
642         }
643
644         if (!num_rules)
645                 return NULL;
646
647         size_of_regd = sizeof(struct ieee80211_regdomain) +
648                        num_rules * sizeof(struct ieee80211_reg_rule);
649
650         rd = kzalloc(size_of_regd, GFP_KERNEL);
651         if (!rd)
652                 return NULL;
653
654         for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
655                 rule1 = &rd1->reg_rules[x];
656                 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
657                         rule2 = &rd2->reg_rules[y];
658                         /*
659                          * This time around instead of using the stack lets
660                          * write to the target rule directly saving ourselves
661                          * a memcpy()
662                          */
663                         intersected_rule = &rd->reg_rules[rule_idx];
664                         r = reg_rules_intersect(rule1, rule2, intersected_rule);
665                         /*
666                          * No need to memset here the intersected rule here as
667                          * we're not using the stack anymore
668                          */
669                         if (r)
670                                 continue;
671                         rule_idx++;
672                 }
673         }
674
675         if (rule_idx != num_rules) {
676                 kfree(rd);
677                 return NULL;
678         }
679
680         rd->n_reg_rules = num_rules;
681         rd->alpha2[0] = '9';
682         rd->alpha2[1] = '8';
683
684         return rd;
685 }
686
687 /*
688  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
689  * want to just have the channel structure use these
690  */
691 static u32 map_regdom_flags(u32 rd_flags)
692 {
693         u32 channel_flags = 0;
694         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
695                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
696         if (rd_flags & NL80211_RRF_NO_IBSS)
697                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
698         if (rd_flags & NL80211_RRF_DFS)
699                 channel_flags |= IEEE80211_CHAN_RADAR;
700         if (rd_flags & NL80211_RRF_NO_OFDM)
701                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
702         return channel_flags;
703 }
704
705 static int freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
706                               const struct ieee80211_reg_rule **reg_rule,
707                               const struct ieee80211_regdomain *regd)
708 {
709         int i;
710         bool band_rule_found = false;
711         bool bw_fits = false;
712
713         if (!regd)
714                 return -EINVAL;
715
716         for (i = 0; i < regd->n_reg_rules; i++) {
717                 const struct ieee80211_reg_rule *rr;
718                 const struct ieee80211_freq_range *fr = NULL;
719
720                 rr = &regd->reg_rules[i];
721                 fr = &rr->freq_range;
722
723                 /*
724                  * We only need to know if one frequency rule was
725                  * was in center_freq's band, that's enough, so lets
726                  * not overwrite it once found
727                  */
728                 if (!band_rule_found)
729                         band_rule_found = freq_in_rule_band(fr, center_freq);
730
731                 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
732
733                 if (band_rule_found && bw_fits) {
734                         *reg_rule = rr;
735                         return 0;
736                 }
737         }
738
739         if (!band_rule_found)
740                 return -ERANGE;
741
742         return -EINVAL;
743 }
744
745 int freq_reg_info(struct wiphy *wiphy, u32 center_freq,
746                   const struct ieee80211_reg_rule **reg_rule)
747 {
748         const struct ieee80211_regdomain *regd;
749
750         assert_reg_lock();
751
752         /*
753          * Follow the driver's regulatory domain, if present, unless a country
754          * IE has been processed or a user wants to help complaince further
755          */
756         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
757             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
758             wiphy->regd)
759                 regd = get_wiphy_regdom(wiphy);
760         else
761                 regd = get_cfg80211_regdom();
762
763         return freq_reg_info_regd(wiphy, center_freq, reg_rule, regd);
764 }
765 EXPORT_SYMBOL(freq_reg_info);
766
767 #ifdef CONFIG_CFG80211_REG_DEBUG
768 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
769 {
770         switch (initiator) {
771         case NL80211_REGDOM_SET_BY_CORE:
772                 return "Set by core";
773         case NL80211_REGDOM_SET_BY_USER:
774                 return "Set by user";
775         case NL80211_REGDOM_SET_BY_DRIVER:
776                 return "Set by driver";
777         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
778                 return "Set by country IE";
779         default:
780                 WARN_ON(1);
781                 return "Set by bug";
782         }
783 }
784
785 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
786                                     const struct ieee80211_reg_rule *reg_rule)
787 {
788         const struct ieee80211_power_rule *power_rule;
789         const struct ieee80211_freq_range *freq_range;
790         char max_antenna_gain[32];
791
792         power_rule = &reg_rule->power_rule;
793         freq_range = &reg_rule->freq_range;
794
795         if (!power_rule->max_antenna_gain)
796                 snprintf(max_antenna_gain, 32, "N/A");
797         else
798                 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
799
800         REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
801                       chan->center_freq);
802
803         REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
804                       freq_range->start_freq_khz, freq_range->end_freq_khz,
805                       freq_range->max_bandwidth_khz, max_antenna_gain,
806                       power_rule->max_eirp);
807 }
808 #else
809 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
810                                     const struct ieee80211_reg_rule *reg_rule)
811 {
812         return;
813 }
814 #endif
815
816 /*
817  * Note that right now we assume the desired channel bandwidth
818  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
819  * per channel, the primary and the extension channel).
820  */
821 static void handle_channel(struct wiphy *wiphy,
822                            enum nl80211_reg_initiator initiator,
823                            struct ieee80211_channel *chan)
824 {
825         int r;
826         u32 flags, bw_flags = 0;
827         const struct ieee80211_reg_rule *reg_rule = NULL;
828         const struct ieee80211_power_rule *power_rule = NULL;
829         const struct ieee80211_freq_range *freq_range = NULL;
830         struct wiphy *request_wiphy = NULL;
831
832         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
833
834         flags = chan->orig_flags;
835
836         r = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq), &reg_rule);
837         if (r) {
838                 /*
839                  * We will disable all channels that do not match our
840                  * received regulatory rule unless the hint is coming
841                  * from a Country IE and the Country IE had no information
842                  * about a band. The IEEE 802.11 spec allows for an AP
843                  * to send only a subset of the regulatory rules allowed,
844                  * so an AP in the US that only supports 2.4 GHz may only send
845                  * a country IE with information for the 2.4 GHz band
846                  * while 5 GHz is still supported.
847                  */
848                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
849                     r == -ERANGE)
850                         return;
851
852                 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
853                 chan->flags = IEEE80211_CHAN_DISABLED;
854                 return;
855         }
856
857         chan_reg_rule_print_dbg(chan, reg_rule);
858
859         power_rule = &reg_rule->power_rule;
860         freq_range = &reg_rule->freq_range;
861
862         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
863                 bw_flags = IEEE80211_CHAN_NO_HT40;
864
865         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
866             request_wiphy && request_wiphy == wiphy &&
867             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
868                 /*
869                  * This guarantees the driver's requested regulatory domain
870                  * will always be used as a base for further regulatory
871                  * settings
872                  */
873                 chan->flags = chan->orig_flags =
874                         map_regdom_flags(reg_rule->flags) | bw_flags;
875                 chan->max_antenna_gain = chan->orig_mag =
876                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
877                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
878                         (int) MBM_TO_DBM(power_rule->max_eirp);
879                 return;
880         }
881
882         chan->beacon_found = false;
883         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
884         chan->max_antenna_gain =
885                 min_t(int, chan->orig_mag,
886                       MBI_TO_DBI(power_rule->max_antenna_gain));
887         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
888         if (chan->orig_mpwr) {
889                 /*
890                  * Devices that have their own custom regulatory domain
891                  * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
892                  * passed country IE power settings.
893                  */
894                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
895                     wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
896                     wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
897                         chan->max_power = chan->max_reg_power;
898                 else
899                         chan->max_power = min(chan->orig_mpwr,
900                                               chan->max_reg_power);
901         } else
902                 chan->max_power = chan->max_reg_power;
903 }
904
905 static void handle_band(struct wiphy *wiphy,
906                         enum nl80211_reg_initiator initiator,
907                         struct ieee80211_supported_band *sband)
908 {
909         unsigned int i;
910
911         if (!sband)
912                 return;
913
914         for (i = 0; i < sband->n_channels; i++)
915                 handle_channel(wiphy, initiator, &sband->channels[i]);
916 }
917
918 static bool reg_request_cell_base(struct regulatory_request *request)
919 {
920         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
921                 return false;
922         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
923 }
924
925 bool reg_last_request_cell_base(void)
926 {
927         bool val;
928
929         mutex_lock(&reg_mutex);
930         val = reg_request_cell_base(last_request);
931         mutex_unlock(&reg_mutex);
932
933         return val;
934 }
935
936 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
937 /* Core specific check */
938 static enum reg_request_treatment
939 reg_ignore_cell_hint(struct regulatory_request *pending_request)
940 {
941         if (!reg_num_devs_support_basehint)
942                 return REG_REQ_IGNORE;
943
944         if (reg_request_cell_base(last_request) &&
945             !regdom_changes(pending_request->alpha2))
946                 return REG_REQ_ALREADY_SET;
947
948         return REG_REQ_OK;
949 }
950
951 /* Device specific check */
952 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
953 {
954         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
955 }
956 #else
957 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
958 {
959         return REG_REQ_IGNORE;
960 }
961
962 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
963 {
964         return true;
965 }
966 #endif
967
968
969 static bool ignore_reg_update(struct wiphy *wiphy,
970                               enum nl80211_reg_initiator initiator)
971 {
972         if (!last_request) {
973                 REG_DBG_PRINT("Ignoring regulatory request %s since last_request is not set\n",
974                               reg_initiator_name(initiator));
975                 return true;
976         }
977
978         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
979             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
980                 REG_DBG_PRINT("Ignoring regulatory request %s since the driver uses its own custom regulatory domain\n",
981                               reg_initiator_name(initiator));
982                 return true;
983         }
984
985         /*
986          * wiphy->regd will be set once the device has its own
987          * desired regulatory domain set
988          */
989         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
990             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
991             !is_world_regdom(last_request->alpha2)) {
992                 REG_DBG_PRINT("Ignoring regulatory request %s since the driver requires its own regulatory domain to be set first\n",
993                               reg_initiator_name(initiator));
994                 return true;
995         }
996
997         if (reg_request_cell_base(last_request))
998                 return reg_dev_ignore_cell_hint(wiphy);
999
1000         return false;
1001 }
1002
1003 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1004                               struct reg_beacon *reg_beacon)
1005 {
1006         struct ieee80211_supported_band *sband;
1007         struct ieee80211_channel *chan;
1008         bool channel_changed = false;
1009         struct ieee80211_channel chan_before;
1010
1011         sband = wiphy->bands[reg_beacon->chan.band];
1012         chan = &sband->channels[chan_idx];
1013
1014         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1015                 return;
1016
1017         if (chan->beacon_found)
1018                 return;
1019
1020         chan->beacon_found = true;
1021
1022         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1023                 return;
1024
1025         chan_before.center_freq = chan->center_freq;
1026         chan_before.flags = chan->flags;
1027
1028         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1029                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1030                 channel_changed = true;
1031         }
1032
1033         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1034                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1035                 channel_changed = true;
1036         }
1037
1038         if (channel_changed)
1039                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1040 }
1041
1042 /*
1043  * Called when a scan on a wiphy finds a beacon on
1044  * new channel
1045  */
1046 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1047                                     struct reg_beacon *reg_beacon)
1048 {
1049         unsigned int i;
1050         struct ieee80211_supported_band *sband;
1051
1052         if (!wiphy->bands[reg_beacon->chan.band])
1053                 return;
1054
1055         sband = wiphy->bands[reg_beacon->chan.band];
1056
1057         for (i = 0; i < sband->n_channels; i++)
1058                 handle_reg_beacon(wiphy, i, reg_beacon);
1059 }
1060
1061 /*
1062  * Called upon reg changes or a new wiphy is added
1063  */
1064 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1065 {
1066         unsigned int i;
1067         struct ieee80211_supported_band *sband;
1068         struct reg_beacon *reg_beacon;
1069
1070         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1071                 if (!wiphy->bands[reg_beacon->chan.band])
1072                         continue;
1073                 sband = wiphy->bands[reg_beacon->chan.band];
1074                 for (i = 0; i < sband->n_channels; i++)
1075                         handle_reg_beacon(wiphy, i, reg_beacon);
1076         }
1077 }
1078
1079 static bool reg_is_world_roaming(struct wiphy *wiphy)
1080 {
1081         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1082         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1083
1084         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1085                 return true;
1086
1087         if (last_request &&
1088             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1089             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1090                 return true;
1091
1092         return false;
1093 }
1094
1095 /* Reap the advantages of previously found beacons */
1096 static void reg_process_beacons(struct wiphy *wiphy)
1097 {
1098         /*
1099          * Means we are just firing up cfg80211, so no beacons would
1100          * have been processed yet.
1101          */
1102         if (!last_request)
1103                 return;
1104         if (!reg_is_world_roaming(wiphy))
1105                 return;
1106         wiphy_update_beacon_reg(wiphy);
1107 }
1108
1109 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1110 {
1111         if (!chan)
1112                 return false;
1113         if (chan->flags & IEEE80211_CHAN_DISABLED)
1114                 return false;
1115         /* This would happen when regulatory rules disallow HT40 completely */
1116         return !(chan->flags & IEEE80211_CHAN_NO_HT40);
1117 }
1118
1119 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1120                                          struct ieee80211_channel *channel)
1121 {
1122         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1123         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1124         unsigned int i;
1125
1126         if (!is_ht40_allowed(channel)) {
1127                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1128                 return;
1129         }
1130
1131         /*
1132          * We need to ensure the extension channels exist to
1133          * be able to use HT40- or HT40+, this finds them (or not)
1134          */
1135         for (i = 0; i < sband->n_channels; i++) {
1136                 struct ieee80211_channel *c = &sband->channels[i];
1137
1138                 if (c->center_freq == (channel->center_freq - 20))
1139                         channel_before = c;
1140                 if (c->center_freq == (channel->center_freq + 20))
1141                         channel_after = c;
1142         }
1143
1144         /*
1145          * Please note that this assumes target bandwidth is 20 MHz,
1146          * if that ever changes we also need to change the below logic
1147          * to include that as well.
1148          */
1149         if (!is_ht40_allowed(channel_before))
1150                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1151         else
1152                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1153
1154         if (!is_ht40_allowed(channel_after))
1155                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1156         else
1157                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1158 }
1159
1160 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1161                                       struct ieee80211_supported_band *sband)
1162 {
1163         unsigned int i;
1164
1165         if (!sband)
1166                 return;
1167
1168         for (i = 0; i < sband->n_channels; i++)
1169                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1170 }
1171
1172 static void reg_process_ht_flags(struct wiphy *wiphy)
1173 {
1174         enum ieee80211_band band;
1175
1176         if (!wiphy)
1177                 return;
1178
1179         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1180                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1181 }
1182
1183 static void wiphy_update_regulatory(struct wiphy *wiphy,
1184                                     enum nl80211_reg_initiator initiator)
1185 {
1186         enum ieee80211_band band;
1187
1188         assert_reg_lock();
1189
1190         if (ignore_reg_update(wiphy, initiator))
1191                 return;
1192
1193         last_request->dfs_region = get_cfg80211_regdom()->dfs_region;
1194
1195         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1196                 handle_band(wiphy, initiator, wiphy->bands[band]);
1197
1198         reg_process_beacons(wiphy);
1199         reg_process_ht_flags(wiphy);
1200
1201         if (wiphy->reg_notifier)
1202                 wiphy->reg_notifier(wiphy, last_request);
1203 }
1204
1205 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1206 {
1207         struct cfg80211_registered_device *rdev;
1208         struct wiphy *wiphy;
1209
1210         assert_cfg80211_lock();
1211
1212         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1213                 wiphy = &rdev->wiphy;
1214                 wiphy_update_regulatory(wiphy, initiator);
1215                 /*
1216                  * Regulatory updates set by CORE are ignored for custom
1217                  * regulatory cards. Let us notify the changes to the driver,
1218                  * as some drivers used this to restore its orig_* reg domain.
1219                  */
1220                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1221                     wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1222                     wiphy->reg_notifier)
1223                         wiphy->reg_notifier(wiphy, last_request);
1224         }
1225 }
1226
1227 static void handle_channel_custom(struct wiphy *wiphy,
1228                                   struct ieee80211_channel *chan,
1229                                   const struct ieee80211_regdomain *regd)
1230 {
1231         int r;
1232         u32 bw_flags = 0;
1233         const struct ieee80211_reg_rule *reg_rule = NULL;
1234         const struct ieee80211_power_rule *power_rule = NULL;
1235         const struct ieee80211_freq_range *freq_range = NULL;
1236
1237         r = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1238                                &reg_rule, regd);
1239
1240         if (r) {
1241                 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1242                               chan->center_freq);
1243                 chan->flags = IEEE80211_CHAN_DISABLED;
1244                 return;
1245         }
1246
1247         chan_reg_rule_print_dbg(chan, reg_rule);
1248
1249         power_rule = &reg_rule->power_rule;
1250         freq_range = &reg_rule->freq_range;
1251
1252         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1253                 bw_flags = IEEE80211_CHAN_NO_HT40;
1254
1255         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1256         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1257         chan->max_reg_power = chan->max_power =
1258                 (int) MBM_TO_DBM(power_rule->max_eirp);
1259 }
1260
1261 static void handle_band_custom(struct wiphy *wiphy,
1262                                struct ieee80211_supported_band *sband,
1263                                const struct ieee80211_regdomain *regd)
1264 {
1265         unsigned int i;
1266
1267         if (!sband)
1268                 return;
1269
1270         for (i = 0; i < sband->n_channels; i++)
1271                 handle_channel_custom(wiphy, &sband->channels[i], regd);
1272 }
1273
1274 /* Used by drivers prior to wiphy registration */
1275 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1276                                    const struct ieee80211_regdomain *regd)
1277 {
1278         enum ieee80211_band band;
1279         unsigned int bands_set = 0;
1280
1281         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1282                 if (!wiphy->bands[band])
1283                         continue;
1284                 handle_band_custom(wiphy, wiphy->bands[band], regd);
1285                 bands_set++;
1286         }
1287
1288         /*
1289          * no point in calling this if it won't have any effect
1290          * on your device's supported bands.
1291          */
1292         WARN_ON(!bands_set);
1293 }
1294 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1295
1296 /* This has the logic which determines when a new request
1297  * should be ignored. */
1298 static enum reg_request_treatment
1299 get_reg_request_treatment(struct wiphy *wiphy,
1300                           struct regulatory_request *pending_request)
1301 {
1302         struct wiphy *last_wiphy = NULL;
1303
1304         /* All initial requests are respected */
1305         if (!last_request)
1306                 return REG_REQ_OK;
1307
1308         switch (pending_request->initiator) {
1309         case NL80211_REGDOM_SET_BY_CORE:
1310                 return REG_REQ_OK;
1311         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1312                 if (reg_request_cell_base(last_request)) {
1313                         /* Trust a Cell base station over the AP's country IE */
1314                         if (regdom_changes(pending_request->alpha2))
1315                                 return REG_REQ_IGNORE;
1316                         return REG_REQ_ALREADY_SET;
1317                 }
1318
1319                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1320
1321                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1322                         return -EINVAL;
1323                 if (last_request->initiator ==
1324                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1325                         if (last_wiphy != wiphy) {
1326                                 /*
1327                                  * Two cards with two APs claiming different
1328                                  * Country IE alpha2s. We could
1329                                  * intersect them, but that seems unlikely
1330                                  * to be correct. Reject second one for now.
1331                                  */
1332                                 if (regdom_changes(pending_request->alpha2))
1333                                         return REG_REQ_IGNORE;
1334                                 return REG_REQ_ALREADY_SET;
1335                         }
1336                         /*
1337                          * Two consecutive Country IE hints on the same wiphy.
1338                          * This should be picked up early by the driver/stack
1339                          */
1340                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1341                                 return REG_REQ_OK;
1342                         return REG_REQ_ALREADY_SET;
1343                 }
1344                 return 0;
1345         case NL80211_REGDOM_SET_BY_DRIVER:
1346                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1347                         if (regdom_changes(pending_request->alpha2))
1348                                 return REG_REQ_OK;
1349                         return REG_REQ_ALREADY_SET;
1350                 }
1351
1352                 /*
1353                  * This would happen if you unplug and plug your card
1354                  * back in or if you add a new device for which the previously
1355                  * loaded card also agrees on the regulatory domain.
1356                  */
1357                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1358                     !regdom_changes(pending_request->alpha2))
1359                         return REG_REQ_ALREADY_SET;
1360
1361                 return REG_REQ_INTERSECT;
1362         case NL80211_REGDOM_SET_BY_USER:
1363                 if (reg_request_cell_base(pending_request))
1364                         return reg_ignore_cell_hint(pending_request);
1365
1366                 if (reg_request_cell_base(last_request))
1367                         return REG_REQ_IGNORE;
1368
1369                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1370                         return REG_REQ_INTERSECT;
1371                 /*
1372                  * If the user knows better the user should set the regdom
1373                  * to their country before the IE is picked up
1374                  */
1375                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1376                     last_request->intersect)
1377                         return REG_REQ_IGNORE;
1378                 /*
1379                  * Process user requests only after previous user/driver/core
1380                  * requests have been processed
1381                  */
1382                 if ((last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1383                      last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1384                      last_request->initiator == NL80211_REGDOM_SET_BY_USER) &&
1385                     regdom_changes(last_request->alpha2))
1386                         return REG_REQ_IGNORE;
1387
1388                 if (!regdom_changes(pending_request->alpha2))
1389                         return REG_REQ_ALREADY_SET;
1390
1391                 return REG_REQ_OK;
1392         }
1393
1394         return REG_REQ_IGNORE;
1395 }
1396
1397 static void reg_set_request_processed(void)
1398 {
1399         bool need_more_processing = false;
1400
1401         last_request->processed = true;
1402
1403         spin_lock(&reg_requests_lock);
1404         if (!list_empty(&reg_requests_list))
1405                 need_more_processing = true;
1406         spin_unlock(&reg_requests_lock);
1407
1408         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1409                 cancel_delayed_work(&reg_timeout);
1410
1411         if (need_more_processing)
1412                 schedule_work(&reg_work);
1413 }
1414
1415 /**
1416  * __regulatory_hint - hint to the wireless core a regulatory domain
1417  * @wiphy: if the hint comes from country information from an AP, this
1418  *      is required to be set to the wiphy that received the information
1419  * @pending_request: the regulatory request currently being processed
1420  *
1421  * The Wireless subsystem can use this function to hint to the wireless core
1422  * what it believes should be the current regulatory domain.
1423  *
1424  * Returns one of the different reg request treatment values.
1425  *
1426  * Caller must hold &reg_mutex
1427  */
1428 static enum reg_request_treatment
1429 __regulatory_hint(struct wiphy *wiphy,
1430                   struct regulatory_request *pending_request)
1431 {
1432         const struct ieee80211_regdomain *regd;
1433         bool intersect = false;
1434         enum reg_request_treatment treatment;
1435
1436         treatment = get_reg_request_treatment(wiphy, pending_request);
1437
1438         switch (treatment) {
1439         case REG_REQ_INTERSECT:
1440                 if (pending_request->initiator ==
1441                     NL80211_REGDOM_SET_BY_DRIVER) {
1442                         regd = reg_copy_regd(get_cfg80211_regdom());
1443                         if (IS_ERR(regd)) {
1444                                 kfree(pending_request);
1445                                 return PTR_ERR(regd);
1446                         }
1447                         rcu_assign_pointer(wiphy->regd, regd);
1448                 }
1449                 intersect = true;
1450                 break;
1451         case REG_REQ_OK:
1452                 break;
1453         default:
1454                 /*
1455                  * If the regulatory domain being requested by the
1456                  * driver has already been set just copy it to the
1457                  * wiphy
1458                  */
1459                 if (treatment == REG_REQ_ALREADY_SET &&
1460                     pending_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
1461                         regd = reg_copy_regd(get_cfg80211_regdom());
1462                         if (IS_ERR(regd)) {
1463                                 kfree(pending_request);
1464                                 return REG_REQ_IGNORE;
1465                         }
1466                         treatment = REG_REQ_ALREADY_SET;
1467                         rcu_assign_pointer(wiphy->regd, regd);
1468                         goto new_request;
1469                 }
1470                 kfree(pending_request);
1471                 return treatment;
1472         }
1473
1474 new_request:
1475         if (last_request != &core_request_world)
1476                 kfree(last_request);
1477
1478         last_request = pending_request;
1479         last_request->intersect = intersect;
1480         last_request->processed = false;
1481
1482         pending_request = NULL;
1483
1484         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1485                 user_alpha2[0] = last_request->alpha2[0];
1486                 user_alpha2[1] = last_request->alpha2[1];
1487         }
1488
1489         /* When r == REG_REQ_INTERSECT we do need to call CRDA */
1490         if (treatment != REG_REQ_OK && treatment != REG_REQ_INTERSECT) {
1491                 /*
1492                  * Since CRDA will not be called in this case as we already
1493                  * have applied the requested regulatory domain before we just
1494                  * inform userspace we have processed the request
1495                  */
1496                 if (treatment == REG_REQ_ALREADY_SET) {
1497                         nl80211_send_reg_change_event(last_request);
1498                         reg_set_request_processed();
1499                 }
1500                 return treatment;
1501         }
1502
1503         if (call_crda(last_request->alpha2))
1504                 return REG_REQ_IGNORE;
1505         return REG_REQ_OK;
1506 }
1507
1508 /* This processes *all* regulatory hints */
1509 static void reg_process_hint(struct regulatory_request *reg_request,
1510                              enum nl80211_reg_initiator reg_initiator)
1511 {
1512         struct wiphy *wiphy = NULL;
1513
1514         if (WARN_ON(!reg_request->alpha2))
1515                 return;
1516
1517         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1518                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1519
1520         if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER && !wiphy) {
1521                 kfree(reg_request);
1522                 return;
1523         }
1524
1525         switch (__regulatory_hint(wiphy, reg_request)) {
1526         case REG_REQ_ALREADY_SET:
1527                 /* This is required so that the orig_* parameters are saved */
1528                 if (wiphy && wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1529                         wiphy_update_regulatory(wiphy, reg_initiator);
1530                 break;
1531         default:
1532                 if (reg_initiator == NL80211_REGDOM_SET_BY_USER)
1533                         schedule_delayed_work(&reg_timeout,
1534                                               msecs_to_jiffies(3142));
1535                 break;
1536         }
1537 }
1538
1539 /*
1540  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1541  * Regulatory hints come on a first come first serve basis and we
1542  * must process each one atomically.
1543  */
1544 static void reg_process_pending_hints(void)
1545 {
1546         struct regulatory_request *reg_request;
1547
1548         mutex_lock(&cfg80211_mutex);
1549         mutex_lock(&reg_mutex);
1550
1551         /* When last_request->processed becomes true this will be rescheduled */
1552         if (last_request && !last_request->processed) {
1553                 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1554                 goto out;
1555         }
1556
1557         spin_lock(&reg_requests_lock);
1558
1559         if (list_empty(&reg_requests_list)) {
1560                 spin_unlock(&reg_requests_lock);
1561                 goto out;
1562         }
1563
1564         reg_request = list_first_entry(&reg_requests_list,
1565                                        struct regulatory_request,
1566                                        list);
1567         list_del_init(&reg_request->list);
1568
1569         spin_unlock(&reg_requests_lock);
1570
1571         reg_process_hint(reg_request, reg_request->initiator);
1572
1573 out:
1574         mutex_unlock(&reg_mutex);
1575         mutex_unlock(&cfg80211_mutex);
1576 }
1577
1578 /* Processes beacon hints -- this has nothing to do with country IEs */
1579 static void reg_process_pending_beacon_hints(void)
1580 {
1581         struct cfg80211_registered_device *rdev;
1582         struct reg_beacon *pending_beacon, *tmp;
1583
1584         /*
1585          * No need to hold the reg_mutex here as we just touch wiphys
1586          * and do not read or access regulatory variables.
1587          */
1588         mutex_lock(&cfg80211_mutex);
1589
1590         /* This goes through the _pending_ beacon list */
1591         spin_lock_bh(&reg_pending_beacons_lock);
1592
1593         list_for_each_entry_safe(pending_beacon, tmp,
1594                                  &reg_pending_beacons, list) {
1595                 list_del_init(&pending_beacon->list);
1596
1597                 /* Applies the beacon hint to current wiphys */
1598                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1599                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1600
1601                 /* Remembers the beacon hint for new wiphys or reg changes */
1602                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1603         }
1604
1605         spin_unlock_bh(&reg_pending_beacons_lock);
1606         mutex_unlock(&cfg80211_mutex);
1607 }
1608
1609 static void reg_todo(struct work_struct *work)
1610 {
1611         reg_process_pending_hints();
1612         reg_process_pending_beacon_hints();
1613 }
1614
1615 static void queue_regulatory_request(struct regulatory_request *request)
1616 {
1617         request->alpha2[0] = toupper(request->alpha2[0]);
1618         request->alpha2[1] = toupper(request->alpha2[1]);
1619
1620         spin_lock(&reg_requests_lock);
1621         list_add_tail(&request->list, &reg_requests_list);
1622         spin_unlock(&reg_requests_lock);
1623
1624         schedule_work(&reg_work);
1625 }
1626
1627 /*
1628  * Core regulatory hint -- happens during cfg80211_init()
1629  * and when we restore regulatory settings.
1630  */
1631 static int regulatory_hint_core(const char *alpha2)
1632 {
1633         struct regulatory_request *request;
1634
1635         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1636         if (!request)
1637                 return -ENOMEM;
1638
1639         request->alpha2[0] = alpha2[0];
1640         request->alpha2[1] = alpha2[1];
1641         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1642
1643         queue_regulatory_request(request);
1644
1645         return 0;
1646 }
1647
1648 /* User hints */
1649 int regulatory_hint_user(const char *alpha2,
1650                          enum nl80211_user_reg_hint_type user_reg_hint_type)
1651 {
1652         struct regulatory_request *request;
1653
1654         if (WARN_ON(!alpha2))
1655                 return -EINVAL;
1656
1657         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1658         if (!request)
1659                 return -ENOMEM;
1660
1661         request->wiphy_idx = WIPHY_IDX_INVALID;
1662         request->alpha2[0] = alpha2[0];
1663         request->alpha2[1] = alpha2[1];
1664         request->initiator = NL80211_REGDOM_SET_BY_USER;
1665         request->user_reg_hint_type = user_reg_hint_type;
1666
1667         queue_regulatory_request(request);
1668
1669         return 0;
1670 }
1671
1672 /* Driver hints */
1673 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1674 {
1675         struct regulatory_request *request;
1676
1677         if (WARN_ON(!alpha2 || !wiphy))
1678                 return -EINVAL;
1679
1680         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1681         if (!request)
1682                 return -ENOMEM;
1683
1684         request->wiphy_idx = get_wiphy_idx(wiphy);
1685
1686         request->alpha2[0] = alpha2[0];
1687         request->alpha2[1] = alpha2[1];
1688         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1689
1690         queue_regulatory_request(request);
1691
1692         return 0;
1693 }
1694 EXPORT_SYMBOL(regulatory_hint);
1695
1696 /*
1697  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1698  * therefore cannot iterate over the rdev list here.
1699  */
1700 void regulatory_hint_11d(struct wiphy *wiphy, enum ieee80211_band band,
1701                          const u8 *country_ie, u8 country_ie_len)
1702 {
1703         char alpha2[2];
1704         enum environment_cap env = ENVIRON_ANY;
1705         struct regulatory_request *request;
1706
1707         mutex_lock(&reg_mutex);
1708
1709         if (unlikely(!last_request))
1710                 goto out;
1711
1712         /* IE len must be evenly divisible by 2 */
1713         if (country_ie_len & 0x01)
1714                 goto out;
1715
1716         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1717                 goto out;
1718
1719         alpha2[0] = country_ie[0];
1720         alpha2[1] = country_ie[1];
1721
1722         if (country_ie[2] == 'I')
1723                 env = ENVIRON_INDOOR;
1724         else if (country_ie[2] == 'O')
1725                 env = ENVIRON_OUTDOOR;
1726
1727         /*
1728          * We will run this only upon a successful connection on cfg80211.
1729          * We leave conflict resolution to the workqueue, where can hold
1730          * cfg80211_mutex.
1731          */
1732         if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1733             last_request->wiphy_idx != WIPHY_IDX_INVALID)
1734                 goto out;
1735
1736         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1737         if (!request)
1738                 goto out;
1739
1740         request->wiphy_idx = get_wiphy_idx(wiphy);
1741         request->alpha2[0] = alpha2[0];
1742         request->alpha2[1] = alpha2[1];
1743         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1744         request->country_ie_env = env;
1745
1746         queue_regulatory_request(request);
1747 out:
1748         mutex_unlock(&reg_mutex);
1749 }
1750
1751 static void restore_alpha2(char *alpha2, bool reset_user)
1752 {
1753         /* indicates there is no alpha2 to consider for restoration */
1754         alpha2[0] = '9';
1755         alpha2[1] = '7';
1756
1757         /* The user setting has precedence over the module parameter */
1758         if (is_user_regdom_saved()) {
1759                 /* Unless we're asked to ignore it and reset it */
1760                 if (reset_user) {
1761                         REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
1762                         user_alpha2[0] = '9';
1763                         user_alpha2[1] = '7';
1764
1765                         /*
1766                          * If we're ignoring user settings, we still need to
1767                          * check the module parameter to ensure we put things
1768                          * back as they were for a full restore.
1769                          */
1770                         if (!is_world_regdom(ieee80211_regdom)) {
1771                                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1772                                               ieee80211_regdom[0], ieee80211_regdom[1]);
1773                                 alpha2[0] = ieee80211_regdom[0];
1774                                 alpha2[1] = ieee80211_regdom[1];
1775                         }
1776                 } else {
1777                         REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
1778                                       user_alpha2[0], user_alpha2[1]);
1779                         alpha2[0] = user_alpha2[0];
1780                         alpha2[1] = user_alpha2[1];
1781                 }
1782         } else if (!is_world_regdom(ieee80211_regdom)) {
1783                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1784                               ieee80211_regdom[0], ieee80211_regdom[1]);
1785                 alpha2[0] = ieee80211_regdom[0];
1786                 alpha2[1] = ieee80211_regdom[1];
1787         } else
1788                 REG_DBG_PRINT("Restoring regulatory settings\n");
1789 }
1790
1791 static void restore_custom_reg_settings(struct wiphy *wiphy)
1792 {
1793         struct ieee80211_supported_band *sband;
1794         enum ieee80211_band band;
1795         struct ieee80211_channel *chan;
1796         int i;
1797
1798         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1799                 sband = wiphy->bands[band];
1800                 if (!sband)
1801                         continue;
1802                 for (i = 0; i < sband->n_channels; i++) {
1803                         chan = &sband->channels[i];
1804                         chan->flags = chan->orig_flags;
1805                         chan->max_antenna_gain = chan->orig_mag;
1806                         chan->max_power = chan->orig_mpwr;
1807                         chan->beacon_found = false;
1808                 }
1809         }
1810 }
1811
1812 /*
1813  * Restoring regulatory settings involves ingoring any
1814  * possibly stale country IE information and user regulatory
1815  * settings if so desired, this includes any beacon hints
1816  * learned as we could have traveled outside to another country
1817  * after disconnection. To restore regulatory settings we do
1818  * exactly what we did at bootup:
1819  *
1820  *   - send a core regulatory hint
1821  *   - send a user regulatory hint if applicable
1822  *
1823  * Device drivers that send a regulatory hint for a specific country
1824  * keep their own regulatory domain on wiphy->regd so that does does
1825  * not need to be remembered.
1826  */
1827 static void restore_regulatory_settings(bool reset_user)
1828 {
1829         char alpha2[2];
1830         char world_alpha2[2];
1831         struct reg_beacon *reg_beacon, *btmp;
1832         struct regulatory_request *reg_request, *tmp;
1833         LIST_HEAD(tmp_reg_req_list);
1834         struct cfg80211_registered_device *rdev;
1835
1836         mutex_lock(&cfg80211_mutex);
1837         mutex_lock(&reg_mutex);
1838
1839         reset_regdomains(true, cfg80211_world_regdom);
1840         restore_alpha2(alpha2, reset_user);
1841
1842         /*
1843          * If there's any pending requests we simply
1844          * stash them to a temporary pending queue and
1845          * add then after we've restored regulatory
1846          * settings.
1847          */
1848         spin_lock(&reg_requests_lock);
1849         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
1850                 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
1851                         continue;
1852                 list_move_tail(&reg_request->list, &tmp_reg_req_list);
1853         }
1854         spin_unlock(&reg_requests_lock);
1855
1856         /* Clear beacon hints */
1857         spin_lock_bh(&reg_pending_beacons_lock);
1858         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
1859                 list_del(&reg_beacon->list);
1860                 kfree(reg_beacon);
1861         }
1862         spin_unlock_bh(&reg_pending_beacons_lock);
1863
1864         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
1865                 list_del(&reg_beacon->list);
1866                 kfree(reg_beacon);
1867         }
1868
1869         /* First restore to the basic regulatory settings */
1870         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
1871         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
1872
1873         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1874                 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1875                         restore_custom_reg_settings(&rdev->wiphy);
1876         }
1877
1878         regulatory_hint_core(world_alpha2);
1879
1880         /*
1881          * This restores the ieee80211_regdom module parameter
1882          * preference or the last user requested regulatory
1883          * settings, user regulatory settings takes precedence.
1884          */
1885         if (is_an_alpha2(alpha2))
1886                 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
1887
1888         spin_lock(&reg_requests_lock);
1889         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
1890         spin_unlock(&reg_requests_lock);
1891
1892         mutex_unlock(&reg_mutex);
1893         mutex_unlock(&cfg80211_mutex);
1894
1895         REG_DBG_PRINT("Kicking the queue\n");
1896
1897         schedule_work(&reg_work);
1898 }
1899
1900 void regulatory_hint_disconnect(void)
1901 {
1902         REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
1903         restore_regulatory_settings(false);
1904 }
1905
1906 static bool freq_is_chan_12_13_14(u16 freq)
1907 {
1908         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1909             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1910             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1911                 return true;
1912         return false;
1913 }
1914
1915 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1916                                  struct ieee80211_channel *beacon_chan,
1917                                  gfp_t gfp)
1918 {
1919         struct reg_beacon *reg_beacon;
1920
1921         if (beacon_chan->beacon_found ||
1922             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
1923             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1924              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
1925                 return 0;
1926
1927         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1928         if (!reg_beacon)
1929                 return -ENOMEM;
1930
1931         REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
1932                       beacon_chan->center_freq,
1933                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
1934                       wiphy_name(wiphy));
1935
1936         memcpy(&reg_beacon->chan, beacon_chan,
1937                sizeof(struct ieee80211_channel));
1938
1939         /*
1940          * Since we can be called from BH or and non-BH context
1941          * we must use spin_lock_bh()
1942          */
1943         spin_lock_bh(&reg_pending_beacons_lock);
1944         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1945         spin_unlock_bh(&reg_pending_beacons_lock);
1946
1947         schedule_work(&reg_work);
1948
1949         return 0;
1950 }
1951
1952 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1953 {
1954         unsigned int i;
1955         const struct ieee80211_reg_rule *reg_rule = NULL;
1956         const struct ieee80211_freq_range *freq_range = NULL;
1957         const struct ieee80211_power_rule *power_rule = NULL;
1958
1959         pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1960
1961         for (i = 0; i < rd->n_reg_rules; i++) {
1962                 reg_rule = &rd->reg_rules[i];
1963                 freq_range = &reg_rule->freq_range;
1964                 power_rule = &reg_rule->power_rule;
1965
1966                 /*
1967                  * There may not be documentation for max antenna gain
1968                  * in certain regions
1969                  */
1970                 if (power_rule->max_antenna_gain)
1971                         pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1972                                 freq_range->start_freq_khz,
1973                                 freq_range->end_freq_khz,
1974                                 freq_range->max_bandwidth_khz,
1975                                 power_rule->max_antenna_gain,
1976                                 power_rule->max_eirp);
1977                 else
1978                         pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1979                                 freq_range->start_freq_khz,
1980                                 freq_range->end_freq_khz,
1981                                 freq_range->max_bandwidth_khz,
1982                                 power_rule->max_eirp);
1983         }
1984 }
1985
1986 bool reg_supported_dfs_region(u8 dfs_region)
1987 {
1988         switch (dfs_region) {
1989         case NL80211_DFS_UNSET:
1990         case NL80211_DFS_FCC:
1991         case NL80211_DFS_ETSI:
1992         case NL80211_DFS_JP:
1993                 return true;
1994         default:
1995                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
1996                               dfs_region);
1997                 return false;
1998         }
1999 }
2000
2001 static void print_dfs_region(u8 dfs_region)
2002 {
2003         if (!dfs_region)
2004                 return;
2005
2006         switch (dfs_region) {
2007         case NL80211_DFS_FCC:
2008                 pr_info(" DFS Master region FCC");
2009                 break;
2010         case NL80211_DFS_ETSI:
2011                 pr_info(" DFS Master region ETSI");
2012                 break;
2013         case NL80211_DFS_JP:
2014                 pr_info(" DFS Master region JP");
2015                 break;
2016         default:
2017                 pr_info(" DFS Master region Unknown");
2018                 break;
2019         }
2020 }
2021
2022 static void print_regdomain(const struct ieee80211_regdomain *rd)
2023 {
2024
2025         if (is_intersected_alpha2(rd->alpha2)) {
2026                 if (last_request->initiator ==
2027                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2028                         struct cfg80211_registered_device *rdev;
2029                         rdev = cfg80211_rdev_by_wiphy_idx(
2030                                 last_request->wiphy_idx);
2031                         if (rdev) {
2032                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2033                                         rdev->country_ie_alpha2[0],
2034                                         rdev->country_ie_alpha2[1]);
2035                         } else
2036                                 pr_info("Current regulatory domain intersected:\n");
2037                 } else
2038                         pr_info("Current regulatory domain intersected:\n");
2039         } else if (is_world_regdom(rd->alpha2)) {
2040                 pr_info("World regulatory domain updated:\n");
2041         } else {
2042                 if (is_unknown_alpha2(rd->alpha2))
2043                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2044                 else {
2045                         if (reg_request_cell_base(last_request))
2046                                 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2047                                         rd->alpha2[0], rd->alpha2[1]);
2048                         else
2049                                 pr_info("Regulatory domain changed to country: %c%c\n",
2050                                         rd->alpha2[0], rd->alpha2[1]);
2051                 }
2052         }
2053
2054         print_dfs_region(rd->dfs_region);
2055         print_rd_rules(rd);
2056 }
2057
2058 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2059 {
2060         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2061         print_rd_rules(rd);
2062 }
2063
2064 /* Takes ownership of rd only if it doesn't fail */
2065 static int __set_regdom(const struct ieee80211_regdomain *rd)
2066 {
2067         const struct ieee80211_regdomain *regd;
2068         const struct ieee80211_regdomain *intersected_rd = NULL;
2069         struct wiphy *request_wiphy;
2070
2071         /* Some basic sanity checks first */
2072
2073         assert_reg_lock();
2074
2075         if (!reg_is_valid_request(rd->alpha2))
2076                 return -EINVAL;
2077
2078         if (is_world_regdom(rd->alpha2)) {
2079                 update_world_regdomain(rd);
2080                 return 0;
2081         }
2082
2083         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2084             !is_unknown_alpha2(rd->alpha2))
2085                 return -EINVAL;
2086
2087         /*
2088          * Lets only bother proceeding on the same alpha2 if the current
2089          * rd is non static (it means CRDA was present and was used last)
2090          * and the pending request came in from a country IE
2091          */
2092         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2093                 /*
2094                  * If someone else asked us to change the rd lets only bother
2095                  * checking if the alpha2 changes if CRDA was already called
2096                  */
2097                 if (!regdom_changes(rd->alpha2))
2098                         return -EALREADY;
2099         }
2100
2101         /*
2102          * Now lets set the regulatory domain, update all driver channels
2103          * and finally inform them of what we have done, in case they want
2104          * to review or adjust their own settings based on their own
2105          * internal EEPROM data
2106          */
2107
2108         if (!is_valid_rd(rd)) {
2109                 pr_err("Invalid regulatory domain detected:\n");
2110                 print_regdomain_info(rd);
2111                 return -EINVAL;
2112         }
2113
2114         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2115         if (!request_wiphy &&
2116             (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2117              last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2118                 schedule_delayed_work(&reg_timeout, 0);
2119                 return -ENODEV;
2120         }
2121
2122         if (!last_request->intersect) {
2123                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2124                         reset_regdomains(false, rd);
2125                         return 0;
2126                 }
2127
2128                 /*
2129                  * For a driver hint, lets copy the regulatory domain the
2130                  * driver wanted to the wiphy to deal with conflicts
2131                  */
2132
2133                 /*
2134                  * Userspace could have sent two replies with only
2135                  * one kernel request.
2136                  */
2137                 if (request_wiphy->regd)
2138                         return -EALREADY;
2139
2140                 regd = reg_copy_regd(rd);
2141                 if (IS_ERR(regd))
2142                         return PTR_ERR(regd);
2143
2144                 rcu_assign_pointer(request_wiphy->regd, regd);
2145                 reset_regdomains(false, rd);
2146                 return 0;
2147         }
2148
2149         /* Intersection requires a bit more work */
2150
2151         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2152                 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2153                 if (!intersected_rd)
2154                         return -EINVAL;
2155
2156                 /*
2157                  * We can trash what CRDA provided now.
2158                  * However if a driver requested this specific regulatory
2159                  * domain we keep it for its private use
2160                  */
2161                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2162                         rcu_assign_pointer(request_wiphy->regd, rd);
2163                 else
2164                         kfree(rd);
2165
2166                 rd = NULL;
2167
2168                 reset_regdomains(false, intersected_rd);
2169
2170                 return 0;
2171         }
2172
2173         return -EINVAL;
2174 }
2175
2176
2177 /*
2178  * Use this call to set the current regulatory domain. Conflicts with
2179  * multiple drivers can be ironed out later. Caller must've already
2180  * kmalloc'd the rd structure.
2181  */
2182 int set_regdom(const struct ieee80211_regdomain *rd)
2183 {
2184         int r;
2185
2186         mutex_lock(&reg_mutex);
2187
2188         /* Note that this doesn't update the wiphys, this is done below */
2189         r = __set_regdom(rd);
2190         if (r) {
2191                 if (r == -EALREADY)
2192                         reg_set_request_processed();
2193
2194                 kfree(rd);
2195                 goto out;
2196         }
2197
2198         /* This would make this whole thing pointless */
2199         if (WARN_ON(!last_request->intersect &&
2200                     rd != get_cfg80211_regdom())) {
2201                 r = -EINVAL;
2202                 goto out;
2203         }
2204
2205         /* update all wiphys now with the new established regulatory domain */
2206         update_all_wiphy_regulatory(last_request->initiator);
2207
2208         print_regdomain(get_cfg80211_regdom());
2209
2210         nl80211_send_reg_change_event(last_request);
2211
2212         reg_set_request_processed();
2213
2214  out:
2215         mutex_unlock(&reg_mutex);
2216
2217         return r;
2218 }
2219
2220 #ifdef CONFIG_HOTPLUG
2221 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2222 {
2223         if (last_request && !last_request->processed) {
2224                 if (add_uevent_var(env, "COUNTRY=%c%c",
2225                                    last_request->alpha2[0],
2226                                    last_request->alpha2[1]))
2227                         return -ENOMEM;
2228         }
2229
2230         return 0;
2231 }
2232 #else
2233 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2234 {
2235         return -ENODEV;
2236 }
2237 #endif /* CONFIG_HOTPLUG */
2238
2239 void wiphy_regulatory_register(struct wiphy *wiphy)
2240 {
2241         mutex_lock(&reg_mutex);
2242
2243         if (!reg_dev_ignore_cell_hint(wiphy))
2244                 reg_num_devs_support_basehint++;
2245
2246         wiphy_update_regulatory(wiphy, NL80211_REGDOM_SET_BY_CORE);
2247
2248         mutex_unlock(&reg_mutex);
2249 }
2250
2251 /* Caller must hold cfg80211_mutex */
2252 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2253 {
2254         struct wiphy *request_wiphy = NULL;
2255
2256         mutex_lock(&reg_mutex);
2257
2258         if (!reg_dev_ignore_cell_hint(wiphy))
2259                 reg_num_devs_support_basehint--;
2260
2261         rcu_free_regdom(get_wiphy_regdom(wiphy));
2262         rcu_assign_pointer(wiphy->regd, NULL);
2263
2264         if (last_request)
2265                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2266
2267         if (!request_wiphy || request_wiphy != wiphy)
2268                 goto out;
2269
2270         last_request->wiphy_idx = WIPHY_IDX_INVALID;
2271         last_request->country_ie_env = ENVIRON_ANY;
2272 out:
2273         mutex_unlock(&reg_mutex);
2274 }
2275
2276 static void reg_timeout_work(struct work_struct *work)
2277 {
2278         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2279         restore_regulatory_settings(true);
2280 }
2281
2282 int __init regulatory_init(void)
2283 {
2284         int err = 0;
2285
2286         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2287         if (IS_ERR(reg_pdev))
2288                 return PTR_ERR(reg_pdev);
2289
2290         reg_pdev->dev.type = &reg_device_type;
2291
2292         spin_lock_init(&reg_requests_lock);
2293         spin_lock_init(&reg_pending_beacons_lock);
2294
2295         reg_regdb_size_check();
2296
2297         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2298
2299         user_alpha2[0] = '9';
2300         user_alpha2[1] = '7';
2301
2302         /* We always try to get an update for the static regdomain */
2303         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2304         if (err) {
2305                 if (err == -ENOMEM)
2306                         return err;
2307                 /*
2308                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2309                  * memory which is handled and propagated appropriately above
2310                  * but it can also fail during a netlink_broadcast() or during
2311                  * early boot for call_usermodehelper(). For now treat these
2312                  * errors as non-fatal.
2313                  */
2314                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2315         }
2316
2317         /*
2318          * Finally, if the user set the module parameter treat it
2319          * as a user hint.
2320          */
2321         if (!is_world_regdom(ieee80211_regdom))
2322                 regulatory_hint_user(ieee80211_regdom,
2323                                      NL80211_USER_REG_HINT_USER);
2324
2325         return 0;
2326 }
2327
2328 void regulatory_exit(void)
2329 {
2330         struct regulatory_request *reg_request, *tmp;
2331         struct reg_beacon *reg_beacon, *btmp;
2332
2333         cancel_work_sync(&reg_work);
2334         cancel_delayed_work_sync(&reg_timeout);
2335
2336         /* Lock to suppress warnings */
2337         mutex_lock(&reg_mutex);
2338         reset_regdomains(true, NULL);
2339         mutex_unlock(&reg_mutex);
2340
2341         dev_set_uevent_suppress(&reg_pdev->dev, true);
2342
2343         platform_device_unregister(reg_pdev);
2344
2345         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2346                 list_del(&reg_beacon->list);
2347                 kfree(reg_beacon);
2348         }
2349
2350         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2351                 list_del(&reg_beacon->list);
2352                 kfree(reg_beacon);
2353         }
2354
2355         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2356                 list_del(&reg_request->list);
2357                 kfree(reg_request);
2358         }
2359 }