[NET] NETNS: Omit sock->sk_net without CONFIG_NET_NS.
[linux-3.10.git] / net / core / sock.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Generic socket support routines. Memory allocators, socket lock/release
7  *              handler for protocols to use and generic option handler.
8  *
9  *
10  * Version:     $Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11  *
12  * Authors:     Ross Biro
13  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14  *              Florian La Roche, <flla@stud.uni-sb.de>
15  *              Alan Cox, <A.Cox@swansea.ac.uk>
16  *
17  * Fixes:
18  *              Alan Cox        :       Numerous verify_area() problems
19  *              Alan Cox        :       Connecting on a connecting socket
20  *                                      now returns an error for tcp.
21  *              Alan Cox        :       sock->protocol is set correctly.
22  *                                      and is not sometimes left as 0.
23  *              Alan Cox        :       connect handles icmp errors on a
24  *                                      connect properly. Unfortunately there
25  *                                      is a restart syscall nasty there. I
26  *                                      can't match BSD without hacking the C
27  *                                      library. Ideas urgently sought!
28  *              Alan Cox        :       Disallow bind() to addresses that are
29  *                                      not ours - especially broadcast ones!!
30  *              Alan Cox        :       Socket 1024 _IS_ ok for users. (fencepost)
31  *              Alan Cox        :       sock_wfree/sock_rfree don't destroy sockets,
32  *                                      instead they leave that for the DESTROY timer.
33  *              Alan Cox        :       Clean up error flag in accept
34  *              Alan Cox        :       TCP ack handling is buggy, the DESTROY timer
35  *                                      was buggy. Put a remove_sock() in the handler
36  *                                      for memory when we hit 0. Also altered the timer
37  *                                      code. The ACK stuff can wait and needs major
38  *                                      TCP layer surgery.
39  *              Alan Cox        :       Fixed TCP ack bug, removed remove sock
40  *                                      and fixed timer/inet_bh race.
41  *              Alan Cox        :       Added zapped flag for TCP
42  *              Alan Cox        :       Move kfree_skb into skbuff.c and tidied up surplus code
43  *              Alan Cox        :       for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44  *              Alan Cox        :       kfree_s calls now are kfree_skbmem so we can track skb resources
45  *              Alan Cox        :       Supports socket option broadcast now as does udp. Packet and raw need fixing.
46  *              Alan Cox        :       Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47  *              Rick Sladkey    :       Relaxed UDP rules for matching packets.
48  *              C.E.Hawkins     :       IFF_PROMISC/SIOCGHWADDR support
49  *      Pauline Middelink       :       identd support
50  *              Alan Cox        :       Fixed connect() taking signals I think.
51  *              Alan Cox        :       SO_LINGER supported
52  *              Alan Cox        :       Error reporting fixes
53  *              Anonymous       :       inet_create tidied up (sk->reuse setting)
54  *              Alan Cox        :       inet sockets don't set sk->type!
55  *              Alan Cox        :       Split socket option code
56  *              Alan Cox        :       Callbacks
57  *              Alan Cox        :       Nagle flag for Charles & Johannes stuff
58  *              Alex            :       Removed restriction on inet fioctl
59  *              Alan Cox        :       Splitting INET from NET core
60  *              Alan Cox        :       Fixed bogus SO_TYPE handling in getsockopt()
61  *              Adam Caldwell   :       Missing return in SO_DONTROUTE/SO_DEBUG code
62  *              Alan Cox        :       Split IP from generic code
63  *              Alan Cox        :       New kfree_skbmem()
64  *              Alan Cox        :       Make SO_DEBUG superuser only.
65  *              Alan Cox        :       Allow anyone to clear SO_DEBUG
66  *                                      (compatibility fix)
67  *              Alan Cox        :       Added optimistic memory grabbing for AF_UNIX throughput.
68  *              Alan Cox        :       Allocator for a socket is settable.
69  *              Alan Cox        :       SO_ERROR includes soft errors.
70  *              Alan Cox        :       Allow NULL arguments on some SO_ opts
71  *              Alan Cox        :       Generic socket allocation to make hooks
72  *                                      easier (suggested by Craig Metz).
73  *              Michael Pall    :       SO_ERROR returns positive errno again
74  *              Steve Whitehouse:       Added default destructor to free
75  *                                      protocol private data.
76  *              Steve Whitehouse:       Added various other default routines
77  *                                      common to several socket families.
78  *              Chris Evans     :       Call suser() check last on F_SETOWN
79  *              Jay Schulist    :       Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80  *              Andi Kleen      :       Add sock_kmalloc()/sock_kfree_s()
81  *              Andi Kleen      :       Fix write_space callback
82  *              Chris Evans     :       Security fixes - signedness again
83  *              Arnaldo C. Melo :       cleanups, use skb_queue_purge
84  *
85  * To Fix:
86  *
87  *
88  *              This program is free software; you can redistribute it and/or
89  *              modify it under the terms of the GNU General Public License
90  *              as published by the Free Software Foundation; either version
91  *              2 of the License, or (at your option) any later version.
92  */
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115
116 #include <asm/uaccess.h>
117 #include <asm/system.h>
118
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <net/xfrm.h>
126 #include <linux/ipsec.h>
127
128 #include <linux/filter.h>
129
130 #ifdef CONFIG_INET
131 #include <net/tcp.h>
132 #endif
133
134 /*
135  * Each address family might have different locking rules, so we have
136  * one slock key per address family:
137  */
138 static struct lock_class_key af_family_keys[AF_MAX];
139 static struct lock_class_key af_family_slock_keys[AF_MAX];
140
141 #ifdef CONFIG_DEBUG_LOCK_ALLOC
142 /*
143  * Make lock validator output more readable. (we pre-construct these
144  * strings build-time, so that runtime initialization of socket
145  * locks is fast):
146  */
147 static const char *af_family_key_strings[AF_MAX+1] = {
148   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
149   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
150   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
151   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
152   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
153   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
154   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
155   "sk_lock-21"       , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
156   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
157   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
158   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
159   "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
160 };
161 static const char *af_family_slock_key_strings[AF_MAX+1] = {
162   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
163   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
164   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
165   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
166   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
167   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
168   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
169   "slock-21"       , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
170   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
171   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
172   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
173   "slock-AF_RXRPC" , "slock-AF_MAX"
174 };
175 static const char *af_family_clock_key_strings[AF_MAX+1] = {
176   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
177   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
178   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
179   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
180   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
181   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
182   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
183   "clock-21"       , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
184   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
185   "clock-27"       , "clock-28"          , "clock-29"          ,
186   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
187   "clock-AF_RXRPC" , "clock-AF_MAX"
188 };
189 #endif
190
191 /*
192  * sk_callback_lock locking rules are per-address-family,
193  * so split the lock classes by using a per-AF key:
194  */
195 static struct lock_class_key af_callback_keys[AF_MAX];
196
197 /* Take into consideration the size of the struct sk_buff overhead in the
198  * determination of these values, since that is non-constant across
199  * platforms.  This makes socket queueing behavior and performance
200  * not depend upon such differences.
201  */
202 #define _SK_MEM_PACKETS         256
203 #define _SK_MEM_OVERHEAD        (sizeof(struct sk_buff) + 256)
204 #define SK_WMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205 #define SK_RMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
206
207 /* Run time adjustable parameters. */
208 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
209 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
210 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
211 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
212
213 /* Maximal space eaten by iovec or ancilliary data plus some space */
214 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
215
216 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
217 {
218         struct timeval tv;
219
220         if (optlen < sizeof(tv))
221                 return -EINVAL;
222         if (copy_from_user(&tv, optval, sizeof(tv)))
223                 return -EFAULT;
224         if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
225                 return -EDOM;
226
227         if (tv.tv_sec < 0) {
228                 static int warned __read_mostly;
229
230                 *timeo_p = 0;
231                 if (warned < 10 && net_ratelimit())
232                         warned++;
233                         printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
234                                "tries to set negative timeout\n",
235                                 current->comm, task_pid_nr(current));
236                 return 0;
237         }
238         *timeo_p = MAX_SCHEDULE_TIMEOUT;
239         if (tv.tv_sec == 0 && tv.tv_usec == 0)
240                 return 0;
241         if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
242                 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
243         return 0;
244 }
245
246 static void sock_warn_obsolete_bsdism(const char *name)
247 {
248         static int warned;
249         static char warncomm[TASK_COMM_LEN];
250         if (strcmp(warncomm, current->comm) && warned < 5) {
251                 strcpy(warncomm,  current->comm);
252                 printk(KERN_WARNING "process `%s' is using obsolete "
253                        "%s SO_BSDCOMPAT\n", warncomm, name);
254                 warned++;
255         }
256 }
257
258 static void sock_disable_timestamp(struct sock *sk)
259 {
260         if (sock_flag(sk, SOCK_TIMESTAMP)) {
261                 sock_reset_flag(sk, SOCK_TIMESTAMP);
262                 net_disable_timestamp();
263         }
264 }
265
266
267 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
268 {
269         int err = 0;
270         int skb_len;
271
272         /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
273            number of warnings when compiling with -W --ANK
274          */
275         if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
276             (unsigned)sk->sk_rcvbuf) {
277                 err = -ENOMEM;
278                 goto out;
279         }
280
281         err = sk_filter(sk, skb);
282         if (err)
283                 goto out;
284
285         if (!sk_rmem_schedule(sk, skb->truesize)) {
286                 err = -ENOBUFS;
287                 goto out;
288         }
289
290         skb->dev = NULL;
291         skb_set_owner_r(skb, sk);
292
293         /* Cache the SKB length before we tack it onto the receive
294          * queue.  Once it is added it no longer belongs to us and
295          * may be freed by other threads of control pulling packets
296          * from the queue.
297          */
298         skb_len = skb->len;
299
300         skb_queue_tail(&sk->sk_receive_queue, skb);
301
302         if (!sock_flag(sk, SOCK_DEAD))
303                 sk->sk_data_ready(sk, skb_len);
304 out:
305         return err;
306 }
307 EXPORT_SYMBOL(sock_queue_rcv_skb);
308
309 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
310 {
311         int rc = NET_RX_SUCCESS;
312
313         if (sk_filter(sk, skb))
314                 goto discard_and_relse;
315
316         skb->dev = NULL;
317
318         if (nested)
319                 bh_lock_sock_nested(sk);
320         else
321                 bh_lock_sock(sk);
322         if (!sock_owned_by_user(sk)) {
323                 /*
324                  * trylock + unlock semantics:
325                  */
326                 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
327
328                 rc = sk->sk_backlog_rcv(sk, skb);
329
330                 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
331         } else
332                 sk_add_backlog(sk, skb);
333         bh_unlock_sock(sk);
334 out:
335         sock_put(sk);
336         return rc;
337 discard_and_relse:
338         kfree_skb(skb);
339         goto out;
340 }
341 EXPORT_SYMBOL(sk_receive_skb);
342
343 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
344 {
345         struct dst_entry *dst = sk->sk_dst_cache;
346
347         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
348                 sk->sk_dst_cache = NULL;
349                 dst_release(dst);
350                 return NULL;
351         }
352
353         return dst;
354 }
355 EXPORT_SYMBOL(__sk_dst_check);
356
357 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
358 {
359         struct dst_entry *dst = sk_dst_get(sk);
360
361         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
362                 sk_dst_reset(sk);
363                 dst_release(dst);
364                 return NULL;
365         }
366
367         return dst;
368 }
369 EXPORT_SYMBOL(sk_dst_check);
370
371 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
372 {
373         int ret = -ENOPROTOOPT;
374 #ifdef CONFIG_NETDEVICES
375         struct net *net = sock_net(sk);
376         char devname[IFNAMSIZ];
377         int index;
378
379         /* Sorry... */
380         ret = -EPERM;
381         if (!capable(CAP_NET_RAW))
382                 goto out;
383
384         ret = -EINVAL;
385         if (optlen < 0)
386                 goto out;
387
388         /* Bind this socket to a particular device like "eth0",
389          * as specified in the passed interface name. If the
390          * name is "" or the option length is zero the socket
391          * is not bound.
392          */
393         if (optlen > IFNAMSIZ - 1)
394                 optlen = IFNAMSIZ - 1;
395         memset(devname, 0, sizeof(devname));
396
397         ret = -EFAULT;
398         if (copy_from_user(devname, optval, optlen))
399                 goto out;
400
401         if (devname[0] == '\0') {
402                 index = 0;
403         } else {
404                 struct net_device *dev = dev_get_by_name(net, devname);
405
406                 ret = -ENODEV;
407                 if (!dev)
408                         goto out;
409
410                 index = dev->ifindex;
411                 dev_put(dev);
412         }
413
414         lock_sock(sk);
415         sk->sk_bound_dev_if = index;
416         sk_dst_reset(sk);
417         release_sock(sk);
418
419         ret = 0;
420
421 out:
422 #endif
423
424         return ret;
425 }
426
427 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
428 {
429         if (valbool)
430                 sock_set_flag(sk, bit);
431         else
432                 sock_reset_flag(sk, bit);
433 }
434
435 /*
436  *      This is meant for all protocols to use and covers goings on
437  *      at the socket level. Everything here is generic.
438  */
439
440 int sock_setsockopt(struct socket *sock, int level, int optname,
441                     char __user *optval, int optlen)
442 {
443         struct sock *sk=sock->sk;
444         int val;
445         int valbool;
446         struct linger ling;
447         int ret = 0;
448
449         /*
450          *      Options without arguments
451          */
452
453 #ifdef SO_DONTLINGER            /* Compatibility item... */
454         if (optname == SO_DONTLINGER) {
455                 lock_sock(sk);
456                 sock_reset_flag(sk, SOCK_LINGER);
457                 release_sock(sk);
458                 return 0;
459         }
460 #endif
461
462         if (optname == SO_BINDTODEVICE)
463                 return sock_bindtodevice(sk, optval, optlen);
464
465         if (optlen < sizeof(int))
466                 return -EINVAL;
467
468         if (get_user(val, (int __user *)optval))
469                 return -EFAULT;
470
471         valbool = val?1:0;
472
473         lock_sock(sk);
474
475         switch(optname) {
476         case SO_DEBUG:
477                 if (val && !capable(CAP_NET_ADMIN)) {
478                         ret = -EACCES;
479                 } else
480                         sock_valbool_flag(sk, SOCK_DBG, valbool);
481                 break;
482         case SO_REUSEADDR:
483                 sk->sk_reuse = valbool;
484                 break;
485         case SO_TYPE:
486         case SO_ERROR:
487                 ret = -ENOPROTOOPT;
488                 break;
489         case SO_DONTROUTE:
490                 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
491                 break;
492         case SO_BROADCAST:
493                 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
494                 break;
495         case SO_SNDBUF:
496                 /* Don't error on this BSD doesn't and if you think
497                    about it this is right. Otherwise apps have to
498                    play 'guess the biggest size' games. RCVBUF/SNDBUF
499                    are treated in BSD as hints */
500
501                 if (val > sysctl_wmem_max)
502                         val = sysctl_wmem_max;
503 set_sndbuf:
504                 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
505                 if ((val * 2) < SOCK_MIN_SNDBUF)
506                         sk->sk_sndbuf = SOCK_MIN_SNDBUF;
507                 else
508                         sk->sk_sndbuf = val * 2;
509
510                 /*
511                  *      Wake up sending tasks if we
512                  *      upped the value.
513                  */
514                 sk->sk_write_space(sk);
515                 break;
516
517         case SO_SNDBUFFORCE:
518                 if (!capable(CAP_NET_ADMIN)) {
519                         ret = -EPERM;
520                         break;
521                 }
522                 goto set_sndbuf;
523
524         case SO_RCVBUF:
525                 /* Don't error on this BSD doesn't and if you think
526                    about it this is right. Otherwise apps have to
527                    play 'guess the biggest size' games. RCVBUF/SNDBUF
528                    are treated in BSD as hints */
529
530                 if (val > sysctl_rmem_max)
531                         val = sysctl_rmem_max;
532 set_rcvbuf:
533                 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
534                 /*
535                  * We double it on the way in to account for
536                  * "struct sk_buff" etc. overhead.   Applications
537                  * assume that the SO_RCVBUF setting they make will
538                  * allow that much actual data to be received on that
539                  * socket.
540                  *
541                  * Applications are unaware that "struct sk_buff" and
542                  * other overheads allocate from the receive buffer
543                  * during socket buffer allocation.
544                  *
545                  * And after considering the possible alternatives,
546                  * returning the value we actually used in getsockopt
547                  * is the most desirable behavior.
548                  */
549                 if ((val * 2) < SOCK_MIN_RCVBUF)
550                         sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
551                 else
552                         sk->sk_rcvbuf = val * 2;
553                 break;
554
555         case SO_RCVBUFFORCE:
556                 if (!capable(CAP_NET_ADMIN)) {
557                         ret = -EPERM;
558                         break;
559                 }
560                 goto set_rcvbuf;
561
562         case SO_KEEPALIVE:
563 #ifdef CONFIG_INET
564                 if (sk->sk_protocol == IPPROTO_TCP)
565                         tcp_set_keepalive(sk, valbool);
566 #endif
567                 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
568                 break;
569
570         case SO_OOBINLINE:
571                 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
572                 break;
573
574         case SO_NO_CHECK:
575                 sk->sk_no_check = valbool;
576                 break;
577
578         case SO_PRIORITY:
579                 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
580                         sk->sk_priority = val;
581                 else
582                         ret = -EPERM;
583                 break;
584
585         case SO_LINGER:
586                 if (optlen < sizeof(ling)) {
587                         ret = -EINVAL;  /* 1003.1g */
588                         break;
589                 }
590                 if (copy_from_user(&ling,optval,sizeof(ling))) {
591                         ret = -EFAULT;
592                         break;
593                 }
594                 if (!ling.l_onoff)
595                         sock_reset_flag(sk, SOCK_LINGER);
596                 else {
597 #if (BITS_PER_LONG == 32)
598                         if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
599                                 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
600                         else
601 #endif
602                                 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
603                         sock_set_flag(sk, SOCK_LINGER);
604                 }
605                 break;
606
607         case SO_BSDCOMPAT:
608                 sock_warn_obsolete_bsdism("setsockopt");
609                 break;
610
611         case SO_PASSCRED:
612                 if (valbool)
613                         set_bit(SOCK_PASSCRED, &sock->flags);
614                 else
615                         clear_bit(SOCK_PASSCRED, &sock->flags);
616                 break;
617
618         case SO_TIMESTAMP:
619         case SO_TIMESTAMPNS:
620                 if (valbool)  {
621                         if (optname == SO_TIMESTAMP)
622                                 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
623                         else
624                                 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
625                         sock_set_flag(sk, SOCK_RCVTSTAMP);
626                         sock_enable_timestamp(sk);
627                 } else {
628                         sock_reset_flag(sk, SOCK_RCVTSTAMP);
629                         sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
630                 }
631                 break;
632
633         case SO_RCVLOWAT:
634                 if (val < 0)
635                         val = INT_MAX;
636                 sk->sk_rcvlowat = val ? : 1;
637                 break;
638
639         case SO_RCVTIMEO:
640                 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
641                 break;
642
643         case SO_SNDTIMEO:
644                 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
645                 break;
646
647         case SO_ATTACH_FILTER:
648                 ret = -EINVAL;
649                 if (optlen == sizeof(struct sock_fprog)) {
650                         struct sock_fprog fprog;
651
652                         ret = -EFAULT;
653                         if (copy_from_user(&fprog, optval, sizeof(fprog)))
654                                 break;
655
656                         ret = sk_attach_filter(&fprog, sk);
657                 }
658                 break;
659
660         case SO_DETACH_FILTER:
661                 ret = sk_detach_filter(sk);
662                 break;
663
664         case SO_PASSSEC:
665                 if (valbool)
666                         set_bit(SOCK_PASSSEC, &sock->flags);
667                 else
668                         clear_bit(SOCK_PASSSEC, &sock->flags);
669                 break;
670         case SO_MARK:
671                 if (!capable(CAP_NET_ADMIN))
672                         ret = -EPERM;
673                 else {
674                         sk->sk_mark = val;
675                 }
676                 break;
677
678                 /* We implement the SO_SNDLOWAT etc to
679                    not be settable (1003.1g 5.3) */
680         default:
681                 ret = -ENOPROTOOPT;
682                 break;
683         }
684         release_sock(sk);
685         return ret;
686 }
687
688
689 int sock_getsockopt(struct socket *sock, int level, int optname,
690                     char __user *optval, int __user *optlen)
691 {
692         struct sock *sk = sock->sk;
693
694         union {
695                 int val;
696                 struct linger ling;
697                 struct timeval tm;
698         } v;
699
700         unsigned int lv = sizeof(int);
701         int len;
702
703         if (get_user(len, optlen))
704                 return -EFAULT;
705         if (len < 0)
706                 return -EINVAL;
707
708         switch(optname) {
709         case SO_DEBUG:
710                 v.val = sock_flag(sk, SOCK_DBG);
711                 break;
712
713         case SO_DONTROUTE:
714                 v.val = sock_flag(sk, SOCK_LOCALROUTE);
715                 break;
716
717         case SO_BROADCAST:
718                 v.val = !!sock_flag(sk, SOCK_BROADCAST);
719                 break;
720
721         case SO_SNDBUF:
722                 v.val = sk->sk_sndbuf;
723                 break;
724
725         case SO_RCVBUF:
726                 v.val = sk->sk_rcvbuf;
727                 break;
728
729         case SO_REUSEADDR:
730                 v.val = sk->sk_reuse;
731                 break;
732
733         case SO_KEEPALIVE:
734                 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
735                 break;
736
737         case SO_TYPE:
738                 v.val = sk->sk_type;
739                 break;
740
741         case SO_ERROR:
742                 v.val = -sock_error(sk);
743                 if (v.val==0)
744                         v.val = xchg(&sk->sk_err_soft, 0);
745                 break;
746
747         case SO_OOBINLINE:
748                 v.val = !!sock_flag(sk, SOCK_URGINLINE);
749                 break;
750
751         case SO_NO_CHECK:
752                 v.val = sk->sk_no_check;
753                 break;
754
755         case SO_PRIORITY:
756                 v.val = sk->sk_priority;
757                 break;
758
759         case SO_LINGER:
760                 lv              = sizeof(v.ling);
761                 v.ling.l_onoff  = !!sock_flag(sk, SOCK_LINGER);
762                 v.ling.l_linger = sk->sk_lingertime / HZ;
763                 break;
764
765         case SO_BSDCOMPAT:
766                 sock_warn_obsolete_bsdism("getsockopt");
767                 break;
768
769         case SO_TIMESTAMP:
770                 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
771                                 !sock_flag(sk, SOCK_RCVTSTAMPNS);
772                 break;
773
774         case SO_TIMESTAMPNS:
775                 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
776                 break;
777
778         case SO_RCVTIMEO:
779                 lv=sizeof(struct timeval);
780                 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
781                         v.tm.tv_sec = 0;
782                         v.tm.tv_usec = 0;
783                 } else {
784                         v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
785                         v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
786                 }
787                 break;
788
789         case SO_SNDTIMEO:
790                 lv=sizeof(struct timeval);
791                 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
792                         v.tm.tv_sec = 0;
793                         v.tm.tv_usec = 0;
794                 } else {
795                         v.tm.tv_sec = sk->sk_sndtimeo / HZ;
796                         v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
797                 }
798                 break;
799
800         case SO_RCVLOWAT:
801                 v.val = sk->sk_rcvlowat;
802                 break;
803
804         case SO_SNDLOWAT:
805                 v.val=1;
806                 break;
807
808         case SO_PASSCRED:
809                 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
810                 break;
811
812         case SO_PEERCRED:
813                 if (len > sizeof(sk->sk_peercred))
814                         len = sizeof(sk->sk_peercred);
815                 if (copy_to_user(optval, &sk->sk_peercred, len))
816                         return -EFAULT;
817                 goto lenout;
818
819         case SO_PEERNAME:
820         {
821                 char address[128];
822
823                 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
824                         return -ENOTCONN;
825                 if (lv < len)
826                         return -EINVAL;
827                 if (copy_to_user(optval, address, len))
828                         return -EFAULT;
829                 goto lenout;
830         }
831
832         /* Dubious BSD thing... Probably nobody even uses it, but
833          * the UNIX standard wants it for whatever reason... -DaveM
834          */
835         case SO_ACCEPTCONN:
836                 v.val = sk->sk_state == TCP_LISTEN;
837                 break;
838
839         case SO_PASSSEC:
840                 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
841                 break;
842
843         case SO_PEERSEC:
844                 return security_socket_getpeersec_stream(sock, optval, optlen, len);
845
846         case SO_MARK:
847                 v.val = sk->sk_mark;
848                 break;
849
850         default:
851                 return -ENOPROTOOPT;
852         }
853
854         if (len > lv)
855                 len = lv;
856         if (copy_to_user(optval, &v, len))
857                 return -EFAULT;
858 lenout:
859         if (put_user(len, optlen))
860                 return -EFAULT;
861         return 0;
862 }
863
864 /*
865  * Initialize an sk_lock.
866  *
867  * (We also register the sk_lock with the lock validator.)
868  */
869 static inline void sock_lock_init(struct sock *sk)
870 {
871         sock_lock_init_class_and_name(sk,
872                         af_family_slock_key_strings[sk->sk_family],
873                         af_family_slock_keys + sk->sk_family,
874                         af_family_key_strings[sk->sk_family],
875                         af_family_keys + sk->sk_family);
876 }
877
878 static void sock_copy(struct sock *nsk, const struct sock *osk)
879 {
880 #ifdef CONFIG_SECURITY_NETWORK
881         void *sptr = nsk->sk_security;
882 #endif
883
884         memcpy(nsk, osk, osk->sk_prot->obj_size);
885 #ifdef CONFIG_SECURITY_NETWORK
886         nsk->sk_security = sptr;
887         security_sk_clone(osk, nsk);
888 #endif
889 }
890
891 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
892                 int family)
893 {
894         struct sock *sk;
895         struct kmem_cache *slab;
896
897         slab = prot->slab;
898         if (slab != NULL)
899                 sk = kmem_cache_alloc(slab, priority);
900         else
901                 sk = kmalloc(prot->obj_size, priority);
902
903         if (sk != NULL) {
904                 if (security_sk_alloc(sk, family, priority))
905                         goto out_free;
906
907                 if (!try_module_get(prot->owner))
908                         goto out_free_sec;
909         }
910
911         return sk;
912
913 out_free_sec:
914         security_sk_free(sk);
915 out_free:
916         if (slab != NULL)
917                 kmem_cache_free(slab, sk);
918         else
919                 kfree(sk);
920         return NULL;
921 }
922
923 static void sk_prot_free(struct proto *prot, struct sock *sk)
924 {
925         struct kmem_cache *slab;
926         struct module *owner;
927
928         owner = prot->owner;
929         slab = prot->slab;
930
931         security_sk_free(sk);
932         if (slab != NULL)
933                 kmem_cache_free(slab, sk);
934         else
935                 kfree(sk);
936         module_put(owner);
937 }
938
939 /**
940  *      sk_alloc - All socket objects are allocated here
941  *      @net: the applicable net namespace
942  *      @family: protocol family
943  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
944  *      @prot: struct proto associated with this new sock instance
945  *      @zero_it: if we should zero the newly allocated sock
946  */
947 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
948                       struct proto *prot)
949 {
950         struct sock *sk;
951
952         sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
953         if (sk) {
954                 sk->sk_family = family;
955                 /*
956                  * See comment in struct sock definition to understand
957                  * why we need sk_prot_creator -acme
958                  */
959                 sk->sk_prot = sk->sk_prot_creator = prot;
960                 sock_lock_init(sk);
961                 sock_net_set(sk, get_net(net));
962         }
963
964         return sk;
965 }
966
967 void sk_free(struct sock *sk)
968 {
969         struct sk_filter *filter;
970
971         if (sk->sk_destruct)
972                 sk->sk_destruct(sk);
973
974         filter = rcu_dereference(sk->sk_filter);
975         if (filter) {
976                 sk_filter_uncharge(sk, filter);
977                 rcu_assign_pointer(sk->sk_filter, NULL);
978         }
979
980         sock_disable_timestamp(sk);
981
982         if (atomic_read(&sk->sk_omem_alloc))
983                 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
984                        __func__, atomic_read(&sk->sk_omem_alloc));
985
986         put_net(sock_net(sk));
987         sk_prot_free(sk->sk_prot_creator, sk);
988 }
989
990 /*
991  * Last sock_put should drop referrence to sk->sk_net. It has already
992  * been dropped in sk_change_net. Taking referrence to stopping namespace
993  * is not an option.
994  * Take referrence to a socket to remove it from hash _alive_ and after that
995  * destroy it in the context of init_net.
996  */
997 void sk_release_kernel(struct sock *sk)
998 {
999         if (sk == NULL || sk->sk_socket == NULL)
1000                 return;
1001
1002         sock_hold(sk);
1003         sock_release(sk->sk_socket);
1004         sock_net_set(sk, get_net(&init_net));
1005         sock_put(sk);
1006 }
1007 EXPORT_SYMBOL(sk_release_kernel);
1008
1009 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1010 {
1011         struct sock *newsk;
1012
1013         newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1014         if (newsk != NULL) {
1015                 struct sk_filter *filter;
1016
1017                 sock_copy(newsk, sk);
1018
1019                 /* SANITY */
1020                 get_net(sock_net(newsk));
1021                 sk_node_init(&newsk->sk_node);
1022                 sock_lock_init(newsk);
1023                 bh_lock_sock(newsk);
1024                 newsk->sk_backlog.head  = newsk->sk_backlog.tail = NULL;
1025
1026                 atomic_set(&newsk->sk_rmem_alloc, 0);
1027                 atomic_set(&newsk->sk_wmem_alloc, 0);
1028                 atomic_set(&newsk->sk_omem_alloc, 0);
1029                 skb_queue_head_init(&newsk->sk_receive_queue);
1030                 skb_queue_head_init(&newsk->sk_write_queue);
1031 #ifdef CONFIG_NET_DMA
1032                 skb_queue_head_init(&newsk->sk_async_wait_queue);
1033 #endif
1034
1035                 rwlock_init(&newsk->sk_dst_lock);
1036                 rwlock_init(&newsk->sk_callback_lock);
1037                 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1038                                 af_callback_keys + newsk->sk_family,
1039                                 af_family_clock_key_strings[newsk->sk_family]);
1040
1041                 newsk->sk_dst_cache     = NULL;
1042                 newsk->sk_wmem_queued   = 0;
1043                 newsk->sk_forward_alloc = 0;
1044                 newsk->sk_send_head     = NULL;
1045                 newsk->sk_userlocks     = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1046
1047                 sock_reset_flag(newsk, SOCK_DONE);
1048                 skb_queue_head_init(&newsk->sk_error_queue);
1049
1050                 filter = newsk->sk_filter;
1051                 if (filter != NULL)
1052                         sk_filter_charge(newsk, filter);
1053
1054                 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1055                         /* It is still raw copy of parent, so invalidate
1056                          * destructor and make plain sk_free() */
1057                         newsk->sk_destruct = NULL;
1058                         sk_free(newsk);
1059                         newsk = NULL;
1060                         goto out;
1061                 }
1062
1063                 newsk->sk_err      = 0;
1064                 newsk->sk_priority = 0;
1065                 atomic_set(&newsk->sk_refcnt, 2);
1066
1067                 /*
1068                  * Increment the counter in the same struct proto as the master
1069                  * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1070                  * is the same as sk->sk_prot->socks, as this field was copied
1071                  * with memcpy).
1072                  *
1073                  * This _changes_ the previous behaviour, where
1074                  * tcp_create_openreq_child always was incrementing the
1075                  * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1076                  * to be taken into account in all callers. -acme
1077                  */
1078                 sk_refcnt_debug_inc(newsk);
1079                 newsk->sk_socket = NULL;
1080                 newsk->sk_sleep  = NULL;
1081
1082                 if (newsk->sk_prot->sockets_allocated)
1083                         atomic_inc(newsk->sk_prot->sockets_allocated);
1084         }
1085 out:
1086         return newsk;
1087 }
1088
1089 EXPORT_SYMBOL_GPL(sk_clone);
1090
1091 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1092 {
1093         __sk_dst_set(sk, dst);
1094         sk->sk_route_caps = dst->dev->features;
1095         if (sk->sk_route_caps & NETIF_F_GSO)
1096                 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1097         if (sk_can_gso(sk)) {
1098                 if (dst->header_len) {
1099                         sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1100                 } else {
1101                         sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1102                         sk->sk_gso_max_size = dst->dev->gso_max_size;
1103                 }
1104         }
1105 }
1106 EXPORT_SYMBOL_GPL(sk_setup_caps);
1107
1108 void __init sk_init(void)
1109 {
1110         if (num_physpages <= 4096) {
1111                 sysctl_wmem_max = 32767;
1112                 sysctl_rmem_max = 32767;
1113                 sysctl_wmem_default = 32767;
1114                 sysctl_rmem_default = 32767;
1115         } else if (num_physpages >= 131072) {
1116                 sysctl_wmem_max = 131071;
1117                 sysctl_rmem_max = 131071;
1118         }
1119 }
1120
1121 /*
1122  *      Simple resource managers for sockets.
1123  */
1124
1125
1126 /*
1127  * Write buffer destructor automatically called from kfree_skb.
1128  */
1129 void sock_wfree(struct sk_buff *skb)
1130 {
1131         struct sock *sk = skb->sk;
1132
1133         /* In case it might be waiting for more memory. */
1134         atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1135         if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1136                 sk->sk_write_space(sk);
1137         sock_put(sk);
1138 }
1139
1140 /*
1141  * Read buffer destructor automatically called from kfree_skb.
1142  */
1143 void sock_rfree(struct sk_buff *skb)
1144 {
1145         struct sock *sk = skb->sk;
1146
1147         skb_truesize_check(skb);
1148         atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1149         sk_mem_uncharge(skb->sk, skb->truesize);
1150 }
1151
1152
1153 int sock_i_uid(struct sock *sk)
1154 {
1155         int uid;
1156
1157         read_lock(&sk->sk_callback_lock);
1158         uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1159         read_unlock(&sk->sk_callback_lock);
1160         return uid;
1161 }
1162
1163 unsigned long sock_i_ino(struct sock *sk)
1164 {
1165         unsigned long ino;
1166
1167         read_lock(&sk->sk_callback_lock);
1168         ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1169         read_unlock(&sk->sk_callback_lock);
1170         return ino;
1171 }
1172
1173 /*
1174  * Allocate a skb from the socket's send buffer.
1175  */
1176 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1177                              gfp_t priority)
1178 {
1179         if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1180                 struct sk_buff * skb = alloc_skb(size, priority);
1181                 if (skb) {
1182                         skb_set_owner_w(skb, sk);
1183                         return skb;
1184                 }
1185         }
1186         return NULL;
1187 }
1188
1189 /*
1190  * Allocate a skb from the socket's receive buffer.
1191  */
1192 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1193                              gfp_t priority)
1194 {
1195         if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1196                 struct sk_buff *skb = alloc_skb(size, priority);
1197                 if (skb) {
1198                         skb_set_owner_r(skb, sk);
1199                         return skb;
1200                 }
1201         }
1202         return NULL;
1203 }
1204
1205 /*
1206  * Allocate a memory block from the socket's option memory buffer.
1207  */
1208 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1209 {
1210         if ((unsigned)size <= sysctl_optmem_max &&
1211             atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1212                 void *mem;
1213                 /* First do the add, to avoid the race if kmalloc
1214                  * might sleep.
1215                  */
1216                 atomic_add(size, &sk->sk_omem_alloc);
1217                 mem = kmalloc(size, priority);
1218                 if (mem)
1219                         return mem;
1220                 atomic_sub(size, &sk->sk_omem_alloc);
1221         }
1222         return NULL;
1223 }
1224
1225 /*
1226  * Free an option memory block.
1227  */
1228 void sock_kfree_s(struct sock *sk, void *mem, int size)
1229 {
1230         kfree(mem);
1231         atomic_sub(size, &sk->sk_omem_alloc);
1232 }
1233
1234 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1235    I think, these locks should be removed for datagram sockets.
1236  */
1237 static long sock_wait_for_wmem(struct sock * sk, long timeo)
1238 {
1239         DEFINE_WAIT(wait);
1240
1241         clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1242         for (;;) {
1243                 if (!timeo)
1244                         break;
1245                 if (signal_pending(current))
1246                         break;
1247                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1248                 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1249                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1250                         break;
1251                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1252                         break;
1253                 if (sk->sk_err)
1254                         break;
1255                 timeo = schedule_timeout(timeo);
1256         }
1257         finish_wait(sk->sk_sleep, &wait);
1258         return timeo;
1259 }
1260
1261
1262 /*
1263  *      Generic send/receive buffer handlers
1264  */
1265
1266 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1267                                             unsigned long header_len,
1268                                             unsigned long data_len,
1269                                             int noblock, int *errcode)
1270 {
1271         struct sk_buff *skb;
1272         gfp_t gfp_mask;
1273         long timeo;
1274         int err;
1275
1276         gfp_mask = sk->sk_allocation;
1277         if (gfp_mask & __GFP_WAIT)
1278                 gfp_mask |= __GFP_REPEAT;
1279
1280         timeo = sock_sndtimeo(sk, noblock);
1281         while (1) {
1282                 err = sock_error(sk);
1283                 if (err != 0)
1284                         goto failure;
1285
1286                 err = -EPIPE;
1287                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1288                         goto failure;
1289
1290                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1291                         skb = alloc_skb(header_len, gfp_mask);
1292                         if (skb) {
1293                                 int npages;
1294                                 int i;
1295
1296                                 /* No pages, we're done... */
1297                                 if (!data_len)
1298                                         break;
1299
1300                                 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1301                                 skb->truesize += data_len;
1302                                 skb_shinfo(skb)->nr_frags = npages;
1303                                 for (i = 0; i < npages; i++) {
1304                                         struct page *page;
1305                                         skb_frag_t *frag;
1306
1307                                         page = alloc_pages(sk->sk_allocation, 0);
1308                                         if (!page) {
1309                                                 err = -ENOBUFS;
1310                                                 skb_shinfo(skb)->nr_frags = i;
1311                                                 kfree_skb(skb);
1312                                                 goto failure;
1313                                         }
1314
1315                                         frag = &skb_shinfo(skb)->frags[i];
1316                                         frag->page = page;
1317                                         frag->page_offset = 0;
1318                                         frag->size = (data_len >= PAGE_SIZE ?
1319                                                       PAGE_SIZE :
1320                                                       data_len);
1321                                         data_len -= PAGE_SIZE;
1322                                 }
1323
1324                                 /* Full success... */
1325                                 break;
1326                         }
1327                         err = -ENOBUFS;
1328                         goto failure;
1329                 }
1330                 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1331                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1332                 err = -EAGAIN;
1333                 if (!timeo)
1334                         goto failure;
1335                 if (signal_pending(current))
1336                         goto interrupted;
1337                 timeo = sock_wait_for_wmem(sk, timeo);
1338         }
1339
1340         skb_set_owner_w(skb, sk);
1341         return skb;
1342
1343 interrupted:
1344         err = sock_intr_errno(timeo);
1345 failure:
1346         *errcode = err;
1347         return NULL;
1348 }
1349
1350 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1351                                     int noblock, int *errcode)
1352 {
1353         return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1354 }
1355
1356 static void __lock_sock(struct sock *sk)
1357 {
1358         DEFINE_WAIT(wait);
1359
1360         for (;;) {
1361                 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1362                                         TASK_UNINTERRUPTIBLE);
1363                 spin_unlock_bh(&sk->sk_lock.slock);
1364                 schedule();
1365                 spin_lock_bh(&sk->sk_lock.slock);
1366                 if (!sock_owned_by_user(sk))
1367                         break;
1368         }
1369         finish_wait(&sk->sk_lock.wq, &wait);
1370 }
1371
1372 static void __release_sock(struct sock *sk)
1373 {
1374         struct sk_buff *skb = sk->sk_backlog.head;
1375
1376         do {
1377                 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1378                 bh_unlock_sock(sk);
1379
1380                 do {
1381                         struct sk_buff *next = skb->next;
1382
1383                         skb->next = NULL;
1384                         sk->sk_backlog_rcv(sk, skb);
1385
1386                         /*
1387                          * We are in process context here with softirqs
1388                          * disabled, use cond_resched_softirq() to preempt.
1389                          * This is safe to do because we've taken the backlog
1390                          * queue private:
1391                          */
1392                         cond_resched_softirq();
1393
1394                         skb = next;
1395                 } while (skb != NULL);
1396
1397                 bh_lock_sock(sk);
1398         } while ((skb = sk->sk_backlog.head) != NULL);
1399 }
1400
1401 /**
1402  * sk_wait_data - wait for data to arrive at sk_receive_queue
1403  * @sk:    sock to wait on
1404  * @timeo: for how long
1405  *
1406  * Now socket state including sk->sk_err is changed only under lock,
1407  * hence we may omit checks after joining wait queue.
1408  * We check receive queue before schedule() only as optimization;
1409  * it is very likely that release_sock() added new data.
1410  */
1411 int sk_wait_data(struct sock *sk, long *timeo)
1412 {
1413         int rc;
1414         DEFINE_WAIT(wait);
1415
1416         prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1417         set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1418         rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1419         clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1420         finish_wait(sk->sk_sleep, &wait);
1421         return rc;
1422 }
1423
1424 EXPORT_SYMBOL(sk_wait_data);
1425
1426 /**
1427  *      __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1428  *      @sk: socket
1429  *      @size: memory size to allocate
1430  *      @kind: allocation type
1431  *
1432  *      If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1433  *      rmem allocation. This function assumes that protocols which have
1434  *      memory_pressure use sk_wmem_queued as write buffer accounting.
1435  */
1436 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1437 {
1438         struct proto *prot = sk->sk_prot;
1439         int amt = sk_mem_pages(size);
1440         int allocated;
1441
1442         sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1443         allocated = atomic_add_return(amt, prot->memory_allocated);
1444
1445         /* Under limit. */
1446         if (allocated <= prot->sysctl_mem[0]) {
1447                 if (prot->memory_pressure && *prot->memory_pressure)
1448                         *prot->memory_pressure = 0;
1449                 return 1;
1450         }
1451
1452         /* Under pressure. */
1453         if (allocated > prot->sysctl_mem[1])
1454                 if (prot->enter_memory_pressure)
1455                         prot->enter_memory_pressure();
1456
1457         /* Over hard limit. */
1458         if (allocated > prot->sysctl_mem[2])
1459                 goto suppress_allocation;
1460
1461         /* guarantee minimum buffer size under pressure */
1462         if (kind == SK_MEM_RECV) {
1463                 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1464                         return 1;
1465         } else { /* SK_MEM_SEND */
1466                 if (sk->sk_type == SOCK_STREAM) {
1467                         if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1468                                 return 1;
1469                 } else if (atomic_read(&sk->sk_wmem_alloc) <
1470                            prot->sysctl_wmem[0])
1471                                 return 1;
1472         }
1473
1474         if (prot->memory_pressure) {
1475                 if (!*prot->memory_pressure ||
1476                     prot->sysctl_mem[2] > atomic_read(prot->sockets_allocated) *
1477                     sk_mem_pages(sk->sk_wmem_queued +
1478                                  atomic_read(&sk->sk_rmem_alloc) +
1479                                  sk->sk_forward_alloc))
1480                         return 1;
1481         }
1482
1483 suppress_allocation:
1484
1485         if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1486                 sk_stream_moderate_sndbuf(sk);
1487
1488                 /* Fail only if socket is _under_ its sndbuf.
1489                  * In this case we cannot block, so that we have to fail.
1490                  */
1491                 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1492                         return 1;
1493         }
1494
1495         /* Alas. Undo changes. */
1496         sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1497         atomic_sub(amt, prot->memory_allocated);
1498         return 0;
1499 }
1500
1501 EXPORT_SYMBOL(__sk_mem_schedule);
1502
1503 /**
1504  *      __sk_reclaim - reclaim memory_allocated
1505  *      @sk: socket
1506  */
1507 void __sk_mem_reclaim(struct sock *sk)
1508 {
1509         struct proto *prot = sk->sk_prot;
1510
1511         atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1512                    prot->memory_allocated);
1513         sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1514
1515         if (prot->memory_pressure && *prot->memory_pressure &&
1516             (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1517                 *prot->memory_pressure = 0;
1518 }
1519
1520 EXPORT_SYMBOL(__sk_mem_reclaim);
1521
1522
1523 /*
1524  * Set of default routines for initialising struct proto_ops when
1525  * the protocol does not support a particular function. In certain
1526  * cases where it makes no sense for a protocol to have a "do nothing"
1527  * function, some default processing is provided.
1528  */
1529
1530 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1531 {
1532         return -EOPNOTSUPP;
1533 }
1534
1535 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1536                     int len, int flags)
1537 {
1538         return -EOPNOTSUPP;
1539 }
1540
1541 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1542 {
1543         return -EOPNOTSUPP;
1544 }
1545
1546 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1547 {
1548         return -EOPNOTSUPP;
1549 }
1550
1551 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1552                     int *len, int peer)
1553 {
1554         return -EOPNOTSUPP;
1555 }
1556
1557 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1558 {
1559         return 0;
1560 }
1561
1562 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1563 {
1564         return -EOPNOTSUPP;
1565 }
1566
1567 int sock_no_listen(struct socket *sock, int backlog)
1568 {
1569         return -EOPNOTSUPP;
1570 }
1571
1572 int sock_no_shutdown(struct socket *sock, int how)
1573 {
1574         return -EOPNOTSUPP;
1575 }
1576
1577 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1578                     char __user *optval, int optlen)
1579 {
1580         return -EOPNOTSUPP;
1581 }
1582
1583 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1584                     char __user *optval, int __user *optlen)
1585 {
1586         return -EOPNOTSUPP;
1587 }
1588
1589 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1590                     size_t len)
1591 {
1592         return -EOPNOTSUPP;
1593 }
1594
1595 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1596                     size_t len, int flags)
1597 {
1598         return -EOPNOTSUPP;
1599 }
1600
1601 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1602 {
1603         /* Mirror missing mmap method error code */
1604         return -ENODEV;
1605 }
1606
1607 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1608 {
1609         ssize_t res;
1610         struct msghdr msg = {.msg_flags = flags};
1611         struct kvec iov;
1612         char *kaddr = kmap(page);
1613         iov.iov_base = kaddr + offset;
1614         iov.iov_len = size;
1615         res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1616         kunmap(page);
1617         return res;
1618 }
1619
1620 /*
1621  *      Default Socket Callbacks
1622  */
1623
1624 static void sock_def_wakeup(struct sock *sk)
1625 {
1626         read_lock(&sk->sk_callback_lock);
1627         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1628                 wake_up_interruptible_all(sk->sk_sleep);
1629         read_unlock(&sk->sk_callback_lock);
1630 }
1631
1632 static void sock_def_error_report(struct sock *sk)
1633 {
1634         read_lock(&sk->sk_callback_lock);
1635         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1636                 wake_up_interruptible(sk->sk_sleep);
1637         sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1638         read_unlock(&sk->sk_callback_lock);
1639 }
1640
1641 static void sock_def_readable(struct sock *sk, int len)
1642 {
1643         read_lock(&sk->sk_callback_lock);
1644         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1645                 wake_up_interruptible(sk->sk_sleep);
1646         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1647         read_unlock(&sk->sk_callback_lock);
1648 }
1649
1650 static void sock_def_write_space(struct sock *sk)
1651 {
1652         read_lock(&sk->sk_callback_lock);
1653
1654         /* Do not wake up a writer until he can make "significant"
1655          * progress.  --DaveM
1656          */
1657         if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1658                 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1659                         wake_up_interruptible(sk->sk_sleep);
1660
1661                 /* Should agree with poll, otherwise some programs break */
1662                 if (sock_writeable(sk))
1663                         sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1664         }
1665
1666         read_unlock(&sk->sk_callback_lock);
1667 }
1668
1669 static void sock_def_destruct(struct sock *sk)
1670 {
1671         kfree(sk->sk_protinfo);
1672 }
1673
1674 void sk_send_sigurg(struct sock *sk)
1675 {
1676         if (sk->sk_socket && sk->sk_socket->file)
1677                 if (send_sigurg(&sk->sk_socket->file->f_owner))
1678                         sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1679 }
1680
1681 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1682                     unsigned long expires)
1683 {
1684         if (!mod_timer(timer, expires))
1685                 sock_hold(sk);
1686 }
1687
1688 EXPORT_SYMBOL(sk_reset_timer);
1689
1690 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1691 {
1692         if (timer_pending(timer) && del_timer(timer))
1693                 __sock_put(sk);
1694 }
1695
1696 EXPORT_SYMBOL(sk_stop_timer);
1697
1698 void sock_init_data(struct socket *sock, struct sock *sk)
1699 {
1700         skb_queue_head_init(&sk->sk_receive_queue);
1701         skb_queue_head_init(&sk->sk_write_queue);
1702         skb_queue_head_init(&sk->sk_error_queue);
1703 #ifdef CONFIG_NET_DMA
1704         skb_queue_head_init(&sk->sk_async_wait_queue);
1705 #endif
1706
1707         sk->sk_send_head        =       NULL;
1708
1709         init_timer(&sk->sk_timer);
1710
1711         sk->sk_allocation       =       GFP_KERNEL;
1712         sk->sk_rcvbuf           =       sysctl_rmem_default;
1713         sk->sk_sndbuf           =       sysctl_wmem_default;
1714         sk->sk_state            =       TCP_CLOSE;
1715         sk->sk_socket           =       sock;
1716
1717         sock_set_flag(sk, SOCK_ZAPPED);
1718
1719         if (sock) {
1720                 sk->sk_type     =       sock->type;
1721                 sk->sk_sleep    =       &sock->wait;
1722                 sock->sk        =       sk;
1723         } else
1724                 sk->sk_sleep    =       NULL;
1725
1726         rwlock_init(&sk->sk_dst_lock);
1727         rwlock_init(&sk->sk_callback_lock);
1728         lockdep_set_class_and_name(&sk->sk_callback_lock,
1729                         af_callback_keys + sk->sk_family,
1730                         af_family_clock_key_strings[sk->sk_family]);
1731
1732         sk->sk_state_change     =       sock_def_wakeup;
1733         sk->sk_data_ready       =       sock_def_readable;
1734         sk->sk_write_space      =       sock_def_write_space;
1735         sk->sk_error_report     =       sock_def_error_report;
1736         sk->sk_destruct         =       sock_def_destruct;
1737
1738         sk->sk_sndmsg_page      =       NULL;
1739         sk->sk_sndmsg_off       =       0;
1740
1741         sk->sk_peercred.pid     =       0;
1742         sk->sk_peercred.uid     =       -1;
1743         sk->sk_peercred.gid     =       -1;
1744         sk->sk_write_pending    =       0;
1745         sk->sk_rcvlowat         =       1;
1746         sk->sk_rcvtimeo         =       MAX_SCHEDULE_TIMEOUT;
1747         sk->sk_sndtimeo         =       MAX_SCHEDULE_TIMEOUT;
1748
1749         sk->sk_stamp = ktime_set(-1L, -1L);
1750
1751         atomic_set(&sk->sk_refcnt, 1);
1752         atomic_set(&sk->sk_drops, 0);
1753 }
1754
1755 void lock_sock_nested(struct sock *sk, int subclass)
1756 {
1757         might_sleep();
1758         spin_lock_bh(&sk->sk_lock.slock);
1759         if (sk->sk_lock.owned)
1760                 __lock_sock(sk);
1761         sk->sk_lock.owned = 1;
1762         spin_unlock(&sk->sk_lock.slock);
1763         /*
1764          * The sk_lock has mutex_lock() semantics here:
1765          */
1766         mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1767         local_bh_enable();
1768 }
1769
1770 EXPORT_SYMBOL(lock_sock_nested);
1771
1772 void release_sock(struct sock *sk)
1773 {
1774         /*
1775          * The sk_lock has mutex_unlock() semantics:
1776          */
1777         mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1778
1779         spin_lock_bh(&sk->sk_lock.slock);
1780         if (sk->sk_backlog.tail)
1781                 __release_sock(sk);
1782         sk->sk_lock.owned = 0;
1783         if (waitqueue_active(&sk->sk_lock.wq))
1784                 wake_up(&sk->sk_lock.wq);
1785         spin_unlock_bh(&sk->sk_lock.slock);
1786 }
1787 EXPORT_SYMBOL(release_sock);
1788
1789 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1790 {
1791         struct timeval tv;
1792         if (!sock_flag(sk, SOCK_TIMESTAMP))
1793                 sock_enable_timestamp(sk);
1794         tv = ktime_to_timeval(sk->sk_stamp);
1795         if (tv.tv_sec == -1)
1796                 return -ENOENT;
1797         if (tv.tv_sec == 0) {
1798                 sk->sk_stamp = ktime_get_real();
1799                 tv = ktime_to_timeval(sk->sk_stamp);
1800         }
1801         return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1802 }
1803 EXPORT_SYMBOL(sock_get_timestamp);
1804
1805 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1806 {
1807         struct timespec ts;
1808         if (!sock_flag(sk, SOCK_TIMESTAMP))
1809                 sock_enable_timestamp(sk);
1810         ts = ktime_to_timespec(sk->sk_stamp);
1811         if (ts.tv_sec == -1)
1812                 return -ENOENT;
1813         if (ts.tv_sec == 0) {
1814                 sk->sk_stamp = ktime_get_real();
1815                 ts = ktime_to_timespec(sk->sk_stamp);
1816         }
1817         return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1818 }
1819 EXPORT_SYMBOL(sock_get_timestampns);
1820
1821 void sock_enable_timestamp(struct sock *sk)
1822 {
1823         if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1824                 sock_set_flag(sk, SOCK_TIMESTAMP);
1825                 net_enable_timestamp();
1826         }
1827 }
1828
1829 /*
1830  *      Get a socket option on an socket.
1831  *
1832  *      FIX: POSIX 1003.1g is very ambiguous here. It states that
1833  *      asynchronous errors should be reported by getsockopt. We assume
1834  *      this means if you specify SO_ERROR (otherwise whats the point of it).
1835  */
1836 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1837                            char __user *optval, int __user *optlen)
1838 {
1839         struct sock *sk = sock->sk;
1840
1841         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1842 }
1843
1844 EXPORT_SYMBOL(sock_common_getsockopt);
1845
1846 #ifdef CONFIG_COMPAT
1847 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1848                                   char __user *optval, int __user *optlen)
1849 {
1850         struct sock *sk = sock->sk;
1851
1852         if (sk->sk_prot->compat_getsockopt != NULL)
1853                 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1854                                                       optval, optlen);
1855         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1856 }
1857 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1858 #endif
1859
1860 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1861                         struct msghdr *msg, size_t size, int flags)
1862 {
1863         struct sock *sk = sock->sk;
1864         int addr_len = 0;
1865         int err;
1866
1867         err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1868                                    flags & ~MSG_DONTWAIT, &addr_len);
1869         if (err >= 0)
1870                 msg->msg_namelen = addr_len;
1871         return err;
1872 }
1873
1874 EXPORT_SYMBOL(sock_common_recvmsg);
1875
1876 /*
1877  *      Set socket options on an inet socket.
1878  */
1879 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1880                            char __user *optval, int optlen)
1881 {
1882         struct sock *sk = sock->sk;
1883
1884         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1885 }
1886
1887 EXPORT_SYMBOL(sock_common_setsockopt);
1888
1889 #ifdef CONFIG_COMPAT
1890 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1891                                   char __user *optval, int optlen)
1892 {
1893         struct sock *sk = sock->sk;
1894
1895         if (sk->sk_prot->compat_setsockopt != NULL)
1896                 return sk->sk_prot->compat_setsockopt(sk, level, optname,
1897                                                       optval, optlen);
1898         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1899 }
1900 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1901 #endif
1902
1903 void sk_common_release(struct sock *sk)
1904 {
1905         if (sk->sk_prot->destroy)
1906                 sk->sk_prot->destroy(sk);
1907
1908         /*
1909          * Observation: when sock_common_release is called, processes have
1910          * no access to socket. But net still has.
1911          * Step one, detach it from networking:
1912          *
1913          * A. Remove from hash tables.
1914          */
1915
1916         sk->sk_prot->unhash(sk);
1917
1918         /*
1919          * In this point socket cannot receive new packets, but it is possible
1920          * that some packets are in flight because some CPU runs receiver and
1921          * did hash table lookup before we unhashed socket. They will achieve
1922          * receive queue and will be purged by socket destructor.
1923          *
1924          * Also we still have packets pending on receive queue and probably,
1925          * our own packets waiting in device queues. sock_destroy will drain
1926          * receive queue, but transmitted packets will delay socket destruction
1927          * until the last reference will be released.
1928          */
1929
1930         sock_orphan(sk);
1931
1932         xfrm_sk_free_policy(sk);
1933
1934         sk_refcnt_debug_release(sk);
1935         sock_put(sk);
1936 }
1937
1938 EXPORT_SYMBOL(sk_common_release);
1939
1940 static DEFINE_RWLOCK(proto_list_lock);
1941 static LIST_HEAD(proto_list);
1942
1943 int proto_register(struct proto *prot, int alloc_slab)
1944 {
1945         char *request_sock_slab_name = NULL;
1946         char *timewait_sock_slab_name;
1947
1948         if (sock_prot_inuse_init(prot) != 0) {
1949                 printk(KERN_CRIT "%s: Can't alloc inuse counters!\n", prot->name);
1950                 goto out;
1951         }
1952
1953         if (alloc_slab) {
1954                 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1955                                                SLAB_HWCACHE_ALIGN, NULL);
1956
1957                 if (prot->slab == NULL) {
1958                         printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1959                                prot->name);
1960                         goto out_free_inuse;
1961                 }
1962
1963                 if (prot->rsk_prot != NULL) {
1964                         static const char mask[] = "request_sock_%s";
1965
1966                         request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1967                         if (request_sock_slab_name == NULL)
1968                                 goto out_free_sock_slab;
1969
1970                         sprintf(request_sock_slab_name, mask, prot->name);
1971                         prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1972                                                                  prot->rsk_prot->obj_size, 0,
1973                                                                  SLAB_HWCACHE_ALIGN, NULL);
1974
1975                         if (prot->rsk_prot->slab == NULL) {
1976                                 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1977                                        prot->name);
1978                                 goto out_free_request_sock_slab_name;
1979                         }
1980                 }
1981
1982                 if (prot->twsk_prot != NULL) {
1983                         static const char mask[] = "tw_sock_%s";
1984
1985                         timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1986
1987                         if (timewait_sock_slab_name == NULL)
1988                                 goto out_free_request_sock_slab;
1989
1990                         sprintf(timewait_sock_slab_name, mask, prot->name);
1991                         prot->twsk_prot->twsk_slab =
1992                                 kmem_cache_create(timewait_sock_slab_name,
1993                                                   prot->twsk_prot->twsk_obj_size,
1994                                                   0, SLAB_HWCACHE_ALIGN,
1995                                                   NULL);
1996                         if (prot->twsk_prot->twsk_slab == NULL)
1997                                 goto out_free_timewait_sock_slab_name;
1998                 }
1999         }
2000
2001         write_lock(&proto_list_lock);
2002         list_add(&prot->node, &proto_list);
2003         write_unlock(&proto_list_lock);
2004         return 0;
2005
2006 out_free_timewait_sock_slab_name:
2007         kfree(timewait_sock_slab_name);
2008 out_free_request_sock_slab:
2009         if (prot->rsk_prot && prot->rsk_prot->slab) {
2010                 kmem_cache_destroy(prot->rsk_prot->slab);
2011                 prot->rsk_prot->slab = NULL;
2012         }
2013 out_free_request_sock_slab_name:
2014         kfree(request_sock_slab_name);
2015 out_free_sock_slab:
2016         kmem_cache_destroy(prot->slab);
2017         prot->slab = NULL;
2018 out_free_inuse:
2019         sock_prot_inuse_free(prot);
2020 out:
2021         return -ENOBUFS;
2022 }
2023
2024 EXPORT_SYMBOL(proto_register);
2025
2026 void proto_unregister(struct proto *prot)
2027 {
2028         write_lock(&proto_list_lock);
2029         list_del(&prot->node);
2030         write_unlock(&proto_list_lock);
2031
2032         sock_prot_inuse_free(prot);
2033
2034         if (prot->slab != NULL) {
2035                 kmem_cache_destroy(prot->slab);
2036                 prot->slab = NULL;
2037         }
2038
2039         if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2040                 const char *name = kmem_cache_name(prot->rsk_prot->slab);
2041
2042                 kmem_cache_destroy(prot->rsk_prot->slab);
2043                 kfree(name);
2044                 prot->rsk_prot->slab = NULL;
2045         }
2046
2047         if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2048                 const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
2049
2050                 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2051                 kfree(name);
2052                 prot->twsk_prot->twsk_slab = NULL;
2053         }
2054 }
2055
2056 EXPORT_SYMBOL(proto_unregister);
2057
2058 #ifdef CONFIG_PROC_FS
2059 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2060         __acquires(proto_list_lock)
2061 {
2062         read_lock(&proto_list_lock);
2063         return seq_list_start_head(&proto_list, *pos);
2064 }
2065
2066 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2067 {
2068         return seq_list_next(v, &proto_list, pos);
2069 }
2070
2071 static void proto_seq_stop(struct seq_file *seq, void *v)
2072         __releases(proto_list_lock)
2073 {
2074         read_unlock(&proto_list_lock);
2075 }
2076
2077 static char proto_method_implemented(const void *method)
2078 {
2079         return method == NULL ? 'n' : 'y';
2080 }
2081
2082 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2083 {
2084         seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
2085                         "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2086                    proto->name,
2087                    proto->obj_size,
2088                    proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
2089                    proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2090                    proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2091                    proto->max_header,
2092                    proto->slab == NULL ? "no" : "yes",
2093                    module_name(proto->owner),
2094                    proto_method_implemented(proto->close),
2095                    proto_method_implemented(proto->connect),
2096                    proto_method_implemented(proto->disconnect),
2097                    proto_method_implemented(proto->accept),
2098                    proto_method_implemented(proto->ioctl),
2099                    proto_method_implemented(proto->init),
2100                    proto_method_implemented(proto->destroy),
2101                    proto_method_implemented(proto->shutdown),
2102                    proto_method_implemented(proto->setsockopt),
2103                    proto_method_implemented(proto->getsockopt),
2104                    proto_method_implemented(proto->sendmsg),
2105                    proto_method_implemented(proto->recvmsg),
2106                    proto_method_implemented(proto->sendpage),
2107                    proto_method_implemented(proto->bind),
2108                    proto_method_implemented(proto->backlog_rcv),
2109                    proto_method_implemented(proto->hash),
2110                    proto_method_implemented(proto->unhash),
2111                    proto_method_implemented(proto->get_port),
2112                    proto_method_implemented(proto->enter_memory_pressure));
2113 }
2114
2115 static int proto_seq_show(struct seq_file *seq, void *v)
2116 {
2117         if (v == &proto_list)
2118                 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2119                            "protocol",
2120                            "size",
2121                            "sockets",
2122                            "memory",
2123                            "press",
2124                            "maxhdr",
2125                            "slab",
2126                            "module",
2127                            "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2128         else
2129                 proto_seq_printf(seq, list_entry(v, struct proto, node));
2130         return 0;
2131 }
2132
2133 static const struct seq_operations proto_seq_ops = {
2134         .start  = proto_seq_start,
2135         .next   = proto_seq_next,
2136         .stop   = proto_seq_stop,
2137         .show   = proto_seq_show,
2138 };
2139
2140 static int proto_seq_open(struct inode *inode, struct file *file)
2141 {
2142         return seq_open(file, &proto_seq_ops);
2143 }
2144
2145 static const struct file_operations proto_seq_fops = {
2146         .owner          = THIS_MODULE,
2147         .open           = proto_seq_open,
2148         .read           = seq_read,
2149         .llseek         = seq_lseek,
2150         .release        = seq_release,
2151 };
2152
2153 static int __init proto_init(void)
2154 {
2155         /* register /proc/net/protocols */
2156         return proc_net_fops_create(&init_net, "protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
2157 }
2158
2159 subsys_initcall(proto_init);
2160
2161 #endif /* PROC_FS */
2162
2163 EXPORT_SYMBOL(sk_alloc);
2164 EXPORT_SYMBOL(sk_free);
2165 EXPORT_SYMBOL(sk_send_sigurg);
2166 EXPORT_SYMBOL(sock_alloc_send_skb);
2167 EXPORT_SYMBOL(sock_init_data);
2168 EXPORT_SYMBOL(sock_kfree_s);
2169 EXPORT_SYMBOL(sock_kmalloc);
2170 EXPORT_SYMBOL(sock_no_accept);
2171 EXPORT_SYMBOL(sock_no_bind);
2172 EXPORT_SYMBOL(sock_no_connect);
2173 EXPORT_SYMBOL(sock_no_getname);
2174 EXPORT_SYMBOL(sock_no_getsockopt);
2175 EXPORT_SYMBOL(sock_no_ioctl);
2176 EXPORT_SYMBOL(sock_no_listen);
2177 EXPORT_SYMBOL(sock_no_mmap);
2178 EXPORT_SYMBOL(sock_no_poll);
2179 EXPORT_SYMBOL(sock_no_recvmsg);
2180 EXPORT_SYMBOL(sock_no_sendmsg);
2181 EXPORT_SYMBOL(sock_no_sendpage);
2182 EXPORT_SYMBOL(sock_no_setsockopt);
2183 EXPORT_SYMBOL(sock_no_shutdown);
2184 EXPORT_SYMBOL(sock_no_socketpair);
2185 EXPORT_SYMBOL(sock_rfree);
2186 EXPORT_SYMBOL(sock_setsockopt);
2187 EXPORT_SYMBOL(sock_wfree);
2188 EXPORT_SYMBOL(sock_wmalloc);
2189 EXPORT_SYMBOL(sock_i_uid);
2190 EXPORT_SYMBOL(sock_i_ino);
2191 EXPORT_SYMBOL(sysctl_optmem_max);