nohz: Assign timekeeping duty to a CPU outside the full dynticks range
[linux-3.10.git] / kernel / time / tick-common.c
1 /*
2  * linux/kernel/time/tick-common.c
3  *
4  * This file contains the base functions to manage periodic tick
5  * related events.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21
22 #include <asm/irq_regs.h>
23
24 #include "tick-internal.h"
25
26 /*
27  * Tick devices
28  */
29 DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
30 /*
31  * Tick next event: keeps track of the tick time
32  */
33 ktime_t tick_next_period;
34 ktime_t tick_period;
35 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
36 static DEFINE_RAW_SPINLOCK(tick_device_lock);
37
38 /*
39  * Debugging: see timer_list.c
40  */
41 struct tick_device *tick_get_device(int cpu)
42 {
43         return &per_cpu(tick_cpu_device, cpu);
44 }
45
46 /**
47  * tick_is_oneshot_available - check for a oneshot capable event device
48  */
49 int tick_is_oneshot_available(void)
50 {
51         struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
52
53         if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
54                 return 0;
55         if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
56                 return 1;
57         return tick_broadcast_oneshot_available();
58 }
59
60 /*
61  * Periodic tick
62  */
63 static void tick_periodic(int cpu)
64 {
65         if (tick_do_timer_cpu == cpu) {
66                 write_seqlock(&jiffies_lock);
67
68                 /* Keep track of the next tick event */
69                 tick_next_period = ktime_add(tick_next_period, tick_period);
70
71                 do_timer(1);
72                 write_sequnlock(&jiffies_lock);
73         }
74
75         update_process_times(user_mode(get_irq_regs()));
76         profile_tick(CPU_PROFILING);
77 }
78
79 /*
80  * Event handler for periodic ticks
81  */
82 void tick_handle_periodic(struct clock_event_device *dev)
83 {
84         int cpu = smp_processor_id();
85         ktime_t next;
86
87         tick_periodic(cpu);
88
89         if (dev->mode != CLOCK_EVT_MODE_ONESHOT)
90                 return;
91         /*
92          * Setup the next period for devices, which do not have
93          * periodic mode:
94          */
95         next = ktime_add(dev->next_event, tick_period);
96         for (;;) {
97                 if (!clockevents_program_event(dev, next, false))
98                         return;
99                 /*
100                  * Have to be careful here. If we're in oneshot mode,
101                  * before we call tick_periodic() in a loop, we need
102                  * to be sure we're using a real hardware clocksource.
103                  * Otherwise we could get trapped in an infinite
104                  * loop, as the tick_periodic() increments jiffies,
105                  * when then will increment time, posibly causing
106                  * the loop to trigger again and again.
107                  */
108                 if (timekeeping_valid_for_hres())
109                         tick_periodic(cpu);
110                 next = ktime_add(next, tick_period);
111         }
112 }
113
114 /*
115  * Setup the device for a periodic tick
116  */
117 void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
118 {
119         tick_set_periodic_handler(dev, broadcast);
120
121         /* Broadcast setup ? */
122         if (!tick_device_is_functional(dev))
123                 return;
124
125         if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
126             !tick_broadcast_oneshot_active()) {
127                 clockevents_set_mode(dev, CLOCK_EVT_MODE_PERIODIC);
128         } else {
129                 unsigned long seq;
130                 ktime_t next;
131
132                 do {
133                         seq = read_seqbegin(&jiffies_lock);
134                         next = tick_next_period;
135                 } while (read_seqretry(&jiffies_lock, seq));
136
137                 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
138
139                 for (;;) {
140                         if (!clockevents_program_event(dev, next, false))
141                                 return;
142                         next = ktime_add(next, tick_period);
143                 }
144         }
145 }
146
147 /*
148  * Setup the tick device
149  */
150 static void tick_setup_device(struct tick_device *td,
151                               struct clock_event_device *newdev, int cpu,
152                               const struct cpumask *cpumask)
153 {
154         ktime_t next_event;
155         void (*handler)(struct clock_event_device *) = NULL;
156
157         /*
158          * First device setup ?
159          */
160         if (!td->evtdev) {
161                 /*
162                  * If no cpu took the do_timer update, assign it to
163                  * this cpu:
164                  */
165                 if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
166                         if (!tick_nohz_extended_cpu(cpu))
167                                 tick_do_timer_cpu = cpu;
168                         else
169                                 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
170                         tick_next_period = ktime_get();
171                         tick_period = ktime_set(0, NSEC_PER_SEC / HZ);
172                 }
173
174                 /*
175                  * Startup in periodic mode first.
176                  */
177                 td->mode = TICKDEV_MODE_PERIODIC;
178         } else {
179                 handler = td->evtdev->event_handler;
180                 next_event = td->evtdev->next_event;
181                 td->evtdev->event_handler = clockevents_handle_noop;
182         }
183
184         td->evtdev = newdev;
185
186         /*
187          * When the device is not per cpu, pin the interrupt to the
188          * current cpu:
189          */
190         if (!cpumask_equal(newdev->cpumask, cpumask))
191                 irq_set_affinity(newdev->irq, cpumask);
192
193         /*
194          * When global broadcasting is active, check if the current
195          * device is registered as a placeholder for broadcast mode.
196          * This allows us to handle this x86 misfeature in a generic
197          * way.
198          */
199         if (tick_device_uses_broadcast(newdev, cpu))
200                 return;
201
202         if (td->mode == TICKDEV_MODE_PERIODIC)
203                 tick_setup_periodic(newdev, 0);
204         else
205                 tick_setup_oneshot(newdev, handler, next_event);
206 }
207
208 /*
209  * Check, if the new registered device should be used.
210  */
211 static int tick_check_new_device(struct clock_event_device *newdev)
212 {
213         struct clock_event_device *curdev;
214         struct tick_device *td;
215         int cpu, ret = NOTIFY_OK;
216         unsigned long flags;
217
218         raw_spin_lock_irqsave(&tick_device_lock, flags);
219
220         cpu = smp_processor_id();
221         if (!cpumask_test_cpu(cpu, newdev->cpumask))
222                 goto out_bc;
223
224         td = &per_cpu(tick_cpu_device, cpu);
225         curdev = td->evtdev;
226
227         /* cpu local device ? */
228         if (!cpumask_equal(newdev->cpumask, cpumask_of(cpu))) {
229
230                 /*
231                  * If the cpu affinity of the device interrupt can not
232                  * be set, ignore it.
233                  */
234                 if (!irq_can_set_affinity(newdev->irq))
235                         goto out_bc;
236
237                 /*
238                  * If we have a cpu local device already, do not replace it
239                  * by a non cpu local device
240                  */
241                 if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
242                         goto out_bc;
243         }
244
245         /*
246          * If we have an active device, then check the rating and the oneshot
247          * feature.
248          */
249         if (curdev) {
250                 /*
251                  * Prefer one shot capable devices !
252                  */
253                 if ((curdev->features & CLOCK_EVT_FEAT_ONESHOT) &&
254                     !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
255                         goto out_bc;
256                 /*
257                  * Check the rating
258                  */
259                 if (curdev->rating >= newdev->rating)
260                         goto out_bc;
261         }
262
263         /*
264          * Replace the eventually existing device by the new
265          * device. If the current device is the broadcast device, do
266          * not give it back to the clockevents layer !
267          */
268         if (tick_is_broadcast_device(curdev)) {
269                 clockevents_shutdown(curdev);
270                 curdev = NULL;
271         }
272         clockevents_exchange_device(curdev, newdev);
273         tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
274         if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
275                 tick_oneshot_notify();
276
277         raw_spin_unlock_irqrestore(&tick_device_lock, flags);
278         return NOTIFY_STOP;
279
280 out_bc:
281         /*
282          * Can the new device be used as a broadcast device ?
283          */
284         if (tick_check_broadcast_device(newdev))
285                 ret = NOTIFY_STOP;
286
287         raw_spin_unlock_irqrestore(&tick_device_lock, flags);
288
289         return ret;
290 }
291
292 /*
293  * Transfer the do_timer job away from a dying cpu.
294  *
295  * Called with interrupts disabled.
296  */
297 static void tick_handover_do_timer(int *cpup)
298 {
299         if (*cpup == tick_do_timer_cpu) {
300                 int cpu = cpumask_first(cpu_online_mask);
301
302                 tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
303                         TICK_DO_TIMER_NONE;
304         }
305 }
306
307 /*
308  * Shutdown an event device on a given cpu:
309  *
310  * This is called on a life CPU, when a CPU is dead. So we cannot
311  * access the hardware device itself.
312  * We just set the mode and remove it from the lists.
313  */
314 static void tick_shutdown(unsigned int *cpup)
315 {
316         struct tick_device *td = &per_cpu(tick_cpu_device, *cpup);
317         struct clock_event_device *dev = td->evtdev;
318         unsigned long flags;
319
320         raw_spin_lock_irqsave(&tick_device_lock, flags);
321         td->mode = TICKDEV_MODE_PERIODIC;
322         if (dev) {
323                 /*
324                  * Prevent that the clock events layer tries to call
325                  * the set mode function!
326                  */
327                 dev->mode = CLOCK_EVT_MODE_UNUSED;
328                 clockevents_exchange_device(dev, NULL);
329                 td->evtdev = NULL;
330         }
331         raw_spin_unlock_irqrestore(&tick_device_lock, flags);
332 }
333
334 static void tick_suspend(void)
335 {
336         struct tick_device *td = &__get_cpu_var(tick_cpu_device);
337         unsigned long flags;
338
339         raw_spin_lock_irqsave(&tick_device_lock, flags);
340         clockevents_shutdown(td->evtdev);
341         raw_spin_unlock_irqrestore(&tick_device_lock, flags);
342 }
343
344 static void tick_resume(void)
345 {
346         struct tick_device *td = &__get_cpu_var(tick_cpu_device);
347         unsigned long flags;
348         int broadcast = tick_resume_broadcast();
349
350         raw_spin_lock_irqsave(&tick_device_lock, flags);
351         clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_RESUME);
352
353         if (!broadcast) {
354                 if (td->mode == TICKDEV_MODE_PERIODIC)
355                         tick_setup_periodic(td->evtdev, 0);
356                 else
357                         tick_resume_oneshot();
358         }
359         raw_spin_unlock_irqrestore(&tick_device_lock, flags);
360 }
361
362 /*
363  * Notification about clock event devices
364  */
365 static int tick_notify(struct notifier_block *nb, unsigned long reason,
366                                void *dev)
367 {
368         switch (reason) {
369
370         case CLOCK_EVT_NOTIFY_ADD:
371                 return tick_check_new_device(dev);
372
373         case CLOCK_EVT_NOTIFY_BROADCAST_ON:
374         case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
375         case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
376                 tick_broadcast_on_off(reason, dev);
377                 break;
378
379         case CLOCK_EVT_NOTIFY_BROADCAST_ENTER:
380         case CLOCK_EVT_NOTIFY_BROADCAST_EXIT:
381                 tick_broadcast_oneshot_control(reason);
382                 break;
383
384         case CLOCK_EVT_NOTIFY_CPU_DYING:
385                 tick_handover_do_timer(dev);
386                 break;
387
388         case CLOCK_EVT_NOTIFY_CPU_DEAD:
389                 tick_shutdown_broadcast_oneshot(dev);
390                 tick_shutdown_broadcast(dev);
391                 tick_shutdown(dev);
392                 break;
393
394         case CLOCK_EVT_NOTIFY_SUSPEND:
395                 tick_suspend();
396                 tick_suspend_broadcast();
397                 break;
398
399         case CLOCK_EVT_NOTIFY_RESUME:
400                 tick_resume();
401                 break;
402
403         default:
404                 break;
405         }
406
407         return NOTIFY_OK;
408 }
409
410 static struct notifier_block tick_notifier = {
411         .notifier_call = tick_notify,
412 };
413
414 /**
415  * tick_init - initialize the tick control
416  *
417  * Register the notifier with the clockevents framework
418  */
419 void __init tick_init(void)
420 {
421         clockevents_register_notifier(&tick_notifier);
422 }