sections: fix section conflicts in net
[linux-3.10.git] / net / ipv6 / ip6mr.c
1 /*
2  *      Linux IPv6 multicast routing support for BSD pim6sd
3  *      Based on net/ipv4/ipmr.c.
4  *
5  *      (c) 2004 Mickael Hoerdt, <hoerdt@clarinet.u-strasbg.fr>
6  *              LSIIT Laboratory, Strasbourg, France
7  *      (c) 2004 Jean-Philippe Andriot, <jean-philippe.andriot@6WIND.com>
8  *              6WIND, Paris, France
9  *      Copyright (C)2007,2008 USAGI/WIDE Project
10  *              YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
11  *
12  *      This program is free software; you can redistribute it and/or
13  *      modify it under the terms of the GNU General Public License
14  *      as published by the Free Software Foundation; either version
15  *      2 of the License, or (at your option) any later version.
16  *
17  */
18
19 #include <asm/uaccess.h>
20 #include <linux/types.h>
21 #include <linux/sched.h>
22 #include <linux/errno.h>
23 #include <linux/timer.h>
24 #include <linux/mm.h>
25 #include <linux/kernel.h>
26 #include <linux/fcntl.h>
27 #include <linux/stat.h>
28 #include <linux/socket.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/inetdevice.h>
32 #include <linux/proc_fs.h>
33 #include <linux/seq_file.h>
34 #include <linux/init.h>
35 #include <linux/slab.h>
36 #include <linux/compat.h>
37 #include <net/protocol.h>
38 #include <linux/skbuff.h>
39 #include <net/sock.h>
40 #include <net/raw.h>
41 #include <linux/notifier.h>
42 #include <linux/if_arp.h>
43 #include <net/checksum.h>
44 #include <net/netlink.h>
45 #include <net/fib_rules.h>
46
47 #include <net/ipv6.h>
48 #include <net/ip6_route.h>
49 #include <linux/mroute6.h>
50 #include <linux/pim.h>
51 #include <net/addrconf.h>
52 #include <linux/netfilter_ipv6.h>
53 #include <linux/export.h>
54 #include <net/ip6_checksum.h>
55
56 struct mr6_table {
57         struct list_head        list;
58 #ifdef CONFIG_NET_NS
59         struct net              *net;
60 #endif
61         u32                     id;
62         struct sock             *mroute6_sk;
63         struct timer_list       ipmr_expire_timer;
64         struct list_head        mfc6_unres_queue;
65         struct list_head        mfc6_cache_array[MFC6_LINES];
66         struct mif_device       vif6_table[MAXMIFS];
67         int                     maxvif;
68         atomic_t                cache_resolve_queue_len;
69         int                     mroute_do_assert;
70         int                     mroute_do_pim;
71 #ifdef CONFIG_IPV6_PIMSM_V2
72         int                     mroute_reg_vif_num;
73 #endif
74 };
75
76 struct ip6mr_rule {
77         struct fib_rule         common;
78 };
79
80 struct ip6mr_result {
81         struct mr6_table        *mrt;
82 };
83
84 /* Big lock, protecting vif table, mrt cache and mroute socket state.
85    Note that the changes are semaphored via rtnl_lock.
86  */
87
88 static DEFINE_RWLOCK(mrt_lock);
89
90 /*
91  *      Multicast router control variables
92  */
93
94 #define MIF_EXISTS(_mrt, _idx) ((_mrt)->vif6_table[_idx].dev != NULL)
95
96 /* Special spinlock for queue of unresolved entries */
97 static DEFINE_SPINLOCK(mfc_unres_lock);
98
99 /* We return to original Alan's scheme. Hash table of resolved
100    entries is changed only in process context and protected
101    with weak lock mrt_lock. Queue of unresolved entries is protected
102    with strong spinlock mfc_unres_lock.
103
104    In this case data path is free of exclusive locks at all.
105  */
106
107 static struct kmem_cache *mrt_cachep __read_mostly;
108
109 static struct mr6_table *ip6mr_new_table(struct net *net, u32 id);
110 static void ip6mr_free_table(struct mr6_table *mrt);
111
112 static int ip6_mr_forward(struct net *net, struct mr6_table *mrt,
113                           struct sk_buff *skb, struct mfc6_cache *cache);
114 static int ip6mr_cache_report(struct mr6_table *mrt, struct sk_buff *pkt,
115                               mifi_t mifi, int assert);
116 static int __ip6mr_fill_mroute(struct mr6_table *mrt, struct sk_buff *skb,
117                                struct mfc6_cache *c, struct rtmsg *rtm);
118 static int ip6mr_rtm_dumproute(struct sk_buff *skb,
119                                struct netlink_callback *cb);
120 static void mroute_clean_tables(struct mr6_table *mrt);
121 static void ipmr_expire_process(unsigned long arg);
122
123 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES
124 #define ip6mr_for_each_table(mrt, net) \
125         list_for_each_entry_rcu(mrt, &net->ipv6.mr6_tables, list)
126
127 static struct mr6_table *ip6mr_get_table(struct net *net, u32 id)
128 {
129         struct mr6_table *mrt;
130
131         ip6mr_for_each_table(mrt, net) {
132                 if (mrt->id == id)
133                         return mrt;
134         }
135         return NULL;
136 }
137
138 static int ip6mr_fib_lookup(struct net *net, struct flowi6 *flp6,
139                             struct mr6_table **mrt)
140 {
141         struct ip6mr_result res;
142         struct fib_lookup_arg arg = { .result = &res, };
143         int err;
144
145         err = fib_rules_lookup(net->ipv6.mr6_rules_ops,
146                                flowi6_to_flowi(flp6), 0, &arg);
147         if (err < 0)
148                 return err;
149         *mrt = res.mrt;
150         return 0;
151 }
152
153 static int ip6mr_rule_action(struct fib_rule *rule, struct flowi *flp,
154                              int flags, struct fib_lookup_arg *arg)
155 {
156         struct ip6mr_result *res = arg->result;
157         struct mr6_table *mrt;
158
159         switch (rule->action) {
160         case FR_ACT_TO_TBL:
161                 break;
162         case FR_ACT_UNREACHABLE:
163                 return -ENETUNREACH;
164         case FR_ACT_PROHIBIT:
165                 return -EACCES;
166         case FR_ACT_BLACKHOLE:
167         default:
168                 return -EINVAL;
169         }
170
171         mrt = ip6mr_get_table(rule->fr_net, rule->table);
172         if (mrt == NULL)
173                 return -EAGAIN;
174         res->mrt = mrt;
175         return 0;
176 }
177
178 static int ip6mr_rule_match(struct fib_rule *rule, struct flowi *flp, int flags)
179 {
180         return 1;
181 }
182
183 static const struct nla_policy ip6mr_rule_policy[FRA_MAX + 1] = {
184         FRA_GENERIC_POLICY,
185 };
186
187 static int ip6mr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
188                                 struct fib_rule_hdr *frh, struct nlattr **tb)
189 {
190         return 0;
191 }
192
193 static int ip6mr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
194                               struct nlattr **tb)
195 {
196         return 1;
197 }
198
199 static int ip6mr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
200                            struct fib_rule_hdr *frh)
201 {
202         frh->dst_len = 0;
203         frh->src_len = 0;
204         frh->tos     = 0;
205         return 0;
206 }
207
208 static const struct fib_rules_ops __net_initconst ip6mr_rules_ops_template = {
209         .family         = RTNL_FAMILY_IP6MR,
210         .rule_size      = sizeof(struct ip6mr_rule),
211         .addr_size      = sizeof(struct in6_addr),
212         .action         = ip6mr_rule_action,
213         .match          = ip6mr_rule_match,
214         .configure      = ip6mr_rule_configure,
215         .compare        = ip6mr_rule_compare,
216         .default_pref   = fib_default_rule_pref,
217         .fill           = ip6mr_rule_fill,
218         .nlgroup        = RTNLGRP_IPV6_RULE,
219         .policy         = ip6mr_rule_policy,
220         .owner          = THIS_MODULE,
221 };
222
223 static int __net_init ip6mr_rules_init(struct net *net)
224 {
225         struct fib_rules_ops *ops;
226         struct mr6_table *mrt;
227         int err;
228
229         ops = fib_rules_register(&ip6mr_rules_ops_template, net);
230         if (IS_ERR(ops))
231                 return PTR_ERR(ops);
232
233         INIT_LIST_HEAD(&net->ipv6.mr6_tables);
234
235         mrt = ip6mr_new_table(net, RT6_TABLE_DFLT);
236         if (mrt == NULL) {
237                 err = -ENOMEM;
238                 goto err1;
239         }
240
241         err = fib_default_rule_add(ops, 0x7fff, RT6_TABLE_DFLT, 0);
242         if (err < 0)
243                 goto err2;
244
245         net->ipv6.mr6_rules_ops = ops;
246         return 0;
247
248 err2:
249         kfree(mrt);
250 err1:
251         fib_rules_unregister(ops);
252         return err;
253 }
254
255 static void __net_exit ip6mr_rules_exit(struct net *net)
256 {
257         struct mr6_table *mrt, *next;
258
259         list_for_each_entry_safe(mrt, next, &net->ipv6.mr6_tables, list) {
260                 list_del(&mrt->list);
261                 ip6mr_free_table(mrt);
262         }
263         fib_rules_unregister(net->ipv6.mr6_rules_ops);
264 }
265 #else
266 #define ip6mr_for_each_table(mrt, net) \
267         for (mrt = net->ipv6.mrt6; mrt; mrt = NULL)
268
269 static struct mr6_table *ip6mr_get_table(struct net *net, u32 id)
270 {
271         return net->ipv6.mrt6;
272 }
273
274 static int ip6mr_fib_lookup(struct net *net, struct flowi6 *flp6,
275                             struct mr6_table **mrt)
276 {
277         *mrt = net->ipv6.mrt6;
278         return 0;
279 }
280
281 static int __net_init ip6mr_rules_init(struct net *net)
282 {
283         net->ipv6.mrt6 = ip6mr_new_table(net, RT6_TABLE_DFLT);
284         return net->ipv6.mrt6 ? 0 : -ENOMEM;
285 }
286
287 static void __net_exit ip6mr_rules_exit(struct net *net)
288 {
289         ip6mr_free_table(net->ipv6.mrt6);
290 }
291 #endif
292
293 static struct mr6_table *ip6mr_new_table(struct net *net, u32 id)
294 {
295         struct mr6_table *mrt;
296         unsigned int i;
297
298         mrt = ip6mr_get_table(net, id);
299         if (mrt != NULL)
300                 return mrt;
301
302         mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
303         if (mrt == NULL)
304                 return NULL;
305         mrt->id = id;
306         write_pnet(&mrt->net, net);
307
308         /* Forwarding cache */
309         for (i = 0; i < MFC6_LINES; i++)
310                 INIT_LIST_HEAD(&mrt->mfc6_cache_array[i]);
311
312         INIT_LIST_HEAD(&mrt->mfc6_unres_queue);
313
314         setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
315                     (unsigned long)mrt);
316
317 #ifdef CONFIG_IPV6_PIMSM_V2
318         mrt->mroute_reg_vif_num = -1;
319 #endif
320 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES
321         list_add_tail_rcu(&mrt->list, &net->ipv6.mr6_tables);
322 #endif
323         return mrt;
324 }
325
326 static void ip6mr_free_table(struct mr6_table *mrt)
327 {
328         del_timer(&mrt->ipmr_expire_timer);
329         mroute_clean_tables(mrt);
330         kfree(mrt);
331 }
332
333 #ifdef CONFIG_PROC_FS
334
335 struct ipmr_mfc_iter {
336         struct seq_net_private p;
337         struct mr6_table *mrt;
338         struct list_head *cache;
339         int ct;
340 };
341
342
343 static struct mfc6_cache *ipmr_mfc_seq_idx(struct net *net,
344                                            struct ipmr_mfc_iter *it, loff_t pos)
345 {
346         struct mr6_table *mrt = it->mrt;
347         struct mfc6_cache *mfc;
348
349         read_lock(&mrt_lock);
350         for (it->ct = 0; it->ct < MFC6_LINES; it->ct++) {
351                 it->cache = &mrt->mfc6_cache_array[it->ct];
352                 list_for_each_entry(mfc, it->cache, list)
353                         if (pos-- == 0)
354                                 return mfc;
355         }
356         read_unlock(&mrt_lock);
357
358         spin_lock_bh(&mfc_unres_lock);
359         it->cache = &mrt->mfc6_unres_queue;
360         list_for_each_entry(mfc, it->cache, list)
361                 if (pos-- == 0)
362                         return mfc;
363         spin_unlock_bh(&mfc_unres_lock);
364
365         it->cache = NULL;
366         return NULL;
367 }
368
369 /*
370  *      The /proc interfaces to multicast routing /proc/ip6_mr_cache /proc/ip6_mr_vif
371  */
372
373 struct ipmr_vif_iter {
374         struct seq_net_private p;
375         struct mr6_table *mrt;
376         int ct;
377 };
378
379 static struct mif_device *ip6mr_vif_seq_idx(struct net *net,
380                                             struct ipmr_vif_iter *iter,
381                                             loff_t pos)
382 {
383         struct mr6_table *mrt = iter->mrt;
384
385         for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
386                 if (!MIF_EXISTS(mrt, iter->ct))
387                         continue;
388                 if (pos-- == 0)
389                         return &mrt->vif6_table[iter->ct];
390         }
391         return NULL;
392 }
393
394 static void *ip6mr_vif_seq_start(struct seq_file *seq, loff_t *pos)
395         __acquires(mrt_lock)
396 {
397         struct ipmr_vif_iter *iter = seq->private;
398         struct net *net = seq_file_net(seq);
399         struct mr6_table *mrt;
400
401         mrt = ip6mr_get_table(net, RT6_TABLE_DFLT);
402         if (mrt == NULL)
403                 return ERR_PTR(-ENOENT);
404
405         iter->mrt = mrt;
406
407         read_lock(&mrt_lock);
408         return *pos ? ip6mr_vif_seq_idx(net, seq->private, *pos - 1)
409                 : SEQ_START_TOKEN;
410 }
411
412 static void *ip6mr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
413 {
414         struct ipmr_vif_iter *iter = seq->private;
415         struct net *net = seq_file_net(seq);
416         struct mr6_table *mrt = iter->mrt;
417
418         ++*pos;
419         if (v == SEQ_START_TOKEN)
420                 return ip6mr_vif_seq_idx(net, iter, 0);
421
422         while (++iter->ct < mrt->maxvif) {
423                 if (!MIF_EXISTS(mrt, iter->ct))
424                         continue;
425                 return &mrt->vif6_table[iter->ct];
426         }
427         return NULL;
428 }
429
430 static void ip6mr_vif_seq_stop(struct seq_file *seq, void *v)
431         __releases(mrt_lock)
432 {
433         read_unlock(&mrt_lock);
434 }
435
436 static int ip6mr_vif_seq_show(struct seq_file *seq, void *v)
437 {
438         struct ipmr_vif_iter *iter = seq->private;
439         struct mr6_table *mrt = iter->mrt;
440
441         if (v == SEQ_START_TOKEN) {
442                 seq_puts(seq,
443                          "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags\n");
444         } else {
445                 const struct mif_device *vif = v;
446                 const char *name = vif->dev ? vif->dev->name : "none";
447
448                 seq_printf(seq,
449                            "%2td %-10s %8ld %7ld  %8ld %7ld %05X\n",
450                            vif - mrt->vif6_table,
451                            name, vif->bytes_in, vif->pkt_in,
452                            vif->bytes_out, vif->pkt_out,
453                            vif->flags);
454         }
455         return 0;
456 }
457
458 static const struct seq_operations ip6mr_vif_seq_ops = {
459         .start = ip6mr_vif_seq_start,
460         .next  = ip6mr_vif_seq_next,
461         .stop  = ip6mr_vif_seq_stop,
462         .show  = ip6mr_vif_seq_show,
463 };
464
465 static int ip6mr_vif_open(struct inode *inode, struct file *file)
466 {
467         return seq_open_net(inode, file, &ip6mr_vif_seq_ops,
468                             sizeof(struct ipmr_vif_iter));
469 }
470
471 static const struct file_operations ip6mr_vif_fops = {
472         .owner   = THIS_MODULE,
473         .open    = ip6mr_vif_open,
474         .read    = seq_read,
475         .llseek  = seq_lseek,
476         .release = seq_release_net,
477 };
478
479 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
480 {
481         struct ipmr_mfc_iter *it = seq->private;
482         struct net *net = seq_file_net(seq);
483         struct mr6_table *mrt;
484
485         mrt = ip6mr_get_table(net, RT6_TABLE_DFLT);
486         if (mrt == NULL)
487                 return ERR_PTR(-ENOENT);
488
489         it->mrt = mrt;
490         return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
491                 : SEQ_START_TOKEN;
492 }
493
494 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
495 {
496         struct mfc6_cache *mfc = v;
497         struct ipmr_mfc_iter *it = seq->private;
498         struct net *net = seq_file_net(seq);
499         struct mr6_table *mrt = it->mrt;
500
501         ++*pos;
502
503         if (v == SEQ_START_TOKEN)
504                 return ipmr_mfc_seq_idx(net, seq->private, 0);
505
506         if (mfc->list.next != it->cache)
507                 return list_entry(mfc->list.next, struct mfc6_cache, list);
508
509         if (it->cache == &mrt->mfc6_unres_queue)
510                 goto end_of_list;
511
512         BUG_ON(it->cache != &mrt->mfc6_cache_array[it->ct]);
513
514         while (++it->ct < MFC6_LINES) {
515                 it->cache = &mrt->mfc6_cache_array[it->ct];
516                 if (list_empty(it->cache))
517                         continue;
518                 return list_first_entry(it->cache, struct mfc6_cache, list);
519         }
520
521         /* exhausted cache_array, show unresolved */
522         read_unlock(&mrt_lock);
523         it->cache = &mrt->mfc6_unres_queue;
524         it->ct = 0;
525
526         spin_lock_bh(&mfc_unres_lock);
527         if (!list_empty(it->cache))
528                 return list_first_entry(it->cache, struct mfc6_cache, list);
529
530  end_of_list:
531         spin_unlock_bh(&mfc_unres_lock);
532         it->cache = NULL;
533
534         return NULL;
535 }
536
537 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
538 {
539         struct ipmr_mfc_iter *it = seq->private;
540         struct mr6_table *mrt = it->mrt;
541
542         if (it->cache == &mrt->mfc6_unres_queue)
543                 spin_unlock_bh(&mfc_unres_lock);
544         else if (it->cache == mrt->mfc6_cache_array)
545                 read_unlock(&mrt_lock);
546 }
547
548 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
549 {
550         int n;
551
552         if (v == SEQ_START_TOKEN) {
553                 seq_puts(seq,
554                          "Group                            "
555                          "Origin                           "
556                          "Iif      Pkts  Bytes     Wrong  Oifs\n");
557         } else {
558                 const struct mfc6_cache *mfc = v;
559                 const struct ipmr_mfc_iter *it = seq->private;
560                 struct mr6_table *mrt = it->mrt;
561
562                 seq_printf(seq, "%pI6 %pI6 %-3hd",
563                            &mfc->mf6c_mcastgrp, &mfc->mf6c_origin,
564                            mfc->mf6c_parent);
565
566                 if (it->cache != &mrt->mfc6_unres_queue) {
567                         seq_printf(seq, " %8lu %8lu %8lu",
568                                    mfc->mfc_un.res.pkt,
569                                    mfc->mfc_un.res.bytes,
570                                    mfc->mfc_un.res.wrong_if);
571                         for (n = mfc->mfc_un.res.minvif;
572                              n < mfc->mfc_un.res.maxvif; n++) {
573                                 if (MIF_EXISTS(mrt, n) &&
574                                     mfc->mfc_un.res.ttls[n] < 255)
575                                         seq_printf(seq,
576                                                    " %2d:%-3d",
577                                                    n, mfc->mfc_un.res.ttls[n]);
578                         }
579                 } else {
580                         /* unresolved mfc_caches don't contain
581                          * pkt, bytes and wrong_if values
582                          */
583                         seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
584                 }
585                 seq_putc(seq, '\n');
586         }
587         return 0;
588 }
589
590 static const struct seq_operations ipmr_mfc_seq_ops = {
591         .start = ipmr_mfc_seq_start,
592         .next  = ipmr_mfc_seq_next,
593         .stop  = ipmr_mfc_seq_stop,
594         .show  = ipmr_mfc_seq_show,
595 };
596
597 static int ipmr_mfc_open(struct inode *inode, struct file *file)
598 {
599         return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
600                             sizeof(struct ipmr_mfc_iter));
601 }
602
603 static const struct file_operations ip6mr_mfc_fops = {
604         .owner   = THIS_MODULE,
605         .open    = ipmr_mfc_open,
606         .read    = seq_read,
607         .llseek  = seq_lseek,
608         .release = seq_release_net,
609 };
610 #endif
611
612 #ifdef CONFIG_IPV6_PIMSM_V2
613
614 static int pim6_rcv(struct sk_buff *skb)
615 {
616         struct pimreghdr *pim;
617         struct ipv6hdr   *encap;
618         struct net_device  *reg_dev = NULL;
619         struct net *net = dev_net(skb->dev);
620         struct mr6_table *mrt;
621         struct flowi6 fl6 = {
622                 .flowi6_iif     = skb->dev->ifindex,
623                 .flowi6_mark    = skb->mark,
624         };
625         int reg_vif_num;
626
627         if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(*encap)))
628                 goto drop;
629
630         pim = (struct pimreghdr *)skb_transport_header(skb);
631         if (pim->type != ((PIM_VERSION << 4) | PIM_REGISTER) ||
632             (pim->flags & PIM_NULL_REGISTER) ||
633             (csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr,
634                              sizeof(*pim), IPPROTO_PIM,
635                              csum_partial((void *)pim, sizeof(*pim), 0)) &&
636              csum_fold(skb_checksum(skb, 0, skb->len, 0))))
637                 goto drop;
638
639         /* check if the inner packet is destined to mcast group */
640         encap = (struct ipv6hdr *)(skb_transport_header(skb) +
641                                    sizeof(*pim));
642
643         if (!ipv6_addr_is_multicast(&encap->daddr) ||
644             encap->payload_len == 0 ||
645             ntohs(encap->payload_len) + sizeof(*pim) > skb->len)
646                 goto drop;
647
648         if (ip6mr_fib_lookup(net, &fl6, &mrt) < 0)
649                 goto drop;
650         reg_vif_num = mrt->mroute_reg_vif_num;
651
652         read_lock(&mrt_lock);
653         if (reg_vif_num >= 0)
654                 reg_dev = mrt->vif6_table[reg_vif_num].dev;
655         if (reg_dev)
656                 dev_hold(reg_dev);
657         read_unlock(&mrt_lock);
658
659         if (reg_dev == NULL)
660                 goto drop;
661
662         skb->mac_header = skb->network_header;
663         skb_pull(skb, (u8 *)encap - skb->data);
664         skb_reset_network_header(skb);
665         skb->protocol = htons(ETH_P_IPV6);
666         skb->ip_summed = CHECKSUM_NONE;
667         skb->pkt_type = PACKET_HOST;
668
669         skb_tunnel_rx(skb, reg_dev);
670
671         netif_rx(skb);
672
673         dev_put(reg_dev);
674         return 0;
675  drop:
676         kfree_skb(skb);
677         return 0;
678 }
679
680 static const struct inet6_protocol pim6_protocol = {
681         .handler        =       pim6_rcv,
682 };
683
684 /* Service routines creating virtual interfaces: PIMREG */
685
686 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb,
687                                       struct net_device *dev)
688 {
689         struct net *net = dev_net(dev);
690         struct mr6_table *mrt;
691         struct flowi6 fl6 = {
692                 .flowi6_oif     = dev->ifindex,
693                 .flowi6_iif     = skb->skb_iif,
694                 .flowi6_mark    = skb->mark,
695         };
696         int err;
697
698         err = ip6mr_fib_lookup(net, &fl6, &mrt);
699         if (err < 0) {
700                 kfree_skb(skb);
701                 return err;
702         }
703
704         read_lock(&mrt_lock);
705         dev->stats.tx_bytes += skb->len;
706         dev->stats.tx_packets++;
707         ip6mr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, MRT6MSG_WHOLEPKT);
708         read_unlock(&mrt_lock);
709         kfree_skb(skb);
710         return NETDEV_TX_OK;
711 }
712
713 static const struct net_device_ops reg_vif_netdev_ops = {
714         .ndo_start_xmit = reg_vif_xmit,
715 };
716
717 static void reg_vif_setup(struct net_device *dev)
718 {
719         dev->type               = ARPHRD_PIMREG;
720         dev->mtu                = 1500 - sizeof(struct ipv6hdr) - 8;
721         dev->flags              = IFF_NOARP;
722         dev->netdev_ops         = &reg_vif_netdev_ops;
723         dev->destructor         = free_netdev;
724         dev->features           |= NETIF_F_NETNS_LOCAL;
725 }
726
727 static struct net_device *ip6mr_reg_vif(struct net *net, struct mr6_table *mrt)
728 {
729         struct net_device *dev;
730         char name[IFNAMSIZ];
731
732         if (mrt->id == RT6_TABLE_DFLT)
733                 sprintf(name, "pim6reg");
734         else
735                 sprintf(name, "pim6reg%u", mrt->id);
736
737         dev = alloc_netdev(0, name, reg_vif_setup);
738         if (dev == NULL)
739                 return NULL;
740
741         dev_net_set(dev, net);
742
743         if (register_netdevice(dev)) {
744                 free_netdev(dev);
745                 return NULL;
746         }
747         dev->iflink = 0;
748
749         if (dev_open(dev))
750                 goto failure;
751
752         dev_hold(dev);
753         return dev;
754
755 failure:
756         /* allow the register to be completed before unregistering. */
757         rtnl_unlock();
758         rtnl_lock();
759
760         unregister_netdevice(dev);
761         return NULL;
762 }
763 #endif
764
765 /*
766  *      Delete a VIF entry
767  */
768
769 static int mif6_delete(struct mr6_table *mrt, int vifi, struct list_head *head)
770 {
771         struct mif_device *v;
772         struct net_device *dev;
773         struct inet6_dev *in6_dev;
774
775         if (vifi < 0 || vifi >= mrt->maxvif)
776                 return -EADDRNOTAVAIL;
777
778         v = &mrt->vif6_table[vifi];
779
780         write_lock_bh(&mrt_lock);
781         dev = v->dev;
782         v->dev = NULL;
783
784         if (!dev) {
785                 write_unlock_bh(&mrt_lock);
786                 return -EADDRNOTAVAIL;
787         }
788
789 #ifdef CONFIG_IPV6_PIMSM_V2
790         if (vifi == mrt->mroute_reg_vif_num)
791                 mrt->mroute_reg_vif_num = -1;
792 #endif
793
794         if (vifi + 1 == mrt->maxvif) {
795                 int tmp;
796                 for (tmp = vifi - 1; tmp >= 0; tmp--) {
797                         if (MIF_EXISTS(mrt, tmp))
798                                 break;
799                 }
800                 mrt->maxvif = tmp + 1;
801         }
802
803         write_unlock_bh(&mrt_lock);
804
805         dev_set_allmulti(dev, -1);
806
807         in6_dev = __in6_dev_get(dev);
808         if (in6_dev)
809                 in6_dev->cnf.mc_forwarding--;
810
811         if (v->flags & MIFF_REGISTER)
812                 unregister_netdevice_queue(dev, head);
813
814         dev_put(dev);
815         return 0;
816 }
817
818 static inline void ip6mr_cache_free(struct mfc6_cache *c)
819 {
820         kmem_cache_free(mrt_cachep, c);
821 }
822
823 /* Destroy an unresolved cache entry, killing queued skbs
824    and reporting error to netlink readers.
825  */
826
827 static void ip6mr_destroy_unres(struct mr6_table *mrt, struct mfc6_cache *c)
828 {
829         struct net *net = read_pnet(&mrt->net);
830         struct sk_buff *skb;
831
832         atomic_dec(&mrt->cache_resolve_queue_len);
833
834         while((skb = skb_dequeue(&c->mfc_un.unres.unresolved)) != NULL) {
835                 if (ipv6_hdr(skb)->version == 0) {
836                         struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct ipv6hdr));
837                         nlh->nlmsg_type = NLMSG_ERROR;
838                         nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
839                         skb_trim(skb, nlh->nlmsg_len);
840                         ((struct nlmsgerr *)NLMSG_DATA(nlh))->error = -ETIMEDOUT;
841                         rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
842                 } else
843                         kfree_skb(skb);
844         }
845
846         ip6mr_cache_free(c);
847 }
848
849
850 /* Timer process for all the unresolved queue. */
851
852 static void ipmr_do_expire_process(struct mr6_table *mrt)
853 {
854         unsigned long now = jiffies;
855         unsigned long expires = 10 * HZ;
856         struct mfc6_cache *c, *next;
857
858         list_for_each_entry_safe(c, next, &mrt->mfc6_unres_queue, list) {
859                 if (time_after(c->mfc_un.unres.expires, now)) {
860                         /* not yet... */
861                         unsigned long interval = c->mfc_un.unres.expires - now;
862                         if (interval < expires)
863                                 expires = interval;
864                         continue;
865                 }
866
867                 list_del(&c->list);
868                 ip6mr_destroy_unres(mrt, c);
869         }
870
871         if (!list_empty(&mrt->mfc6_unres_queue))
872                 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
873 }
874
875 static void ipmr_expire_process(unsigned long arg)
876 {
877         struct mr6_table *mrt = (struct mr6_table *)arg;
878
879         if (!spin_trylock(&mfc_unres_lock)) {
880                 mod_timer(&mrt->ipmr_expire_timer, jiffies + 1);
881                 return;
882         }
883
884         if (!list_empty(&mrt->mfc6_unres_queue))
885                 ipmr_do_expire_process(mrt);
886
887         spin_unlock(&mfc_unres_lock);
888 }
889
890 /* Fill oifs list. It is called under write locked mrt_lock. */
891
892 static void ip6mr_update_thresholds(struct mr6_table *mrt, struct mfc6_cache *cache,
893                                     unsigned char *ttls)
894 {
895         int vifi;
896
897         cache->mfc_un.res.minvif = MAXMIFS;
898         cache->mfc_un.res.maxvif = 0;
899         memset(cache->mfc_un.res.ttls, 255, MAXMIFS);
900
901         for (vifi = 0; vifi < mrt->maxvif; vifi++) {
902                 if (MIF_EXISTS(mrt, vifi) &&
903                     ttls[vifi] && ttls[vifi] < 255) {
904                         cache->mfc_un.res.ttls[vifi] = ttls[vifi];
905                         if (cache->mfc_un.res.minvif > vifi)
906                                 cache->mfc_un.res.minvif = vifi;
907                         if (cache->mfc_un.res.maxvif <= vifi)
908                                 cache->mfc_un.res.maxvif = vifi + 1;
909                 }
910         }
911 }
912
913 static int mif6_add(struct net *net, struct mr6_table *mrt,
914                     struct mif6ctl *vifc, int mrtsock)
915 {
916         int vifi = vifc->mif6c_mifi;
917         struct mif_device *v = &mrt->vif6_table[vifi];
918         struct net_device *dev;
919         struct inet6_dev *in6_dev;
920         int err;
921
922         /* Is vif busy ? */
923         if (MIF_EXISTS(mrt, vifi))
924                 return -EADDRINUSE;
925
926         switch (vifc->mif6c_flags) {
927 #ifdef CONFIG_IPV6_PIMSM_V2
928         case MIFF_REGISTER:
929                 /*
930                  * Special Purpose VIF in PIM
931                  * All the packets will be sent to the daemon
932                  */
933                 if (mrt->mroute_reg_vif_num >= 0)
934                         return -EADDRINUSE;
935                 dev = ip6mr_reg_vif(net, mrt);
936                 if (!dev)
937                         return -ENOBUFS;
938                 err = dev_set_allmulti(dev, 1);
939                 if (err) {
940                         unregister_netdevice(dev);
941                         dev_put(dev);
942                         return err;
943                 }
944                 break;
945 #endif
946         case 0:
947                 dev = dev_get_by_index(net, vifc->mif6c_pifi);
948                 if (!dev)
949                         return -EADDRNOTAVAIL;
950                 err = dev_set_allmulti(dev, 1);
951                 if (err) {
952                         dev_put(dev);
953                         return err;
954                 }
955                 break;
956         default:
957                 return -EINVAL;
958         }
959
960         in6_dev = __in6_dev_get(dev);
961         if (in6_dev)
962                 in6_dev->cnf.mc_forwarding++;
963
964         /*
965          *      Fill in the VIF structures
966          */
967         v->rate_limit = vifc->vifc_rate_limit;
968         v->flags = vifc->mif6c_flags;
969         if (!mrtsock)
970                 v->flags |= VIFF_STATIC;
971         v->threshold = vifc->vifc_threshold;
972         v->bytes_in = 0;
973         v->bytes_out = 0;
974         v->pkt_in = 0;
975         v->pkt_out = 0;
976         v->link = dev->ifindex;
977         if (v->flags & MIFF_REGISTER)
978                 v->link = dev->iflink;
979
980         /* And finish update writing critical data */
981         write_lock_bh(&mrt_lock);
982         v->dev = dev;
983 #ifdef CONFIG_IPV6_PIMSM_V2
984         if (v->flags & MIFF_REGISTER)
985                 mrt->mroute_reg_vif_num = vifi;
986 #endif
987         if (vifi + 1 > mrt->maxvif)
988                 mrt->maxvif = vifi + 1;
989         write_unlock_bh(&mrt_lock);
990         return 0;
991 }
992
993 static struct mfc6_cache *ip6mr_cache_find(struct mr6_table *mrt,
994                                            const struct in6_addr *origin,
995                                            const struct in6_addr *mcastgrp)
996 {
997         int line = MFC6_HASH(mcastgrp, origin);
998         struct mfc6_cache *c;
999
1000         list_for_each_entry(c, &mrt->mfc6_cache_array[line], list) {
1001                 if (ipv6_addr_equal(&c->mf6c_origin, origin) &&
1002                     ipv6_addr_equal(&c->mf6c_mcastgrp, mcastgrp))
1003                         return c;
1004         }
1005         return NULL;
1006 }
1007
1008 /*
1009  *      Allocate a multicast cache entry
1010  */
1011 static struct mfc6_cache *ip6mr_cache_alloc(void)
1012 {
1013         struct mfc6_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
1014         if (c == NULL)
1015                 return NULL;
1016         c->mfc_un.res.minvif = MAXMIFS;
1017         return c;
1018 }
1019
1020 static struct mfc6_cache *ip6mr_cache_alloc_unres(void)
1021 {
1022         struct mfc6_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
1023         if (c == NULL)
1024                 return NULL;
1025         skb_queue_head_init(&c->mfc_un.unres.unresolved);
1026         c->mfc_un.unres.expires = jiffies + 10 * HZ;
1027         return c;
1028 }
1029
1030 /*
1031  *      A cache entry has gone into a resolved state from queued
1032  */
1033
1034 static void ip6mr_cache_resolve(struct net *net, struct mr6_table *mrt,
1035                                 struct mfc6_cache *uc, struct mfc6_cache *c)
1036 {
1037         struct sk_buff *skb;
1038
1039         /*
1040          *      Play the pending entries through our router
1041          */
1042
1043         while((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
1044                 if (ipv6_hdr(skb)->version == 0) {
1045                         struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct ipv6hdr));
1046
1047                         if (__ip6mr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) {
1048                                 nlh->nlmsg_len = skb_tail_pointer(skb) - (u8 *)nlh;
1049                         } else {
1050                                 nlh->nlmsg_type = NLMSG_ERROR;
1051                                 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
1052                                 skb_trim(skb, nlh->nlmsg_len);
1053                                 ((struct nlmsgerr *)NLMSG_DATA(nlh))->error = -EMSGSIZE;
1054                         }
1055                         rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1056                 } else
1057                         ip6_mr_forward(net, mrt, skb, c);
1058         }
1059 }
1060
1061 /*
1062  *      Bounce a cache query up to pim6sd. We could use netlink for this but pim6sd
1063  *      expects the following bizarre scheme.
1064  *
1065  *      Called under mrt_lock.
1066  */
1067
1068 static int ip6mr_cache_report(struct mr6_table *mrt, struct sk_buff *pkt,
1069                               mifi_t mifi, int assert)
1070 {
1071         struct sk_buff *skb;
1072         struct mrt6msg *msg;
1073         int ret;
1074
1075 #ifdef CONFIG_IPV6_PIMSM_V2
1076         if (assert == MRT6MSG_WHOLEPKT)
1077                 skb = skb_realloc_headroom(pkt, -skb_network_offset(pkt)
1078                                                 +sizeof(*msg));
1079         else
1080 #endif
1081                 skb = alloc_skb(sizeof(struct ipv6hdr) + sizeof(*msg), GFP_ATOMIC);
1082
1083         if (!skb)
1084                 return -ENOBUFS;
1085
1086         /* I suppose that internal messages
1087          * do not require checksums */
1088
1089         skb->ip_summed = CHECKSUM_UNNECESSARY;
1090
1091 #ifdef CONFIG_IPV6_PIMSM_V2
1092         if (assert == MRT6MSG_WHOLEPKT) {
1093                 /* Ugly, but we have no choice with this interface.
1094                    Duplicate old header, fix length etc.
1095                    And all this only to mangle msg->im6_msgtype and
1096                    to set msg->im6_mbz to "mbz" :-)
1097                  */
1098                 skb_push(skb, -skb_network_offset(pkt));
1099
1100                 skb_push(skb, sizeof(*msg));
1101                 skb_reset_transport_header(skb);
1102                 msg = (struct mrt6msg *)skb_transport_header(skb);
1103                 msg->im6_mbz = 0;
1104                 msg->im6_msgtype = MRT6MSG_WHOLEPKT;
1105                 msg->im6_mif = mrt->mroute_reg_vif_num;
1106                 msg->im6_pad = 0;
1107                 msg->im6_src = ipv6_hdr(pkt)->saddr;
1108                 msg->im6_dst = ipv6_hdr(pkt)->daddr;
1109
1110                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1111         } else
1112 #endif
1113         {
1114         /*
1115          *      Copy the IP header
1116          */
1117
1118         skb_put(skb, sizeof(struct ipv6hdr));
1119         skb_reset_network_header(skb);
1120         skb_copy_to_linear_data(skb, ipv6_hdr(pkt), sizeof(struct ipv6hdr));
1121
1122         /*
1123          *      Add our header
1124          */
1125         skb_put(skb, sizeof(*msg));
1126         skb_reset_transport_header(skb);
1127         msg = (struct mrt6msg *)skb_transport_header(skb);
1128
1129         msg->im6_mbz = 0;
1130         msg->im6_msgtype = assert;
1131         msg->im6_mif = mifi;
1132         msg->im6_pad = 0;
1133         msg->im6_src = ipv6_hdr(pkt)->saddr;
1134         msg->im6_dst = ipv6_hdr(pkt)->daddr;
1135
1136         skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1137         skb->ip_summed = CHECKSUM_UNNECESSARY;
1138         }
1139
1140         if (mrt->mroute6_sk == NULL) {
1141                 kfree_skb(skb);
1142                 return -EINVAL;
1143         }
1144
1145         /*
1146          *      Deliver to user space multicast routing algorithms
1147          */
1148         ret = sock_queue_rcv_skb(mrt->mroute6_sk, skb);
1149         if (ret < 0) {
1150                 net_warn_ratelimited("mroute6: pending queue full, dropping entries\n");
1151                 kfree_skb(skb);
1152         }
1153
1154         return ret;
1155 }
1156
1157 /*
1158  *      Queue a packet for resolution. It gets locked cache entry!
1159  */
1160
1161 static int
1162 ip6mr_cache_unresolved(struct mr6_table *mrt, mifi_t mifi, struct sk_buff *skb)
1163 {
1164         bool found = false;
1165         int err;
1166         struct mfc6_cache *c;
1167
1168         spin_lock_bh(&mfc_unres_lock);
1169         list_for_each_entry(c, &mrt->mfc6_unres_queue, list) {
1170                 if (ipv6_addr_equal(&c->mf6c_mcastgrp, &ipv6_hdr(skb)->daddr) &&
1171                     ipv6_addr_equal(&c->mf6c_origin, &ipv6_hdr(skb)->saddr)) {
1172                         found = true;
1173                         break;
1174                 }
1175         }
1176
1177         if (!found) {
1178                 /*
1179                  *      Create a new entry if allowable
1180                  */
1181
1182                 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1183                     (c = ip6mr_cache_alloc_unres()) == NULL) {
1184                         spin_unlock_bh(&mfc_unres_lock);
1185
1186                         kfree_skb(skb);
1187                         return -ENOBUFS;
1188                 }
1189
1190                 /*
1191                  *      Fill in the new cache entry
1192                  */
1193                 c->mf6c_parent = -1;
1194                 c->mf6c_origin = ipv6_hdr(skb)->saddr;
1195                 c->mf6c_mcastgrp = ipv6_hdr(skb)->daddr;
1196
1197                 /*
1198                  *      Reflect first query at pim6sd
1199                  */
1200                 err = ip6mr_cache_report(mrt, skb, mifi, MRT6MSG_NOCACHE);
1201                 if (err < 0) {
1202                         /* If the report failed throw the cache entry
1203                            out - Brad Parker
1204                          */
1205                         spin_unlock_bh(&mfc_unres_lock);
1206
1207                         ip6mr_cache_free(c);
1208                         kfree_skb(skb);
1209                         return err;
1210                 }
1211
1212                 atomic_inc(&mrt->cache_resolve_queue_len);
1213                 list_add(&c->list, &mrt->mfc6_unres_queue);
1214
1215                 ipmr_do_expire_process(mrt);
1216         }
1217
1218         /*
1219          *      See if we can append the packet
1220          */
1221         if (c->mfc_un.unres.unresolved.qlen > 3) {
1222                 kfree_skb(skb);
1223                 err = -ENOBUFS;
1224         } else {
1225                 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1226                 err = 0;
1227         }
1228
1229         spin_unlock_bh(&mfc_unres_lock);
1230         return err;
1231 }
1232
1233 /*
1234  *      MFC6 cache manipulation by user space
1235  */
1236
1237 static int ip6mr_mfc_delete(struct mr6_table *mrt, struct mf6cctl *mfc)
1238 {
1239         int line;
1240         struct mfc6_cache *c, *next;
1241
1242         line = MFC6_HASH(&mfc->mf6cc_mcastgrp.sin6_addr, &mfc->mf6cc_origin.sin6_addr);
1243
1244         list_for_each_entry_safe(c, next, &mrt->mfc6_cache_array[line], list) {
1245                 if (ipv6_addr_equal(&c->mf6c_origin, &mfc->mf6cc_origin.sin6_addr) &&
1246                     ipv6_addr_equal(&c->mf6c_mcastgrp, &mfc->mf6cc_mcastgrp.sin6_addr)) {
1247                         write_lock_bh(&mrt_lock);
1248                         list_del(&c->list);
1249                         write_unlock_bh(&mrt_lock);
1250
1251                         ip6mr_cache_free(c);
1252                         return 0;
1253                 }
1254         }
1255         return -ENOENT;
1256 }
1257
1258 static int ip6mr_device_event(struct notifier_block *this,
1259                               unsigned long event, void *ptr)
1260 {
1261         struct net_device *dev = ptr;
1262         struct net *net = dev_net(dev);
1263         struct mr6_table *mrt;
1264         struct mif_device *v;
1265         int ct;
1266         LIST_HEAD(list);
1267
1268         if (event != NETDEV_UNREGISTER)
1269                 return NOTIFY_DONE;
1270
1271         ip6mr_for_each_table(mrt, net) {
1272                 v = &mrt->vif6_table[0];
1273                 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1274                         if (v->dev == dev)
1275                                 mif6_delete(mrt, ct, &list);
1276                 }
1277         }
1278         unregister_netdevice_many(&list);
1279
1280         return NOTIFY_DONE;
1281 }
1282
1283 static struct notifier_block ip6_mr_notifier = {
1284         .notifier_call = ip6mr_device_event
1285 };
1286
1287 /*
1288  *      Setup for IP multicast routing
1289  */
1290
1291 static int __net_init ip6mr_net_init(struct net *net)
1292 {
1293         int err;
1294
1295         err = ip6mr_rules_init(net);
1296         if (err < 0)
1297                 goto fail;
1298
1299 #ifdef CONFIG_PROC_FS
1300         err = -ENOMEM;
1301         if (!proc_net_fops_create(net, "ip6_mr_vif", 0, &ip6mr_vif_fops))
1302                 goto proc_vif_fail;
1303         if (!proc_net_fops_create(net, "ip6_mr_cache", 0, &ip6mr_mfc_fops))
1304                 goto proc_cache_fail;
1305 #endif
1306
1307         return 0;
1308
1309 #ifdef CONFIG_PROC_FS
1310 proc_cache_fail:
1311         proc_net_remove(net, "ip6_mr_vif");
1312 proc_vif_fail:
1313         ip6mr_rules_exit(net);
1314 #endif
1315 fail:
1316         return err;
1317 }
1318
1319 static void __net_exit ip6mr_net_exit(struct net *net)
1320 {
1321 #ifdef CONFIG_PROC_FS
1322         proc_net_remove(net, "ip6_mr_cache");
1323         proc_net_remove(net, "ip6_mr_vif");
1324 #endif
1325         ip6mr_rules_exit(net);
1326 }
1327
1328 static struct pernet_operations ip6mr_net_ops = {
1329         .init = ip6mr_net_init,
1330         .exit = ip6mr_net_exit,
1331 };
1332
1333 int __init ip6_mr_init(void)
1334 {
1335         int err;
1336
1337         mrt_cachep = kmem_cache_create("ip6_mrt_cache",
1338                                        sizeof(struct mfc6_cache),
1339                                        0, SLAB_HWCACHE_ALIGN,
1340                                        NULL);
1341         if (!mrt_cachep)
1342                 return -ENOMEM;
1343
1344         err = register_pernet_subsys(&ip6mr_net_ops);
1345         if (err)
1346                 goto reg_pernet_fail;
1347
1348         err = register_netdevice_notifier(&ip6_mr_notifier);
1349         if (err)
1350                 goto reg_notif_fail;
1351 #ifdef CONFIG_IPV6_PIMSM_V2
1352         if (inet6_add_protocol(&pim6_protocol, IPPROTO_PIM) < 0) {
1353                 pr_err("%s: can't add PIM protocol\n", __func__);
1354                 err = -EAGAIN;
1355                 goto add_proto_fail;
1356         }
1357 #endif
1358         rtnl_register(RTNL_FAMILY_IP6MR, RTM_GETROUTE, NULL,
1359                       ip6mr_rtm_dumproute, NULL);
1360         return 0;
1361 #ifdef CONFIG_IPV6_PIMSM_V2
1362 add_proto_fail:
1363         unregister_netdevice_notifier(&ip6_mr_notifier);
1364 #endif
1365 reg_notif_fail:
1366         unregister_pernet_subsys(&ip6mr_net_ops);
1367 reg_pernet_fail:
1368         kmem_cache_destroy(mrt_cachep);
1369         return err;
1370 }
1371
1372 void ip6_mr_cleanup(void)
1373 {
1374         unregister_netdevice_notifier(&ip6_mr_notifier);
1375         unregister_pernet_subsys(&ip6mr_net_ops);
1376         kmem_cache_destroy(mrt_cachep);
1377 }
1378
1379 static int ip6mr_mfc_add(struct net *net, struct mr6_table *mrt,
1380                          struct mf6cctl *mfc, int mrtsock)
1381 {
1382         bool found = false;
1383         int line;
1384         struct mfc6_cache *uc, *c;
1385         unsigned char ttls[MAXMIFS];
1386         int i;
1387
1388         if (mfc->mf6cc_parent >= MAXMIFS)
1389                 return -ENFILE;
1390
1391         memset(ttls, 255, MAXMIFS);
1392         for (i = 0; i < MAXMIFS; i++) {
1393                 if (IF_ISSET(i, &mfc->mf6cc_ifset))
1394                         ttls[i] = 1;
1395
1396         }
1397
1398         line = MFC6_HASH(&mfc->mf6cc_mcastgrp.sin6_addr, &mfc->mf6cc_origin.sin6_addr);
1399
1400         list_for_each_entry(c, &mrt->mfc6_cache_array[line], list) {
1401                 if (ipv6_addr_equal(&c->mf6c_origin, &mfc->mf6cc_origin.sin6_addr) &&
1402                     ipv6_addr_equal(&c->mf6c_mcastgrp, &mfc->mf6cc_mcastgrp.sin6_addr)) {
1403                         found = true;
1404                         break;
1405                 }
1406         }
1407
1408         if (found) {
1409                 write_lock_bh(&mrt_lock);
1410                 c->mf6c_parent = mfc->mf6cc_parent;
1411                 ip6mr_update_thresholds(mrt, c, ttls);
1412                 if (!mrtsock)
1413                         c->mfc_flags |= MFC_STATIC;
1414                 write_unlock_bh(&mrt_lock);
1415                 return 0;
1416         }
1417
1418         if (!ipv6_addr_is_multicast(&mfc->mf6cc_mcastgrp.sin6_addr))
1419                 return -EINVAL;
1420
1421         c = ip6mr_cache_alloc();
1422         if (c == NULL)
1423                 return -ENOMEM;
1424
1425         c->mf6c_origin = mfc->mf6cc_origin.sin6_addr;
1426         c->mf6c_mcastgrp = mfc->mf6cc_mcastgrp.sin6_addr;
1427         c->mf6c_parent = mfc->mf6cc_parent;
1428         ip6mr_update_thresholds(mrt, c, ttls);
1429         if (!mrtsock)
1430                 c->mfc_flags |= MFC_STATIC;
1431
1432         write_lock_bh(&mrt_lock);
1433         list_add(&c->list, &mrt->mfc6_cache_array[line]);
1434         write_unlock_bh(&mrt_lock);
1435
1436         /*
1437          *      Check to see if we resolved a queued list. If so we
1438          *      need to send on the frames and tidy up.
1439          */
1440         found = false;
1441         spin_lock_bh(&mfc_unres_lock);
1442         list_for_each_entry(uc, &mrt->mfc6_unres_queue, list) {
1443                 if (ipv6_addr_equal(&uc->mf6c_origin, &c->mf6c_origin) &&
1444                     ipv6_addr_equal(&uc->mf6c_mcastgrp, &c->mf6c_mcastgrp)) {
1445                         list_del(&uc->list);
1446                         atomic_dec(&mrt->cache_resolve_queue_len);
1447                         found = true;
1448                         break;
1449                 }
1450         }
1451         if (list_empty(&mrt->mfc6_unres_queue))
1452                 del_timer(&mrt->ipmr_expire_timer);
1453         spin_unlock_bh(&mfc_unres_lock);
1454
1455         if (found) {
1456                 ip6mr_cache_resolve(net, mrt, uc, c);
1457                 ip6mr_cache_free(uc);
1458         }
1459         return 0;
1460 }
1461
1462 /*
1463  *      Close the multicast socket, and clear the vif tables etc
1464  */
1465
1466 static void mroute_clean_tables(struct mr6_table *mrt)
1467 {
1468         int i;
1469         LIST_HEAD(list);
1470         struct mfc6_cache *c, *next;
1471
1472         /*
1473          *      Shut down all active vif entries
1474          */
1475         for (i = 0; i < mrt->maxvif; i++) {
1476                 if (!(mrt->vif6_table[i].flags & VIFF_STATIC))
1477                         mif6_delete(mrt, i, &list);
1478         }
1479         unregister_netdevice_many(&list);
1480
1481         /*
1482          *      Wipe the cache
1483          */
1484         for (i = 0; i < MFC6_LINES; i++) {
1485                 list_for_each_entry_safe(c, next, &mrt->mfc6_cache_array[i], list) {
1486                         if (c->mfc_flags & MFC_STATIC)
1487                                 continue;
1488                         write_lock_bh(&mrt_lock);
1489                         list_del(&c->list);
1490                         write_unlock_bh(&mrt_lock);
1491
1492                         ip6mr_cache_free(c);
1493                 }
1494         }
1495
1496         if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1497                 spin_lock_bh(&mfc_unres_lock);
1498                 list_for_each_entry_safe(c, next, &mrt->mfc6_unres_queue, list) {
1499                         list_del(&c->list);
1500                         ip6mr_destroy_unres(mrt, c);
1501                 }
1502                 spin_unlock_bh(&mfc_unres_lock);
1503         }
1504 }
1505
1506 static int ip6mr_sk_init(struct mr6_table *mrt, struct sock *sk)
1507 {
1508         int err = 0;
1509         struct net *net = sock_net(sk);
1510
1511         rtnl_lock();
1512         write_lock_bh(&mrt_lock);
1513         if (likely(mrt->mroute6_sk == NULL)) {
1514                 mrt->mroute6_sk = sk;
1515                 net->ipv6.devconf_all->mc_forwarding++;
1516         }
1517         else
1518                 err = -EADDRINUSE;
1519         write_unlock_bh(&mrt_lock);
1520
1521         rtnl_unlock();
1522
1523         return err;
1524 }
1525
1526 int ip6mr_sk_done(struct sock *sk)
1527 {
1528         int err = -EACCES;
1529         struct net *net = sock_net(sk);
1530         struct mr6_table *mrt;
1531
1532         rtnl_lock();
1533         ip6mr_for_each_table(mrt, net) {
1534                 if (sk == mrt->mroute6_sk) {
1535                         write_lock_bh(&mrt_lock);
1536                         mrt->mroute6_sk = NULL;
1537                         net->ipv6.devconf_all->mc_forwarding--;
1538                         write_unlock_bh(&mrt_lock);
1539
1540                         mroute_clean_tables(mrt);
1541                         err = 0;
1542                         break;
1543                 }
1544         }
1545         rtnl_unlock();
1546
1547         return err;
1548 }
1549
1550 struct sock *mroute6_socket(struct net *net, struct sk_buff *skb)
1551 {
1552         struct mr6_table *mrt;
1553         struct flowi6 fl6 = {
1554                 .flowi6_iif     = skb->skb_iif,
1555                 .flowi6_oif     = skb->dev->ifindex,
1556                 .flowi6_mark    = skb->mark,
1557         };
1558
1559         if (ip6mr_fib_lookup(net, &fl6, &mrt) < 0)
1560                 return NULL;
1561
1562         return mrt->mroute6_sk;
1563 }
1564
1565 /*
1566  *      Socket options and virtual interface manipulation. The whole
1567  *      virtual interface system is a complete heap, but unfortunately
1568  *      that's how BSD mrouted happens to think. Maybe one day with a proper
1569  *      MOSPF/PIM router set up we can clean this up.
1570  */
1571
1572 int ip6_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1573 {
1574         int ret;
1575         struct mif6ctl vif;
1576         struct mf6cctl mfc;
1577         mifi_t mifi;
1578         struct net *net = sock_net(sk);
1579         struct mr6_table *mrt;
1580
1581         mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT);
1582         if (mrt == NULL)
1583                 return -ENOENT;
1584
1585         if (optname != MRT6_INIT) {
1586                 if (sk != mrt->mroute6_sk && !capable(CAP_NET_ADMIN))
1587                         return -EACCES;
1588         }
1589
1590         switch (optname) {
1591         case MRT6_INIT:
1592                 if (sk->sk_type != SOCK_RAW ||
1593                     inet_sk(sk)->inet_num != IPPROTO_ICMPV6)
1594                         return -EOPNOTSUPP;
1595                 if (optlen < sizeof(int))
1596                         return -EINVAL;
1597
1598                 return ip6mr_sk_init(mrt, sk);
1599
1600         case MRT6_DONE:
1601                 return ip6mr_sk_done(sk);
1602
1603         case MRT6_ADD_MIF:
1604                 if (optlen < sizeof(vif))
1605                         return -EINVAL;
1606                 if (copy_from_user(&vif, optval, sizeof(vif)))
1607                         return -EFAULT;
1608                 if (vif.mif6c_mifi >= MAXMIFS)
1609                         return -ENFILE;
1610                 rtnl_lock();
1611                 ret = mif6_add(net, mrt, &vif, sk == mrt->mroute6_sk);
1612                 rtnl_unlock();
1613                 return ret;
1614
1615         case MRT6_DEL_MIF:
1616                 if (optlen < sizeof(mifi_t))
1617                         return -EINVAL;
1618                 if (copy_from_user(&mifi, optval, sizeof(mifi_t)))
1619                         return -EFAULT;
1620                 rtnl_lock();
1621                 ret = mif6_delete(mrt, mifi, NULL);
1622                 rtnl_unlock();
1623                 return ret;
1624
1625         /*
1626          *      Manipulate the forwarding caches. These live
1627          *      in a sort of kernel/user symbiosis.
1628          */
1629         case MRT6_ADD_MFC:
1630         case MRT6_DEL_MFC:
1631                 if (optlen < sizeof(mfc))
1632                         return -EINVAL;
1633                 if (copy_from_user(&mfc, optval, sizeof(mfc)))
1634                         return -EFAULT;
1635                 rtnl_lock();
1636                 if (optname == MRT6_DEL_MFC)
1637                         ret = ip6mr_mfc_delete(mrt, &mfc);
1638                 else
1639                         ret = ip6mr_mfc_add(net, mrt, &mfc, sk == mrt->mroute6_sk);
1640                 rtnl_unlock();
1641                 return ret;
1642
1643         /*
1644          *      Control PIM assert (to activate pim will activate assert)
1645          */
1646         case MRT6_ASSERT:
1647         {
1648                 int v;
1649                 if (get_user(v, (int __user *)optval))
1650                         return -EFAULT;
1651                 mrt->mroute_do_assert = !!v;
1652                 return 0;
1653         }
1654
1655 #ifdef CONFIG_IPV6_PIMSM_V2
1656         case MRT6_PIM:
1657         {
1658                 int v;
1659                 if (get_user(v, (int __user *)optval))
1660                         return -EFAULT;
1661                 v = !!v;
1662                 rtnl_lock();
1663                 ret = 0;
1664                 if (v != mrt->mroute_do_pim) {
1665                         mrt->mroute_do_pim = v;
1666                         mrt->mroute_do_assert = v;
1667                 }
1668                 rtnl_unlock();
1669                 return ret;
1670         }
1671
1672 #endif
1673 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES
1674         case MRT6_TABLE:
1675         {
1676                 u32 v;
1677
1678                 if (optlen != sizeof(u32))
1679                         return -EINVAL;
1680                 if (get_user(v, (u32 __user *)optval))
1681                         return -EFAULT;
1682                 if (sk == mrt->mroute6_sk)
1683                         return -EBUSY;
1684
1685                 rtnl_lock();
1686                 ret = 0;
1687                 if (!ip6mr_new_table(net, v))
1688                         ret = -ENOMEM;
1689                 raw6_sk(sk)->ip6mr_table = v;
1690                 rtnl_unlock();
1691                 return ret;
1692         }
1693 #endif
1694         /*
1695          *      Spurious command, or MRT6_VERSION which you cannot
1696          *      set.
1697          */
1698         default:
1699                 return -ENOPROTOOPT;
1700         }
1701 }
1702
1703 /*
1704  *      Getsock opt support for the multicast routing system.
1705  */
1706
1707 int ip6_mroute_getsockopt(struct sock *sk, int optname, char __user *optval,
1708                           int __user *optlen)
1709 {
1710         int olr;
1711         int val;
1712         struct net *net = sock_net(sk);
1713         struct mr6_table *mrt;
1714
1715         mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT);
1716         if (mrt == NULL)
1717                 return -ENOENT;
1718
1719         switch (optname) {
1720         case MRT6_VERSION:
1721                 val = 0x0305;
1722                 break;
1723 #ifdef CONFIG_IPV6_PIMSM_V2
1724         case MRT6_PIM:
1725                 val = mrt->mroute_do_pim;
1726                 break;
1727 #endif
1728         case MRT6_ASSERT:
1729                 val = mrt->mroute_do_assert;
1730                 break;
1731         default:
1732                 return -ENOPROTOOPT;
1733         }
1734
1735         if (get_user(olr, optlen))
1736                 return -EFAULT;
1737
1738         olr = min_t(int, olr, sizeof(int));
1739         if (olr < 0)
1740                 return -EINVAL;
1741
1742         if (put_user(olr, optlen))
1743                 return -EFAULT;
1744         if (copy_to_user(optval, &val, olr))
1745                 return -EFAULT;
1746         return 0;
1747 }
1748
1749 /*
1750  *      The IP multicast ioctl support routines.
1751  */
1752
1753 int ip6mr_ioctl(struct sock *sk, int cmd, void __user *arg)
1754 {
1755         struct sioc_sg_req6 sr;
1756         struct sioc_mif_req6 vr;
1757         struct mif_device *vif;
1758         struct mfc6_cache *c;
1759         struct net *net = sock_net(sk);
1760         struct mr6_table *mrt;
1761
1762         mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT);
1763         if (mrt == NULL)
1764                 return -ENOENT;
1765
1766         switch (cmd) {
1767         case SIOCGETMIFCNT_IN6:
1768                 if (copy_from_user(&vr, arg, sizeof(vr)))
1769                         return -EFAULT;
1770                 if (vr.mifi >= mrt->maxvif)
1771                         return -EINVAL;
1772                 read_lock(&mrt_lock);
1773                 vif = &mrt->vif6_table[vr.mifi];
1774                 if (MIF_EXISTS(mrt, vr.mifi)) {
1775                         vr.icount = vif->pkt_in;
1776                         vr.ocount = vif->pkt_out;
1777                         vr.ibytes = vif->bytes_in;
1778                         vr.obytes = vif->bytes_out;
1779                         read_unlock(&mrt_lock);
1780
1781                         if (copy_to_user(arg, &vr, sizeof(vr)))
1782                                 return -EFAULT;
1783                         return 0;
1784                 }
1785                 read_unlock(&mrt_lock);
1786                 return -EADDRNOTAVAIL;
1787         case SIOCGETSGCNT_IN6:
1788                 if (copy_from_user(&sr, arg, sizeof(sr)))
1789                         return -EFAULT;
1790
1791                 read_lock(&mrt_lock);
1792                 c = ip6mr_cache_find(mrt, &sr.src.sin6_addr, &sr.grp.sin6_addr);
1793                 if (c) {
1794                         sr.pktcnt = c->mfc_un.res.pkt;
1795                         sr.bytecnt = c->mfc_un.res.bytes;
1796                         sr.wrong_if = c->mfc_un.res.wrong_if;
1797                         read_unlock(&mrt_lock);
1798
1799                         if (copy_to_user(arg, &sr, sizeof(sr)))
1800                                 return -EFAULT;
1801                         return 0;
1802                 }
1803                 read_unlock(&mrt_lock);
1804                 return -EADDRNOTAVAIL;
1805         default:
1806                 return -ENOIOCTLCMD;
1807         }
1808 }
1809
1810 #ifdef CONFIG_COMPAT
1811 struct compat_sioc_sg_req6 {
1812         struct sockaddr_in6 src;
1813         struct sockaddr_in6 grp;
1814         compat_ulong_t pktcnt;
1815         compat_ulong_t bytecnt;
1816         compat_ulong_t wrong_if;
1817 };
1818
1819 struct compat_sioc_mif_req6 {
1820         mifi_t  mifi;
1821         compat_ulong_t icount;
1822         compat_ulong_t ocount;
1823         compat_ulong_t ibytes;
1824         compat_ulong_t obytes;
1825 };
1826
1827 int ip6mr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1828 {
1829         struct compat_sioc_sg_req6 sr;
1830         struct compat_sioc_mif_req6 vr;
1831         struct mif_device *vif;
1832         struct mfc6_cache *c;
1833         struct net *net = sock_net(sk);
1834         struct mr6_table *mrt;
1835
1836         mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT);
1837         if (mrt == NULL)
1838                 return -ENOENT;
1839
1840         switch (cmd) {
1841         case SIOCGETMIFCNT_IN6:
1842                 if (copy_from_user(&vr, arg, sizeof(vr)))
1843                         return -EFAULT;
1844                 if (vr.mifi >= mrt->maxvif)
1845                         return -EINVAL;
1846                 read_lock(&mrt_lock);
1847                 vif = &mrt->vif6_table[vr.mifi];
1848                 if (MIF_EXISTS(mrt, vr.mifi)) {
1849                         vr.icount = vif->pkt_in;
1850                         vr.ocount = vif->pkt_out;
1851                         vr.ibytes = vif->bytes_in;
1852                         vr.obytes = vif->bytes_out;
1853                         read_unlock(&mrt_lock);
1854
1855                         if (copy_to_user(arg, &vr, sizeof(vr)))
1856                                 return -EFAULT;
1857                         return 0;
1858                 }
1859                 read_unlock(&mrt_lock);
1860                 return -EADDRNOTAVAIL;
1861         case SIOCGETSGCNT_IN6:
1862                 if (copy_from_user(&sr, arg, sizeof(sr)))
1863                         return -EFAULT;
1864
1865                 read_lock(&mrt_lock);
1866                 c = ip6mr_cache_find(mrt, &sr.src.sin6_addr, &sr.grp.sin6_addr);
1867                 if (c) {
1868                         sr.pktcnt = c->mfc_un.res.pkt;
1869                         sr.bytecnt = c->mfc_un.res.bytes;
1870                         sr.wrong_if = c->mfc_un.res.wrong_if;
1871                         read_unlock(&mrt_lock);
1872
1873                         if (copy_to_user(arg, &sr, sizeof(sr)))
1874                                 return -EFAULT;
1875                         return 0;
1876                 }
1877                 read_unlock(&mrt_lock);
1878                 return -EADDRNOTAVAIL;
1879         default:
1880                 return -ENOIOCTLCMD;
1881         }
1882 }
1883 #endif
1884
1885 static inline int ip6mr_forward2_finish(struct sk_buff *skb)
1886 {
1887         IP6_INC_STATS_BH(dev_net(skb_dst(skb)->dev), ip6_dst_idev(skb_dst(skb)),
1888                          IPSTATS_MIB_OUTFORWDATAGRAMS);
1889         IP6_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), ip6_dst_idev(skb_dst(skb)),
1890                          IPSTATS_MIB_OUTOCTETS, skb->len);
1891         return dst_output(skb);
1892 }
1893
1894 /*
1895  *      Processing handlers for ip6mr_forward
1896  */
1897
1898 static int ip6mr_forward2(struct net *net, struct mr6_table *mrt,
1899                           struct sk_buff *skb, struct mfc6_cache *c, int vifi)
1900 {
1901         struct ipv6hdr *ipv6h;
1902         struct mif_device *vif = &mrt->vif6_table[vifi];
1903         struct net_device *dev;
1904         struct dst_entry *dst;
1905         struct flowi6 fl6;
1906
1907         if (vif->dev == NULL)
1908                 goto out_free;
1909
1910 #ifdef CONFIG_IPV6_PIMSM_V2
1911         if (vif->flags & MIFF_REGISTER) {
1912                 vif->pkt_out++;
1913                 vif->bytes_out += skb->len;
1914                 vif->dev->stats.tx_bytes += skb->len;
1915                 vif->dev->stats.tx_packets++;
1916                 ip6mr_cache_report(mrt, skb, vifi, MRT6MSG_WHOLEPKT);
1917                 goto out_free;
1918         }
1919 #endif
1920
1921         ipv6h = ipv6_hdr(skb);
1922
1923         fl6 = (struct flowi6) {
1924                 .flowi6_oif = vif->link,
1925                 .daddr = ipv6h->daddr,
1926         };
1927
1928         dst = ip6_route_output(net, NULL, &fl6);
1929         if (dst->error) {
1930                 dst_release(dst);
1931                 goto out_free;
1932         }
1933
1934         skb_dst_drop(skb);
1935         skb_dst_set(skb, dst);
1936
1937         /*
1938          * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1939          * not only before forwarding, but after forwarding on all output
1940          * interfaces. It is clear, if mrouter runs a multicasting
1941          * program, it should receive packets not depending to what interface
1942          * program is joined.
1943          * If we will not make it, the program will have to join on all
1944          * interfaces. On the other hand, multihoming host (or router, but
1945          * not mrouter) cannot join to more than one interface - it will
1946          * result in receiving multiple packets.
1947          */
1948         dev = vif->dev;
1949         skb->dev = dev;
1950         vif->pkt_out++;
1951         vif->bytes_out += skb->len;
1952
1953         /* We are about to write */
1954         /* XXX: extension headers? */
1955         if (skb_cow(skb, sizeof(*ipv6h) + LL_RESERVED_SPACE(dev)))
1956                 goto out_free;
1957
1958         ipv6h = ipv6_hdr(skb);
1959         ipv6h->hop_limit--;
1960
1961         IP6CB(skb)->flags |= IP6SKB_FORWARDED;
1962
1963         return NF_HOOK(NFPROTO_IPV6, NF_INET_FORWARD, skb, skb->dev, dev,
1964                        ip6mr_forward2_finish);
1965
1966 out_free:
1967         kfree_skb(skb);
1968         return 0;
1969 }
1970
1971 static int ip6mr_find_vif(struct mr6_table *mrt, struct net_device *dev)
1972 {
1973         int ct;
1974
1975         for (ct = mrt->maxvif - 1; ct >= 0; ct--) {
1976                 if (mrt->vif6_table[ct].dev == dev)
1977                         break;
1978         }
1979         return ct;
1980 }
1981
1982 static int ip6_mr_forward(struct net *net, struct mr6_table *mrt,
1983                           struct sk_buff *skb, struct mfc6_cache *cache)
1984 {
1985         int psend = -1;
1986         int vif, ct;
1987
1988         vif = cache->mf6c_parent;
1989         cache->mfc_un.res.pkt++;
1990         cache->mfc_un.res.bytes += skb->len;
1991
1992         /*
1993          * Wrong interface: drop packet and (maybe) send PIM assert.
1994          */
1995         if (mrt->vif6_table[vif].dev != skb->dev) {
1996                 int true_vifi;
1997
1998                 cache->mfc_un.res.wrong_if++;
1999                 true_vifi = ip6mr_find_vif(mrt, skb->dev);
2000
2001                 if (true_vifi >= 0 && mrt->mroute_do_assert &&
2002                     /* pimsm uses asserts, when switching from RPT to SPT,
2003                        so that we cannot check that packet arrived on an oif.
2004                        It is bad, but otherwise we would need to move pretty
2005                        large chunk of pimd to kernel. Ough... --ANK
2006                      */
2007                     (mrt->mroute_do_pim ||
2008                      cache->mfc_un.res.ttls[true_vifi] < 255) &&
2009                     time_after(jiffies,
2010                                cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
2011                         cache->mfc_un.res.last_assert = jiffies;
2012                         ip6mr_cache_report(mrt, skb, true_vifi, MRT6MSG_WRONGMIF);
2013                 }
2014                 goto dont_forward;
2015         }
2016
2017         mrt->vif6_table[vif].pkt_in++;
2018         mrt->vif6_table[vif].bytes_in += skb->len;
2019
2020         /*
2021          *      Forward the frame
2022          */
2023         for (ct = cache->mfc_un.res.maxvif - 1; ct >= cache->mfc_un.res.minvif; ct--) {
2024                 if (ipv6_hdr(skb)->hop_limit > cache->mfc_un.res.ttls[ct]) {
2025                         if (psend != -1) {
2026                                 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2027                                 if (skb2)
2028                                         ip6mr_forward2(net, mrt, skb2, cache, psend);
2029                         }
2030                         psend = ct;
2031                 }
2032         }
2033         if (psend != -1) {
2034                 ip6mr_forward2(net, mrt, skb, cache, psend);
2035                 return 0;
2036         }
2037
2038 dont_forward:
2039         kfree_skb(skb);
2040         return 0;
2041 }
2042
2043
2044 /*
2045  *      Multicast packets for forwarding arrive here
2046  */
2047
2048 int ip6_mr_input(struct sk_buff *skb)
2049 {
2050         struct mfc6_cache *cache;
2051         struct net *net = dev_net(skb->dev);
2052         struct mr6_table *mrt;
2053         struct flowi6 fl6 = {
2054                 .flowi6_iif     = skb->dev->ifindex,
2055                 .flowi6_mark    = skb->mark,
2056         };
2057         int err;
2058
2059         err = ip6mr_fib_lookup(net, &fl6, &mrt);
2060         if (err < 0) {
2061                 kfree_skb(skb);
2062                 return err;
2063         }
2064
2065         read_lock(&mrt_lock);
2066         cache = ip6mr_cache_find(mrt,
2067                                  &ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr);
2068
2069         /*
2070          *      No usable cache entry
2071          */
2072         if (cache == NULL) {
2073                 int vif;
2074
2075                 vif = ip6mr_find_vif(mrt, skb->dev);
2076                 if (vif >= 0) {
2077                         int err = ip6mr_cache_unresolved(mrt, vif, skb);
2078                         read_unlock(&mrt_lock);
2079
2080                         return err;
2081                 }
2082                 read_unlock(&mrt_lock);
2083                 kfree_skb(skb);
2084                 return -ENODEV;
2085         }
2086
2087         ip6_mr_forward(net, mrt, skb, cache);
2088
2089         read_unlock(&mrt_lock);
2090
2091         return 0;
2092 }
2093
2094
2095 static int __ip6mr_fill_mroute(struct mr6_table *mrt, struct sk_buff *skb,
2096                                struct mfc6_cache *c, struct rtmsg *rtm)
2097 {
2098         int ct;
2099         struct rtnexthop *nhp;
2100         u8 *b = skb_tail_pointer(skb);
2101         struct rtattr *mp_head;
2102
2103         /* If cache is unresolved, don't try to parse IIF and OIF */
2104         if (c->mf6c_parent >= MAXMIFS)
2105                 return -ENOENT;
2106
2107         if (MIF_EXISTS(mrt, c->mf6c_parent) &&
2108             nla_put_u32(skb, RTA_IIF, mrt->vif6_table[c->mf6c_parent].dev->ifindex) < 0)
2109                 return -EMSGSIZE;
2110
2111         mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0));
2112
2113         for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2114                 if (MIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2115                         if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
2116                                 goto rtattr_failure;
2117                         nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
2118                         nhp->rtnh_flags = 0;
2119                         nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2120                         nhp->rtnh_ifindex = mrt->vif6_table[ct].dev->ifindex;
2121                         nhp->rtnh_len = sizeof(*nhp);
2122                 }
2123         }
2124         mp_head->rta_type = RTA_MULTIPATH;
2125         mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head;
2126         rtm->rtm_type = RTN_MULTICAST;
2127         return 1;
2128
2129 rtattr_failure:
2130         nlmsg_trim(skb, b);
2131         return -EMSGSIZE;
2132 }
2133
2134 int ip6mr_get_route(struct net *net,
2135                     struct sk_buff *skb, struct rtmsg *rtm, int nowait)
2136 {
2137         int err;
2138         struct mr6_table *mrt;
2139         struct mfc6_cache *cache;
2140         struct rt6_info *rt = (struct rt6_info *)skb_dst(skb);
2141
2142         mrt = ip6mr_get_table(net, RT6_TABLE_DFLT);
2143         if (mrt == NULL)
2144                 return -ENOENT;
2145
2146         read_lock(&mrt_lock);
2147         cache = ip6mr_cache_find(mrt, &rt->rt6i_src.addr, &rt->rt6i_dst.addr);
2148
2149         if (!cache) {
2150                 struct sk_buff *skb2;
2151                 struct ipv6hdr *iph;
2152                 struct net_device *dev;
2153                 int vif;
2154
2155                 if (nowait) {
2156                         read_unlock(&mrt_lock);
2157                         return -EAGAIN;
2158                 }
2159
2160                 dev = skb->dev;
2161                 if (dev == NULL || (vif = ip6mr_find_vif(mrt, dev)) < 0) {
2162                         read_unlock(&mrt_lock);
2163                         return -ENODEV;
2164                 }
2165
2166                 /* really correct? */
2167                 skb2 = alloc_skb(sizeof(struct ipv6hdr), GFP_ATOMIC);
2168                 if (!skb2) {
2169                         read_unlock(&mrt_lock);
2170                         return -ENOMEM;
2171                 }
2172
2173                 skb_reset_transport_header(skb2);
2174
2175                 skb_put(skb2, sizeof(struct ipv6hdr));
2176                 skb_reset_network_header(skb2);
2177
2178                 iph = ipv6_hdr(skb2);
2179                 iph->version = 0;
2180                 iph->priority = 0;
2181                 iph->flow_lbl[0] = 0;
2182                 iph->flow_lbl[1] = 0;
2183                 iph->flow_lbl[2] = 0;
2184                 iph->payload_len = 0;
2185                 iph->nexthdr = IPPROTO_NONE;
2186                 iph->hop_limit = 0;
2187                 iph->saddr = rt->rt6i_src.addr;
2188                 iph->daddr = rt->rt6i_dst.addr;
2189
2190                 err = ip6mr_cache_unresolved(mrt, vif, skb2);
2191                 read_unlock(&mrt_lock);
2192
2193                 return err;
2194         }
2195
2196         if (!nowait && (rtm->rtm_flags&RTM_F_NOTIFY))
2197                 cache->mfc_flags |= MFC_NOTIFY;
2198
2199         err = __ip6mr_fill_mroute(mrt, skb, cache, rtm);
2200         read_unlock(&mrt_lock);
2201         return err;
2202 }
2203
2204 static int ip6mr_fill_mroute(struct mr6_table *mrt, struct sk_buff *skb,
2205                              u32 portid, u32 seq, struct mfc6_cache *c)
2206 {
2207         struct nlmsghdr *nlh;
2208         struct rtmsg *rtm;
2209
2210         nlh = nlmsg_put(skb, portid, seq, RTM_NEWROUTE, sizeof(*rtm), NLM_F_MULTI);
2211         if (nlh == NULL)
2212                 return -EMSGSIZE;
2213
2214         rtm = nlmsg_data(nlh);
2215         rtm->rtm_family   = RTNL_FAMILY_IPMR;
2216         rtm->rtm_dst_len  = 128;
2217         rtm->rtm_src_len  = 128;
2218         rtm->rtm_tos      = 0;
2219         rtm->rtm_table    = mrt->id;
2220         if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2221                 goto nla_put_failure;
2222         rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2223         rtm->rtm_protocol = RTPROT_UNSPEC;
2224         rtm->rtm_flags    = 0;
2225
2226         if (nla_put(skb, RTA_SRC, 16, &c->mf6c_origin) ||
2227             nla_put(skb, RTA_DST, 16, &c->mf6c_mcastgrp))
2228                 goto nla_put_failure;
2229         if (__ip6mr_fill_mroute(mrt, skb, c, rtm) < 0)
2230                 goto nla_put_failure;
2231
2232         return nlmsg_end(skb, nlh);
2233
2234 nla_put_failure:
2235         nlmsg_cancel(skb, nlh);
2236         return -EMSGSIZE;
2237 }
2238
2239 static int ip6mr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2240 {
2241         struct net *net = sock_net(skb->sk);
2242         struct mr6_table *mrt;
2243         struct mfc6_cache *mfc;
2244         unsigned int t = 0, s_t;
2245         unsigned int h = 0, s_h;
2246         unsigned int e = 0, s_e;
2247
2248         s_t = cb->args[0];
2249         s_h = cb->args[1];
2250         s_e = cb->args[2];
2251
2252         read_lock(&mrt_lock);
2253         ip6mr_for_each_table(mrt, net) {
2254                 if (t < s_t)
2255                         goto next_table;
2256                 if (t > s_t)
2257                         s_h = 0;
2258                 for (h = s_h; h < MFC6_LINES; h++) {
2259                         list_for_each_entry(mfc, &mrt->mfc6_cache_array[h], list) {
2260                                 if (e < s_e)
2261                                         goto next_entry;
2262                                 if (ip6mr_fill_mroute(mrt, skb,
2263                                                       NETLINK_CB(cb->skb).portid,
2264                                                       cb->nlh->nlmsg_seq,
2265                                                       mfc) < 0)
2266                                         goto done;
2267 next_entry:
2268                                 e++;
2269                         }
2270                         e = s_e = 0;
2271                 }
2272                 s_h = 0;
2273 next_table:
2274                 t++;
2275         }
2276 done:
2277         read_unlock(&mrt_lock);
2278
2279         cb->args[2] = e;
2280         cb->args[1] = h;
2281         cb->args[0] = t;
2282
2283         return skb->len;
2284 }