UPSTREAM mm: memcg: enable memcg OOM killer only for user faults
[linux-3.10.git] / mm / kmemleak.c
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/kmemleak.txt.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a red black tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * The kmemleak_object structures have a use_count incremented or decremented
57  * using the get_object()/put_object() functions. When the use_count becomes
58  * 0, this count can no longer be incremented and put_object() schedules the
59  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60  * function must be protected by rcu_read_lock() to avoid accessing a freed
61  * structure.
62  */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
66 #include <linux/init.h>
67 #include <linux/kernel.h>
68 #include <linux/list.h>
69 #include <linux/sched.h>
70 #include <linux/jiffies.h>
71 #include <linux/delay.h>
72 #include <linux/export.h>
73 #include <linux/kthread.h>
74 #include <linux/rbtree.h>
75 #include <linux/fs.h>
76 #include <linux/debugfs.h>
77 #include <linux/seq_file.h>
78 #include <linux/cpumask.h>
79 #include <linux/spinlock.h>
80 #include <linux/mutex.h>
81 #include <linux/rcupdate.h>
82 #include <linux/stacktrace.h>
83 #include <linux/cache.h>
84 #include <linux/percpu.h>
85 #include <linux/hardirq.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
93 #include <linux/mm.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
96
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
100
101 #include <linux/kmemcheck.h>
102 #include <linux/kmemleak.h>
103 #include <linux/memory_hotplug.h>
104
105 /*
106  * Kmemleak configuration and common defines.
107  */
108 #define MAX_TRACE               16      /* stack trace length */
109 #define MSECS_MIN_AGE           5000    /* minimum object age for reporting */
110 #define SECS_FIRST_SCAN         60      /* delay before the first scan */
111 #define SECS_SCAN_WAIT          600     /* subsequent auto scanning delay */
112 #define MAX_SCAN_SIZE           4096    /* maximum size of a scanned block */
113
114 #define BYTES_PER_POINTER       sizeof(void *)
115
116 /* GFP bitmask for kmemleak internal allocations */
117 #define gfp_kmemleak_mask(gfp)  (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
118                                  __GFP_NORETRY | __GFP_NOMEMALLOC | \
119                                  __GFP_NOWARN)
120
121 /* scanning area inside a memory block */
122 struct kmemleak_scan_area {
123         struct hlist_node node;
124         unsigned long start;
125         size_t size;
126 };
127
128 #define KMEMLEAK_GREY   0
129 #define KMEMLEAK_BLACK  -1
130
131 /*
132  * Structure holding the metadata for each allocated memory block.
133  * Modifications to such objects should be made while holding the
134  * object->lock. Insertions or deletions from object_list, gray_list or
135  * rb_node are already protected by the corresponding locks or mutex (see
136  * the notes on locking above). These objects are reference-counted
137  * (use_count) and freed using the RCU mechanism.
138  */
139 struct kmemleak_object {
140         spinlock_t lock;
141         unsigned long flags;            /* object status flags */
142         struct list_head object_list;
143         struct list_head gray_list;
144         struct rb_node rb_node;
145         struct rcu_head rcu;            /* object_list lockless traversal */
146         /* object usage count; object freed when use_count == 0 */
147         atomic_t use_count;
148         unsigned long pointer;
149         size_t size;
150         /* minimum number of a pointers found before it is considered leak */
151         int min_count;
152         /* the total number of pointers found pointing to this object */
153         int count;
154         /* checksum for detecting modified objects */
155         u32 checksum;
156         /* memory ranges to be scanned inside an object (empty for all) */
157         struct hlist_head area_list;
158         unsigned long trace[MAX_TRACE];
159         unsigned int trace_len;
160         unsigned long jiffies;          /* creation timestamp */
161         pid_t pid;                      /* pid of the current task */
162         char comm[TASK_COMM_LEN];       /* executable name */
163 };
164
165 /* flag representing the memory block allocation status */
166 #define OBJECT_ALLOCATED        (1 << 0)
167 /* flag set after the first reporting of an unreference object */
168 #define OBJECT_REPORTED         (1 << 1)
169 /* flag set to not scan the object */
170 #define OBJECT_NO_SCAN          (1 << 2)
171
172 /* number of bytes to print per line; must be 16 or 32 */
173 #define HEX_ROW_SIZE            16
174 /* number of bytes to print at a time (1, 2, 4, 8) */
175 #define HEX_GROUP_SIZE          1
176 /* include ASCII after the hex output */
177 #define HEX_ASCII               1
178 /* max number of lines to be printed */
179 #define HEX_MAX_LINES           2
180
181 /* the list of all allocated objects */
182 static LIST_HEAD(object_list);
183 /* the list of gray-colored objects (see color_gray comment below) */
184 static LIST_HEAD(gray_list);
185 /* search tree for object boundaries */
186 static struct rb_root object_tree_root = RB_ROOT;
187 /* rw_lock protecting the access to object_list and object_tree_root */
188 static DEFINE_RWLOCK(kmemleak_lock);
189
190 /* allocation caches for kmemleak internal data */
191 static struct kmem_cache *object_cache;
192 static struct kmem_cache *scan_area_cache;
193
194 /* set if tracing memory operations is enabled */
195 static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
196 /* set in the late_initcall if there were no errors */
197 static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
198 /* enables or disables early logging of the memory operations */
199 static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
200 /* set if a kmemleak warning was issued */
201 static atomic_t kmemleak_warning = ATOMIC_INIT(0);
202 /* set if a fatal kmemleak error has occurred */
203 static atomic_t kmemleak_error = ATOMIC_INIT(0);
204
205 /* minimum and maximum address that may be valid pointers */
206 static unsigned long min_addr = ULONG_MAX;
207 static unsigned long max_addr;
208
209 static struct task_struct *scan_thread;
210 /* used to avoid reporting of recently allocated objects */
211 static unsigned long jiffies_min_age;
212 static unsigned long jiffies_last_scan;
213 /* delay between automatic memory scannings */
214 static signed long jiffies_scan_wait;
215 /* enables or disables the task stacks scanning */
216 static int kmemleak_stack_scan = 1;
217 /* protects the memory scanning, parameters and debug/kmemleak file access */
218 static DEFINE_MUTEX(scan_mutex);
219 /* setting kmemleak=on, will set this var, skipping the disable */
220 static int kmemleak_skip_disable;
221
222
223 /*
224  * Early object allocation/freeing logging. Kmemleak is initialized after the
225  * kernel allocator. However, both the kernel allocator and kmemleak may
226  * allocate memory blocks which need to be tracked. Kmemleak defines an
227  * arbitrary buffer to hold the allocation/freeing information before it is
228  * fully initialized.
229  */
230
231 /* kmemleak operation type for early logging */
232 enum {
233         KMEMLEAK_ALLOC,
234         KMEMLEAK_ALLOC_PERCPU,
235         KMEMLEAK_FREE,
236         KMEMLEAK_FREE_PART,
237         KMEMLEAK_FREE_PERCPU,
238         KMEMLEAK_NOT_LEAK,
239         KMEMLEAK_IGNORE,
240         KMEMLEAK_SCAN_AREA,
241         KMEMLEAK_NO_SCAN
242 };
243
244 /*
245  * Structure holding the information passed to kmemleak callbacks during the
246  * early logging.
247  */
248 struct early_log {
249         int op_type;                    /* kmemleak operation type */
250         const void *ptr;                /* allocated/freed memory block */
251         size_t size;                    /* memory block size */
252         int min_count;                  /* minimum reference count */
253         unsigned long trace[MAX_TRACE]; /* stack trace */
254         unsigned int trace_len;         /* stack trace length */
255 };
256
257 /* early logging buffer and current position */
258 static struct early_log
259         early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
260 static int crt_early_log __initdata;
261
262 static void kmemleak_disable(void);
263
264 /*
265  * Print a warning and dump the stack trace.
266  */
267 #define kmemleak_warn(x...)     do {            \
268         pr_warning(x);                          \
269         dump_stack();                           \
270         atomic_set(&kmemleak_warning, 1);       \
271 } while (0)
272
273 /*
274  * Macro invoked when a serious kmemleak condition occurred and cannot be
275  * recovered from. Kmemleak will be disabled and further allocation/freeing
276  * tracing no longer available.
277  */
278 #define kmemleak_stop(x...)     do {    \
279         kmemleak_warn(x);               \
280         kmemleak_disable();             \
281 } while (0)
282
283 /*
284  * Printing of the objects hex dump to the seq file. The number of lines to be
285  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
286  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
287  * with the object->lock held.
288  */
289 static void hex_dump_object(struct seq_file *seq,
290                             struct kmemleak_object *object)
291 {
292         const u8 *ptr = (const u8 *)object->pointer;
293         int i, len, remaining;
294         unsigned char linebuf[HEX_ROW_SIZE * 5];
295
296         /* limit the number of lines to HEX_MAX_LINES */
297         remaining = len =
298                 min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
299
300         seq_printf(seq, "  hex dump (first %d bytes):\n", len);
301         for (i = 0; i < len; i += HEX_ROW_SIZE) {
302                 int linelen = min(remaining, HEX_ROW_SIZE);
303
304                 remaining -= HEX_ROW_SIZE;
305                 hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
306                                    HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
307                                    HEX_ASCII);
308                 seq_printf(seq, "    %s\n", linebuf);
309         }
310 }
311
312 /*
313  * Object colors, encoded with count and min_count:
314  * - white - orphan object, not enough references to it (count < min_count)
315  * - gray  - not orphan, not marked as false positive (min_count == 0) or
316  *              sufficient references to it (count >= min_count)
317  * - black - ignore, it doesn't contain references (e.g. text section)
318  *              (min_count == -1). No function defined for this color.
319  * Newly created objects don't have any color assigned (object->count == -1)
320  * before the next memory scan when they become white.
321  */
322 static bool color_white(const struct kmemleak_object *object)
323 {
324         return object->count != KMEMLEAK_BLACK &&
325                 object->count < object->min_count;
326 }
327
328 static bool color_gray(const struct kmemleak_object *object)
329 {
330         return object->min_count != KMEMLEAK_BLACK &&
331                 object->count >= object->min_count;
332 }
333
334 /*
335  * Objects are considered unreferenced only if their color is white, they have
336  * not be deleted and have a minimum age to avoid false positives caused by
337  * pointers temporarily stored in CPU registers.
338  */
339 static bool unreferenced_object(struct kmemleak_object *object)
340 {
341         return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
342                 time_before_eq(object->jiffies + jiffies_min_age,
343                                jiffies_last_scan);
344 }
345
346 /*
347  * Printing of the unreferenced objects information to the seq file. The
348  * print_unreferenced function must be called with the object->lock held.
349  */
350 static void print_unreferenced(struct seq_file *seq,
351                                struct kmemleak_object *object)
352 {
353         int i;
354         unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
355
356         seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
357                    object->pointer, object->size);
358         seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
359                    object->comm, object->pid, object->jiffies,
360                    msecs_age / 1000, msecs_age % 1000);
361         hex_dump_object(seq, object);
362         seq_printf(seq, "  backtrace:\n");
363
364         for (i = 0; i < object->trace_len; i++) {
365                 void *ptr = (void *)object->trace[i];
366                 seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
367         }
368 }
369
370 /*
371  * Print the kmemleak_object information. This function is used mainly for
372  * debugging special cases when kmemleak operations. It must be called with
373  * the object->lock held.
374  */
375 static void dump_object_info(struct kmemleak_object *object)
376 {
377         struct stack_trace trace;
378
379         trace.nr_entries = object->trace_len;
380         trace.entries = object->trace;
381
382         pr_notice("Object 0x%08lx (size %zu):\n",
383                   object->pointer, object->size);
384         pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
385                   object->comm, object->pid, object->jiffies);
386         pr_notice("  min_count = %d\n", object->min_count);
387         pr_notice("  count = %d\n", object->count);
388         pr_notice("  flags = 0x%lx\n", object->flags);
389         pr_notice("  checksum = %d\n", object->checksum);
390         pr_notice("  backtrace:\n");
391         print_stack_trace(&trace, 4);
392 }
393
394 /*
395  * Look-up a memory block metadata (kmemleak_object) in the object search
396  * tree based on a pointer value. If alias is 0, only values pointing to the
397  * beginning of the memory block are allowed. The kmemleak_lock must be held
398  * when calling this function.
399  */
400 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
401 {
402         struct rb_node *rb = object_tree_root.rb_node;
403
404         while (rb) {
405                 struct kmemleak_object *object =
406                         rb_entry(rb, struct kmemleak_object, rb_node);
407                 if (ptr < object->pointer)
408                         rb = object->rb_node.rb_left;
409                 else if (object->pointer + object->size <= ptr)
410                         rb = object->rb_node.rb_right;
411                 else if (object->pointer == ptr || alias)
412                         return object;
413                 else {
414                         kmemleak_warn("Found object by alias at 0x%08lx\n",
415                                       ptr);
416                         dump_object_info(object);
417                         break;
418                 }
419         }
420         return NULL;
421 }
422
423 /*
424  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
425  * that once an object's use_count reached 0, the RCU freeing was already
426  * registered and the object should no longer be used. This function must be
427  * called under the protection of rcu_read_lock().
428  */
429 static int get_object(struct kmemleak_object *object)
430 {
431         return atomic_inc_not_zero(&object->use_count);
432 }
433
434 /*
435  * RCU callback to free a kmemleak_object.
436  */
437 static void free_object_rcu(struct rcu_head *rcu)
438 {
439         struct hlist_node *tmp;
440         struct kmemleak_scan_area *area;
441         struct kmemleak_object *object =
442                 container_of(rcu, struct kmemleak_object, rcu);
443
444         /*
445          * Once use_count is 0 (guaranteed by put_object), there is no other
446          * code accessing this object, hence no need for locking.
447          */
448         hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
449                 hlist_del(&area->node);
450                 kmem_cache_free(scan_area_cache, area);
451         }
452         kmem_cache_free(object_cache, object);
453 }
454
455 /*
456  * Decrement the object use_count. Once the count is 0, free the object using
457  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
458  * delete_object() path, the delayed RCU freeing ensures that there is no
459  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
460  * is also possible.
461  */
462 static void put_object(struct kmemleak_object *object)
463 {
464         if (!atomic_dec_and_test(&object->use_count))
465                 return;
466
467         /* should only get here after delete_object was called */
468         WARN_ON(object->flags & OBJECT_ALLOCATED);
469
470         call_rcu(&object->rcu, free_object_rcu);
471 }
472
473 /*
474  * Look up an object in the object search tree and increase its use_count.
475  */
476 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
477 {
478         unsigned long flags;
479         struct kmemleak_object *object = NULL;
480
481         rcu_read_lock();
482         read_lock_irqsave(&kmemleak_lock, flags);
483         if (ptr >= min_addr && ptr < max_addr)
484                 object = lookup_object(ptr, alias);
485         read_unlock_irqrestore(&kmemleak_lock, flags);
486
487         /* check whether the object is still available */
488         if (object && !get_object(object))
489                 object = NULL;
490         rcu_read_unlock();
491
492         return object;
493 }
494
495 /*
496  * Save stack trace to the given array of MAX_TRACE size.
497  */
498 static int __save_stack_trace(unsigned long *trace)
499 {
500         struct stack_trace stack_trace;
501
502         stack_trace.max_entries = MAX_TRACE;
503         stack_trace.nr_entries = 0;
504         stack_trace.entries = trace;
505         stack_trace.skip = 2;
506         save_stack_trace(&stack_trace);
507
508         return stack_trace.nr_entries;
509 }
510
511 /*
512  * Create the metadata (struct kmemleak_object) corresponding to an allocated
513  * memory block and add it to the object_list and object_tree_root.
514  */
515 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
516                                              int min_count, gfp_t gfp)
517 {
518         unsigned long flags;
519         struct kmemleak_object *object, *parent;
520         struct rb_node **link, *rb_parent;
521
522         object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
523         if (!object) {
524                 pr_warning("Cannot allocate a kmemleak_object structure\n");
525                 kmemleak_disable();
526                 return NULL;
527         }
528
529         INIT_LIST_HEAD(&object->object_list);
530         INIT_LIST_HEAD(&object->gray_list);
531         INIT_HLIST_HEAD(&object->area_list);
532         spin_lock_init(&object->lock);
533         atomic_set(&object->use_count, 1);
534         object->flags = OBJECT_ALLOCATED;
535         object->pointer = ptr;
536         object->size = size;
537         object->min_count = min_count;
538         object->count = 0;                      /* white color initially */
539         object->jiffies = jiffies;
540         object->checksum = 0;
541
542         /* task information */
543         if (in_irq()) {
544                 object->pid = 0;
545                 strncpy(object->comm, "hardirq", sizeof(object->comm));
546         } else if (in_softirq()) {
547                 object->pid = 0;
548                 strncpy(object->comm, "softirq", sizeof(object->comm));
549         } else {
550                 object->pid = current->pid;
551                 /*
552                  * There is a small chance of a race with set_task_comm(),
553                  * however using get_task_comm() here may cause locking
554                  * dependency issues with current->alloc_lock. In the worst
555                  * case, the command line is not correct.
556                  */
557                 strncpy(object->comm, current->comm, sizeof(object->comm));
558         }
559
560         /* kernel backtrace */
561         object->trace_len = __save_stack_trace(object->trace);
562
563         write_lock_irqsave(&kmemleak_lock, flags);
564
565         min_addr = min(min_addr, ptr);
566         max_addr = max(max_addr, ptr + size);
567         link = &object_tree_root.rb_node;
568         rb_parent = NULL;
569         while (*link) {
570                 rb_parent = *link;
571                 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
572                 if (ptr + size <= parent->pointer)
573                         link = &parent->rb_node.rb_left;
574                 else if (parent->pointer + parent->size <= ptr)
575                         link = &parent->rb_node.rb_right;
576                 else {
577                         kmemleak_stop("Cannot insert 0x%lx into the object "
578                                       "search tree (overlaps existing)\n",
579                                       ptr);
580                         kmem_cache_free(object_cache, object);
581                         object = parent;
582                         spin_lock(&object->lock);
583                         dump_object_info(object);
584                         spin_unlock(&object->lock);
585                         goto out;
586                 }
587         }
588         rb_link_node(&object->rb_node, rb_parent, link);
589         rb_insert_color(&object->rb_node, &object_tree_root);
590
591         list_add_tail_rcu(&object->object_list, &object_list);
592 out:
593         write_unlock_irqrestore(&kmemleak_lock, flags);
594         return object;
595 }
596
597 /*
598  * Remove the metadata (struct kmemleak_object) for a memory block from the
599  * object_list and object_tree_root and decrement its use_count.
600  */
601 static void __delete_object(struct kmemleak_object *object)
602 {
603         unsigned long flags;
604
605         write_lock_irqsave(&kmemleak_lock, flags);
606         rb_erase(&object->rb_node, &object_tree_root);
607         list_del_rcu(&object->object_list);
608         write_unlock_irqrestore(&kmemleak_lock, flags);
609
610         WARN_ON(!(object->flags & OBJECT_ALLOCATED));
611         WARN_ON(atomic_read(&object->use_count) < 2);
612
613         /*
614          * Locking here also ensures that the corresponding memory block
615          * cannot be freed when it is being scanned.
616          */
617         spin_lock_irqsave(&object->lock, flags);
618         object->flags &= ~OBJECT_ALLOCATED;
619         spin_unlock_irqrestore(&object->lock, flags);
620         put_object(object);
621 }
622
623 /*
624  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
625  * delete it.
626  */
627 static void delete_object_full(unsigned long ptr)
628 {
629         struct kmemleak_object *object;
630
631         object = find_and_get_object(ptr, 0);
632         if (!object) {
633 #ifdef DEBUG
634                 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
635                               ptr);
636 #endif
637                 return;
638         }
639         __delete_object(object);
640         put_object(object);
641 }
642
643 /*
644  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
645  * delete it. If the memory block is partially freed, the function may create
646  * additional metadata for the remaining parts of the block.
647  */
648 static void delete_object_part(unsigned long ptr, size_t size)
649 {
650         struct kmemleak_object *object;
651         unsigned long start, end;
652
653         object = find_and_get_object(ptr, 1);
654         if (!object) {
655 #ifdef DEBUG
656                 kmemleak_warn("Partially freeing unknown object at 0x%08lx "
657                               "(size %zu)\n", ptr, size);
658 #endif
659                 return;
660         }
661         __delete_object(object);
662
663         /*
664          * Create one or two objects that may result from the memory block
665          * split. Note that partial freeing is only done by free_bootmem() and
666          * this happens before kmemleak_init() is called. The path below is
667          * only executed during early log recording in kmemleak_init(), so
668          * GFP_KERNEL is enough.
669          */
670         start = object->pointer;
671         end = object->pointer + object->size;
672         if (ptr > start)
673                 create_object(start, ptr - start, object->min_count,
674                               GFP_KERNEL);
675         if (ptr + size < end)
676                 create_object(ptr + size, end - ptr - size, object->min_count,
677                               GFP_KERNEL);
678
679         put_object(object);
680 }
681
682 static void __paint_it(struct kmemleak_object *object, int color)
683 {
684         object->min_count = color;
685         if (color == KMEMLEAK_BLACK)
686                 object->flags |= OBJECT_NO_SCAN;
687 }
688
689 static void paint_it(struct kmemleak_object *object, int color)
690 {
691         unsigned long flags;
692
693         spin_lock_irqsave(&object->lock, flags);
694         __paint_it(object, color);
695         spin_unlock_irqrestore(&object->lock, flags);
696 }
697
698 static void paint_ptr(unsigned long ptr, int color)
699 {
700         struct kmemleak_object *object;
701
702         object = find_and_get_object(ptr, 0);
703         if (!object) {
704                 kmemleak_warn("Trying to color unknown object "
705                               "at 0x%08lx as %s\n", ptr,
706                               (color == KMEMLEAK_GREY) ? "Grey" :
707                               (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
708                 return;
709         }
710         paint_it(object, color);
711         put_object(object);
712 }
713
714 /*
715  * Mark an object permanently as gray-colored so that it can no longer be
716  * reported as a leak. This is used in general to mark a false positive.
717  */
718 static void make_gray_object(unsigned long ptr)
719 {
720         paint_ptr(ptr, KMEMLEAK_GREY);
721 }
722
723 /*
724  * Mark the object as black-colored so that it is ignored from scans and
725  * reporting.
726  */
727 static void make_black_object(unsigned long ptr)
728 {
729         paint_ptr(ptr, KMEMLEAK_BLACK);
730 }
731
732 /*
733  * Add a scanning area to the object. If at least one such area is added,
734  * kmemleak will only scan these ranges rather than the whole memory block.
735  */
736 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
737 {
738         unsigned long flags;
739         struct kmemleak_object *object;
740         struct kmemleak_scan_area *area;
741
742         object = find_and_get_object(ptr, 1);
743         if (!object) {
744                 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
745                               ptr);
746                 return;
747         }
748
749         area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
750         if (!area) {
751                 pr_warning("Cannot allocate a scan area\n");
752                 goto out;
753         }
754
755         spin_lock_irqsave(&object->lock, flags);
756         if (ptr + size > object->pointer + object->size) {
757                 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
758                 dump_object_info(object);
759                 kmem_cache_free(scan_area_cache, area);
760                 goto out_unlock;
761         }
762
763         INIT_HLIST_NODE(&area->node);
764         area->start = ptr;
765         area->size = size;
766
767         hlist_add_head(&area->node, &object->area_list);
768 out_unlock:
769         spin_unlock_irqrestore(&object->lock, flags);
770 out:
771         put_object(object);
772 }
773
774 /*
775  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
776  * pointer. Such object will not be scanned by kmemleak but references to it
777  * are searched.
778  */
779 static void object_no_scan(unsigned long ptr)
780 {
781         unsigned long flags;
782         struct kmemleak_object *object;
783
784         object = find_and_get_object(ptr, 0);
785         if (!object) {
786                 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
787                 return;
788         }
789
790         spin_lock_irqsave(&object->lock, flags);
791         object->flags |= OBJECT_NO_SCAN;
792         spin_unlock_irqrestore(&object->lock, flags);
793         put_object(object);
794 }
795
796 /*
797  * Log an early kmemleak_* call to the early_log buffer. These calls will be
798  * processed later once kmemleak is fully initialized.
799  */
800 static void __init log_early(int op_type, const void *ptr, size_t size,
801                              int min_count)
802 {
803         unsigned long flags;
804         struct early_log *log;
805
806         if (atomic_read(&kmemleak_error)) {
807                 /* kmemleak stopped recording, just count the requests */
808                 crt_early_log++;
809                 return;
810         }
811
812         if (crt_early_log >= ARRAY_SIZE(early_log)) {
813                 kmemleak_disable();
814                 return;
815         }
816
817         /*
818          * There is no need for locking since the kernel is still in UP mode
819          * at this stage. Disabling the IRQs is enough.
820          */
821         local_irq_save(flags);
822         log = &early_log[crt_early_log];
823         log->op_type = op_type;
824         log->ptr = ptr;
825         log->size = size;
826         log->min_count = min_count;
827         log->trace_len = __save_stack_trace(log->trace);
828         crt_early_log++;
829         local_irq_restore(flags);
830 }
831
832 /*
833  * Log an early allocated block and populate the stack trace.
834  */
835 static void early_alloc(struct early_log *log)
836 {
837         struct kmemleak_object *object;
838         unsigned long flags;
839         int i;
840
841         if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr))
842                 return;
843
844         /*
845          * RCU locking needed to ensure object is not freed via put_object().
846          */
847         rcu_read_lock();
848         object = create_object((unsigned long)log->ptr, log->size,
849                                log->min_count, GFP_ATOMIC);
850         if (!object)
851                 goto out;
852         spin_lock_irqsave(&object->lock, flags);
853         for (i = 0; i < log->trace_len; i++)
854                 object->trace[i] = log->trace[i];
855         object->trace_len = log->trace_len;
856         spin_unlock_irqrestore(&object->lock, flags);
857 out:
858         rcu_read_unlock();
859 }
860
861 /*
862  * Log an early allocated block and populate the stack trace.
863  */
864 static void early_alloc_percpu(struct early_log *log)
865 {
866         unsigned int cpu;
867         const void __percpu *ptr = log->ptr;
868
869         for_each_possible_cpu(cpu) {
870                 log->ptr = per_cpu_ptr(ptr, cpu);
871                 early_alloc(log);
872         }
873 }
874
875 /**
876  * kmemleak_alloc - register a newly allocated object
877  * @ptr:        pointer to beginning of the object
878  * @size:       size of the object
879  * @min_count:  minimum number of references to this object. If during memory
880  *              scanning a number of references less than @min_count is found,
881  *              the object is reported as a memory leak. If @min_count is 0,
882  *              the object is never reported as a leak. If @min_count is -1,
883  *              the object is ignored (not scanned and not reported as a leak)
884  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
885  *
886  * This function is called from the kernel allocators when a new object
887  * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
888  */
889 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
890                           gfp_t gfp)
891 {
892         pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
893
894         if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
895                 create_object((unsigned long)ptr, size, min_count, gfp);
896         else if (atomic_read(&kmemleak_early_log))
897                 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
898 }
899 EXPORT_SYMBOL_GPL(kmemleak_alloc);
900
901 /**
902  * kmemleak_alloc_percpu - register a newly allocated __percpu object
903  * @ptr:        __percpu pointer to beginning of the object
904  * @size:       size of the object
905  *
906  * This function is called from the kernel percpu allocator when a new object
907  * (memory block) is allocated (alloc_percpu). It assumes GFP_KERNEL
908  * allocation.
909  */
910 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size)
911 {
912         unsigned int cpu;
913
914         pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
915
916         /*
917          * Percpu allocations are only scanned and not reported as leaks
918          * (min_count is set to 0).
919          */
920         if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
921                 for_each_possible_cpu(cpu)
922                         create_object((unsigned long)per_cpu_ptr(ptr, cpu),
923                                       size, 0, GFP_KERNEL);
924         else if (atomic_read(&kmemleak_early_log))
925                 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
926 }
927 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
928
929 /**
930  * kmemleak_free - unregister a previously registered object
931  * @ptr:        pointer to beginning of the object
932  *
933  * This function is called from the kernel allocators when an object (memory
934  * block) is freed (kmem_cache_free, kfree, vfree etc.).
935  */
936 void __ref kmemleak_free(const void *ptr)
937 {
938         pr_debug("%s(0x%p)\n", __func__, ptr);
939
940         if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
941                 delete_object_full((unsigned long)ptr);
942         else if (atomic_read(&kmemleak_early_log))
943                 log_early(KMEMLEAK_FREE, ptr, 0, 0);
944 }
945 EXPORT_SYMBOL_GPL(kmemleak_free);
946
947 /**
948  * kmemleak_free_part - partially unregister a previously registered object
949  * @ptr:        pointer to the beginning or inside the object. This also
950  *              represents the start of the range to be freed
951  * @size:       size to be unregistered
952  *
953  * This function is called when only a part of a memory block is freed
954  * (usually from the bootmem allocator).
955  */
956 void __ref kmemleak_free_part(const void *ptr, size_t size)
957 {
958         pr_debug("%s(0x%p)\n", __func__, ptr);
959
960         if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
961                 delete_object_part((unsigned long)ptr, size);
962         else if (atomic_read(&kmemleak_early_log))
963                 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
964 }
965 EXPORT_SYMBOL_GPL(kmemleak_free_part);
966
967 /**
968  * kmemleak_free_percpu - unregister a previously registered __percpu object
969  * @ptr:        __percpu pointer to beginning of the object
970  *
971  * This function is called from the kernel percpu allocator when an object
972  * (memory block) is freed (free_percpu).
973  */
974 void __ref kmemleak_free_percpu(const void __percpu *ptr)
975 {
976         unsigned int cpu;
977
978         pr_debug("%s(0x%p)\n", __func__, ptr);
979
980         if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
981                 for_each_possible_cpu(cpu)
982                         delete_object_full((unsigned long)per_cpu_ptr(ptr,
983                                                                       cpu));
984         else if (atomic_read(&kmemleak_early_log))
985                 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
986 }
987 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
988
989 /**
990  * kmemleak_not_leak - mark an allocated object as false positive
991  * @ptr:        pointer to beginning of the object
992  *
993  * Calling this function on an object will cause the memory block to no longer
994  * be reported as leak and always be scanned.
995  */
996 void __ref kmemleak_not_leak(const void *ptr)
997 {
998         pr_debug("%s(0x%p)\n", __func__, ptr);
999
1000         if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
1001                 make_gray_object((unsigned long)ptr);
1002         else if (atomic_read(&kmemleak_early_log))
1003                 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1004 }
1005 EXPORT_SYMBOL(kmemleak_not_leak);
1006
1007 /**
1008  * kmemleak_ignore - ignore an allocated object
1009  * @ptr:        pointer to beginning of the object
1010  *
1011  * Calling this function on an object will cause the memory block to be
1012  * ignored (not scanned and not reported as a leak). This is usually done when
1013  * it is known that the corresponding block is not a leak and does not contain
1014  * any references to other allocated memory blocks.
1015  */
1016 void __ref kmemleak_ignore(const void *ptr)
1017 {
1018         pr_debug("%s(0x%p)\n", __func__, ptr);
1019
1020         if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
1021                 make_black_object((unsigned long)ptr);
1022         else if (atomic_read(&kmemleak_early_log))
1023                 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1024 }
1025 EXPORT_SYMBOL(kmemleak_ignore);
1026
1027 /**
1028  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1029  * @ptr:        pointer to beginning or inside the object. This also
1030  *              represents the start of the scan area
1031  * @size:       size of the scan area
1032  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1033  *
1034  * This function is used when it is known that only certain parts of an object
1035  * contain references to other objects. Kmemleak will only scan these areas
1036  * reducing the number false negatives.
1037  */
1038 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1039 {
1040         pr_debug("%s(0x%p)\n", __func__, ptr);
1041
1042         if (atomic_read(&kmemleak_enabled) && ptr && size && !IS_ERR(ptr))
1043                 add_scan_area((unsigned long)ptr, size, gfp);
1044         else if (atomic_read(&kmemleak_early_log))
1045                 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1046 }
1047 EXPORT_SYMBOL(kmemleak_scan_area);
1048
1049 /**
1050  * kmemleak_no_scan - do not scan an allocated object
1051  * @ptr:        pointer to beginning of the object
1052  *
1053  * This function notifies kmemleak not to scan the given memory block. Useful
1054  * in situations where it is known that the given object does not contain any
1055  * references to other objects. Kmemleak will not scan such objects reducing
1056  * the number of false negatives.
1057  */
1058 void __ref kmemleak_no_scan(const void *ptr)
1059 {
1060         pr_debug("%s(0x%p)\n", __func__, ptr);
1061
1062         if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
1063                 object_no_scan((unsigned long)ptr);
1064         else if (atomic_read(&kmemleak_early_log))
1065                 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1066 }
1067 EXPORT_SYMBOL(kmemleak_no_scan);
1068
1069 /*
1070  * Update an object's checksum and return true if it was modified.
1071  */
1072 static bool update_checksum(struct kmemleak_object *object)
1073 {
1074         u32 old_csum = object->checksum;
1075
1076         if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1077                 return false;
1078
1079         object->checksum = crc32(0, (void *)object->pointer, object->size);
1080         return object->checksum != old_csum;
1081 }
1082
1083 /*
1084  * Memory scanning is a long process and it needs to be interruptable. This
1085  * function checks whether such interrupt condition occurred.
1086  */
1087 static int scan_should_stop(void)
1088 {
1089         if (!atomic_read(&kmemleak_enabled))
1090                 return 1;
1091
1092         /*
1093          * This function may be called from either process or kthread context,
1094          * hence the need to check for both stop conditions.
1095          */
1096         if (current->mm)
1097                 return signal_pending(current);
1098         else
1099                 return kthread_should_stop();
1100
1101         return 0;
1102 }
1103
1104 /*
1105  * Scan a memory block (exclusive range) for valid pointers and add those
1106  * found to the gray list.
1107  */
1108 static void scan_block(void *_start, void *_end,
1109                        struct kmemleak_object *scanned, int allow_resched)
1110 {
1111         unsigned long *ptr;
1112         unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1113         unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1114
1115         for (ptr = start; ptr < end; ptr++) {
1116                 struct kmemleak_object *object;
1117                 unsigned long flags;
1118                 unsigned long pointer;
1119
1120                 if (allow_resched)
1121                         cond_resched();
1122                 if (scan_should_stop())
1123                         break;
1124
1125                 /* don't scan uninitialized memory */
1126                 if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1127                                                   BYTES_PER_POINTER))
1128                         continue;
1129
1130                 pointer = *ptr;
1131
1132                 object = find_and_get_object(pointer, 1);
1133                 if (!object)
1134                         continue;
1135                 if (object == scanned) {
1136                         /* self referenced, ignore */
1137                         put_object(object);
1138                         continue;
1139                 }
1140
1141                 /*
1142                  * Avoid the lockdep recursive warning on object->lock being
1143                  * previously acquired in scan_object(). These locks are
1144                  * enclosed by scan_mutex.
1145                  */
1146                 spin_lock_irqsave_nested(&object->lock, flags,
1147                                          SINGLE_DEPTH_NESTING);
1148                 if (!color_white(object)) {
1149                         /* non-orphan, ignored or new */
1150                         spin_unlock_irqrestore(&object->lock, flags);
1151                         put_object(object);
1152                         continue;
1153                 }
1154
1155                 /*
1156                  * Increase the object's reference count (number of pointers
1157                  * to the memory block). If this count reaches the required
1158                  * minimum, the object's color will become gray and it will be
1159                  * added to the gray_list.
1160                  */
1161                 object->count++;
1162                 if (color_gray(object)) {
1163                         list_add_tail(&object->gray_list, &gray_list);
1164                         spin_unlock_irqrestore(&object->lock, flags);
1165                         continue;
1166                 }
1167
1168                 spin_unlock_irqrestore(&object->lock, flags);
1169                 put_object(object);
1170         }
1171 }
1172
1173 /*
1174  * Scan a memory block corresponding to a kmemleak_object. A condition is
1175  * that object->use_count >= 1.
1176  */
1177 static void scan_object(struct kmemleak_object *object)
1178 {
1179         struct kmemleak_scan_area *area;
1180         unsigned long flags;
1181
1182         /*
1183          * Once the object->lock is acquired, the corresponding memory block
1184          * cannot be freed (the same lock is acquired in delete_object).
1185          */
1186         spin_lock_irqsave(&object->lock, flags);
1187         if (object->flags & OBJECT_NO_SCAN)
1188                 goto out;
1189         if (!(object->flags & OBJECT_ALLOCATED))
1190                 /* already freed object */
1191                 goto out;
1192         if (hlist_empty(&object->area_list)) {
1193                 void *start = (void *)object->pointer;
1194                 void *end = (void *)(object->pointer + object->size);
1195
1196                 while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1197                        !(object->flags & OBJECT_NO_SCAN)) {
1198                         scan_block(start, min(start + MAX_SCAN_SIZE, end),
1199                                    object, 0);
1200                         start += MAX_SCAN_SIZE;
1201
1202                         spin_unlock_irqrestore(&object->lock, flags);
1203                         cond_resched();
1204                         spin_lock_irqsave(&object->lock, flags);
1205                 }
1206         } else
1207                 hlist_for_each_entry(area, &object->area_list, node)
1208                         scan_block((void *)area->start,
1209                                    (void *)(area->start + area->size),
1210                                    object, 0);
1211 out:
1212         spin_unlock_irqrestore(&object->lock, flags);
1213 }
1214
1215 /*
1216  * Scan the objects already referenced (gray objects). More objects will be
1217  * referenced and, if there are no memory leaks, all the objects are scanned.
1218  */
1219 static void scan_gray_list(void)
1220 {
1221         struct kmemleak_object *object, *tmp;
1222
1223         /*
1224          * The list traversal is safe for both tail additions and removals
1225          * from inside the loop. The kmemleak objects cannot be freed from
1226          * outside the loop because their use_count was incremented.
1227          */
1228         object = list_entry(gray_list.next, typeof(*object), gray_list);
1229         while (&object->gray_list != &gray_list) {
1230                 cond_resched();
1231
1232                 /* may add new objects to the list */
1233                 if (!scan_should_stop())
1234                         scan_object(object);
1235
1236                 tmp = list_entry(object->gray_list.next, typeof(*object),
1237                                  gray_list);
1238
1239                 /* remove the object from the list and release it */
1240                 list_del(&object->gray_list);
1241                 put_object(object);
1242
1243                 object = tmp;
1244         }
1245         WARN_ON(!list_empty(&gray_list));
1246 }
1247
1248 /*
1249  * Scan data sections and all the referenced memory blocks allocated via the
1250  * kernel's standard allocators. This function must be called with the
1251  * scan_mutex held.
1252  */
1253 static void kmemleak_scan(void)
1254 {
1255         unsigned long flags;
1256         struct kmemleak_object *object;
1257         int i;
1258         int new_leaks = 0;
1259
1260         jiffies_last_scan = jiffies;
1261
1262         /* prepare the kmemleak_object's */
1263         rcu_read_lock();
1264         list_for_each_entry_rcu(object, &object_list, object_list) {
1265                 spin_lock_irqsave(&object->lock, flags);
1266 #ifdef DEBUG
1267                 /*
1268                  * With a few exceptions there should be a maximum of
1269                  * 1 reference to any object at this point.
1270                  */
1271                 if (atomic_read(&object->use_count) > 1) {
1272                         pr_debug("object->use_count = %d\n",
1273                                  atomic_read(&object->use_count));
1274                         dump_object_info(object);
1275                 }
1276 #endif
1277                 /* reset the reference count (whiten the object) */
1278                 object->count = 0;
1279                 if (color_gray(object) && get_object(object))
1280                         list_add_tail(&object->gray_list, &gray_list);
1281
1282                 spin_unlock_irqrestore(&object->lock, flags);
1283         }
1284         rcu_read_unlock();
1285
1286         /* data/bss scanning */
1287         scan_block(_sdata, _edata, NULL, 1);
1288         scan_block(__bss_start, __bss_stop, NULL, 1);
1289
1290 #ifdef CONFIG_SMP
1291         /* per-cpu sections scanning */
1292         for_each_possible_cpu(i)
1293                 scan_block(__per_cpu_start + per_cpu_offset(i),
1294                            __per_cpu_end + per_cpu_offset(i), NULL, 1);
1295 #endif
1296
1297         /*
1298          * Struct page scanning for each node.
1299          */
1300         lock_memory_hotplug();
1301         for_each_online_node(i) {
1302                 unsigned long start_pfn = node_start_pfn(i);
1303                 unsigned long end_pfn = node_end_pfn(i);
1304                 unsigned long pfn;
1305
1306                 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1307                         struct page *page;
1308
1309                         if (!pfn_valid(pfn))
1310                                 continue;
1311                         page = pfn_to_page(pfn);
1312                         /* only scan if page is in use */
1313                         if (page_count(page) == 0)
1314                                 continue;
1315                         scan_block(page, page + 1, NULL, 1);
1316                 }
1317         }
1318         unlock_memory_hotplug();
1319
1320         /*
1321          * Scanning the task stacks (may introduce false negatives).
1322          */
1323         if (kmemleak_stack_scan) {
1324                 struct task_struct *p, *g;
1325
1326                 read_lock(&tasklist_lock);
1327                 do_each_thread(g, p) {
1328                         scan_block(task_stack_page(p), task_stack_page(p) +
1329                                    THREAD_SIZE, NULL, 0);
1330                 } while_each_thread(g, p);
1331                 read_unlock(&tasklist_lock);
1332         }
1333
1334         /*
1335          * Scan the objects already referenced from the sections scanned
1336          * above.
1337          */
1338         scan_gray_list();
1339
1340         /*
1341          * Check for new or unreferenced objects modified since the previous
1342          * scan and color them gray until the next scan.
1343          */
1344         rcu_read_lock();
1345         list_for_each_entry_rcu(object, &object_list, object_list) {
1346                 spin_lock_irqsave(&object->lock, flags);
1347                 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1348                     && update_checksum(object) && get_object(object)) {
1349                         /* color it gray temporarily */
1350                         object->count = object->min_count;
1351                         list_add_tail(&object->gray_list, &gray_list);
1352                 }
1353                 spin_unlock_irqrestore(&object->lock, flags);
1354         }
1355         rcu_read_unlock();
1356
1357         /*
1358          * Re-scan the gray list for modified unreferenced objects.
1359          */
1360         scan_gray_list();
1361
1362         /*
1363          * If scanning was stopped do not report any new unreferenced objects.
1364          */
1365         if (scan_should_stop())
1366                 return;
1367
1368         /*
1369          * Scanning result reporting.
1370          */
1371         rcu_read_lock();
1372         list_for_each_entry_rcu(object, &object_list, object_list) {
1373                 spin_lock_irqsave(&object->lock, flags);
1374                 if (unreferenced_object(object) &&
1375                     !(object->flags & OBJECT_REPORTED)) {
1376                         object->flags |= OBJECT_REPORTED;
1377                         new_leaks++;
1378                 }
1379                 spin_unlock_irqrestore(&object->lock, flags);
1380         }
1381         rcu_read_unlock();
1382
1383         if (new_leaks)
1384                 pr_info("%d new suspected memory leaks (see "
1385                         "/sys/kernel/debug/kmemleak)\n", new_leaks);
1386
1387 }
1388
1389 /*
1390  * Thread function performing automatic memory scanning. Unreferenced objects
1391  * at the end of a memory scan are reported but only the first time.
1392  */
1393 static int kmemleak_scan_thread(void *arg)
1394 {
1395         static int first_run = 1;
1396
1397         pr_info("Automatic memory scanning thread started\n");
1398         set_user_nice(current, 10);
1399
1400         /*
1401          * Wait before the first scan to allow the system to fully initialize.
1402          */
1403         if (first_run) {
1404                 first_run = 0;
1405                 ssleep(SECS_FIRST_SCAN);
1406         }
1407
1408         while (!kthread_should_stop()) {
1409                 signed long timeout = jiffies_scan_wait;
1410
1411                 mutex_lock(&scan_mutex);
1412                 kmemleak_scan();
1413                 mutex_unlock(&scan_mutex);
1414
1415                 /* wait before the next scan */
1416                 while (timeout && !kthread_should_stop())
1417                         timeout = schedule_timeout_interruptible(timeout);
1418         }
1419
1420         pr_info("Automatic memory scanning thread ended\n");
1421
1422         return 0;
1423 }
1424
1425 /*
1426  * Start the automatic memory scanning thread. This function must be called
1427  * with the scan_mutex held.
1428  */
1429 static void start_scan_thread(void)
1430 {
1431         if (scan_thread)
1432                 return;
1433         scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1434         if (IS_ERR(scan_thread)) {
1435                 pr_warning("Failed to create the scan thread\n");
1436                 scan_thread = NULL;
1437         }
1438 }
1439
1440 /*
1441  * Stop the automatic memory scanning thread. This function must be called
1442  * with the scan_mutex held.
1443  */
1444 static void stop_scan_thread(void)
1445 {
1446         if (scan_thread) {
1447                 kthread_stop(scan_thread);
1448                 scan_thread = NULL;
1449         }
1450 }
1451
1452 /*
1453  * Iterate over the object_list and return the first valid object at or after
1454  * the required position with its use_count incremented. The function triggers
1455  * a memory scanning when the pos argument points to the first position.
1456  */
1457 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1458 {
1459         struct kmemleak_object *object;
1460         loff_t n = *pos;
1461         int err;
1462
1463         err = mutex_lock_interruptible(&scan_mutex);
1464         if (err < 0)
1465                 return ERR_PTR(err);
1466
1467         rcu_read_lock();
1468         list_for_each_entry_rcu(object, &object_list, object_list) {
1469                 if (n-- > 0)
1470                         continue;
1471                 if (get_object(object))
1472                         goto out;
1473         }
1474         object = NULL;
1475 out:
1476         return object;
1477 }
1478
1479 /*
1480  * Return the next object in the object_list. The function decrements the
1481  * use_count of the previous object and increases that of the next one.
1482  */
1483 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1484 {
1485         struct kmemleak_object *prev_obj = v;
1486         struct kmemleak_object *next_obj = NULL;
1487         struct kmemleak_object *obj = prev_obj;
1488
1489         ++(*pos);
1490
1491         list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1492                 if (get_object(obj)) {
1493                         next_obj = obj;
1494                         break;
1495                 }
1496         }
1497
1498         put_object(prev_obj);
1499         return next_obj;
1500 }
1501
1502 /*
1503  * Decrement the use_count of the last object required, if any.
1504  */
1505 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1506 {
1507         if (!IS_ERR(v)) {
1508                 /*
1509                  * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1510                  * waiting was interrupted, so only release it if !IS_ERR.
1511                  */
1512                 rcu_read_unlock();
1513                 mutex_unlock(&scan_mutex);
1514                 if (v)
1515                         put_object(v);
1516         }
1517 }
1518
1519 /*
1520  * Print the information for an unreferenced object to the seq file.
1521  */
1522 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1523 {
1524         struct kmemleak_object *object = v;
1525         unsigned long flags;
1526
1527         spin_lock_irqsave(&object->lock, flags);
1528         if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1529                 print_unreferenced(seq, object);
1530         spin_unlock_irqrestore(&object->lock, flags);
1531         return 0;
1532 }
1533
1534 static const struct seq_operations kmemleak_seq_ops = {
1535         .start = kmemleak_seq_start,
1536         .next  = kmemleak_seq_next,
1537         .stop  = kmemleak_seq_stop,
1538         .show  = kmemleak_seq_show,
1539 };
1540
1541 static int kmemleak_open(struct inode *inode, struct file *file)
1542 {
1543         return seq_open(file, &kmemleak_seq_ops);
1544 }
1545
1546 static int kmemleak_release(struct inode *inode, struct file *file)
1547 {
1548         return seq_release(inode, file);
1549 }
1550
1551 static int dump_str_object_info(const char *str)
1552 {
1553         unsigned long flags;
1554         struct kmemleak_object *object;
1555         unsigned long addr;
1556
1557         if (kstrtoul(str, 0, &addr))
1558                 return -EINVAL;
1559         object = find_and_get_object(addr, 0);
1560         if (!object) {
1561                 pr_info("Unknown object at 0x%08lx\n", addr);
1562                 return -EINVAL;
1563         }
1564
1565         spin_lock_irqsave(&object->lock, flags);
1566         dump_object_info(object);
1567         spin_unlock_irqrestore(&object->lock, flags);
1568
1569         put_object(object);
1570         return 0;
1571 }
1572
1573 /*
1574  * We use grey instead of black to ensure we can do future scans on the same
1575  * objects. If we did not do future scans these black objects could
1576  * potentially contain references to newly allocated objects in the future and
1577  * we'd end up with false positives.
1578  */
1579 static void kmemleak_clear(void)
1580 {
1581         struct kmemleak_object *object;
1582         unsigned long flags;
1583
1584         rcu_read_lock();
1585         list_for_each_entry_rcu(object, &object_list, object_list) {
1586                 spin_lock_irqsave(&object->lock, flags);
1587                 if ((object->flags & OBJECT_REPORTED) &&
1588                     unreferenced_object(object))
1589                         __paint_it(object, KMEMLEAK_GREY);
1590                 spin_unlock_irqrestore(&object->lock, flags);
1591         }
1592         rcu_read_unlock();
1593 }
1594
1595 /*
1596  * File write operation to configure kmemleak at run-time. The following
1597  * commands can be written to the /sys/kernel/debug/kmemleak file:
1598  *   off        - disable kmemleak (irreversible)
1599  *   stack=on   - enable the task stacks scanning
1600  *   stack=off  - disable the tasks stacks scanning
1601  *   scan=on    - start the automatic memory scanning thread
1602  *   scan=off   - stop the automatic memory scanning thread
1603  *   scan=...   - set the automatic memory scanning period in seconds (0 to
1604  *                disable it)
1605  *   scan       - trigger a memory scan
1606  *   clear      - mark all current reported unreferenced kmemleak objects as
1607  *                grey to ignore printing them
1608  *   dump=...   - dump information about the object found at the given address
1609  */
1610 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1611                               size_t size, loff_t *ppos)
1612 {
1613         char buf[64];
1614         int buf_size;
1615         int ret;
1616
1617         if (!atomic_read(&kmemleak_enabled))
1618                 return -EBUSY;
1619
1620         buf_size = min(size, (sizeof(buf) - 1));
1621         if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1622                 return -EFAULT;
1623         buf[buf_size] = 0;
1624
1625         ret = mutex_lock_interruptible(&scan_mutex);
1626         if (ret < 0)
1627                 return ret;
1628
1629         if (strncmp(buf, "off", 3) == 0)
1630                 kmemleak_disable();
1631         else if (strncmp(buf, "stack=on", 8) == 0)
1632                 kmemleak_stack_scan = 1;
1633         else if (strncmp(buf, "stack=off", 9) == 0)
1634                 kmemleak_stack_scan = 0;
1635         else if (strncmp(buf, "scan=on", 7) == 0)
1636                 start_scan_thread();
1637         else if (strncmp(buf, "scan=off", 8) == 0)
1638                 stop_scan_thread();
1639         else if (strncmp(buf, "scan=", 5) == 0) {
1640                 unsigned long secs;
1641
1642                 ret = strict_strtoul(buf + 5, 0, &secs);
1643                 if (ret < 0)
1644                         goto out;
1645                 stop_scan_thread();
1646                 if (secs) {
1647                         jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1648                         start_scan_thread();
1649                 }
1650         } else if (strncmp(buf, "scan", 4) == 0)
1651                 kmemleak_scan();
1652         else if (strncmp(buf, "clear", 5) == 0)
1653                 kmemleak_clear();
1654         else if (strncmp(buf, "dump=", 5) == 0)
1655                 ret = dump_str_object_info(buf + 5);
1656         else
1657                 ret = -EINVAL;
1658
1659 out:
1660         mutex_unlock(&scan_mutex);
1661         if (ret < 0)
1662                 return ret;
1663
1664         /* ignore the rest of the buffer, only one command at a time */
1665         *ppos += size;
1666         return size;
1667 }
1668
1669 static const struct file_operations kmemleak_fops = {
1670         .owner          = THIS_MODULE,
1671         .open           = kmemleak_open,
1672         .read           = seq_read,
1673         .write          = kmemleak_write,
1674         .llseek         = seq_lseek,
1675         .release        = kmemleak_release,
1676 };
1677
1678 /*
1679  * Stop the memory scanning thread and free the kmemleak internal objects if
1680  * no previous scan thread (otherwise, kmemleak may still have some useful
1681  * information on memory leaks).
1682  */
1683 static void kmemleak_do_cleanup(struct work_struct *work)
1684 {
1685         struct kmemleak_object *object;
1686         bool cleanup = scan_thread == NULL;
1687
1688         mutex_lock(&scan_mutex);
1689         stop_scan_thread();
1690
1691         if (cleanup) {
1692                 rcu_read_lock();
1693                 list_for_each_entry_rcu(object, &object_list, object_list)
1694                         delete_object_full(object->pointer);
1695                 rcu_read_unlock();
1696         }
1697         mutex_unlock(&scan_mutex);
1698 }
1699
1700 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1701
1702 /*
1703  * Disable kmemleak. No memory allocation/freeing will be traced once this
1704  * function is called. Disabling kmemleak is an irreversible operation.
1705  */
1706 static void kmemleak_disable(void)
1707 {
1708         /* atomically check whether it was already invoked */
1709         if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1710                 return;
1711
1712         /* stop any memory operation tracing */
1713         atomic_set(&kmemleak_enabled, 0);
1714
1715         /* check whether it is too early for a kernel thread */
1716         if (atomic_read(&kmemleak_initialized))
1717                 schedule_work(&cleanup_work);
1718
1719         pr_info("Kernel memory leak detector disabled\n");
1720 }
1721
1722 /*
1723  * Allow boot-time kmemleak disabling (enabled by default).
1724  */
1725 static int kmemleak_boot_config(char *str)
1726 {
1727         if (!str)
1728                 return -EINVAL;
1729         if (strcmp(str, "off") == 0)
1730                 kmemleak_disable();
1731         else if (strcmp(str, "on") == 0)
1732                 kmemleak_skip_disable = 1;
1733         else
1734                 return -EINVAL;
1735         return 0;
1736 }
1737 early_param("kmemleak", kmemleak_boot_config);
1738
1739 static void __init print_log_trace(struct early_log *log)
1740 {
1741         struct stack_trace trace;
1742
1743         trace.nr_entries = log->trace_len;
1744         trace.entries = log->trace;
1745
1746         pr_notice("Early log backtrace:\n");
1747         print_stack_trace(&trace, 2);
1748 }
1749
1750 /*
1751  * Kmemleak initialization.
1752  */
1753 void __init kmemleak_init(void)
1754 {
1755         int i;
1756         unsigned long flags;
1757
1758 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1759         if (!kmemleak_skip_disable) {
1760                 atomic_set(&kmemleak_early_log, 0);
1761                 kmemleak_disable();
1762                 return;
1763         }
1764 #endif
1765
1766         jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1767         jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1768
1769         object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1770         scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1771
1772         if (crt_early_log >= ARRAY_SIZE(early_log))
1773                 pr_warning("Early log buffer exceeded (%d), please increase "
1774                            "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log);
1775
1776         /* the kernel is still in UP mode, so disabling the IRQs is enough */
1777         local_irq_save(flags);
1778         atomic_set(&kmemleak_early_log, 0);
1779         if (atomic_read(&kmemleak_error)) {
1780                 local_irq_restore(flags);
1781                 return;
1782         } else
1783                 atomic_set(&kmemleak_enabled, 1);
1784         local_irq_restore(flags);
1785
1786         /*
1787          * This is the point where tracking allocations is safe. Automatic
1788          * scanning is started during the late initcall. Add the early logged
1789          * callbacks to the kmemleak infrastructure.
1790          */
1791         for (i = 0; i < crt_early_log; i++) {
1792                 struct early_log *log = &early_log[i];
1793
1794                 switch (log->op_type) {
1795                 case KMEMLEAK_ALLOC:
1796                         early_alloc(log);
1797                         break;
1798                 case KMEMLEAK_ALLOC_PERCPU:
1799                         early_alloc_percpu(log);
1800                         break;
1801                 case KMEMLEAK_FREE:
1802                         kmemleak_free(log->ptr);
1803                         break;
1804                 case KMEMLEAK_FREE_PART:
1805                         kmemleak_free_part(log->ptr, log->size);
1806                         break;
1807                 case KMEMLEAK_FREE_PERCPU:
1808                         kmemleak_free_percpu(log->ptr);
1809                         break;
1810                 case KMEMLEAK_NOT_LEAK:
1811                         kmemleak_not_leak(log->ptr);
1812                         break;
1813                 case KMEMLEAK_IGNORE:
1814                         kmemleak_ignore(log->ptr);
1815                         break;
1816                 case KMEMLEAK_SCAN_AREA:
1817                         kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1818                         break;
1819                 case KMEMLEAK_NO_SCAN:
1820                         kmemleak_no_scan(log->ptr);
1821                         break;
1822                 default:
1823                         kmemleak_warn("Unknown early log operation: %d\n",
1824                                       log->op_type);
1825                 }
1826
1827                 if (atomic_read(&kmemleak_warning)) {
1828                         print_log_trace(log);
1829                         atomic_set(&kmemleak_warning, 0);
1830                 }
1831         }
1832 }
1833
1834 /*
1835  * Late initialization function.
1836  */
1837 static int __init kmemleak_late_init(void)
1838 {
1839         struct dentry *dentry;
1840
1841         atomic_set(&kmemleak_initialized, 1);
1842
1843         if (atomic_read(&kmemleak_error)) {
1844                 /*
1845                  * Some error occurred and kmemleak was disabled. There is a
1846                  * small chance that kmemleak_disable() was called immediately
1847                  * after setting kmemleak_initialized and we may end up with
1848                  * two clean-up threads but serialized by scan_mutex.
1849                  */
1850                 schedule_work(&cleanup_work);
1851                 return -ENOMEM;
1852         }
1853
1854         dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1855                                      &kmemleak_fops);
1856         if (!dentry)
1857                 pr_warning("Failed to create the debugfs kmemleak file\n");
1858         mutex_lock(&scan_mutex);
1859         start_scan_thread();
1860         mutex_unlock(&scan_mutex);
1861
1862         pr_info("Kernel memory leak detector initialized\n");
1863
1864         return 0;
1865 }
1866 late_initcall(kmemleak_late_init);