]> nv-tegra.nvidia Code Review - linux-3.10.git/blob - net/ipv4/tcp_ipv4.c
tcp: Tail loss probe (TLP)
[linux-3.10.git] / net / ipv4 / tcp_ipv4.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  *              IPv4 specific functions
9  *
10  *
11  *              code split from:
12  *              linux/ipv4/tcp.c
13  *              linux/ipv4/tcp_input.c
14  *              linux/ipv4/tcp_output.c
15  *
16  *              See tcp.c for author information
17  *
18  *      This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23
24 /*
25  * Changes:
26  *              David S. Miller :       New socket lookup architecture.
27  *                                      This code is dedicated to John Dyson.
28  *              David S. Miller :       Change semantics of established hash,
29  *                                      half is devoted to TIME_WAIT sockets
30  *                                      and the rest go in the other half.
31  *              Andi Kleen :            Add support for syncookies and fixed
32  *                                      some bugs: ip options weren't passed to
33  *                                      the TCP layer, missed a check for an
34  *                                      ACK bit.
35  *              Andi Kleen :            Implemented fast path mtu discovery.
36  *                                      Fixed many serious bugs in the
37  *                                      request_sock handling and moved
38  *                                      most of it into the af independent code.
39  *                                      Added tail drop and some other bugfixes.
40  *                                      Added new listen semantics.
41  *              Mike McLagan    :       Routing by source
42  *      Juan Jose Ciarlante:            ip_dynaddr bits
43  *              Andi Kleen:             various fixes.
44  *      Vitaly E. Lavrov        :       Transparent proxy revived after year
45  *                                      coma.
46  *      Andi Kleen              :       Fix new listen.
47  *      Andi Kleen              :       Fix accept error reporting.
48  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
49  *      Alexey Kuznetsov                allow both IPv4 and IPv6 sockets to bind
50  *                                      a single port at the same time.
51  */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95                                __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
97
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
100
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 {
103         return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104                                           ip_hdr(skb)->saddr,
105                                           tcp_hdr(skb)->dest,
106                                           tcp_hdr(skb)->source);
107 }
108
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111         const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112         struct tcp_sock *tp = tcp_sk(sk);
113
114         /* With PAWS, it is safe from the viewpoint
115            of data integrity. Even without PAWS it is safe provided sequence
116            spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118            Actually, the idea is close to VJ's one, only timestamp cache is
119            held not per host, but per port pair and TW bucket is used as state
120            holder.
121
122            If TW bucket has been already destroyed we fall back to VJ's scheme
123            and use initial timestamp retrieved from peer table.
124          */
125         if (tcptw->tw_ts_recent_stamp &&
126             (twp == NULL || (sysctl_tcp_tw_reuse &&
127                              get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128                 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129                 if (tp->write_seq == 0)
130                         tp->write_seq = 1;
131                 tp->rx_opt.ts_recent       = tcptw->tw_ts_recent;
132                 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133                 sock_hold(sktw);
134                 return 1;
135         }
136
137         return 0;
138 }
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141 /* This will initiate an outgoing connection. */
142 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
143 {
144         struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
145         struct inet_sock *inet = inet_sk(sk);
146         struct tcp_sock *tp = tcp_sk(sk);
147         __be16 orig_sport, orig_dport;
148         __be32 daddr, nexthop;
149         struct flowi4 *fl4;
150         struct rtable *rt;
151         int err;
152         struct ip_options_rcu *inet_opt;
153
154         if (addr_len < sizeof(struct sockaddr_in))
155                 return -EINVAL;
156
157         if (usin->sin_family != AF_INET)
158                 return -EAFNOSUPPORT;
159
160         nexthop = daddr = usin->sin_addr.s_addr;
161         inet_opt = rcu_dereference_protected(inet->inet_opt,
162                                              sock_owned_by_user(sk));
163         if (inet_opt && inet_opt->opt.srr) {
164                 if (!daddr)
165                         return -EINVAL;
166                 nexthop = inet_opt->opt.faddr;
167         }
168
169         orig_sport = inet->inet_sport;
170         orig_dport = usin->sin_port;
171         fl4 = &inet->cork.fl.u.ip4;
172         rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
173                               RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
174                               IPPROTO_TCP,
175                               orig_sport, orig_dport, sk, true);
176         if (IS_ERR(rt)) {
177                 err = PTR_ERR(rt);
178                 if (err == -ENETUNREACH)
179                         IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
180                 return err;
181         }
182
183         if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
184                 ip_rt_put(rt);
185                 return -ENETUNREACH;
186         }
187
188         if (!inet_opt || !inet_opt->opt.srr)
189                 daddr = fl4->daddr;
190
191         if (!inet->inet_saddr)
192                 inet->inet_saddr = fl4->saddr;
193         inet->inet_rcv_saddr = inet->inet_saddr;
194
195         if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
196                 /* Reset inherited state */
197                 tp->rx_opt.ts_recent       = 0;
198                 tp->rx_opt.ts_recent_stamp = 0;
199                 if (likely(!tp->repair))
200                         tp->write_seq      = 0;
201         }
202
203         if (tcp_death_row.sysctl_tw_recycle &&
204             !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
205                 tcp_fetch_timewait_stamp(sk, &rt->dst);
206
207         inet->inet_dport = usin->sin_port;
208         inet->inet_daddr = daddr;
209
210         inet_csk(sk)->icsk_ext_hdr_len = 0;
211         if (inet_opt)
212                 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
213
214         tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
215
216         /* Socket identity is still unknown (sport may be zero).
217          * However we set state to SYN-SENT and not releasing socket
218          * lock select source port, enter ourselves into the hash tables and
219          * complete initialization after this.
220          */
221         tcp_set_state(sk, TCP_SYN_SENT);
222         err = inet_hash_connect(&tcp_death_row, sk);
223         if (err)
224                 goto failure;
225
226         rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
227                                inet->inet_sport, inet->inet_dport, sk);
228         if (IS_ERR(rt)) {
229                 err = PTR_ERR(rt);
230                 rt = NULL;
231                 goto failure;
232         }
233         /* OK, now commit destination to socket.  */
234         sk->sk_gso_type = SKB_GSO_TCPV4;
235         sk_setup_caps(sk, &rt->dst);
236
237         if (!tp->write_seq && likely(!tp->repair))
238                 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
239                                                            inet->inet_daddr,
240                                                            inet->inet_sport,
241                                                            usin->sin_port);
242
243         inet->inet_id = tp->write_seq ^ jiffies;
244
245         err = tcp_connect(sk);
246
247         rt = NULL;
248         if (err)
249                 goto failure;
250
251         return 0;
252
253 failure:
254         /*
255          * This unhashes the socket and releases the local port,
256          * if necessary.
257          */
258         tcp_set_state(sk, TCP_CLOSE);
259         ip_rt_put(rt);
260         sk->sk_route_caps = 0;
261         inet->inet_dport = 0;
262         return err;
263 }
264 EXPORT_SYMBOL(tcp_v4_connect);
265
266 /*
267  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
268  * It can be called through tcp_release_cb() if socket was owned by user
269  * at the time tcp_v4_err() was called to handle ICMP message.
270  */
271 static void tcp_v4_mtu_reduced(struct sock *sk)
272 {
273         struct dst_entry *dst;
274         struct inet_sock *inet = inet_sk(sk);
275         u32 mtu = tcp_sk(sk)->mtu_info;
276
277         /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
278          * send out by Linux are always <576bytes so they should go through
279          * unfragmented).
280          */
281         if (sk->sk_state == TCP_LISTEN)
282                 return;
283
284         dst = inet_csk_update_pmtu(sk, mtu);
285         if (!dst)
286                 return;
287
288         /* Something is about to be wrong... Remember soft error
289          * for the case, if this connection will not able to recover.
290          */
291         if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
292                 sk->sk_err_soft = EMSGSIZE;
293
294         mtu = dst_mtu(dst);
295
296         if (inet->pmtudisc != IP_PMTUDISC_DONT &&
297             inet_csk(sk)->icsk_pmtu_cookie > mtu) {
298                 tcp_sync_mss(sk, mtu);
299
300                 /* Resend the TCP packet because it's
301                  * clear that the old packet has been
302                  * dropped. This is the new "fast" path mtu
303                  * discovery.
304                  */
305                 tcp_simple_retransmit(sk);
306         } /* else let the usual retransmit timer handle it */
307 }
308
309 static void do_redirect(struct sk_buff *skb, struct sock *sk)
310 {
311         struct dst_entry *dst = __sk_dst_check(sk, 0);
312
313         if (dst)
314                 dst->ops->redirect(dst, sk, skb);
315 }
316
317 /*
318  * This routine is called by the ICMP module when it gets some
319  * sort of error condition.  If err < 0 then the socket should
320  * be closed and the error returned to the user.  If err > 0
321  * it's just the icmp type << 8 | icmp code.  After adjustment
322  * header points to the first 8 bytes of the tcp header.  We need
323  * to find the appropriate port.
324  *
325  * The locking strategy used here is very "optimistic". When
326  * someone else accesses the socket the ICMP is just dropped
327  * and for some paths there is no check at all.
328  * A more general error queue to queue errors for later handling
329  * is probably better.
330  *
331  */
332
333 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
334 {
335         const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
336         struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
337         struct inet_connection_sock *icsk;
338         struct tcp_sock *tp;
339         struct inet_sock *inet;
340         const int type = icmp_hdr(icmp_skb)->type;
341         const int code = icmp_hdr(icmp_skb)->code;
342         struct sock *sk;
343         struct sk_buff *skb;
344         struct request_sock *req;
345         __u32 seq;
346         __u32 remaining;
347         int err;
348         struct net *net = dev_net(icmp_skb->dev);
349
350         if (icmp_skb->len < (iph->ihl << 2) + 8) {
351                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
352                 return;
353         }
354
355         sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
356                         iph->saddr, th->source, inet_iif(icmp_skb));
357         if (!sk) {
358                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
359                 return;
360         }
361         if (sk->sk_state == TCP_TIME_WAIT) {
362                 inet_twsk_put(inet_twsk(sk));
363                 return;
364         }
365
366         bh_lock_sock(sk);
367         /* If too many ICMPs get dropped on busy
368          * servers this needs to be solved differently.
369          * We do take care of PMTU discovery (RFC1191) special case :
370          * we can receive locally generated ICMP messages while socket is held.
371          */
372         if (sock_owned_by_user(sk)) {
373                 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
374                         NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
375         }
376         if (sk->sk_state == TCP_CLOSE)
377                 goto out;
378
379         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
380                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
381                 goto out;
382         }
383
384         icsk = inet_csk(sk);
385         tp = tcp_sk(sk);
386         req = tp->fastopen_rsk;
387         seq = ntohl(th->seq);
388         if (sk->sk_state != TCP_LISTEN &&
389             !between(seq, tp->snd_una, tp->snd_nxt) &&
390             (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
391                 /* For a Fast Open socket, allow seq to be snt_isn. */
392                 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
393                 goto out;
394         }
395
396         switch (type) {
397         case ICMP_REDIRECT:
398                 do_redirect(icmp_skb, sk);
399                 goto out;
400         case ICMP_SOURCE_QUENCH:
401                 /* Just silently ignore these. */
402                 goto out;
403         case ICMP_PARAMETERPROB:
404                 err = EPROTO;
405                 break;
406         case ICMP_DEST_UNREACH:
407                 if (code > NR_ICMP_UNREACH)
408                         goto out;
409
410                 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
411                         tp->mtu_info = info;
412                         if (!sock_owned_by_user(sk)) {
413                                 tcp_v4_mtu_reduced(sk);
414                         } else {
415                                 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
416                                         sock_hold(sk);
417                         }
418                         goto out;
419                 }
420
421                 err = icmp_err_convert[code].errno;
422                 /* check if icmp_skb allows revert of backoff
423                  * (see draft-zimmermann-tcp-lcd) */
424                 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
425                         break;
426                 if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
427                     !icsk->icsk_backoff)
428                         break;
429
430                 /* XXX (TFO) - revisit the following logic for TFO */
431
432                 if (sock_owned_by_user(sk))
433                         break;
434
435                 icsk->icsk_backoff--;
436                 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
437                         TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
438                 tcp_bound_rto(sk);
439
440                 skb = tcp_write_queue_head(sk);
441                 BUG_ON(!skb);
442
443                 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
444                                 tcp_time_stamp - TCP_SKB_CB(skb)->when);
445
446                 if (remaining) {
447                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
448                                                   remaining, TCP_RTO_MAX);
449                 } else {
450                         /* RTO revert clocked out retransmission.
451                          * Will retransmit now */
452                         tcp_retransmit_timer(sk);
453                 }
454
455                 break;
456         case ICMP_TIME_EXCEEDED:
457                 err = EHOSTUNREACH;
458                 break;
459         default:
460                 goto out;
461         }
462
463         /* XXX (TFO) - if it's a TFO socket and has been accepted, rather
464          * than following the TCP_SYN_RECV case and closing the socket,
465          * we ignore the ICMP error and keep trying like a fully established
466          * socket. Is this the right thing to do?
467          */
468         if (req && req->sk == NULL)
469                 goto out;
470
471         switch (sk->sk_state) {
472                 struct request_sock *req, **prev;
473         case TCP_LISTEN:
474                 if (sock_owned_by_user(sk))
475                         goto out;
476
477                 req = inet_csk_search_req(sk, &prev, th->dest,
478                                           iph->daddr, iph->saddr);
479                 if (!req)
480                         goto out;
481
482                 /* ICMPs are not backlogged, hence we cannot get
483                    an established socket here.
484                  */
485                 WARN_ON(req->sk);
486
487                 if (seq != tcp_rsk(req)->snt_isn) {
488                         NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
489                         goto out;
490                 }
491
492                 /*
493                  * Still in SYN_RECV, just remove it silently.
494                  * There is no good way to pass the error to the newly
495                  * created socket, and POSIX does not want network
496                  * errors returned from accept().
497                  */
498                 inet_csk_reqsk_queue_drop(sk, req, prev);
499                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
500                 goto out;
501
502         case TCP_SYN_SENT:
503         case TCP_SYN_RECV:  /* Cannot happen.
504                                It can f.e. if SYNs crossed,
505                                or Fast Open.
506                              */
507                 if (!sock_owned_by_user(sk)) {
508                         sk->sk_err = err;
509
510                         sk->sk_error_report(sk);
511
512                         tcp_done(sk);
513                 } else {
514                         sk->sk_err_soft = err;
515                 }
516                 goto out;
517         }
518
519         /* If we've already connected we will keep trying
520          * until we time out, or the user gives up.
521          *
522          * rfc1122 4.2.3.9 allows to consider as hard errors
523          * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
524          * but it is obsoleted by pmtu discovery).
525          *
526          * Note, that in modern internet, where routing is unreliable
527          * and in each dark corner broken firewalls sit, sending random
528          * errors ordered by their masters even this two messages finally lose
529          * their original sense (even Linux sends invalid PORT_UNREACHs)
530          *
531          * Now we are in compliance with RFCs.
532          *                                                      --ANK (980905)
533          */
534
535         inet = inet_sk(sk);
536         if (!sock_owned_by_user(sk) && inet->recverr) {
537                 sk->sk_err = err;
538                 sk->sk_error_report(sk);
539         } else  { /* Only an error on timeout */
540                 sk->sk_err_soft = err;
541         }
542
543 out:
544         bh_unlock_sock(sk);
545         sock_put(sk);
546 }
547
548 static void __tcp_v4_send_check(struct sk_buff *skb,
549                                 __be32 saddr, __be32 daddr)
550 {
551         struct tcphdr *th = tcp_hdr(skb);
552
553         if (skb->ip_summed == CHECKSUM_PARTIAL) {
554                 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
555                 skb->csum_start = skb_transport_header(skb) - skb->head;
556                 skb->csum_offset = offsetof(struct tcphdr, check);
557         } else {
558                 th->check = tcp_v4_check(skb->len, saddr, daddr,
559                                          csum_partial(th,
560                                                       th->doff << 2,
561                                                       skb->csum));
562         }
563 }
564
565 /* This routine computes an IPv4 TCP checksum. */
566 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
567 {
568         const struct inet_sock *inet = inet_sk(sk);
569
570         __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
571 }
572 EXPORT_SYMBOL(tcp_v4_send_check);
573
574 int tcp_v4_gso_send_check(struct sk_buff *skb)
575 {
576         const struct iphdr *iph;
577         struct tcphdr *th;
578
579         if (!pskb_may_pull(skb, sizeof(*th)))
580                 return -EINVAL;
581
582         iph = ip_hdr(skb);
583         th = tcp_hdr(skb);
584
585         th->check = 0;
586         skb->ip_summed = CHECKSUM_PARTIAL;
587         __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
588         return 0;
589 }
590
591 /*
592  *      This routine will send an RST to the other tcp.
593  *
594  *      Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
595  *                    for reset.
596  *      Answer: if a packet caused RST, it is not for a socket
597  *              existing in our system, if it is matched to a socket,
598  *              it is just duplicate segment or bug in other side's TCP.
599  *              So that we build reply only basing on parameters
600  *              arrived with segment.
601  *      Exception: precedence violation. We do not implement it in any case.
602  */
603
604 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
605 {
606         const struct tcphdr *th = tcp_hdr(skb);
607         struct {
608                 struct tcphdr th;
609 #ifdef CONFIG_TCP_MD5SIG
610                 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
611 #endif
612         } rep;
613         struct ip_reply_arg arg;
614 #ifdef CONFIG_TCP_MD5SIG
615         struct tcp_md5sig_key *key;
616         const __u8 *hash_location = NULL;
617         unsigned char newhash[16];
618         int genhash;
619         struct sock *sk1 = NULL;
620 #endif
621         struct net *net;
622
623         /* Never send a reset in response to a reset. */
624         if (th->rst)
625                 return;
626
627         if (skb_rtable(skb)->rt_type != RTN_LOCAL)
628                 return;
629
630         /* Swap the send and the receive. */
631         memset(&rep, 0, sizeof(rep));
632         rep.th.dest   = th->source;
633         rep.th.source = th->dest;
634         rep.th.doff   = sizeof(struct tcphdr) / 4;
635         rep.th.rst    = 1;
636
637         if (th->ack) {
638                 rep.th.seq = th->ack_seq;
639         } else {
640                 rep.th.ack = 1;
641                 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
642                                        skb->len - (th->doff << 2));
643         }
644
645         memset(&arg, 0, sizeof(arg));
646         arg.iov[0].iov_base = (unsigned char *)&rep;
647         arg.iov[0].iov_len  = sizeof(rep.th);
648
649 #ifdef CONFIG_TCP_MD5SIG
650         hash_location = tcp_parse_md5sig_option(th);
651         if (!sk && hash_location) {
652                 /*
653                  * active side is lost. Try to find listening socket through
654                  * source port, and then find md5 key through listening socket.
655                  * we are not loose security here:
656                  * Incoming packet is checked with md5 hash with finding key,
657                  * no RST generated if md5 hash doesn't match.
658                  */
659                 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
660                                              &tcp_hashinfo, ip_hdr(skb)->saddr,
661                                              th->source, ip_hdr(skb)->daddr,
662                                              ntohs(th->source), inet_iif(skb));
663                 /* don't send rst if it can't find key */
664                 if (!sk1)
665                         return;
666                 rcu_read_lock();
667                 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
668                                         &ip_hdr(skb)->saddr, AF_INET);
669                 if (!key)
670                         goto release_sk1;
671
672                 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
673                 if (genhash || memcmp(hash_location, newhash, 16) != 0)
674                         goto release_sk1;
675         } else {
676                 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
677                                              &ip_hdr(skb)->saddr,
678                                              AF_INET) : NULL;
679         }
680
681         if (key) {
682                 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
683                                    (TCPOPT_NOP << 16) |
684                                    (TCPOPT_MD5SIG << 8) |
685                                    TCPOLEN_MD5SIG);
686                 /* Update length and the length the header thinks exists */
687                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
688                 rep.th.doff = arg.iov[0].iov_len / 4;
689
690                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
691                                      key, ip_hdr(skb)->saddr,
692                                      ip_hdr(skb)->daddr, &rep.th);
693         }
694 #endif
695         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
696                                       ip_hdr(skb)->saddr, /* XXX */
697                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
698         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
699         arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
700         /* When socket is gone, all binding information is lost.
701          * routing might fail in this case. No choice here, if we choose to force
702          * input interface, we will misroute in case of asymmetric route.
703          */
704         if (sk)
705                 arg.bound_dev_if = sk->sk_bound_dev_if;
706
707         net = dev_net(skb_dst(skb)->dev);
708         arg.tos = ip_hdr(skb)->tos;
709         ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
710                               ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
711
712         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
713         TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
714
715 #ifdef CONFIG_TCP_MD5SIG
716 release_sk1:
717         if (sk1) {
718                 rcu_read_unlock();
719                 sock_put(sk1);
720         }
721 #endif
722 }
723
724 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
725    outside socket context is ugly, certainly. What can I do?
726  */
727
728 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
729                             u32 win, u32 tsval, u32 tsecr, int oif,
730                             struct tcp_md5sig_key *key,
731                             int reply_flags, u8 tos)
732 {
733         const struct tcphdr *th = tcp_hdr(skb);
734         struct {
735                 struct tcphdr th;
736                 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
737 #ifdef CONFIG_TCP_MD5SIG
738                            + (TCPOLEN_MD5SIG_ALIGNED >> 2)
739 #endif
740                         ];
741         } rep;
742         struct ip_reply_arg arg;
743         struct net *net = dev_net(skb_dst(skb)->dev);
744
745         memset(&rep.th, 0, sizeof(struct tcphdr));
746         memset(&arg, 0, sizeof(arg));
747
748         arg.iov[0].iov_base = (unsigned char *)&rep;
749         arg.iov[0].iov_len  = sizeof(rep.th);
750         if (tsecr) {
751                 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
752                                    (TCPOPT_TIMESTAMP << 8) |
753                                    TCPOLEN_TIMESTAMP);
754                 rep.opt[1] = htonl(tsval);
755                 rep.opt[2] = htonl(tsecr);
756                 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
757         }
758
759         /* Swap the send and the receive. */
760         rep.th.dest    = th->source;
761         rep.th.source  = th->dest;
762         rep.th.doff    = arg.iov[0].iov_len / 4;
763         rep.th.seq     = htonl(seq);
764         rep.th.ack_seq = htonl(ack);
765         rep.th.ack     = 1;
766         rep.th.window  = htons(win);
767
768 #ifdef CONFIG_TCP_MD5SIG
769         if (key) {
770                 int offset = (tsecr) ? 3 : 0;
771
772                 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
773                                           (TCPOPT_NOP << 16) |
774                                           (TCPOPT_MD5SIG << 8) |
775                                           TCPOLEN_MD5SIG);
776                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
777                 rep.th.doff = arg.iov[0].iov_len/4;
778
779                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
780                                     key, ip_hdr(skb)->saddr,
781                                     ip_hdr(skb)->daddr, &rep.th);
782         }
783 #endif
784         arg.flags = reply_flags;
785         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
786                                       ip_hdr(skb)->saddr, /* XXX */
787                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
788         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
789         if (oif)
790                 arg.bound_dev_if = oif;
791         arg.tos = tos;
792         ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
793                               ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
794
795         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
796 }
797
798 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
799 {
800         struct inet_timewait_sock *tw = inet_twsk(sk);
801         struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
802
803         tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
804                         tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
805                         tcp_time_stamp + tcptw->tw_ts_offset,
806                         tcptw->tw_ts_recent,
807                         tw->tw_bound_dev_if,
808                         tcp_twsk_md5_key(tcptw),
809                         tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
810                         tw->tw_tos
811                         );
812
813         inet_twsk_put(tw);
814 }
815
816 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
817                                   struct request_sock *req)
818 {
819         /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
820          * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
821          */
822         tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
823                         tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
824                         tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
825                         tcp_time_stamp,
826                         req->ts_recent,
827                         0,
828                         tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
829                                           AF_INET),
830                         inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
831                         ip_hdr(skb)->tos);
832 }
833
834 /*
835  *      Send a SYN-ACK after having received a SYN.
836  *      This still operates on a request_sock only, not on a big
837  *      socket.
838  */
839 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
840                               struct request_sock *req,
841                               struct request_values *rvp,
842                               u16 queue_mapping,
843                               bool nocache)
844 {
845         const struct inet_request_sock *ireq = inet_rsk(req);
846         struct flowi4 fl4;
847         int err = -1;
848         struct sk_buff * skb;
849
850         /* First, grab a route. */
851         if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
852                 return -1;
853
854         skb = tcp_make_synack(sk, dst, req, rvp, NULL);
855
856         if (skb) {
857                 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
858
859                 skb_set_queue_mapping(skb, queue_mapping);
860                 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
861                                             ireq->rmt_addr,
862                                             ireq->opt);
863                 err = net_xmit_eval(err);
864                 if (!tcp_rsk(req)->snt_synack && !err)
865                         tcp_rsk(req)->snt_synack = tcp_time_stamp;
866         }
867
868         return err;
869 }
870
871 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
872                              struct request_values *rvp)
873 {
874         int res = tcp_v4_send_synack(sk, NULL, req, rvp, 0, false);
875
876         if (!res)
877                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
878         return res;
879 }
880
881 /*
882  *      IPv4 request_sock destructor.
883  */
884 static void tcp_v4_reqsk_destructor(struct request_sock *req)
885 {
886         kfree(inet_rsk(req)->opt);
887 }
888
889 /*
890  * Return true if a syncookie should be sent
891  */
892 bool tcp_syn_flood_action(struct sock *sk,
893                          const struct sk_buff *skb,
894                          const char *proto)
895 {
896         const char *msg = "Dropping request";
897         bool want_cookie = false;
898         struct listen_sock *lopt;
899
900
901
902 #ifdef CONFIG_SYN_COOKIES
903         if (sysctl_tcp_syncookies) {
904                 msg = "Sending cookies";
905                 want_cookie = true;
906                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
907         } else
908 #endif
909                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
910
911         lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
912         if (!lopt->synflood_warned) {
913                 lopt->synflood_warned = 1;
914                 pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
915                         proto, ntohs(tcp_hdr(skb)->dest), msg);
916         }
917         return want_cookie;
918 }
919 EXPORT_SYMBOL(tcp_syn_flood_action);
920
921 /*
922  * Save and compile IPv4 options into the request_sock if needed.
923  */
924 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
925 {
926         const struct ip_options *opt = &(IPCB(skb)->opt);
927         struct ip_options_rcu *dopt = NULL;
928
929         if (opt && opt->optlen) {
930                 int opt_size = sizeof(*dopt) + opt->optlen;
931
932                 dopt = kmalloc(opt_size, GFP_ATOMIC);
933                 if (dopt) {
934                         if (ip_options_echo(&dopt->opt, skb)) {
935                                 kfree(dopt);
936                                 dopt = NULL;
937                         }
938                 }
939         }
940         return dopt;
941 }
942
943 #ifdef CONFIG_TCP_MD5SIG
944 /*
945  * RFC2385 MD5 checksumming requires a mapping of
946  * IP address->MD5 Key.
947  * We need to maintain these in the sk structure.
948  */
949
950 /* Find the Key structure for an address.  */
951 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
952                                          const union tcp_md5_addr *addr,
953                                          int family)
954 {
955         struct tcp_sock *tp = tcp_sk(sk);
956         struct tcp_md5sig_key *key;
957         unsigned int size = sizeof(struct in_addr);
958         struct tcp_md5sig_info *md5sig;
959
960         /* caller either holds rcu_read_lock() or socket lock */
961         md5sig = rcu_dereference_check(tp->md5sig_info,
962                                        sock_owned_by_user(sk) ||
963                                        lockdep_is_held(&sk->sk_lock.slock));
964         if (!md5sig)
965                 return NULL;
966 #if IS_ENABLED(CONFIG_IPV6)
967         if (family == AF_INET6)
968                 size = sizeof(struct in6_addr);
969 #endif
970         hlist_for_each_entry_rcu(key, &md5sig->head, node) {
971                 if (key->family != family)
972                         continue;
973                 if (!memcmp(&key->addr, addr, size))
974                         return key;
975         }
976         return NULL;
977 }
978 EXPORT_SYMBOL(tcp_md5_do_lookup);
979
980 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
981                                          struct sock *addr_sk)
982 {
983         union tcp_md5_addr *addr;
984
985         addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
986         return tcp_md5_do_lookup(sk, addr, AF_INET);
987 }
988 EXPORT_SYMBOL(tcp_v4_md5_lookup);
989
990 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
991                                                       struct request_sock *req)
992 {
993         union tcp_md5_addr *addr;
994
995         addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
996         return tcp_md5_do_lookup(sk, addr, AF_INET);
997 }
998
999 /* This can be called on a newly created socket, from other files */
1000 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1001                    int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
1002 {
1003         /* Add Key to the list */
1004         struct tcp_md5sig_key *key;
1005         struct tcp_sock *tp = tcp_sk(sk);
1006         struct tcp_md5sig_info *md5sig;
1007
1008         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1009         if (key) {
1010                 /* Pre-existing entry - just update that one. */
1011                 memcpy(key->key, newkey, newkeylen);
1012                 key->keylen = newkeylen;
1013                 return 0;
1014         }
1015
1016         md5sig = rcu_dereference_protected(tp->md5sig_info,
1017                                            sock_owned_by_user(sk));
1018         if (!md5sig) {
1019                 md5sig = kmalloc(sizeof(*md5sig), gfp);
1020                 if (!md5sig)
1021                         return -ENOMEM;
1022
1023                 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1024                 INIT_HLIST_HEAD(&md5sig->head);
1025                 rcu_assign_pointer(tp->md5sig_info, md5sig);
1026         }
1027
1028         key = sock_kmalloc(sk, sizeof(*key), gfp);
1029         if (!key)
1030                 return -ENOMEM;
1031         if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1032                 sock_kfree_s(sk, key, sizeof(*key));
1033                 return -ENOMEM;
1034         }
1035
1036         memcpy(key->key, newkey, newkeylen);
1037         key->keylen = newkeylen;
1038         key->family = family;
1039         memcpy(&key->addr, addr,
1040                (family == AF_INET6) ? sizeof(struct in6_addr) :
1041                                       sizeof(struct in_addr));
1042         hlist_add_head_rcu(&key->node, &md5sig->head);
1043         return 0;
1044 }
1045 EXPORT_SYMBOL(tcp_md5_do_add);
1046
1047 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1048 {
1049         struct tcp_sock *tp = tcp_sk(sk);
1050         struct tcp_md5sig_key *key;
1051         struct tcp_md5sig_info *md5sig;
1052
1053         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1054         if (!key)
1055                 return -ENOENT;
1056         hlist_del_rcu(&key->node);
1057         atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1058         kfree_rcu(key, rcu);
1059         md5sig = rcu_dereference_protected(tp->md5sig_info,
1060                                            sock_owned_by_user(sk));
1061         if (hlist_empty(&md5sig->head))
1062                 tcp_free_md5sig_pool();
1063         return 0;
1064 }
1065 EXPORT_SYMBOL(tcp_md5_do_del);
1066
1067 static void tcp_clear_md5_list(struct sock *sk)
1068 {
1069         struct tcp_sock *tp = tcp_sk(sk);
1070         struct tcp_md5sig_key *key;
1071         struct hlist_node *n;
1072         struct tcp_md5sig_info *md5sig;
1073
1074         md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1075
1076         if (!hlist_empty(&md5sig->head))
1077                 tcp_free_md5sig_pool();
1078         hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1079                 hlist_del_rcu(&key->node);
1080                 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1081                 kfree_rcu(key, rcu);
1082         }
1083 }
1084
1085 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1086                                  int optlen)
1087 {
1088         struct tcp_md5sig cmd;
1089         struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1090
1091         if (optlen < sizeof(cmd))
1092                 return -EINVAL;
1093
1094         if (copy_from_user(&cmd, optval, sizeof(cmd)))
1095                 return -EFAULT;
1096
1097         if (sin->sin_family != AF_INET)
1098                 return -EINVAL;
1099
1100         if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1101                 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1102                                       AF_INET);
1103
1104         if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1105                 return -EINVAL;
1106
1107         return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1108                               AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1109                               GFP_KERNEL);
1110 }
1111
1112 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1113                                         __be32 daddr, __be32 saddr, int nbytes)
1114 {
1115         struct tcp4_pseudohdr *bp;
1116         struct scatterlist sg;
1117
1118         bp = &hp->md5_blk.ip4;
1119
1120         /*
1121          * 1. the TCP pseudo-header (in the order: source IP address,
1122          * destination IP address, zero-padded protocol number, and
1123          * segment length)
1124          */
1125         bp->saddr = saddr;
1126         bp->daddr = daddr;
1127         bp->pad = 0;
1128         bp->protocol = IPPROTO_TCP;
1129         bp->len = cpu_to_be16(nbytes);
1130
1131         sg_init_one(&sg, bp, sizeof(*bp));
1132         return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1133 }
1134
1135 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1136                                __be32 daddr, __be32 saddr, const struct tcphdr *th)
1137 {
1138         struct tcp_md5sig_pool *hp;
1139         struct hash_desc *desc;
1140
1141         hp = tcp_get_md5sig_pool();
1142         if (!hp)
1143                 goto clear_hash_noput;
1144         desc = &hp->md5_desc;
1145
1146         if (crypto_hash_init(desc))
1147                 goto clear_hash;
1148         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1149                 goto clear_hash;
1150         if (tcp_md5_hash_header(hp, th))
1151                 goto clear_hash;
1152         if (tcp_md5_hash_key(hp, key))
1153                 goto clear_hash;
1154         if (crypto_hash_final(desc, md5_hash))
1155                 goto clear_hash;
1156
1157         tcp_put_md5sig_pool();
1158         return 0;
1159
1160 clear_hash:
1161         tcp_put_md5sig_pool();
1162 clear_hash_noput:
1163         memset(md5_hash, 0, 16);
1164         return 1;
1165 }
1166
1167 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1168                         const struct sock *sk, const struct request_sock *req,
1169                         const struct sk_buff *skb)
1170 {
1171         struct tcp_md5sig_pool *hp;
1172         struct hash_desc *desc;
1173         const struct tcphdr *th = tcp_hdr(skb);
1174         __be32 saddr, daddr;
1175
1176         if (sk) {
1177                 saddr = inet_sk(sk)->inet_saddr;
1178                 daddr = inet_sk(sk)->inet_daddr;
1179         } else if (req) {
1180                 saddr = inet_rsk(req)->loc_addr;
1181                 daddr = inet_rsk(req)->rmt_addr;
1182         } else {
1183                 const struct iphdr *iph = ip_hdr(skb);
1184                 saddr = iph->saddr;
1185                 daddr = iph->daddr;
1186         }
1187
1188         hp = tcp_get_md5sig_pool();
1189         if (!hp)
1190                 goto clear_hash_noput;
1191         desc = &hp->md5_desc;
1192
1193         if (crypto_hash_init(desc))
1194                 goto clear_hash;
1195
1196         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1197                 goto clear_hash;
1198         if (tcp_md5_hash_header(hp, th))
1199                 goto clear_hash;
1200         if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1201                 goto clear_hash;
1202         if (tcp_md5_hash_key(hp, key))
1203                 goto clear_hash;
1204         if (crypto_hash_final(desc, md5_hash))
1205                 goto clear_hash;
1206
1207         tcp_put_md5sig_pool();
1208         return 0;
1209
1210 clear_hash:
1211         tcp_put_md5sig_pool();
1212 clear_hash_noput:
1213         memset(md5_hash, 0, 16);
1214         return 1;
1215 }
1216 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1217
1218 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1219 {
1220         /*
1221          * This gets called for each TCP segment that arrives
1222          * so we want to be efficient.
1223          * We have 3 drop cases:
1224          * o No MD5 hash and one expected.
1225          * o MD5 hash and we're not expecting one.
1226          * o MD5 hash and its wrong.
1227          */
1228         const __u8 *hash_location = NULL;
1229         struct tcp_md5sig_key *hash_expected;
1230         const struct iphdr *iph = ip_hdr(skb);
1231         const struct tcphdr *th = tcp_hdr(skb);
1232         int genhash;
1233         unsigned char newhash[16];
1234
1235         hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1236                                           AF_INET);
1237         hash_location = tcp_parse_md5sig_option(th);
1238
1239         /* We've parsed the options - do we have a hash? */
1240         if (!hash_expected && !hash_location)
1241                 return false;
1242
1243         if (hash_expected && !hash_location) {
1244                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1245                 return true;
1246         }
1247
1248         if (!hash_expected && hash_location) {
1249                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1250                 return true;
1251         }
1252
1253         /* Okay, so this is hash_expected and hash_location -
1254          * so we need to calculate the checksum.
1255          */
1256         genhash = tcp_v4_md5_hash_skb(newhash,
1257                                       hash_expected,
1258                                       NULL, NULL, skb);
1259
1260         if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1261                 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1262                                      &iph->saddr, ntohs(th->source),
1263                                      &iph->daddr, ntohs(th->dest),
1264                                      genhash ? " tcp_v4_calc_md5_hash failed"
1265                                      : "");
1266                 return true;
1267         }
1268         return false;
1269 }
1270
1271 #endif
1272
1273 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1274         .family         =       PF_INET,
1275         .obj_size       =       sizeof(struct tcp_request_sock),
1276         .rtx_syn_ack    =       tcp_v4_rtx_synack,
1277         .send_ack       =       tcp_v4_reqsk_send_ack,
1278         .destructor     =       tcp_v4_reqsk_destructor,
1279         .send_reset     =       tcp_v4_send_reset,
1280         .syn_ack_timeout =      tcp_syn_ack_timeout,
1281 };
1282
1283 #ifdef CONFIG_TCP_MD5SIG
1284 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1285         .md5_lookup     =       tcp_v4_reqsk_md5_lookup,
1286         .calc_md5_hash  =       tcp_v4_md5_hash_skb,
1287 };
1288 #endif
1289
1290 static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1291                                struct request_sock *req,
1292                                struct tcp_fastopen_cookie *foc,
1293                                struct tcp_fastopen_cookie *valid_foc)
1294 {
1295         bool skip_cookie = false;
1296         struct fastopen_queue *fastopenq;
1297
1298         if (likely(!fastopen_cookie_present(foc))) {
1299                 /* See include/net/tcp.h for the meaning of these knobs */
1300                 if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1301                     ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1302                     (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1303                         skip_cookie = true; /* no cookie to validate */
1304                 else
1305                         return false;
1306         }
1307         fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1308         /* A FO option is present; bump the counter. */
1309         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1310
1311         /* Make sure the listener has enabled fastopen, and we don't
1312          * exceed the max # of pending TFO requests allowed before trying
1313          * to validating the cookie in order to avoid burning CPU cycles
1314          * unnecessarily.
1315          *
1316          * XXX (TFO) - The implication of checking the max_qlen before
1317          * processing a cookie request is that clients can't differentiate
1318          * between qlen overflow causing Fast Open to be disabled
1319          * temporarily vs a server not supporting Fast Open at all.
1320          */
1321         if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1322             fastopenq == NULL || fastopenq->max_qlen == 0)
1323                 return false;
1324
1325         if (fastopenq->qlen >= fastopenq->max_qlen) {
1326                 struct request_sock *req1;
1327                 spin_lock(&fastopenq->lock);
1328                 req1 = fastopenq->rskq_rst_head;
1329                 if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1330                         spin_unlock(&fastopenq->lock);
1331                         NET_INC_STATS_BH(sock_net(sk),
1332                             LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1333                         /* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1334                         foc->len = -1;
1335                         return false;
1336                 }
1337                 fastopenq->rskq_rst_head = req1->dl_next;
1338                 fastopenq->qlen--;
1339                 spin_unlock(&fastopenq->lock);
1340                 reqsk_free(req1);
1341         }
1342         if (skip_cookie) {
1343                 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1344                 return true;
1345         }
1346         if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1347                 if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1348                         tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1349                         if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1350                             memcmp(&foc->val[0], &valid_foc->val[0],
1351                             TCP_FASTOPEN_COOKIE_SIZE) != 0)
1352                                 return false;
1353                         valid_foc->len = -1;
1354                 }
1355                 /* Acknowledge the data received from the peer. */
1356                 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1357                 return true;
1358         } else if (foc->len == 0) { /* Client requesting a cookie */
1359                 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1360                 NET_INC_STATS_BH(sock_net(sk),
1361                     LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1362         } else {
1363                 /* Client sent a cookie with wrong size. Treat it
1364                  * the same as invalid and return a valid one.
1365                  */
1366                 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1367         }
1368         return false;
1369 }
1370
1371 static int tcp_v4_conn_req_fastopen(struct sock *sk,
1372                                     struct sk_buff *skb,
1373                                     struct sk_buff *skb_synack,
1374                                     struct request_sock *req,
1375                                     struct request_values *rvp)
1376 {
1377         struct tcp_sock *tp = tcp_sk(sk);
1378         struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1379         const struct inet_request_sock *ireq = inet_rsk(req);
1380         struct sock *child;
1381         int err;
1382
1383         req->num_retrans = 0;
1384         req->num_timeout = 0;
1385         req->sk = NULL;
1386
1387         child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1388         if (child == NULL) {
1389                 NET_INC_STATS_BH(sock_net(sk),
1390                                  LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1391                 kfree_skb(skb_synack);
1392                 return -1;
1393         }
1394         err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1395                                     ireq->rmt_addr, ireq->opt);
1396         err = net_xmit_eval(err);
1397         if (!err)
1398                 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1399         /* XXX (TFO) - is it ok to ignore error and continue? */
1400
1401         spin_lock(&queue->fastopenq->lock);
1402         queue->fastopenq->qlen++;
1403         spin_unlock(&queue->fastopenq->lock);
1404
1405         /* Initialize the child socket. Have to fix some values to take
1406          * into account the child is a Fast Open socket and is created
1407          * only out of the bits carried in the SYN packet.
1408          */
1409         tp = tcp_sk(child);
1410
1411         tp->fastopen_rsk = req;
1412         /* Do a hold on the listner sk so that if the listener is being
1413          * closed, the child that has been accepted can live on and still
1414          * access listen_lock.
1415          */
1416         sock_hold(sk);
1417         tcp_rsk(req)->listener = sk;
1418
1419         /* RFC1323: The window in SYN & SYN/ACK segments is never
1420          * scaled. So correct it appropriately.
1421          */
1422         tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1423
1424         /* Activate the retrans timer so that SYNACK can be retransmitted.
1425          * The request socket is not added to the SYN table of the parent
1426          * because it's been added to the accept queue directly.
1427          */
1428         inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1429             TCP_TIMEOUT_INIT, TCP_RTO_MAX);
1430
1431         /* Add the child socket directly into the accept queue */
1432         inet_csk_reqsk_queue_add(sk, req, child);
1433
1434         /* Now finish processing the fastopen child socket. */
1435         inet_csk(child)->icsk_af_ops->rebuild_header(child);
1436         tcp_init_congestion_control(child);
1437         tcp_mtup_init(child);
1438         tcp_init_buffer_space(child);
1439         tcp_init_metrics(child);
1440
1441         /* Queue the data carried in the SYN packet. We need to first
1442          * bump skb's refcnt because the caller will attempt to free it.
1443          *
1444          * XXX (TFO) - we honor a zero-payload TFO request for now.
1445          * (Any reason not to?)
1446          */
1447         if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1448                 /* Don't queue the skb if there is no payload in SYN.
1449                  * XXX (TFO) - How about SYN+FIN?
1450                  */
1451                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1452         } else {
1453                 skb = skb_get(skb);
1454                 skb_dst_drop(skb);
1455                 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
1456                 skb_set_owner_r(skb, child);
1457                 __skb_queue_tail(&child->sk_receive_queue, skb);
1458                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1459                 tp->syn_data_acked = 1;
1460         }
1461         sk->sk_data_ready(sk, 0);
1462         bh_unlock_sock(child);
1463         sock_put(child);
1464         WARN_ON(req->sk == NULL);
1465         return 0;
1466 }
1467
1468 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1469 {
1470         struct tcp_extend_values tmp_ext;
1471         struct tcp_options_received tmp_opt;
1472         const u8 *hash_location;
1473         struct request_sock *req;
1474         struct inet_request_sock *ireq;
1475         struct tcp_sock *tp = tcp_sk(sk);
1476         struct dst_entry *dst = NULL;
1477         __be32 saddr = ip_hdr(skb)->saddr;
1478         __be32 daddr = ip_hdr(skb)->daddr;
1479         __u32 isn = TCP_SKB_CB(skb)->when;
1480         bool want_cookie = false;
1481         struct flowi4 fl4;
1482         struct tcp_fastopen_cookie foc = { .len = -1 };
1483         struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1484         struct sk_buff *skb_synack;
1485         int do_fastopen;
1486
1487         /* Never answer to SYNs send to broadcast or multicast */
1488         if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1489                 goto drop;
1490
1491         /* TW buckets are converted to open requests without
1492          * limitations, they conserve resources and peer is
1493          * evidently real one.
1494          */
1495         if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1496                 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1497                 if (!want_cookie)
1498                         goto drop;
1499         }
1500
1501         /* Accept backlog is full. If we have already queued enough
1502          * of warm entries in syn queue, drop request. It is better than
1503          * clogging syn queue with openreqs with exponentially increasing
1504          * timeout.
1505          */
1506         if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
1507                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1508                 goto drop;
1509         }
1510
1511         req = inet_reqsk_alloc(&tcp_request_sock_ops);
1512         if (!req)
1513                 goto drop;
1514
1515 #ifdef CONFIG_TCP_MD5SIG
1516         tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1517 #endif
1518
1519         tcp_clear_options(&tmp_opt);
1520         tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1521         tmp_opt.user_mss  = tp->rx_opt.user_mss;
1522         tcp_parse_options(skb, &tmp_opt, &hash_location, 0,
1523             want_cookie ? NULL : &foc);
1524
1525         if (tmp_opt.cookie_plus > 0 &&
1526             tmp_opt.saw_tstamp &&
1527             !tp->rx_opt.cookie_out_never &&
1528             (sysctl_tcp_cookie_size > 0 ||
1529              (tp->cookie_values != NULL &&
1530               tp->cookie_values->cookie_desired > 0))) {
1531                 u8 *c;
1532                 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1533                 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1534
1535                 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1536                         goto drop_and_release;
1537
1538                 /* Secret recipe starts with IP addresses */
1539                 *mess++ ^= (__force u32)daddr;
1540                 *mess++ ^= (__force u32)saddr;
1541
1542                 /* plus variable length Initiator Cookie */
1543                 c = (u8 *)mess;
1544                 while (l-- > 0)
1545                         *c++ ^= *hash_location++;
1546
1547                 want_cookie = false;    /* not our kind of cookie */
1548                 tmp_ext.cookie_out_never = 0; /* false */
1549                 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1550         } else if (!tp->rx_opt.cookie_in_always) {
1551                 /* redundant indications, but ensure initialization. */
1552                 tmp_ext.cookie_out_never = 1; /* true */
1553                 tmp_ext.cookie_plus = 0;
1554         } else {
1555                 goto drop_and_release;
1556         }
1557         tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1558
1559         if (want_cookie && !tmp_opt.saw_tstamp)
1560                 tcp_clear_options(&tmp_opt);
1561
1562         tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1563         tcp_openreq_init(req, &tmp_opt, skb);
1564
1565         ireq = inet_rsk(req);
1566         ireq->loc_addr = daddr;
1567         ireq->rmt_addr = saddr;
1568         ireq->no_srccheck = inet_sk(sk)->transparent;
1569         ireq->opt = tcp_v4_save_options(skb);
1570
1571         if (security_inet_conn_request(sk, skb, req))
1572                 goto drop_and_free;
1573
1574         if (!want_cookie || tmp_opt.tstamp_ok)
1575                 TCP_ECN_create_request(req, skb, sock_net(sk));
1576
1577         if (want_cookie) {
1578                 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1579                 req->cookie_ts = tmp_opt.tstamp_ok;
1580         } else if (!isn) {
1581                 /* VJ's idea. We save last timestamp seen
1582                  * from the destination in peer table, when entering
1583                  * state TIME-WAIT, and check against it before
1584                  * accepting new connection request.
1585                  *
1586                  * If "isn" is not zero, this request hit alive
1587                  * timewait bucket, so that all the necessary checks
1588                  * are made in the function processing timewait state.
1589                  */
1590                 if (tmp_opt.saw_tstamp &&
1591                     tcp_death_row.sysctl_tw_recycle &&
1592                     (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1593                     fl4.daddr == saddr) {
1594                         if (!tcp_peer_is_proven(req, dst, true)) {
1595                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1596                                 goto drop_and_release;
1597                         }
1598                 }
1599                 /* Kill the following clause, if you dislike this way. */
1600                 else if (!sysctl_tcp_syncookies &&
1601                          (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1602                           (sysctl_max_syn_backlog >> 2)) &&
1603                          !tcp_peer_is_proven(req, dst, false)) {
1604                         /* Without syncookies last quarter of
1605                          * backlog is filled with destinations,
1606                          * proven to be alive.
1607                          * It means that we continue to communicate
1608                          * to destinations, already remembered
1609                          * to the moment of synflood.
1610                          */
1611                         LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1612                                        &saddr, ntohs(tcp_hdr(skb)->source));
1613                         goto drop_and_release;
1614                 }
1615
1616                 isn = tcp_v4_init_sequence(skb);
1617         }
1618         tcp_rsk(req)->snt_isn = isn;
1619
1620         if (dst == NULL) {
1621                 dst = inet_csk_route_req(sk, &fl4, req);
1622                 if (dst == NULL)
1623                         goto drop_and_free;
1624         }
1625         do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1626
1627         /* We don't call tcp_v4_send_synack() directly because we need
1628          * to make sure a child socket can be created successfully before
1629          * sending back synack!
1630          *
1631          * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1632          * (or better yet, call tcp_send_synack() in the child context
1633          * directly, but will have to fix bunch of other code first)
1634          * after syn_recv_sock() except one will need to first fix the
1635          * latter to remove its dependency on the current implementation
1636          * of tcp_v4_send_synack()->tcp_select_initial_window().
1637          */
1638         skb_synack = tcp_make_synack(sk, dst, req,
1639             (struct request_values *)&tmp_ext,
1640             fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1641
1642         if (skb_synack) {
1643                 __tcp_v4_send_check(skb_synack, ireq->loc_addr, ireq->rmt_addr);
1644                 skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1645         } else
1646                 goto drop_and_free;
1647
1648         if (likely(!do_fastopen)) {
1649                 int err;
1650                 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1651                      ireq->rmt_addr, ireq->opt);
1652                 err = net_xmit_eval(err);
1653                 if (err || want_cookie)
1654                         goto drop_and_free;
1655
1656                 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1657                 tcp_rsk(req)->listener = NULL;
1658                 /* Add the request_sock to the SYN table */
1659                 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1660                 if (fastopen_cookie_present(&foc) && foc.len != 0)
1661                         NET_INC_STATS_BH(sock_net(sk),
1662                             LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1663         } else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req,
1664             (struct request_values *)&tmp_ext))
1665                 goto drop_and_free;
1666
1667         return 0;
1668
1669 drop_and_release:
1670         dst_release(dst);
1671 drop_and_free:
1672         reqsk_free(req);
1673 drop:
1674         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1675         return 0;
1676 }
1677 EXPORT_SYMBOL(tcp_v4_conn_request);
1678
1679
1680 /*
1681  * The three way handshake has completed - we got a valid synack -
1682  * now create the new socket.
1683  */
1684 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1685                                   struct request_sock *req,
1686                                   struct dst_entry *dst)
1687 {
1688         struct inet_request_sock *ireq;
1689         struct inet_sock *newinet;
1690         struct tcp_sock *newtp;
1691         struct sock *newsk;
1692 #ifdef CONFIG_TCP_MD5SIG
1693         struct tcp_md5sig_key *key;
1694 #endif
1695         struct ip_options_rcu *inet_opt;
1696
1697         if (sk_acceptq_is_full(sk))
1698                 goto exit_overflow;
1699
1700         newsk = tcp_create_openreq_child(sk, req, skb);
1701         if (!newsk)
1702                 goto exit_nonewsk;
1703
1704         newsk->sk_gso_type = SKB_GSO_TCPV4;
1705         inet_sk_rx_dst_set(newsk, skb);
1706
1707         newtp                 = tcp_sk(newsk);
1708         newinet               = inet_sk(newsk);
1709         ireq                  = inet_rsk(req);
1710         newinet->inet_daddr   = ireq->rmt_addr;
1711         newinet->inet_rcv_saddr = ireq->loc_addr;
1712         newinet->inet_saddr           = ireq->loc_addr;
1713         inet_opt              = ireq->opt;
1714         rcu_assign_pointer(newinet->inet_opt, inet_opt);
1715         ireq->opt             = NULL;
1716         newinet->mc_index     = inet_iif(skb);
1717         newinet->mc_ttl       = ip_hdr(skb)->ttl;
1718         newinet->rcv_tos      = ip_hdr(skb)->tos;
1719         inet_csk(newsk)->icsk_ext_hdr_len = 0;
1720         if (inet_opt)
1721                 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1722         newinet->inet_id = newtp->write_seq ^ jiffies;
1723
1724         if (!dst) {
1725                 dst = inet_csk_route_child_sock(sk, newsk, req);
1726                 if (!dst)
1727                         goto put_and_exit;
1728         } else {
1729                 /* syncookie case : see end of cookie_v4_check() */
1730         }
1731         sk_setup_caps(newsk, dst);
1732
1733         tcp_mtup_init(newsk);
1734         tcp_sync_mss(newsk, dst_mtu(dst));
1735         newtp->advmss = dst_metric_advmss(dst);
1736         if (tcp_sk(sk)->rx_opt.user_mss &&
1737             tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1738                 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1739
1740         tcp_initialize_rcv_mss(newsk);
1741         tcp_synack_rtt_meas(newsk, req);
1742         newtp->total_retrans = req->num_retrans;
1743
1744 #ifdef CONFIG_TCP_MD5SIG
1745         /* Copy over the MD5 key from the original socket */
1746         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1747                                 AF_INET);
1748         if (key != NULL) {
1749                 /*
1750                  * We're using one, so create a matching key
1751                  * on the newsk structure. If we fail to get
1752                  * memory, then we end up not copying the key
1753                  * across. Shucks.
1754                  */
1755                 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1756                                AF_INET, key->key, key->keylen, GFP_ATOMIC);
1757                 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1758         }
1759 #endif
1760
1761         if (__inet_inherit_port(sk, newsk) < 0)
1762                 goto put_and_exit;
1763         __inet_hash_nolisten(newsk, NULL);
1764
1765         return newsk;
1766
1767 exit_overflow:
1768         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1769 exit_nonewsk:
1770         dst_release(dst);
1771 exit:
1772         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1773         return NULL;
1774 put_and_exit:
1775         inet_csk_prepare_forced_close(newsk);
1776         tcp_done(newsk);
1777         goto exit;
1778 }
1779 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1780
1781 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1782 {
1783         struct tcphdr *th = tcp_hdr(skb);
1784         const struct iphdr *iph = ip_hdr(skb);
1785         struct sock *nsk;
1786         struct request_sock **prev;
1787         /* Find possible connection requests. */
1788         struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1789                                                        iph->saddr, iph->daddr);
1790         if (req)
1791                 return tcp_check_req(sk, skb, req, prev, false);
1792
1793         nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1794                         th->source, iph->daddr, th->dest, inet_iif(skb));
1795
1796         if (nsk) {
1797                 if (nsk->sk_state != TCP_TIME_WAIT) {
1798                         bh_lock_sock(nsk);
1799                         return nsk;
1800                 }
1801                 inet_twsk_put(inet_twsk(nsk));
1802                 return NULL;
1803         }
1804
1805 #ifdef CONFIG_SYN_COOKIES
1806         if (!th->syn)
1807                 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1808 #endif
1809         return sk;
1810 }
1811
1812 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1813 {
1814         const struct iphdr *iph = ip_hdr(skb);
1815
1816         if (skb->ip_summed == CHECKSUM_COMPLETE) {
1817                 if (!tcp_v4_check(skb->len, iph->saddr,
1818                                   iph->daddr, skb->csum)) {
1819                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1820                         return 0;
1821                 }
1822         }
1823
1824         skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1825                                        skb->len, IPPROTO_TCP, 0);
1826
1827         if (skb->len <= 76) {
1828                 return __skb_checksum_complete(skb);
1829         }
1830         return 0;
1831 }
1832
1833
1834 /* The socket must have it's spinlock held when we get
1835  * here.
1836  *
1837  * We have a potential double-lock case here, so even when
1838  * doing backlog processing we use the BH locking scheme.
1839  * This is because we cannot sleep with the original spinlock
1840  * held.
1841  */
1842 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1843 {
1844         struct sock *rsk;
1845 #ifdef CONFIG_TCP_MD5SIG
1846         /*
1847          * We really want to reject the packet as early as possible
1848          * if:
1849          *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1850          *  o There is an MD5 option and we're not expecting one
1851          */
1852         if (tcp_v4_inbound_md5_hash(sk, skb))
1853                 goto discard;
1854 #endif
1855
1856         if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1857                 struct dst_entry *dst = sk->sk_rx_dst;
1858
1859                 sock_rps_save_rxhash(sk, skb);
1860                 if (dst) {
1861                         if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1862                             dst->ops->check(dst, 0) == NULL) {
1863                                 dst_release(dst);
1864                                 sk->sk_rx_dst = NULL;
1865                         }
1866                 }
1867                 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1868                         rsk = sk;
1869                         goto reset;
1870                 }
1871                 return 0;
1872         }
1873
1874         if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1875                 goto csum_err;
1876
1877         if (sk->sk_state == TCP_LISTEN) {
1878                 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1879                 if (!nsk)
1880                         goto discard;
1881
1882                 if (nsk != sk) {
1883                         sock_rps_save_rxhash(nsk, skb);
1884                         if (tcp_child_process(sk, nsk, skb)) {
1885                                 rsk = nsk;
1886                                 goto reset;
1887                         }
1888                         return 0;
1889                 }
1890         } else
1891                 sock_rps_save_rxhash(sk, skb);
1892
1893         if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1894                 rsk = sk;
1895                 goto reset;
1896         }
1897         return 0;
1898
1899 reset:
1900         tcp_v4_send_reset(rsk, skb);
1901 discard:
1902         kfree_skb(skb);
1903         /* Be careful here. If this function gets more complicated and
1904          * gcc suffers from register pressure on the x86, sk (in %ebx)
1905          * might be destroyed here. This current version compiles correctly,
1906          * but you have been warned.
1907          */
1908         return 0;
1909
1910 csum_err:
1911         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1912         goto discard;
1913 }
1914 EXPORT_SYMBOL(tcp_v4_do_rcv);
1915
1916 void tcp_v4_early_demux(struct sk_buff *skb)
1917 {
1918         const struct iphdr *iph;
1919         const struct tcphdr *th;
1920         struct sock *sk;
1921
1922         if (skb->pkt_type != PACKET_HOST)
1923                 return;
1924
1925         if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1926                 return;
1927
1928         iph = ip_hdr(skb);
1929         th = tcp_hdr(skb);
1930
1931         if (th->doff < sizeof(struct tcphdr) / 4)
1932                 return;
1933
1934         sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1935                                        iph->saddr, th->source,
1936                                        iph->daddr, ntohs(th->dest),
1937                                        skb->skb_iif);
1938         if (sk) {
1939                 skb->sk = sk;
1940                 skb->destructor = sock_edemux;
1941                 if (sk->sk_state != TCP_TIME_WAIT) {
1942                         struct dst_entry *dst = sk->sk_rx_dst;
1943
1944                         if (dst)
1945                                 dst = dst_check(dst, 0);
1946                         if (dst &&
1947                             inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1948                                 skb_dst_set_noref(skb, dst);
1949                 }
1950         }
1951 }
1952
1953 /* Packet is added to VJ-style prequeue for processing in process
1954  * context, if a reader task is waiting. Apparently, this exciting
1955  * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1956  * failed somewhere. Latency? Burstiness? Well, at least now we will
1957  * see, why it failed. 8)8)                               --ANK
1958  *
1959  */
1960 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1961 {
1962         struct tcp_sock *tp = tcp_sk(sk);
1963
1964         if (sysctl_tcp_low_latency || !tp->ucopy.task)
1965                 return false;
1966
1967         if (skb->len <= tcp_hdrlen(skb) &&
1968             skb_queue_len(&tp->ucopy.prequeue) == 0)
1969                 return false;
1970
1971         __skb_queue_tail(&tp->ucopy.prequeue, skb);
1972         tp->ucopy.memory += skb->truesize;
1973         if (tp->ucopy.memory > sk->sk_rcvbuf) {
1974                 struct sk_buff *skb1;
1975
1976                 BUG_ON(sock_owned_by_user(sk));
1977
1978                 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1979                         sk_backlog_rcv(sk, skb1);
1980                         NET_INC_STATS_BH(sock_net(sk),
1981                                          LINUX_MIB_TCPPREQUEUEDROPPED);
1982                 }
1983
1984                 tp->ucopy.memory = 0;
1985         } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1986                 wake_up_interruptible_sync_poll(sk_sleep(sk),
1987                                            POLLIN | POLLRDNORM | POLLRDBAND);
1988                 if (!inet_csk_ack_scheduled(sk))
1989                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1990                                                   (3 * tcp_rto_min(sk)) / 4,
1991                                                   TCP_RTO_MAX);
1992         }
1993         return true;
1994 }
1995 EXPORT_SYMBOL(tcp_prequeue);
1996
1997 /*
1998  *      From tcp_input.c
1999  */
2000
2001 int tcp_v4_rcv(struct sk_buff *skb)
2002 {
2003         const struct iphdr *iph;
2004         const struct tcphdr *th;
2005         struct sock *sk;
2006         int ret;
2007         struct net *net = dev_net(skb->dev);
2008
2009         if (skb->pkt_type != PACKET_HOST)
2010                 goto discard_it;
2011
2012         /* Count it even if it's bad */
2013         TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
2014
2015         if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
2016                 goto discard_it;
2017
2018         th = tcp_hdr(skb);
2019
2020         if (th->doff < sizeof(struct tcphdr) / 4)
2021                 goto bad_packet;
2022         if (!pskb_may_pull(skb, th->doff * 4))
2023                 goto discard_it;
2024
2025         /* An explanation is required here, I think.
2026          * Packet length and doff are validated by header prediction,
2027          * provided case of th->doff==0 is eliminated.
2028          * So, we defer the checks. */
2029         if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
2030                 goto bad_packet;
2031
2032         th = tcp_hdr(skb);
2033         iph = ip_hdr(skb);
2034         TCP_SKB_CB(skb)->seq = ntohl(th->seq);
2035         TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
2036                                     skb->len - th->doff * 4);
2037         TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
2038         TCP_SKB_CB(skb)->when    = 0;
2039         TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
2040         TCP_SKB_CB(skb)->sacked  = 0;
2041
2042         sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
2043         if (!sk)
2044                 goto no_tcp_socket;
2045
2046 process:
2047         if (sk->sk_state == TCP_TIME_WAIT)
2048                 goto do_time_wait;
2049
2050         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
2051                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
2052                 goto discard_and_relse;
2053         }
2054
2055         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2056                 goto discard_and_relse;
2057         nf_reset(skb);
2058
2059         if (sk_filter(sk, skb))
2060                 goto discard_and_relse;
2061
2062         skb->dev = NULL;
2063
2064         bh_lock_sock_nested(sk);
2065         ret = 0;
2066         if (!sock_owned_by_user(sk)) {
2067 #ifdef CONFIG_NET_DMA
2068                 struct tcp_sock *tp = tcp_sk(sk);
2069                 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2070                         tp->ucopy.dma_chan = net_dma_find_channel();
2071                 if (tp->ucopy.dma_chan)
2072                         ret = tcp_v4_do_rcv(sk, skb);
2073                 else
2074 #endif
2075                 {
2076                         if (!tcp_prequeue(sk, skb))
2077                                 ret = tcp_v4_do_rcv(sk, skb);
2078                 }
2079         } else if (unlikely(sk_add_backlog(sk, skb,
2080                                            sk->sk_rcvbuf + sk->sk_sndbuf))) {
2081                 bh_unlock_sock(sk);
2082                 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2083                 goto discard_and_relse;
2084         }
2085         bh_unlock_sock(sk);
2086
2087         sock_put(sk);
2088
2089         return ret;
2090
2091 no_tcp_socket:
2092         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2093                 goto discard_it;
2094
2095         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2096 bad_packet:
2097                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2098         } else {
2099                 tcp_v4_send_reset(NULL, skb);
2100         }
2101
2102 discard_it:
2103         /* Discard frame. */
2104         kfree_skb(skb);
2105         return 0;
2106
2107 discard_and_relse:
2108         sock_put(sk);
2109         goto discard_it;
2110
2111 do_time_wait:
2112         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2113                 inet_twsk_put(inet_twsk(sk));
2114                 goto discard_it;
2115         }
2116
2117         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2118                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2119                 inet_twsk_put(inet_twsk(sk));
2120                 goto discard_it;
2121         }
2122         switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2123         case TCP_TW_SYN: {
2124                 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2125                                                         &tcp_hashinfo,
2126                                                         iph->saddr, th->source,
2127                                                         iph->daddr, th->dest,
2128                                                         inet_iif(skb));
2129                 if (sk2) {
2130                         inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2131                         inet_twsk_put(inet_twsk(sk));
2132                         sk = sk2;
2133                         goto process;
2134                 }
2135                 /* Fall through to ACK */
2136         }
2137         case TCP_TW_ACK:
2138                 tcp_v4_timewait_ack(sk, skb);
2139                 break;
2140         case TCP_TW_RST:
2141                 goto no_tcp_socket;
2142         case TCP_TW_SUCCESS:;
2143         }
2144         goto discard_it;
2145 }
2146
2147 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2148         .twsk_obj_size  = sizeof(struct tcp_timewait_sock),
2149         .twsk_unique    = tcp_twsk_unique,
2150         .twsk_destructor= tcp_twsk_destructor,
2151 };
2152
2153 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2154 {
2155         struct dst_entry *dst = skb_dst(skb);
2156
2157         dst_hold(dst);
2158         sk->sk_rx_dst = dst;
2159         inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2160 }
2161 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2162
2163 const struct inet_connection_sock_af_ops ipv4_specific = {
2164         .queue_xmit        = ip_queue_xmit,
2165         .send_check        = tcp_v4_send_check,
2166         .rebuild_header    = inet_sk_rebuild_header,
2167         .sk_rx_dst_set     = inet_sk_rx_dst_set,
2168         .conn_request      = tcp_v4_conn_request,
2169         .syn_recv_sock     = tcp_v4_syn_recv_sock,
2170         .net_header_len    = sizeof(struct iphdr),
2171         .setsockopt        = ip_setsockopt,
2172         .getsockopt        = ip_getsockopt,
2173         .addr2sockaddr     = inet_csk_addr2sockaddr,
2174         .sockaddr_len      = sizeof(struct sockaddr_in),
2175         .bind_conflict     = inet_csk_bind_conflict,
2176 #ifdef CONFIG_COMPAT
2177         .compat_setsockopt = compat_ip_setsockopt,
2178         .compat_getsockopt = compat_ip_getsockopt,
2179 #endif
2180 };
2181 EXPORT_SYMBOL(ipv4_specific);
2182
2183 #ifdef CONFIG_TCP_MD5SIG
2184 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2185         .md5_lookup             = tcp_v4_md5_lookup,
2186         .calc_md5_hash          = tcp_v4_md5_hash_skb,
2187         .md5_parse              = tcp_v4_parse_md5_keys,
2188 };
2189 #endif
2190
2191 /* NOTE: A lot of things set to zero explicitly by call to
2192  *       sk_alloc() so need not be done here.
2193  */
2194 static int tcp_v4_init_sock(struct sock *sk)
2195 {
2196         struct inet_connection_sock *icsk = inet_csk(sk);
2197
2198         tcp_init_sock(sk);
2199
2200         icsk->icsk_af_ops = &ipv4_specific;
2201
2202 #ifdef CONFIG_TCP_MD5SIG
2203         tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2204 #endif
2205
2206         return 0;
2207 }
2208
2209 void tcp_v4_destroy_sock(struct sock *sk)
2210 {
2211         struct tcp_sock *tp = tcp_sk(sk);
2212
2213         tcp_clear_xmit_timers(sk);
2214
2215         tcp_cleanup_congestion_control(sk);
2216
2217         /* Cleanup up the write buffer. */
2218         tcp_write_queue_purge(sk);
2219
2220         /* Cleans up our, hopefully empty, out_of_order_queue. */
2221         __skb_queue_purge(&tp->out_of_order_queue);
2222
2223 #ifdef CONFIG_TCP_MD5SIG
2224         /* Clean up the MD5 key list, if any */
2225         if (tp->md5sig_info) {
2226                 tcp_clear_md5_list(sk);
2227                 kfree_rcu(tp->md5sig_info, rcu);
2228                 tp->md5sig_info = NULL;
2229         }
2230 #endif
2231
2232 #ifdef CONFIG_NET_DMA
2233         /* Cleans up our sk_async_wait_queue */
2234         __skb_queue_purge(&sk->sk_async_wait_queue);
2235 #endif
2236
2237         /* Clean prequeue, it must be empty really */
2238         __skb_queue_purge(&tp->ucopy.prequeue);
2239
2240         /* Clean up a referenced TCP bind bucket. */
2241         if (inet_csk(sk)->icsk_bind_hash)
2242                 inet_put_port(sk);
2243
2244         /* TCP Cookie Transactions */
2245         if (tp->cookie_values != NULL) {
2246                 kref_put(&tp->cookie_values->kref,
2247                          tcp_cookie_values_release);
2248                 tp->cookie_values = NULL;
2249         }
2250         BUG_ON(tp->fastopen_rsk != NULL);
2251
2252         /* If socket is aborted during connect operation */
2253         tcp_free_fastopen_req(tp);
2254
2255         sk_sockets_allocated_dec(sk);
2256         sock_release_memcg(sk);
2257 }
2258 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2259
2260 #ifdef CONFIG_PROC_FS
2261 /* Proc filesystem TCP sock list dumping. */
2262
2263 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
2264 {
2265         return hlist_nulls_empty(head) ? NULL :
2266                 list_entry(head->first, struct inet_timewait_sock, tw_node);
2267 }
2268
2269 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
2270 {
2271         return !is_a_nulls(tw->tw_node.next) ?
2272                 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2273 }
2274
2275 /*
2276  * Get next listener socket follow cur.  If cur is NULL, get first socket
2277  * starting from bucket given in st->bucket; when st->bucket is zero the
2278  * very first socket in the hash table is returned.
2279  */
2280 static void *listening_get_next(struct seq_file *seq, void *cur)
2281 {
2282         struct inet_connection_sock *icsk;
2283         struct hlist_nulls_node *node;
2284         struct sock *sk = cur;
2285         struct inet_listen_hashbucket *ilb;
2286         struct tcp_iter_state *st = seq->private;
2287         struct net *net = seq_file_net(seq);
2288
2289         if (!sk) {
2290                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2291                 spin_lock_bh(&ilb->lock);
2292                 sk = sk_nulls_head(&ilb->head);
2293                 st->offset = 0;
2294                 goto get_sk;
2295         }
2296         ilb = &tcp_hashinfo.listening_hash[st->bucket];
2297         ++st->num;
2298         ++st->offset;
2299
2300         if (st->state == TCP_SEQ_STATE_OPENREQ) {
2301                 struct request_sock *req = cur;
2302
2303                 icsk = inet_csk(st->syn_wait_sk);
2304                 req = req->dl_next;
2305                 while (1) {
2306                         while (req) {
2307                                 if (req->rsk_ops->family == st->family) {
2308                                         cur = req;
2309                                         goto out;
2310                                 }
2311                                 req = req->dl_next;
2312                         }
2313                         if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2314                                 break;
2315 get_req:
2316                         req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2317                 }
2318                 sk        = sk_nulls_next(st->syn_wait_sk);
2319                 st->state = TCP_SEQ_STATE_LISTENING;
2320                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2321         } else {
2322                 icsk = inet_csk(sk);
2323                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2324                 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2325                         goto start_req;
2326                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2327                 sk = sk_nulls_next(sk);
2328         }
2329 get_sk:
2330         sk_nulls_for_each_from(sk, node) {
2331                 if (!net_eq(sock_net(sk), net))
2332                         continue;
2333                 if (sk->sk_family == st->family) {
2334                         cur = sk;
2335                         goto out;
2336                 }
2337                 icsk = inet_csk(sk);
2338                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2339                 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2340 start_req:
2341                         st->uid         = sock_i_uid(sk);
2342                         st->syn_wait_sk = sk;
2343                         st->state       = TCP_SEQ_STATE_OPENREQ;
2344                         st->sbucket     = 0;
2345                         goto get_req;
2346                 }
2347                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2348         }
2349         spin_unlock_bh(&ilb->lock);
2350         st->offset = 0;
2351         if (++st->bucket < INET_LHTABLE_SIZE) {
2352                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2353                 spin_lock_bh(&ilb->lock);
2354                 sk = sk_nulls_head(&ilb->head);
2355                 goto get_sk;
2356         }
2357         cur = NULL;
2358 out:
2359         return cur;
2360 }
2361
2362 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2363 {
2364         struct tcp_iter_state *st = seq->private;
2365         void *rc;
2366
2367         st->bucket = 0;
2368         st->offset = 0;
2369         rc = listening_get_next(seq, NULL);
2370
2371         while (rc && *pos) {
2372                 rc = listening_get_next(seq, rc);
2373                 --*pos;
2374         }
2375         return rc;
2376 }
2377
2378 static inline bool empty_bucket(struct tcp_iter_state *st)
2379 {
2380         return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2381                 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2382 }
2383
2384 /*
2385  * Get first established socket starting from bucket given in st->bucket.
2386  * If st->bucket is zero, the very first socket in the hash is returned.
2387  */
2388 static void *established_get_first(struct seq_file *seq)
2389 {
2390         struct tcp_iter_state *st = seq->private;
2391         struct net *net = seq_file_net(seq);
2392         void *rc = NULL;
2393
2394         st->offset = 0;
2395         for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2396                 struct sock *sk;
2397                 struct hlist_nulls_node *node;
2398                 struct inet_timewait_sock *tw;
2399                 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2400
2401                 /* Lockless fast path for the common case of empty buckets */
2402                 if (empty_bucket(st))
2403                         continue;
2404
2405                 spin_lock_bh(lock);
2406                 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2407                         if (sk->sk_family != st->family ||
2408                             !net_eq(sock_net(sk), net)) {
2409                                 continue;
2410                         }
2411                         rc = sk;
2412                         goto out;
2413                 }
2414                 st->state = TCP_SEQ_STATE_TIME_WAIT;
2415                 inet_twsk_for_each(tw, node,
2416                                    &tcp_hashinfo.ehash[st->bucket].twchain) {
2417                         if (tw->tw_family != st->family ||
2418                             !net_eq(twsk_net(tw), net)) {
2419                                 continue;
2420                         }
2421                         rc = tw;
2422                         goto out;
2423                 }
2424                 spin_unlock_bh(lock);
2425                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2426         }
2427 out:
2428         return rc;
2429 }
2430
2431 static void *established_get_next(struct seq_file *seq, void *cur)
2432 {
2433         struct sock *sk = cur;
2434         struct inet_timewait_sock *tw;
2435         struct hlist_nulls_node *node;
2436         struct tcp_iter_state *st = seq->private;
2437         struct net *net = seq_file_net(seq);
2438
2439         ++st->num;
2440         ++st->offset;
2441
2442         if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2443                 tw = cur;
2444                 tw = tw_next(tw);
2445 get_tw:
2446                 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2447                         tw = tw_next(tw);
2448                 }
2449                 if (tw) {
2450                         cur = tw;
2451                         goto out;
2452                 }
2453                 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2454                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2455
2456                 /* Look for next non empty bucket */
2457                 st->offset = 0;
2458                 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2459                                 empty_bucket(st))
2460                         ;
2461                 if (st->bucket > tcp_hashinfo.ehash_mask)
2462                         return NULL;
2463
2464                 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2465                 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2466         } else
2467                 sk = sk_nulls_next(sk);
2468
2469         sk_nulls_for_each_from(sk, node) {
2470                 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2471                         goto found;
2472         }
2473
2474         st->state = TCP_SEQ_STATE_TIME_WAIT;
2475         tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2476         goto get_tw;
2477 found:
2478         cur = sk;
2479 out:
2480         return cur;
2481 }
2482
2483 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2484 {
2485         struct tcp_iter_state *st = seq->private;
2486         void *rc;
2487
2488         st->bucket = 0;
2489         rc = established_get_first(seq);
2490
2491         while (rc && pos) {
2492                 rc = established_get_next(seq, rc);
2493                 --pos;
2494         }
2495         return rc;
2496 }
2497
2498 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2499 {
2500         void *rc;
2501         struct tcp_iter_state *st = seq->private;
2502
2503         st->state = TCP_SEQ_STATE_LISTENING;
2504         rc        = listening_get_idx(seq, &pos);
2505
2506         if (!rc) {
2507                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2508                 rc        = established_get_idx(seq, pos);
2509         }
2510
2511         return rc;
2512 }
2513
2514 static void *tcp_seek_last_pos(struct seq_file *seq)
2515 {
2516         struct tcp_iter_state *st = seq->private;
2517         int offset = st->offset;
2518         int orig_num = st->num;
2519         void *rc = NULL;
2520
2521         switch (st->state) {
2522         case TCP_SEQ_STATE_OPENREQ:
2523         case TCP_SEQ_STATE_LISTENING:
2524                 if (st->bucket >= INET_LHTABLE_SIZE)
2525                         break;
2526                 st->state = TCP_SEQ_STATE_LISTENING;
2527                 rc = listening_get_next(seq, NULL);
2528                 while (offset-- && rc)
2529                         rc = listening_get_next(seq, rc);
2530                 if (rc)
2531                         break;
2532                 st->bucket = 0;
2533                 /* Fallthrough */
2534         case TCP_SEQ_STATE_ESTABLISHED:
2535         case TCP_SEQ_STATE_TIME_WAIT:
2536                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2537                 if (st->bucket > tcp_hashinfo.ehash_mask)
2538                         break;
2539                 rc = established_get_first(seq);
2540                 while (offset-- && rc)
2541                         rc = established_get_next(seq, rc);
2542         }
2543
2544         st->num = orig_num;
2545
2546         return rc;
2547 }
2548
2549 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2550 {
2551         struct tcp_iter_state *st = seq->private;
2552         void *rc;
2553
2554         if (*pos && *pos == st->last_pos) {
2555                 rc = tcp_seek_last_pos(seq);
2556                 if (rc)
2557                         goto out;
2558         }
2559
2560         st->state = TCP_SEQ_STATE_LISTENING;
2561         st->num = 0;
2562         st->bucket = 0;
2563         st->offset = 0;
2564         rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2565
2566 out:
2567         st->last_pos = *pos;
2568         return rc;
2569 }
2570
2571 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2572 {
2573         struct tcp_iter_state *st = seq->private;
2574         void *rc = NULL;
2575
2576         if (v == SEQ_START_TOKEN) {
2577                 rc = tcp_get_idx(seq, 0);
2578                 goto out;
2579         }
2580
2581         switch (st->state) {
2582         case TCP_SEQ_STATE_OPENREQ:
2583         case TCP_SEQ_STATE_LISTENING:
2584                 rc = listening_get_next(seq, v);
2585                 if (!rc) {
2586                         st->state = TCP_SEQ_STATE_ESTABLISHED;
2587                         st->bucket = 0;
2588                         st->offset = 0;
2589                         rc        = established_get_first(seq);
2590                 }
2591                 break;
2592         case TCP_SEQ_STATE_ESTABLISHED:
2593         case TCP_SEQ_STATE_TIME_WAIT:
2594                 rc = established_get_next(seq, v);
2595                 break;
2596         }
2597 out:
2598         ++*pos;
2599         st->last_pos = *pos;
2600         return rc;
2601 }
2602
2603 static void tcp_seq_stop(struct seq_file *seq, void *v)
2604 {
2605         struct tcp_iter_state *st = seq->private;
2606
2607         switch (st->state) {
2608         case TCP_SEQ_STATE_OPENREQ:
2609                 if (v) {
2610                         struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2611                         read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2612                 }
2613         case TCP_SEQ_STATE_LISTENING:
2614                 if (v != SEQ_START_TOKEN)
2615                         spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2616                 break;
2617         case TCP_SEQ_STATE_TIME_WAIT:
2618         case TCP_SEQ_STATE_ESTABLISHED:
2619                 if (v)
2620                         spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2621                 break;
2622         }
2623 }
2624
2625 int tcp_seq_open(struct inode *inode, struct file *file)
2626 {
2627         struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2628         struct tcp_iter_state *s;
2629         int err;
2630
2631         err = seq_open_net(inode, file, &afinfo->seq_ops,
2632                           sizeof(struct tcp_iter_state));
2633         if (err < 0)
2634                 return err;
2635
2636         s = ((struct seq_file *)file->private_data)->private;
2637         s->family               = afinfo->family;
2638         s->last_pos             = 0;
2639         return 0;
2640 }
2641 EXPORT_SYMBOL(tcp_seq_open);
2642
2643 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2644 {
2645         int rc = 0;
2646         struct proc_dir_entry *p;
2647
2648         afinfo->seq_ops.start           = tcp_seq_start;
2649         afinfo->seq_ops.next            = tcp_seq_next;
2650         afinfo->seq_ops.stop            = tcp_seq_stop;
2651
2652         p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2653                              afinfo->seq_fops, afinfo);
2654         if (!p)
2655                 rc = -ENOMEM;
2656         return rc;
2657 }
2658 EXPORT_SYMBOL(tcp_proc_register);
2659
2660 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2661 {
2662         remove_proc_entry(afinfo->name, net->proc_net);
2663 }
2664 EXPORT_SYMBOL(tcp_proc_unregister);
2665
2666 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2667                          struct seq_file *f, int i, kuid_t uid, int *len)
2668 {
2669         const struct inet_request_sock *ireq = inet_rsk(req);
2670         long delta = req->expires - jiffies;
2671
2672         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2673                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2674                 i,
2675                 ireq->loc_addr,
2676                 ntohs(inet_sk(sk)->inet_sport),
2677                 ireq->rmt_addr,
2678                 ntohs(ireq->rmt_port),
2679                 TCP_SYN_RECV,
2680                 0, 0, /* could print option size, but that is af dependent. */
2681                 1,    /* timers active (only the expire timer) */
2682                 jiffies_delta_to_clock_t(delta),
2683                 req->num_timeout,
2684                 from_kuid_munged(seq_user_ns(f), uid),
2685                 0,  /* non standard timer */
2686                 0, /* open_requests have no inode */
2687                 atomic_read(&sk->sk_refcnt),
2688                 req,
2689                 len);
2690 }
2691
2692 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2693 {
2694         int timer_active;
2695         unsigned long timer_expires;
2696         const struct tcp_sock *tp = tcp_sk(sk);
2697         const struct inet_connection_sock *icsk = inet_csk(sk);
2698         const struct inet_sock *inet = inet_sk(sk);
2699         struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2700         __be32 dest = inet->inet_daddr;
2701         __be32 src = inet->inet_rcv_saddr;
2702         __u16 destp = ntohs(inet->inet_dport);
2703         __u16 srcp = ntohs(inet->inet_sport);
2704         int rx_queue;
2705
2706         if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2707             icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2708             icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2709                 timer_active    = 1;
2710                 timer_expires   = icsk->icsk_timeout;
2711         } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2712                 timer_active    = 4;
2713                 timer_expires   = icsk->icsk_timeout;
2714         } else if (timer_pending(&sk->sk_timer)) {
2715                 timer_active    = 2;
2716                 timer_expires   = sk->sk_timer.expires;
2717         } else {
2718                 timer_active    = 0;
2719                 timer_expires = jiffies;
2720         }
2721
2722         if (sk->sk_state == TCP_LISTEN)
2723                 rx_queue = sk->sk_ack_backlog;
2724         else
2725                 /*
2726                  * because we dont lock socket, we might find a transient negative value
2727                  */
2728                 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2729
2730         seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2731                         "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2732                 i, src, srcp, dest, destp, sk->sk_state,
2733                 tp->write_seq - tp->snd_una,
2734                 rx_queue,
2735                 timer_active,
2736                 jiffies_delta_to_clock_t(timer_expires - jiffies),
2737                 icsk->icsk_retransmits,
2738                 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2739                 icsk->icsk_probes_out,
2740                 sock_i_ino(sk),
2741                 atomic_read(&sk->sk_refcnt), sk,
2742                 jiffies_to_clock_t(icsk->icsk_rto),
2743                 jiffies_to_clock_t(icsk->icsk_ack.ato),
2744                 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2745                 tp->snd_cwnd,
2746                 sk->sk_state == TCP_LISTEN ?
2747                     (fastopenq ? fastopenq->max_qlen : 0) :
2748                     (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh),
2749                 len);
2750 }
2751
2752 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2753                                struct seq_file *f, int i, int *len)
2754 {
2755         __be32 dest, src;
2756         __u16 destp, srcp;
2757         long delta = tw->tw_ttd - jiffies;
2758
2759         dest  = tw->tw_daddr;
2760         src   = tw->tw_rcv_saddr;
2761         destp = ntohs(tw->tw_dport);
2762         srcp  = ntohs(tw->tw_sport);
2763
2764         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2765                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2766                 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2767                 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2768                 atomic_read(&tw->tw_refcnt), tw, len);
2769 }
2770
2771 #define TMPSZ 150
2772
2773 static int tcp4_seq_show(struct seq_file *seq, void *v)
2774 {
2775         struct tcp_iter_state *st;
2776         int len;
2777
2778         if (v == SEQ_START_TOKEN) {
2779                 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2780                            "  sl  local_address rem_address   st tx_queue "
2781                            "rx_queue tr tm->when retrnsmt   uid  timeout "
2782                            "inode");
2783                 goto out;
2784         }
2785         st = seq->private;
2786
2787         switch (st->state) {
2788         case TCP_SEQ_STATE_LISTENING:
2789         case TCP_SEQ_STATE_ESTABLISHED:
2790                 get_tcp4_sock(v, seq, st->num, &len);
2791                 break;
2792         case TCP_SEQ_STATE_OPENREQ:
2793                 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2794                 break;
2795         case TCP_SEQ_STATE_TIME_WAIT:
2796                 get_timewait4_sock(v, seq, st->num, &len);
2797                 break;
2798         }
2799         seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2800 out:
2801         return 0;
2802 }
2803
2804 static const struct file_operations tcp_afinfo_seq_fops = {
2805         .owner   = THIS_MODULE,
2806         .open    = tcp_seq_open,
2807         .read    = seq_read,
2808         .llseek  = seq_lseek,
2809         .release = seq_release_net
2810 };
2811
2812 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2813         .name           = "tcp",
2814         .family         = AF_INET,
2815         .seq_fops       = &tcp_afinfo_seq_fops,
2816         .seq_ops        = {
2817                 .show           = tcp4_seq_show,
2818         },
2819 };
2820
2821 static int __net_init tcp4_proc_init_net(struct net *net)
2822 {
2823         return tcp_proc_register(net, &tcp4_seq_afinfo);
2824 }
2825
2826 static void __net_exit tcp4_proc_exit_net(struct net *net)
2827 {
2828         tcp_proc_unregister(net, &tcp4_seq_afinfo);
2829 }
2830
2831 static struct pernet_operations tcp4_net_ops = {
2832         .init = tcp4_proc_init_net,
2833         .exit = tcp4_proc_exit_net,
2834 };
2835
2836 int __init tcp4_proc_init(void)
2837 {
2838         return register_pernet_subsys(&tcp4_net_ops);
2839 }
2840
2841 void tcp4_proc_exit(void)
2842 {
2843         unregister_pernet_subsys(&tcp4_net_ops);
2844 }
2845 #endif /* CONFIG_PROC_FS */
2846
2847 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2848 {
2849         const struct iphdr *iph = skb_gro_network_header(skb);
2850         __wsum wsum;
2851         __sum16 sum;
2852
2853         switch (skb->ip_summed) {
2854         case CHECKSUM_COMPLETE:
2855                 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2856                                   skb->csum)) {
2857                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2858                         break;
2859                 }
2860 flush:
2861                 NAPI_GRO_CB(skb)->flush = 1;
2862                 return NULL;
2863
2864         case CHECKSUM_NONE:
2865                 wsum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
2866                                           skb_gro_len(skb), IPPROTO_TCP, 0);
2867                 sum = csum_fold(skb_checksum(skb,
2868                                              skb_gro_offset(skb),
2869                                              skb_gro_len(skb),
2870                                              wsum));
2871                 if (sum)
2872                         goto flush;
2873
2874                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2875                 break;
2876         }
2877
2878         return tcp_gro_receive(head, skb);
2879 }
2880
2881 int tcp4_gro_complete(struct sk_buff *skb)
2882 {
2883         const struct iphdr *iph = ip_hdr(skb);
2884         struct tcphdr *th = tcp_hdr(skb);
2885
2886         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2887                                   iph->saddr, iph->daddr, 0);
2888         skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2889
2890         return tcp_gro_complete(skb);
2891 }
2892
2893 struct proto tcp_prot = {
2894         .name                   = "TCP",
2895         .owner                  = THIS_MODULE,
2896         .close                  = tcp_close,
2897         .connect                = tcp_v4_connect,
2898         .disconnect             = tcp_disconnect,
2899         .accept                 = inet_csk_accept,
2900         .ioctl                  = tcp_ioctl,
2901         .init                   = tcp_v4_init_sock,
2902         .destroy                = tcp_v4_destroy_sock,
2903         .shutdown               = tcp_shutdown,
2904         .setsockopt             = tcp_setsockopt,
2905         .getsockopt             = tcp_getsockopt,
2906         .recvmsg                = tcp_recvmsg,
2907         .sendmsg                = tcp_sendmsg,
2908         .sendpage               = tcp_sendpage,
2909         .backlog_rcv            = tcp_v4_do_rcv,
2910         .release_cb             = tcp_release_cb,
2911         .mtu_reduced            = tcp_v4_mtu_reduced,
2912         .hash                   = inet_hash,
2913         .unhash                 = inet_unhash,
2914         .get_port               = inet_csk_get_port,
2915         .enter_memory_pressure  = tcp_enter_memory_pressure,
2916         .sockets_allocated      = &tcp_sockets_allocated,
2917         .orphan_count           = &tcp_orphan_count,
2918         .memory_allocated       = &tcp_memory_allocated,
2919         .memory_pressure        = &tcp_memory_pressure,
2920         .sysctl_wmem            = sysctl_tcp_wmem,
2921         .sysctl_rmem            = sysctl_tcp_rmem,
2922         .max_header             = MAX_TCP_HEADER,
2923         .obj_size               = sizeof(struct tcp_sock),
2924         .slab_flags             = SLAB_DESTROY_BY_RCU,
2925         .twsk_prot              = &tcp_timewait_sock_ops,
2926         .rsk_prot               = &tcp_request_sock_ops,
2927         .h.hashinfo             = &tcp_hashinfo,
2928         .no_autobind            = true,
2929 #ifdef CONFIG_COMPAT
2930         .compat_setsockopt      = compat_tcp_setsockopt,
2931         .compat_getsockopt      = compat_tcp_getsockopt,
2932 #endif
2933 #ifdef CONFIG_MEMCG_KMEM
2934         .init_cgroup            = tcp_init_cgroup,
2935         .destroy_cgroup         = tcp_destroy_cgroup,
2936         .proto_cgroup           = tcp_proto_cgroup,
2937 #endif
2938 };
2939 EXPORT_SYMBOL(tcp_prot);
2940
2941 static int __net_init tcp_sk_init(struct net *net)
2942 {
2943         net->ipv4.sysctl_tcp_ecn = 2;
2944         return 0;
2945 }
2946
2947 static void __net_exit tcp_sk_exit(struct net *net)
2948 {
2949 }
2950
2951 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2952 {
2953         inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2954 }
2955
2956 static struct pernet_operations __net_initdata tcp_sk_ops = {
2957        .init       = tcp_sk_init,
2958        .exit       = tcp_sk_exit,
2959        .exit_batch = tcp_sk_exit_batch,
2960 };
2961
2962 void __init tcp_v4_init(void)
2963 {
2964         inet_hashinfo_init(&tcp_hashinfo);
2965         if (register_pernet_subsys(&tcp_sk_ops))
2966                 panic("Failed to create the TCP control socket.\n");
2967 }