]> nv-tegra.nvidia Code Review - linux-3.10.git/blob - kernel/perf_event.c
perf: Fix alloc_callchain_buffers()
[linux-3.10.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/vmalloc.h>
29 #include <linux/hardirq.h>
30 #include <linux/rculist.h>
31 #include <linux/uaccess.h>
32 #include <linux/syscalls.h>
33 #include <linux/anon_inodes.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/perf_event.h>
36 #include <linux/ftrace_event.h>
37 #include <linux/hw_breakpoint.h>
38
39 #include <asm/irq_regs.h>
40
41 enum event_type_t {
42         EVENT_FLEXIBLE = 0x1,
43         EVENT_PINNED = 0x2,
44         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
45 };
46
47 atomic_t perf_task_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
51
52 static LIST_HEAD(pmus);
53 static DEFINE_MUTEX(pmus_lock);
54 static struct srcu_struct pmus_srcu;
55
56 /*
57  * perf event paranoia level:
58  *  -1 - not paranoid at all
59  *   0 - disallow raw tracepoint access for unpriv
60  *   1 - disallow cpu events for unpriv
61  *   2 - disallow kernel profiling for unpriv
62  */
63 int sysctl_perf_event_paranoid __read_mostly = 1;
64
65 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
66
67 /*
68  * max perf event sample rate
69  */
70 int sysctl_perf_event_sample_rate __read_mostly = 100000;
71
72 static atomic64_t perf_event_id;
73
74 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
75                               enum event_type_t event_type);
76
77 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
78                              enum event_type_t event_type);
79
80 void __weak perf_event_print_debug(void)        { }
81
82 extern __weak const char *perf_pmu_name(void)
83 {
84         return "pmu";
85 }
86
87 static inline u64 perf_clock(void)
88 {
89         return local_clock();
90 }
91
92 void perf_pmu_disable(struct pmu *pmu)
93 {
94         int *count = this_cpu_ptr(pmu->pmu_disable_count);
95         if (!(*count)++)
96                 pmu->pmu_disable(pmu);
97 }
98
99 void perf_pmu_enable(struct pmu *pmu)
100 {
101         int *count = this_cpu_ptr(pmu->pmu_disable_count);
102         if (!--(*count))
103                 pmu->pmu_enable(pmu);
104 }
105
106 static DEFINE_PER_CPU(struct list_head, rotation_list);
107
108 /*
109  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
110  * because they're strictly cpu affine and rotate_start is called with IRQs
111  * disabled, while rotate_context is called from IRQ context.
112  */
113 static void perf_pmu_rotate_start(struct pmu *pmu)
114 {
115         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
116         struct list_head *head = &__get_cpu_var(rotation_list);
117
118         WARN_ON(!irqs_disabled());
119
120         if (list_empty(&cpuctx->rotation_list))
121                 list_add(&cpuctx->rotation_list, head);
122 }
123
124 static void get_ctx(struct perf_event_context *ctx)
125 {
126         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
127 }
128
129 static void free_ctx(struct rcu_head *head)
130 {
131         struct perf_event_context *ctx;
132
133         ctx = container_of(head, struct perf_event_context, rcu_head);
134         kfree(ctx);
135 }
136
137 static void put_ctx(struct perf_event_context *ctx)
138 {
139         if (atomic_dec_and_test(&ctx->refcount)) {
140                 if (ctx->parent_ctx)
141                         put_ctx(ctx->parent_ctx);
142                 if (ctx->task)
143                         put_task_struct(ctx->task);
144                 call_rcu(&ctx->rcu_head, free_ctx);
145         }
146 }
147
148 static void unclone_ctx(struct perf_event_context *ctx)
149 {
150         if (ctx->parent_ctx) {
151                 put_ctx(ctx->parent_ctx);
152                 ctx->parent_ctx = NULL;
153         }
154 }
155
156 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
157 {
158         /*
159          * only top level events have the pid namespace they were created in
160          */
161         if (event->parent)
162                 event = event->parent;
163
164         return task_tgid_nr_ns(p, event->ns);
165 }
166
167 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
168 {
169         /*
170          * only top level events have the pid namespace they were created in
171          */
172         if (event->parent)
173                 event = event->parent;
174
175         return task_pid_nr_ns(p, event->ns);
176 }
177
178 /*
179  * If we inherit events we want to return the parent event id
180  * to userspace.
181  */
182 static u64 primary_event_id(struct perf_event *event)
183 {
184         u64 id = event->id;
185
186         if (event->parent)
187                 id = event->parent->id;
188
189         return id;
190 }
191
192 /*
193  * Get the perf_event_context for a task and lock it.
194  * This has to cope with with the fact that until it is locked,
195  * the context could get moved to another task.
196  */
197 static struct perf_event_context *
198 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
199 {
200         struct perf_event_context *ctx;
201
202         rcu_read_lock();
203 retry:
204         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
205         if (ctx) {
206                 /*
207                  * If this context is a clone of another, it might
208                  * get swapped for another underneath us by
209                  * perf_event_task_sched_out, though the
210                  * rcu_read_lock() protects us from any context
211                  * getting freed.  Lock the context and check if it
212                  * got swapped before we could get the lock, and retry
213                  * if so.  If we locked the right context, then it
214                  * can't get swapped on us any more.
215                  */
216                 raw_spin_lock_irqsave(&ctx->lock, *flags);
217                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
218                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
219                         goto retry;
220                 }
221
222                 if (!atomic_inc_not_zero(&ctx->refcount)) {
223                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
224                         ctx = NULL;
225                 }
226         }
227         rcu_read_unlock();
228         return ctx;
229 }
230
231 /*
232  * Get the context for a task and increment its pin_count so it
233  * can't get swapped to another task.  This also increments its
234  * reference count so that the context can't get freed.
235  */
236 static struct perf_event_context *
237 perf_pin_task_context(struct task_struct *task, int ctxn)
238 {
239         struct perf_event_context *ctx;
240         unsigned long flags;
241
242         ctx = perf_lock_task_context(task, ctxn, &flags);
243         if (ctx) {
244                 ++ctx->pin_count;
245                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
246         }
247         return ctx;
248 }
249
250 static void perf_unpin_context(struct perf_event_context *ctx)
251 {
252         unsigned long flags;
253
254         raw_spin_lock_irqsave(&ctx->lock, flags);
255         --ctx->pin_count;
256         raw_spin_unlock_irqrestore(&ctx->lock, flags);
257         put_ctx(ctx);
258 }
259
260 /*
261  * Update the record of the current time in a context.
262  */
263 static void update_context_time(struct perf_event_context *ctx)
264 {
265         u64 now = perf_clock();
266
267         ctx->time += now - ctx->timestamp;
268         ctx->timestamp = now;
269 }
270
271 static u64 perf_event_time(struct perf_event *event)
272 {
273         struct perf_event_context *ctx = event->ctx;
274         return ctx ? ctx->time : 0;
275 }
276
277 /*
278  * Update the total_time_enabled and total_time_running fields for a event.
279  */
280 static void update_event_times(struct perf_event *event)
281 {
282         struct perf_event_context *ctx = event->ctx;
283         u64 run_end;
284
285         if (event->state < PERF_EVENT_STATE_INACTIVE ||
286             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
287                 return;
288
289         if (ctx->is_active)
290                 run_end = perf_event_time(event);
291         else
292                 run_end = event->tstamp_stopped;
293
294         event->total_time_enabled = run_end - event->tstamp_enabled;
295
296         if (event->state == PERF_EVENT_STATE_INACTIVE)
297                 run_end = event->tstamp_stopped;
298         else
299                 run_end = perf_event_time(event);
300
301         event->total_time_running = run_end - event->tstamp_running;
302 }
303
304 /*
305  * Update total_time_enabled and total_time_running for all events in a group.
306  */
307 static void update_group_times(struct perf_event *leader)
308 {
309         struct perf_event *event;
310
311         update_event_times(leader);
312         list_for_each_entry(event, &leader->sibling_list, group_entry)
313                 update_event_times(event);
314 }
315
316 static struct list_head *
317 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
318 {
319         if (event->attr.pinned)
320                 return &ctx->pinned_groups;
321         else
322                 return &ctx->flexible_groups;
323 }
324
325 /*
326  * Add a event from the lists for its context.
327  * Must be called with ctx->mutex and ctx->lock held.
328  */
329 static void
330 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
331 {
332         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
333         event->attach_state |= PERF_ATTACH_CONTEXT;
334
335         /*
336          * If we're a stand alone event or group leader, we go to the context
337          * list, group events are kept attached to the group so that
338          * perf_group_detach can, at all times, locate all siblings.
339          */
340         if (event->group_leader == event) {
341                 struct list_head *list;
342
343                 if (is_software_event(event))
344                         event->group_flags |= PERF_GROUP_SOFTWARE;
345
346                 list = ctx_group_list(event, ctx);
347                 list_add_tail(&event->group_entry, list);
348         }
349
350         list_add_rcu(&event->event_entry, &ctx->event_list);
351         if (!ctx->nr_events)
352                 perf_pmu_rotate_start(ctx->pmu);
353         ctx->nr_events++;
354         if (event->attr.inherit_stat)
355                 ctx->nr_stat++;
356 }
357
358 /*
359  * Called at perf_event creation and when events are attached/detached from a
360  * group.
361  */
362 static void perf_event__read_size(struct perf_event *event)
363 {
364         int entry = sizeof(u64); /* value */
365         int size = 0;
366         int nr = 1;
367
368         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
369                 size += sizeof(u64);
370
371         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
372                 size += sizeof(u64);
373
374         if (event->attr.read_format & PERF_FORMAT_ID)
375                 entry += sizeof(u64);
376
377         if (event->attr.read_format & PERF_FORMAT_GROUP) {
378                 nr += event->group_leader->nr_siblings;
379                 size += sizeof(u64);
380         }
381
382         size += entry * nr;
383         event->read_size = size;
384 }
385
386 static void perf_event__header_size(struct perf_event *event)
387 {
388         struct perf_sample_data *data;
389         u64 sample_type = event->attr.sample_type;
390         u16 size = 0;
391
392         perf_event__read_size(event);
393
394         if (sample_type & PERF_SAMPLE_IP)
395                 size += sizeof(data->ip);
396
397         if (sample_type & PERF_SAMPLE_ADDR)
398                 size += sizeof(data->addr);
399
400         if (sample_type & PERF_SAMPLE_PERIOD)
401                 size += sizeof(data->period);
402
403         if (sample_type & PERF_SAMPLE_READ)
404                 size += event->read_size;
405
406         event->header_size = size;
407 }
408
409 static void perf_event__id_header_size(struct perf_event *event)
410 {
411         struct perf_sample_data *data;
412         u64 sample_type = event->attr.sample_type;
413         u16 size = 0;
414
415         if (sample_type & PERF_SAMPLE_TID)
416                 size += sizeof(data->tid_entry);
417
418         if (sample_type & PERF_SAMPLE_TIME)
419                 size += sizeof(data->time);
420
421         if (sample_type & PERF_SAMPLE_ID)
422                 size += sizeof(data->id);
423
424         if (sample_type & PERF_SAMPLE_STREAM_ID)
425                 size += sizeof(data->stream_id);
426
427         if (sample_type & PERF_SAMPLE_CPU)
428                 size += sizeof(data->cpu_entry);
429
430         event->id_header_size = size;
431 }
432
433 static void perf_group_attach(struct perf_event *event)
434 {
435         struct perf_event *group_leader = event->group_leader, *pos;
436
437         /*
438          * We can have double attach due to group movement in perf_event_open.
439          */
440         if (event->attach_state & PERF_ATTACH_GROUP)
441                 return;
442
443         event->attach_state |= PERF_ATTACH_GROUP;
444
445         if (group_leader == event)
446                 return;
447
448         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
449                         !is_software_event(event))
450                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
451
452         list_add_tail(&event->group_entry, &group_leader->sibling_list);
453         group_leader->nr_siblings++;
454
455         perf_event__header_size(group_leader);
456
457         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
458                 perf_event__header_size(pos);
459 }
460
461 /*
462  * Remove a event from the lists for its context.
463  * Must be called with ctx->mutex and ctx->lock held.
464  */
465 static void
466 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
467 {
468         /*
469          * We can have double detach due to exit/hot-unplug + close.
470          */
471         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
472                 return;
473
474         event->attach_state &= ~PERF_ATTACH_CONTEXT;
475
476         ctx->nr_events--;
477         if (event->attr.inherit_stat)
478                 ctx->nr_stat--;
479
480         list_del_rcu(&event->event_entry);
481
482         if (event->group_leader == event)
483                 list_del_init(&event->group_entry);
484
485         update_group_times(event);
486
487         /*
488          * If event was in error state, then keep it
489          * that way, otherwise bogus counts will be
490          * returned on read(). The only way to get out
491          * of error state is by explicit re-enabling
492          * of the event
493          */
494         if (event->state > PERF_EVENT_STATE_OFF)
495                 event->state = PERF_EVENT_STATE_OFF;
496 }
497
498 static void perf_group_detach(struct perf_event *event)
499 {
500         struct perf_event *sibling, *tmp;
501         struct list_head *list = NULL;
502
503         /*
504          * We can have double detach due to exit/hot-unplug + close.
505          */
506         if (!(event->attach_state & PERF_ATTACH_GROUP))
507                 return;
508
509         event->attach_state &= ~PERF_ATTACH_GROUP;
510
511         /*
512          * If this is a sibling, remove it from its group.
513          */
514         if (event->group_leader != event) {
515                 list_del_init(&event->group_entry);
516                 event->group_leader->nr_siblings--;
517                 goto out;
518         }
519
520         if (!list_empty(&event->group_entry))
521                 list = &event->group_entry;
522
523         /*
524          * If this was a group event with sibling events then
525          * upgrade the siblings to singleton events by adding them
526          * to whatever list we are on.
527          */
528         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
529                 if (list)
530                         list_move_tail(&sibling->group_entry, list);
531                 sibling->group_leader = sibling;
532
533                 /* Inherit group flags from the previous leader */
534                 sibling->group_flags = event->group_flags;
535         }
536
537 out:
538         perf_event__header_size(event->group_leader);
539
540         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
541                 perf_event__header_size(tmp);
542 }
543
544 static inline int
545 event_filter_match(struct perf_event *event)
546 {
547         return event->cpu == -1 || event->cpu == smp_processor_id();
548 }
549
550 static void
551 event_sched_out(struct perf_event *event,
552                   struct perf_cpu_context *cpuctx,
553                   struct perf_event_context *ctx)
554 {
555         u64 tstamp = perf_event_time(event);
556         u64 delta;
557         /*
558          * An event which could not be activated because of
559          * filter mismatch still needs to have its timings
560          * maintained, otherwise bogus information is return
561          * via read() for time_enabled, time_running:
562          */
563         if (event->state == PERF_EVENT_STATE_INACTIVE
564             && !event_filter_match(event)) {
565                 delta = ctx->time - event->tstamp_stopped;
566                 event->tstamp_running += delta;
567                 event->tstamp_stopped = tstamp;
568         }
569
570         if (event->state != PERF_EVENT_STATE_ACTIVE)
571                 return;
572
573         event->state = PERF_EVENT_STATE_INACTIVE;
574         if (event->pending_disable) {
575                 event->pending_disable = 0;
576                 event->state = PERF_EVENT_STATE_OFF;
577         }
578         event->tstamp_stopped = tstamp;
579         event->pmu->del(event, 0);
580         event->oncpu = -1;
581
582         if (!is_software_event(event))
583                 cpuctx->active_oncpu--;
584         ctx->nr_active--;
585         if (event->attr.exclusive || !cpuctx->active_oncpu)
586                 cpuctx->exclusive = 0;
587 }
588
589 static void
590 group_sched_out(struct perf_event *group_event,
591                 struct perf_cpu_context *cpuctx,
592                 struct perf_event_context *ctx)
593 {
594         struct perf_event *event;
595         int state = group_event->state;
596
597         event_sched_out(group_event, cpuctx, ctx);
598
599         /*
600          * Schedule out siblings (if any):
601          */
602         list_for_each_entry(event, &group_event->sibling_list, group_entry)
603                 event_sched_out(event, cpuctx, ctx);
604
605         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
606                 cpuctx->exclusive = 0;
607 }
608
609 static inline struct perf_cpu_context *
610 __get_cpu_context(struct perf_event_context *ctx)
611 {
612         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
613 }
614
615 /*
616  * Cross CPU call to remove a performance event
617  *
618  * We disable the event on the hardware level first. After that we
619  * remove it from the context list.
620  */
621 static void __perf_event_remove_from_context(void *info)
622 {
623         struct perf_event *event = info;
624         struct perf_event_context *ctx = event->ctx;
625         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
626
627         /*
628          * If this is a task context, we need to check whether it is
629          * the current task context of this cpu. If not it has been
630          * scheduled out before the smp call arrived.
631          */
632         if (ctx->task && cpuctx->task_ctx != ctx)
633                 return;
634
635         raw_spin_lock(&ctx->lock);
636
637         event_sched_out(event, cpuctx, ctx);
638
639         list_del_event(event, ctx);
640
641         raw_spin_unlock(&ctx->lock);
642 }
643
644
645 /*
646  * Remove the event from a task's (or a CPU's) list of events.
647  *
648  * Must be called with ctx->mutex held.
649  *
650  * CPU events are removed with a smp call. For task events we only
651  * call when the task is on a CPU.
652  *
653  * If event->ctx is a cloned context, callers must make sure that
654  * every task struct that event->ctx->task could possibly point to
655  * remains valid.  This is OK when called from perf_release since
656  * that only calls us on the top-level context, which can't be a clone.
657  * When called from perf_event_exit_task, it's OK because the
658  * context has been detached from its task.
659  */
660 static void perf_event_remove_from_context(struct perf_event *event)
661 {
662         struct perf_event_context *ctx = event->ctx;
663         struct task_struct *task = ctx->task;
664
665         if (!task) {
666                 /*
667                  * Per cpu events are removed via an smp call and
668                  * the removal is always successful.
669                  */
670                 smp_call_function_single(event->cpu,
671                                          __perf_event_remove_from_context,
672                                          event, 1);
673                 return;
674         }
675
676 retry:
677         task_oncpu_function_call(task, __perf_event_remove_from_context,
678                                  event);
679
680         raw_spin_lock_irq(&ctx->lock);
681         /*
682          * If the context is active we need to retry the smp call.
683          */
684         if (ctx->nr_active && !list_empty(&event->group_entry)) {
685                 raw_spin_unlock_irq(&ctx->lock);
686                 goto retry;
687         }
688
689         /*
690          * The lock prevents that this context is scheduled in so we
691          * can remove the event safely, if the call above did not
692          * succeed.
693          */
694         if (!list_empty(&event->group_entry))
695                 list_del_event(event, ctx);
696         raw_spin_unlock_irq(&ctx->lock);
697 }
698
699 /*
700  * Cross CPU call to disable a performance event
701  */
702 static void __perf_event_disable(void *info)
703 {
704         struct perf_event *event = info;
705         struct perf_event_context *ctx = event->ctx;
706         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
707
708         /*
709          * If this is a per-task event, need to check whether this
710          * event's task is the current task on this cpu.
711          */
712         if (ctx->task && cpuctx->task_ctx != ctx)
713                 return;
714
715         raw_spin_lock(&ctx->lock);
716
717         /*
718          * If the event is on, turn it off.
719          * If it is in error state, leave it in error state.
720          */
721         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
722                 update_context_time(ctx);
723                 update_group_times(event);
724                 if (event == event->group_leader)
725                         group_sched_out(event, cpuctx, ctx);
726                 else
727                         event_sched_out(event, cpuctx, ctx);
728                 event->state = PERF_EVENT_STATE_OFF;
729         }
730
731         raw_spin_unlock(&ctx->lock);
732 }
733
734 /*
735  * Disable a event.
736  *
737  * If event->ctx is a cloned context, callers must make sure that
738  * every task struct that event->ctx->task could possibly point to
739  * remains valid.  This condition is satisifed when called through
740  * perf_event_for_each_child or perf_event_for_each because they
741  * hold the top-level event's child_mutex, so any descendant that
742  * goes to exit will block in sync_child_event.
743  * When called from perf_pending_event it's OK because event->ctx
744  * is the current context on this CPU and preemption is disabled,
745  * hence we can't get into perf_event_task_sched_out for this context.
746  */
747 void perf_event_disable(struct perf_event *event)
748 {
749         struct perf_event_context *ctx = event->ctx;
750         struct task_struct *task = ctx->task;
751
752         if (!task) {
753                 /*
754                  * Disable the event on the cpu that it's on
755                  */
756                 smp_call_function_single(event->cpu, __perf_event_disable,
757                                          event, 1);
758                 return;
759         }
760
761 retry:
762         task_oncpu_function_call(task, __perf_event_disable, event);
763
764         raw_spin_lock_irq(&ctx->lock);
765         /*
766          * If the event is still active, we need to retry the cross-call.
767          */
768         if (event->state == PERF_EVENT_STATE_ACTIVE) {
769                 raw_spin_unlock_irq(&ctx->lock);
770                 goto retry;
771         }
772
773         /*
774          * Since we have the lock this context can't be scheduled
775          * in, so we can change the state safely.
776          */
777         if (event->state == PERF_EVENT_STATE_INACTIVE) {
778                 update_group_times(event);
779                 event->state = PERF_EVENT_STATE_OFF;
780         }
781
782         raw_spin_unlock_irq(&ctx->lock);
783 }
784
785 static int
786 event_sched_in(struct perf_event *event,
787                  struct perf_cpu_context *cpuctx,
788                  struct perf_event_context *ctx)
789 {
790         u64 tstamp = perf_event_time(event);
791
792         if (event->state <= PERF_EVENT_STATE_OFF)
793                 return 0;
794
795         event->state = PERF_EVENT_STATE_ACTIVE;
796         event->oncpu = smp_processor_id();
797         /*
798          * The new state must be visible before we turn it on in the hardware:
799          */
800         smp_wmb();
801
802         if (event->pmu->add(event, PERF_EF_START)) {
803                 event->state = PERF_EVENT_STATE_INACTIVE;
804                 event->oncpu = -1;
805                 return -EAGAIN;
806         }
807
808         event->tstamp_running += tstamp - event->tstamp_stopped;
809
810         event->shadow_ctx_time = tstamp - ctx->timestamp;
811
812         if (!is_software_event(event))
813                 cpuctx->active_oncpu++;
814         ctx->nr_active++;
815
816         if (event->attr.exclusive)
817                 cpuctx->exclusive = 1;
818
819         return 0;
820 }
821
822 static int
823 group_sched_in(struct perf_event *group_event,
824                struct perf_cpu_context *cpuctx,
825                struct perf_event_context *ctx)
826 {
827         struct perf_event *event, *partial_group = NULL;
828         struct pmu *pmu = group_event->pmu;
829         u64 now = ctx->time;
830         bool simulate = false;
831
832         if (group_event->state == PERF_EVENT_STATE_OFF)
833                 return 0;
834
835         pmu->start_txn(pmu);
836
837         if (event_sched_in(group_event, cpuctx, ctx)) {
838                 pmu->cancel_txn(pmu);
839                 return -EAGAIN;
840         }
841
842         /*
843          * Schedule in siblings as one group (if any):
844          */
845         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
846                 if (event_sched_in(event, cpuctx, ctx)) {
847                         partial_group = event;
848                         goto group_error;
849                 }
850         }
851
852         if (!pmu->commit_txn(pmu))
853                 return 0;
854
855 group_error:
856         /*
857          * Groups can be scheduled in as one unit only, so undo any
858          * partial group before returning:
859          * The events up to the failed event are scheduled out normally,
860          * tstamp_stopped will be updated.
861          *
862          * The failed events and the remaining siblings need to have
863          * their timings updated as if they had gone thru event_sched_in()
864          * and event_sched_out(). This is required to get consistent timings
865          * across the group. This also takes care of the case where the group
866          * could never be scheduled by ensuring tstamp_stopped is set to mark
867          * the time the event was actually stopped, such that time delta
868          * calculation in update_event_times() is correct.
869          */
870         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
871                 if (event == partial_group)
872                         simulate = true;
873
874                 if (simulate) {
875                         event->tstamp_running += now - event->tstamp_stopped;
876                         event->tstamp_stopped = now;
877                 } else {
878                         event_sched_out(event, cpuctx, ctx);
879                 }
880         }
881         event_sched_out(group_event, cpuctx, ctx);
882
883         pmu->cancel_txn(pmu);
884
885         return -EAGAIN;
886 }
887
888 /*
889  * Work out whether we can put this event group on the CPU now.
890  */
891 static int group_can_go_on(struct perf_event *event,
892                            struct perf_cpu_context *cpuctx,
893                            int can_add_hw)
894 {
895         /*
896          * Groups consisting entirely of software events can always go on.
897          */
898         if (event->group_flags & PERF_GROUP_SOFTWARE)
899                 return 1;
900         /*
901          * If an exclusive group is already on, no other hardware
902          * events can go on.
903          */
904         if (cpuctx->exclusive)
905                 return 0;
906         /*
907          * If this group is exclusive and there are already
908          * events on the CPU, it can't go on.
909          */
910         if (event->attr.exclusive && cpuctx->active_oncpu)
911                 return 0;
912         /*
913          * Otherwise, try to add it if all previous groups were able
914          * to go on.
915          */
916         return can_add_hw;
917 }
918
919 static void add_event_to_ctx(struct perf_event *event,
920                                struct perf_event_context *ctx)
921 {
922         u64 tstamp = perf_event_time(event);
923
924         list_add_event(event, ctx);
925         perf_group_attach(event);
926         event->tstamp_enabled = tstamp;
927         event->tstamp_running = tstamp;
928         event->tstamp_stopped = tstamp;
929 }
930
931 /*
932  * Cross CPU call to install and enable a performance event
933  *
934  * Must be called with ctx->mutex held
935  */
936 static void __perf_install_in_context(void *info)
937 {
938         struct perf_event *event = info;
939         struct perf_event_context *ctx = event->ctx;
940         struct perf_event *leader = event->group_leader;
941         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
942         int err;
943
944         /*
945          * If this is a task context, we need to check whether it is
946          * the current task context of this cpu. If not it has been
947          * scheduled out before the smp call arrived.
948          * Or possibly this is the right context but it isn't
949          * on this cpu because it had no events.
950          */
951         if (ctx->task && cpuctx->task_ctx != ctx) {
952                 if (cpuctx->task_ctx || ctx->task != current)
953                         return;
954                 cpuctx->task_ctx = ctx;
955         }
956
957         raw_spin_lock(&ctx->lock);
958         ctx->is_active = 1;
959         update_context_time(ctx);
960
961         add_event_to_ctx(event, ctx);
962
963         if (!event_filter_match(event))
964                 goto unlock;
965
966         /*
967          * Don't put the event on if it is disabled or if
968          * it is in a group and the group isn't on.
969          */
970         if (event->state != PERF_EVENT_STATE_INACTIVE ||
971             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
972                 goto unlock;
973
974         /*
975          * An exclusive event can't go on if there are already active
976          * hardware events, and no hardware event can go on if there
977          * is already an exclusive event on.
978          */
979         if (!group_can_go_on(event, cpuctx, 1))
980                 err = -EEXIST;
981         else
982                 err = event_sched_in(event, cpuctx, ctx);
983
984         if (err) {
985                 /*
986                  * This event couldn't go on.  If it is in a group
987                  * then we have to pull the whole group off.
988                  * If the event group is pinned then put it in error state.
989                  */
990                 if (leader != event)
991                         group_sched_out(leader, cpuctx, ctx);
992                 if (leader->attr.pinned) {
993                         update_group_times(leader);
994                         leader->state = PERF_EVENT_STATE_ERROR;
995                 }
996         }
997
998 unlock:
999         raw_spin_unlock(&ctx->lock);
1000 }
1001
1002 /*
1003  * Attach a performance event to a context
1004  *
1005  * First we add the event to the list with the hardware enable bit
1006  * in event->hw_config cleared.
1007  *
1008  * If the event is attached to a task which is on a CPU we use a smp
1009  * call to enable it in the task context. The task might have been
1010  * scheduled away, but we check this in the smp call again.
1011  *
1012  * Must be called with ctx->mutex held.
1013  */
1014 static void
1015 perf_install_in_context(struct perf_event_context *ctx,
1016                         struct perf_event *event,
1017                         int cpu)
1018 {
1019         struct task_struct *task = ctx->task;
1020
1021         event->ctx = ctx;
1022
1023         if (!task) {
1024                 /*
1025                  * Per cpu events are installed via an smp call and
1026                  * the install is always successful.
1027                  */
1028                 smp_call_function_single(cpu, __perf_install_in_context,
1029                                          event, 1);
1030                 return;
1031         }
1032
1033 retry:
1034         task_oncpu_function_call(task, __perf_install_in_context,
1035                                  event);
1036
1037         raw_spin_lock_irq(&ctx->lock);
1038         /*
1039          * we need to retry the smp call.
1040          */
1041         if (ctx->is_active && list_empty(&event->group_entry)) {
1042                 raw_spin_unlock_irq(&ctx->lock);
1043                 goto retry;
1044         }
1045
1046         /*
1047          * The lock prevents that this context is scheduled in so we
1048          * can add the event safely, if it the call above did not
1049          * succeed.
1050          */
1051         if (list_empty(&event->group_entry))
1052                 add_event_to_ctx(event, ctx);
1053         raw_spin_unlock_irq(&ctx->lock);
1054 }
1055
1056 /*
1057  * Put a event into inactive state and update time fields.
1058  * Enabling the leader of a group effectively enables all
1059  * the group members that aren't explicitly disabled, so we
1060  * have to update their ->tstamp_enabled also.
1061  * Note: this works for group members as well as group leaders
1062  * since the non-leader members' sibling_lists will be empty.
1063  */
1064 static void __perf_event_mark_enabled(struct perf_event *event,
1065                                         struct perf_event_context *ctx)
1066 {
1067         struct perf_event *sub;
1068         u64 tstamp = perf_event_time(event);
1069
1070         event->state = PERF_EVENT_STATE_INACTIVE;
1071         event->tstamp_enabled = tstamp - event->total_time_enabled;
1072         list_for_each_entry(sub, &event->sibling_list, group_entry) {
1073                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1074                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1075         }
1076 }
1077
1078 /*
1079  * Cross CPU call to enable a performance event
1080  */
1081 static void __perf_event_enable(void *info)
1082 {
1083         struct perf_event *event = info;
1084         struct perf_event_context *ctx = event->ctx;
1085         struct perf_event *leader = event->group_leader;
1086         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1087         int err;
1088
1089         /*
1090          * If this is a per-task event, need to check whether this
1091          * event's task is the current task on this cpu.
1092          */
1093         if (ctx->task && cpuctx->task_ctx != ctx) {
1094                 if (cpuctx->task_ctx || ctx->task != current)
1095                         return;
1096                 cpuctx->task_ctx = ctx;
1097         }
1098
1099         raw_spin_lock(&ctx->lock);
1100         ctx->is_active = 1;
1101         update_context_time(ctx);
1102
1103         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1104                 goto unlock;
1105         __perf_event_mark_enabled(event, ctx);
1106
1107         if (!event_filter_match(event))
1108                 goto unlock;
1109
1110         /*
1111          * If the event is in a group and isn't the group leader,
1112          * then don't put it on unless the group is on.
1113          */
1114         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1115                 goto unlock;
1116
1117         if (!group_can_go_on(event, cpuctx, 1)) {
1118                 err = -EEXIST;
1119         } else {
1120                 if (event == leader)
1121                         err = group_sched_in(event, cpuctx, ctx);
1122                 else
1123                         err = event_sched_in(event, cpuctx, ctx);
1124         }
1125
1126         if (err) {
1127                 /*
1128                  * If this event can't go on and it's part of a
1129                  * group, then the whole group has to come off.
1130                  */
1131                 if (leader != event)
1132                         group_sched_out(leader, cpuctx, ctx);
1133                 if (leader->attr.pinned) {
1134                         update_group_times(leader);
1135                         leader->state = PERF_EVENT_STATE_ERROR;
1136                 }
1137         }
1138
1139 unlock:
1140         raw_spin_unlock(&ctx->lock);
1141 }
1142
1143 /*
1144  * Enable a event.
1145  *
1146  * If event->ctx is a cloned context, callers must make sure that
1147  * every task struct that event->ctx->task could possibly point to
1148  * remains valid.  This condition is satisfied when called through
1149  * perf_event_for_each_child or perf_event_for_each as described
1150  * for perf_event_disable.
1151  */
1152 void perf_event_enable(struct perf_event *event)
1153 {
1154         struct perf_event_context *ctx = event->ctx;
1155         struct task_struct *task = ctx->task;
1156
1157         if (!task) {
1158                 /*
1159                  * Enable the event on the cpu that it's on
1160                  */
1161                 smp_call_function_single(event->cpu, __perf_event_enable,
1162                                          event, 1);
1163                 return;
1164         }
1165
1166         raw_spin_lock_irq(&ctx->lock);
1167         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1168                 goto out;
1169
1170         /*
1171          * If the event is in error state, clear that first.
1172          * That way, if we see the event in error state below, we
1173          * know that it has gone back into error state, as distinct
1174          * from the task having been scheduled away before the
1175          * cross-call arrived.
1176          */
1177         if (event->state == PERF_EVENT_STATE_ERROR)
1178                 event->state = PERF_EVENT_STATE_OFF;
1179
1180 retry:
1181         raw_spin_unlock_irq(&ctx->lock);
1182         task_oncpu_function_call(task, __perf_event_enable, event);
1183
1184         raw_spin_lock_irq(&ctx->lock);
1185
1186         /*
1187          * If the context is active and the event is still off,
1188          * we need to retry the cross-call.
1189          */
1190         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1191                 goto retry;
1192
1193         /*
1194          * Since we have the lock this context can't be scheduled
1195          * in, so we can change the state safely.
1196          */
1197         if (event->state == PERF_EVENT_STATE_OFF)
1198                 __perf_event_mark_enabled(event, ctx);
1199
1200 out:
1201         raw_spin_unlock_irq(&ctx->lock);
1202 }
1203
1204 static int perf_event_refresh(struct perf_event *event, int refresh)
1205 {
1206         /*
1207          * not supported on inherited events
1208          */
1209         if (event->attr.inherit || !is_sampling_event(event))
1210                 return -EINVAL;
1211
1212         atomic_add(refresh, &event->event_limit);
1213         perf_event_enable(event);
1214
1215         return 0;
1216 }
1217
1218 static void ctx_sched_out(struct perf_event_context *ctx,
1219                           struct perf_cpu_context *cpuctx,
1220                           enum event_type_t event_type)
1221 {
1222         struct perf_event *event;
1223
1224         raw_spin_lock(&ctx->lock);
1225         perf_pmu_disable(ctx->pmu);
1226         ctx->is_active = 0;
1227         if (likely(!ctx->nr_events))
1228                 goto out;
1229         update_context_time(ctx);
1230
1231         if (!ctx->nr_active)
1232                 goto out;
1233
1234         if (event_type & EVENT_PINNED) {
1235                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1236                         group_sched_out(event, cpuctx, ctx);
1237         }
1238
1239         if (event_type & EVENT_FLEXIBLE) {
1240                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1241                         group_sched_out(event, cpuctx, ctx);
1242         }
1243 out:
1244         perf_pmu_enable(ctx->pmu);
1245         raw_spin_unlock(&ctx->lock);
1246 }
1247
1248 /*
1249  * Test whether two contexts are equivalent, i.e. whether they
1250  * have both been cloned from the same version of the same context
1251  * and they both have the same number of enabled events.
1252  * If the number of enabled events is the same, then the set
1253  * of enabled events should be the same, because these are both
1254  * inherited contexts, therefore we can't access individual events
1255  * in them directly with an fd; we can only enable/disable all
1256  * events via prctl, or enable/disable all events in a family
1257  * via ioctl, which will have the same effect on both contexts.
1258  */
1259 static int context_equiv(struct perf_event_context *ctx1,
1260                          struct perf_event_context *ctx2)
1261 {
1262         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1263                 && ctx1->parent_gen == ctx2->parent_gen
1264                 && !ctx1->pin_count && !ctx2->pin_count;
1265 }
1266
1267 static void __perf_event_sync_stat(struct perf_event *event,
1268                                      struct perf_event *next_event)
1269 {
1270         u64 value;
1271
1272         if (!event->attr.inherit_stat)
1273                 return;
1274
1275         /*
1276          * Update the event value, we cannot use perf_event_read()
1277          * because we're in the middle of a context switch and have IRQs
1278          * disabled, which upsets smp_call_function_single(), however
1279          * we know the event must be on the current CPU, therefore we
1280          * don't need to use it.
1281          */
1282         switch (event->state) {
1283         case PERF_EVENT_STATE_ACTIVE:
1284                 event->pmu->read(event);
1285                 /* fall-through */
1286
1287         case PERF_EVENT_STATE_INACTIVE:
1288                 update_event_times(event);
1289                 break;
1290
1291         default:
1292                 break;
1293         }
1294
1295         /*
1296          * In order to keep per-task stats reliable we need to flip the event
1297          * values when we flip the contexts.
1298          */
1299         value = local64_read(&next_event->count);
1300         value = local64_xchg(&event->count, value);
1301         local64_set(&next_event->count, value);
1302
1303         swap(event->total_time_enabled, next_event->total_time_enabled);
1304         swap(event->total_time_running, next_event->total_time_running);
1305
1306         /*
1307          * Since we swizzled the values, update the user visible data too.
1308          */
1309         perf_event_update_userpage(event);
1310         perf_event_update_userpage(next_event);
1311 }
1312
1313 #define list_next_entry(pos, member) \
1314         list_entry(pos->member.next, typeof(*pos), member)
1315
1316 static void perf_event_sync_stat(struct perf_event_context *ctx,
1317                                    struct perf_event_context *next_ctx)
1318 {
1319         struct perf_event *event, *next_event;
1320
1321         if (!ctx->nr_stat)
1322                 return;
1323
1324         update_context_time(ctx);
1325
1326         event = list_first_entry(&ctx->event_list,
1327                                    struct perf_event, event_entry);
1328
1329         next_event = list_first_entry(&next_ctx->event_list,
1330                                         struct perf_event, event_entry);
1331
1332         while (&event->event_entry != &ctx->event_list &&
1333                &next_event->event_entry != &next_ctx->event_list) {
1334
1335                 __perf_event_sync_stat(event, next_event);
1336
1337                 event = list_next_entry(event, event_entry);
1338                 next_event = list_next_entry(next_event, event_entry);
1339         }
1340 }
1341
1342 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1343                                   struct task_struct *next)
1344 {
1345         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1346         struct perf_event_context *next_ctx;
1347         struct perf_event_context *parent;
1348         struct perf_cpu_context *cpuctx;
1349         int do_switch = 1;
1350
1351         if (likely(!ctx))
1352                 return;
1353
1354         cpuctx = __get_cpu_context(ctx);
1355         if (!cpuctx->task_ctx)
1356                 return;
1357
1358         rcu_read_lock();
1359         parent = rcu_dereference(ctx->parent_ctx);
1360         next_ctx = next->perf_event_ctxp[ctxn];
1361         if (parent && next_ctx &&
1362             rcu_dereference(next_ctx->parent_ctx) == parent) {
1363                 /*
1364                  * Looks like the two contexts are clones, so we might be
1365                  * able to optimize the context switch.  We lock both
1366                  * contexts and check that they are clones under the
1367                  * lock (including re-checking that neither has been
1368                  * uncloned in the meantime).  It doesn't matter which
1369                  * order we take the locks because no other cpu could
1370                  * be trying to lock both of these tasks.
1371                  */
1372                 raw_spin_lock(&ctx->lock);
1373                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1374                 if (context_equiv(ctx, next_ctx)) {
1375                         /*
1376                          * XXX do we need a memory barrier of sorts
1377                          * wrt to rcu_dereference() of perf_event_ctxp
1378                          */
1379                         task->perf_event_ctxp[ctxn] = next_ctx;
1380                         next->perf_event_ctxp[ctxn] = ctx;
1381                         ctx->task = next;
1382                         next_ctx->task = task;
1383                         do_switch = 0;
1384
1385                         perf_event_sync_stat(ctx, next_ctx);
1386                 }
1387                 raw_spin_unlock(&next_ctx->lock);
1388                 raw_spin_unlock(&ctx->lock);
1389         }
1390         rcu_read_unlock();
1391
1392         if (do_switch) {
1393                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1394                 cpuctx->task_ctx = NULL;
1395         }
1396 }
1397
1398 #define for_each_task_context_nr(ctxn)                                  \
1399         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1400
1401 /*
1402  * Called from scheduler to remove the events of the current task,
1403  * with interrupts disabled.
1404  *
1405  * We stop each event and update the event value in event->count.
1406  *
1407  * This does not protect us against NMI, but disable()
1408  * sets the disabled bit in the control field of event _before_
1409  * accessing the event control register. If a NMI hits, then it will
1410  * not restart the event.
1411  */
1412 void __perf_event_task_sched_out(struct task_struct *task,
1413                                  struct task_struct *next)
1414 {
1415         int ctxn;
1416
1417         for_each_task_context_nr(ctxn)
1418                 perf_event_context_sched_out(task, ctxn, next);
1419 }
1420
1421 static void task_ctx_sched_out(struct perf_event_context *ctx,
1422                                enum event_type_t event_type)
1423 {
1424         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1425
1426         if (!cpuctx->task_ctx)
1427                 return;
1428
1429         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1430                 return;
1431
1432         ctx_sched_out(ctx, cpuctx, event_type);
1433         cpuctx->task_ctx = NULL;
1434 }
1435
1436 /*
1437  * Called with IRQs disabled
1438  */
1439 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1440                               enum event_type_t event_type)
1441 {
1442         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1443 }
1444
1445 static void
1446 ctx_pinned_sched_in(struct perf_event_context *ctx,
1447                     struct perf_cpu_context *cpuctx)
1448 {
1449         struct perf_event *event;
1450
1451         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1452                 if (event->state <= PERF_EVENT_STATE_OFF)
1453                         continue;
1454                 if (!event_filter_match(event))
1455                         continue;
1456
1457                 if (group_can_go_on(event, cpuctx, 1))
1458                         group_sched_in(event, cpuctx, ctx);
1459
1460                 /*
1461                  * If this pinned group hasn't been scheduled,
1462                  * put it in error state.
1463                  */
1464                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1465                         update_group_times(event);
1466                         event->state = PERF_EVENT_STATE_ERROR;
1467                 }
1468         }
1469 }
1470
1471 static void
1472 ctx_flexible_sched_in(struct perf_event_context *ctx,
1473                       struct perf_cpu_context *cpuctx)
1474 {
1475         struct perf_event *event;
1476         int can_add_hw = 1;
1477
1478         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1479                 /* Ignore events in OFF or ERROR state */
1480                 if (event->state <= PERF_EVENT_STATE_OFF)
1481                         continue;
1482                 /*
1483                  * Listen to the 'cpu' scheduling filter constraint
1484                  * of events:
1485                  */
1486                 if (!event_filter_match(event))
1487                         continue;
1488
1489                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1490                         if (group_sched_in(event, cpuctx, ctx))
1491                                 can_add_hw = 0;
1492                 }
1493         }
1494 }
1495
1496 static void
1497 ctx_sched_in(struct perf_event_context *ctx,
1498              struct perf_cpu_context *cpuctx,
1499              enum event_type_t event_type)
1500 {
1501         raw_spin_lock(&ctx->lock);
1502         ctx->is_active = 1;
1503         if (likely(!ctx->nr_events))
1504                 goto out;
1505
1506         ctx->timestamp = perf_clock();
1507
1508         /*
1509          * First go through the list and put on any pinned groups
1510          * in order to give them the best chance of going on.
1511          */
1512         if (event_type & EVENT_PINNED)
1513                 ctx_pinned_sched_in(ctx, cpuctx);
1514
1515         /* Then walk through the lower prio flexible groups */
1516         if (event_type & EVENT_FLEXIBLE)
1517                 ctx_flexible_sched_in(ctx, cpuctx);
1518
1519 out:
1520         raw_spin_unlock(&ctx->lock);
1521 }
1522
1523 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1524                              enum event_type_t event_type)
1525 {
1526         struct perf_event_context *ctx = &cpuctx->ctx;
1527
1528         ctx_sched_in(ctx, cpuctx, event_type);
1529 }
1530
1531 static void task_ctx_sched_in(struct perf_event_context *ctx,
1532                               enum event_type_t event_type)
1533 {
1534         struct perf_cpu_context *cpuctx;
1535
1536         cpuctx = __get_cpu_context(ctx);
1537         if (cpuctx->task_ctx == ctx)
1538                 return;
1539
1540         ctx_sched_in(ctx, cpuctx, event_type);
1541         cpuctx->task_ctx = ctx;
1542 }
1543
1544 void perf_event_context_sched_in(struct perf_event_context *ctx)
1545 {
1546         struct perf_cpu_context *cpuctx;
1547
1548         cpuctx = __get_cpu_context(ctx);
1549         if (cpuctx->task_ctx == ctx)
1550                 return;
1551
1552         perf_pmu_disable(ctx->pmu);
1553         /*
1554          * We want to keep the following priority order:
1555          * cpu pinned (that don't need to move), task pinned,
1556          * cpu flexible, task flexible.
1557          */
1558         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1559
1560         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1561         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1562         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1563
1564         cpuctx->task_ctx = ctx;
1565
1566         /*
1567          * Since these rotations are per-cpu, we need to ensure the
1568          * cpu-context we got scheduled on is actually rotating.
1569          */
1570         perf_pmu_rotate_start(ctx->pmu);
1571         perf_pmu_enable(ctx->pmu);
1572 }
1573
1574 /*
1575  * Called from scheduler to add the events of the current task
1576  * with interrupts disabled.
1577  *
1578  * We restore the event value and then enable it.
1579  *
1580  * This does not protect us against NMI, but enable()
1581  * sets the enabled bit in the control field of event _before_
1582  * accessing the event control register. If a NMI hits, then it will
1583  * keep the event running.
1584  */
1585 void __perf_event_task_sched_in(struct task_struct *task)
1586 {
1587         struct perf_event_context *ctx;
1588         int ctxn;
1589
1590         for_each_task_context_nr(ctxn) {
1591                 ctx = task->perf_event_ctxp[ctxn];
1592                 if (likely(!ctx))
1593                         continue;
1594
1595                 perf_event_context_sched_in(ctx);
1596         }
1597 }
1598
1599 #define MAX_INTERRUPTS (~0ULL)
1600
1601 static void perf_log_throttle(struct perf_event *event, int enable);
1602
1603 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1604 {
1605         u64 frequency = event->attr.sample_freq;
1606         u64 sec = NSEC_PER_SEC;
1607         u64 divisor, dividend;
1608
1609         int count_fls, nsec_fls, frequency_fls, sec_fls;
1610
1611         count_fls = fls64(count);
1612         nsec_fls = fls64(nsec);
1613         frequency_fls = fls64(frequency);
1614         sec_fls = 30;
1615
1616         /*
1617          * We got @count in @nsec, with a target of sample_freq HZ
1618          * the target period becomes:
1619          *
1620          *             @count * 10^9
1621          * period = -------------------
1622          *          @nsec * sample_freq
1623          *
1624          */
1625
1626         /*
1627          * Reduce accuracy by one bit such that @a and @b converge
1628          * to a similar magnitude.
1629          */
1630 #define REDUCE_FLS(a, b)                \
1631 do {                                    \
1632         if (a##_fls > b##_fls) {        \
1633                 a >>= 1;                \
1634                 a##_fls--;              \
1635         } else {                        \
1636                 b >>= 1;                \
1637                 b##_fls--;              \
1638         }                               \
1639 } while (0)
1640
1641         /*
1642          * Reduce accuracy until either term fits in a u64, then proceed with
1643          * the other, so that finally we can do a u64/u64 division.
1644          */
1645         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1646                 REDUCE_FLS(nsec, frequency);
1647                 REDUCE_FLS(sec, count);
1648         }
1649
1650         if (count_fls + sec_fls > 64) {
1651                 divisor = nsec * frequency;
1652
1653                 while (count_fls + sec_fls > 64) {
1654                         REDUCE_FLS(count, sec);
1655                         divisor >>= 1;
1656                 }
1657
1658                 dividend = count * sec;
1659         } else {
1660                 dividend = count * sec;
1661
1662                 while (nsec_fls + frequency_fls > 64) {
1663                         REDUCE_FLS(nsec, frequency);
1664                         dividend >>= 1;
1665                 }
1666
1667                 divisor = nsec * frequency;
1668         }
1669
1670         if (!divisor)
1671                 return dividend;
1672
1673         return div64_u64(dividend, divisor);
1674 }
1675
1676 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1677 {
1678         struct hw_perf_event *hwc = &event->hw;
1679         s64 period, sample_period;
1680         s64 delta;
1681
1682         period = perf_calculate_period(event, nsec, count);
1683
1684         delta = (s64)(period - hwc->sample_period);
1685         delta = (delta + 7) / 8; /* low pass filter */
1686
1687         sample_period = hwc->sample_period + delta;
1688
1689         if (!sample_period)
1690                 sample_period = 1;
1691
1692         hwc->sample_period = sample_period;
1693
1694         if (local64_read(&hwc->period_left) > 8*sample_period) {
1695                 event->pmu->stop(event, PERF_EF_UPDATE);
1696                 local64_set(&hwc->period_left, 0);
1697                 event->pmu->start(event, PERF_EF_RELOAD);
1698         }
1699 }
1700
1701 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1702 {
1703         struct perf_event *event;
1704         struct hw_perf_event *hwc;
1705         u64 interrupts, now;
1706         s64 delta;
1707
1708         raw_spin_lock(&ctx->lock);
1709         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1710                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1711                         continue;
1712
1713                 if (!event_filter_match(event))
1714                         continue;
1715
1716                 hwc = &event->hw;
1717
1718                 interrupts = hwc->interrupts;
1719                 hwc->interrupts = 0;
1720
1721                 /*
1722                  * unthrottle events on the tick
1723                  */
1724                 if (interrupts == MAX_INTERRUPTS) {
1725                         perf_log_throttle(event, 1);
1726                         event->pmu->start(event, 0);
1727                 }
1728
1729                 if (!event->attr.freq || !event->attr.sample_freq)
1730                         continue;
1731
1732                 event->pmu->read(event);
1733                 now = local64_read(&event->count);
1734                 delta = now - hwc->freq_count_stamp;
1735                 hwc->freq_count_stamp = now;
1736
1737                 if (delta > 0)
1738                         perf_adjust_period(event, period, delta);
1739         }
1740         raw_spin_unlock(&ctx->lock);
1741 }
1742
1743 /*
1744  * Round-robin a context's events:
1745  */
1746 static void rotate_ctx(struct perf_event_context *ctx)
1747 {
1748         raw_spin_lock(&ctx->lock);
1749
1750         /*
1751          * Rotate the first entry last of non-pinned groups. Rotation might be
1752          * disabled by the inheritance code.
1753          */
1754         if (!ctx->rotate_disable)
1755                 list_rotate_left(&ctx->flexible_groups);
1756
1757         raw_spin_unlock(&ctx->lock);
1758 }
1759
1760 /*
1761  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1762  * because they're strictly cpu affine and rotate_start is called with IRQs
1763  * disabled, while rotate_context is called from IRQ context.
1764  */
1765 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1766 {
1767         u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1768         struct perf_event_context *ctx = NULL;
1769         int rotate = 0, remove = 1;
1770
1771         if (cpuctx->ctx.nr_events) {
1772                 remove = 0;
1773                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1774                         rotate = 1;
1775         }
1776
1777         ctx = cpuctx->task_ctx;
1778         if (ctx && ctx->nr_events) {
1779                 remove = 0;
1780                 if (ctx->nr_events != ctx->nr_active)
1781                         rotate = 1;
1782         }
1783
1784         perf_pmu_disable(cpuctx->ctx.pmu);
1785         perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1786         if (ctx)
1787                 perf_ctx_adjust_freq(ctx, interval);
1788
1789         if (!rotate)
1790                 goto done;
1791
1792         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1793         if (ctx)
1794                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1795
1796         rotate_ctx(&cpuctx->ctx);
1797         if (ctx)
1798                 rotate_ctx(ctx);
1799
1800         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1801         if (ctx)
1802                 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1803
1804 done:
1805         if (remove)
1806                 list_del_init(&cpuctx->rotation_list);
1807
1808         perf_pmu_enable(cpuctx->ctx.pmu);
1809 }
1810
1811 void perf_event_task_tick(void)
1812 {
1813         struct list_head *head = &__get_cpu_var(rotation_list);
1814         struct perf_cpu_context *cpuctx, *tmp;
1815
1816         WARN_ON(!irqs_disabled());
1817
1818         list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1819                 if (cpuctx->jiffies_interval == 1 ||
1820                                 !(jiffies % cpuctx->jiffies_interval))
1821                         perf_rotate_context(cpuctx);
1822         }
1823 }
1824
1825 static int event_enable_on_exec(struct perf_event *event,
1826                                 struct perf_event_context *ctx)
1827 {
1828         if (!event->attr.enable_on_exec)
1829                 return 0;
1830
1831         event->attr.enable_on_exec = 0;
1832         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1833                 return 0;
1834
1835         __perf_event_mark_enabled(event, ctx);
1836
1837         return 1;
1838 }
1839
1840 /*
1841  * Enable all of a task's events that have been marked enable-on-exec.
1842  * This expects task == current.
1843  */
1844 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1845 {
1846         struct perf_event *event;
1847         unsigned long flags;
1848         int enabled = 0;
1849         int ret;
1850
1851         local_irq_save(flags);
1852         if (!ctx || !ctx->nr_events)
1853                 goto out;
1854
1855         task_ctx_sched_out(ctx, EVENT_ALL);
1856
1857         raw_spin_lock(&ctx->lock);
1858
1859         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1860                 ret = event_enable_on_exec(event, ctx);
1861                 if (ret)
1862                         enabled = 1;
1863         }
1864
1865         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1866                 ret = event_enable_on_exec(event, ctx);
1867                 if (ret)
1868                         enabled = 1;
1869         }
1870
1871         /*
1872          * Unclone this context if we enabled any event.
1873          */
1874         if (enabled)
1875                 unclone_ctx(ctx);
1876
1877         raw_spin_unlock(&ctx->lock);
1878
1879         perf_event_context_sched_in(ctx);
1880 out:
1881         local_irq_restore(flags);
1882 }
1883
1884 /*
1885  * Cross CPU call to read the hardware event
1886  */
1887 static void __perf_event_read(void *info)
1888 {
1889         struct perf_event *event = info;
1890         struct perf_event_context *ctx = event->ctx;
1891         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1892
1893         /*
1894          * If this is a task context, we need to check whether it is
1895          * the current task context of this cpu.  If not it has been
1896          * scheduled out before the smp call arrived.  In that case
1897          * event->count would have been updated to a recent sample
1898          * when the event was scheduled out.
1899          */
1900         if (ctx->task && cpuctx->task_ctx != ctx)
1901                 return;
1902
1903         raw_spin_lock(&ctx->lock);
1904         update_context_time(ctx);
1905         update_event_times(event);
1906         raw_spin_unlock(&ctx->lock);
1907
1908         event->pmu->read(event);
1909 }
1910
1911 static inline u64 perf_event_count(struct perf_event *event)
1912 {
1913         return local64_read(&event->count) + atomic64_read(&event->child_count);
1914 }
1915
1916 static u64 perf_event_read(struct perf_event *event)
1917 {
1918         /*
1919          * If event is enabled and currently active on a CPU, update the
1920          * value in the event structure:
1921          */
1922         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1923                 smp_call_function_single(event->oncpu,
1924                                          __perf_event_read, event, 1);
1925         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1926                 struct perf_event_context *ctx = event->ctx;
1927                 unsigned long flags;
1928
1929                 raw_spin_lock_irqsave(&ctx->lock, flags);
1930                 /*
1931                  * may read while context is not active
1932                  * (e.g., thread is blocked), in that case
1933                  * we cannot update context time
1934                  */
1935                 if (ctx->is_active)
1936                         update_context_time(ctx);
1937                 update_event_times(event);
1938                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1939         }
1940
1941         return perf_event_count(event);
1942 }
1943
1944 /*
1945  * Callchain support
1946  */
1947
1948 struct callchain_cpus_entries {
1949         struct rcu_head                 rcu_head;
1950         struct perf_callchain_entry     *cpu_entries[0];
1951 };
1952
1953 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1954 static atomic_t nr_callchain_events;
1955 static DEFINE_MUTEX(callchain_mutex);
1956 struct callchain_cpus_entries *callchain_cpus_entries;
1957
1958
1959 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1960                                   struct pt_regs *regs)
1961 {
1962 }
1963
1964 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1965                                 struct pt_regs *regs)
1966 {
1967 }
1968
1969 static void release_callchain_buffers_rcu(struct rcu_head *head)
1970 {
1971         struct callchain_cpus_entries *entries;
1972         int cpu;
1973
1974         entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1975
1976         for_each_possible_cpu(cpu)
1977                 kfree(entries->cpu_entries[cpu]);
1978
1979         kfree(entries);
1980 }
1981
1982 static void release_callchain_buffers(void)
1983 {
1984         struct callchain_cpus_entries *entries;
1985
1986         entries = callchain_cpus_entries;
1987         rcu_assign_pointer(callchain_cpus_entries, NULL);
1988         call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1989 }
1990
1991 static int alloc_callchain_buffers(void)
1992 {
1993         int cpu;
1994         int size;
1995         struct callchain_cpus_entries *entries;
1996
1997         /*
1998          * We can't use the percpu allocation API for data that can be
1999          * accessed from NMI. Use a temporary manual per cpu allocation
2000          * until that gets sorted out.
2001          */
2002         size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2003
2004         entries = kzalloc(size, GFP_KERNEL);
2005         if (!entries)
2006                 return -ENOMEM;
2007
2008         size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
2009
2010         for_each_possible_cpu(cpu) {
2011                 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
2012                                                          cpu_to_node(cpu));
2013                 if (!entries->cpu_entries[cpu])
2014                         goto fail;
2015         }
2016
2017         rcu_assign_pointer(callchain_cpus_entries, entries);
2018
2019         return 0;
2020
2021 fail:
2022         for_each_possible_cpu(cpu)
2023                 kfree(entries->cpu_entries[cpu]);
2024         kfree(entries);
2025
2026         return -ENOMEM;
2027 }
2028
2029 static int get_callchain_buffers(void)
2030 {
2031         int err = 0;
2032         int count;
2033
2034         mutex_lock(&callchain_mutex);
2035
2036         count = atomic_inc_return(&nr_callchain_events);
2037         if (WARN_ON_ONCE(count < 1)) {
2038                 err = -EINVAL;
2039                 goto exit;
2040         }
2041
2042         if (count > 1) {
2043                 /* If the allocation failed, give up */
2044                 if (!callchain_cpus_entries)
2045                         err = -ENOMEM;
2046                 goto exit;
2047         }
2048
2049         err = alloc_callchain_buffers();
2050         if (err)
2051                 release_callchain_buffers();
2052 exit:
2053         mutex_unlock(&callchain_mutex);
2054
2055         return err;
2056 }
2057
2058 static void put_callchain_buffers(void)
2059 {
2060         if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
2061                 release_callchain_buffers();
2062                 mutex_unlock(&callchain_mutex);
2063         }
2064 }
2065
2066 static int get_recursion_context(int *recursion)
2067 {
2068         int rctx;
2069
2070         if (in_nmi())
2071                 rctx = 3;
2072         else if (in_irq())
2073                 rctx = 2;
2074         else if (in_softirq())
2075                 rctx = 1;
2076         else
2077                 rctx = 0;
2078
2079         if (recursion[rctx])
2080                 return -1;
2081
2082         recursion[rctx]++;
2083         barrier();
2084
2085         return rctx;
2086 }
2087
2088 static inline void put_recursion_context(int *recursion, int rctx)
2089 {
2090         barrier();
2091         recursion[rctx]--;
2092 }
2093
2094 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2095 {
2096         int cpu;
2097         struct callchain_cpus_entries *entries;
2098
2099         *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2100         if (*rctx == -1)
2101                 return NULL;
2102
2103         entries = rcu_dereference(callchain_cpus_entries);
2104         if (!entries)
2105                 return NULL;
2106
2107         cpu = smp_processor_id();
2108
2109         return &entries->cpu_entries[cpu][*rctx];
2110 }
2111
2112 static void
2113 put_callchain_entry(int rctx)
2114 {
2115         put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2116 }
2117
2118 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2119 {
2120         int rctx;
2121         struct perf_callchain_entry *entry;
2122
2123
2124         entry = get_callchain_entry(&rctx);
2125         if (rctx == -1)
2126                 return NULL;
2127
2128         if (!entry)
2129                 goto exit_put;
2130
2131         entry->nr = 0;
2132
2133         if (!user_mode(regs)) {
2134                 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2135                 perf_callchain_kernel(entry, regs);
2136                 if (current->mm)
2137                         regs = task_pt_regs(current);
2138                 else
2139                         regs = NULL;
2140         }
2141
2142         if (regs) {
2143                 perf_callchain_store(entry, PERF_CONTEXT_USER);
2144                 perf_callchain_user(entry, regs);
2145         }
2146
2147 exit_put:
2148         put_callchain_entry(rctx);
2149
2150         return entry;
2151 }
2152
2153 /*
2154  * Initialize the perf_event context in a task_struct:
2155  */
2156 static void __perf_event_init_context(struct perf_event_context *ctx)
2157 {
2158         raw_spin_lock_init(&ctx->lock);
2159         mutex_init(&ctx->mutex);
2160         INIT_LIST_HEAD(&ctx->pinned_groups);
2161         INIT_LIST_HEAD(&ctx->flexible_groups);
2162         INIT_LIST_HEAD(&ctx->event_list);
2163         atomic_set(&ctx->refcount, 1);
2164 }
2165
2166 static struct perf_event_context *
2167 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2168 {
2169         struct perf_event_context *ctx;
2170
2171         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2172         if (!ctx)
2173                 return NULL;
2174
2175         __perf_event_init_context(ctx);
2176         if (task) {
2177                 ctx->task = task;
2178                 get_task_struct(task);
2179         }
2180         ctx->pmu = pmu;
2181
2182         return ctx;
2183 }
2184
2185 static struct task_struct *
2186 find_lively_task_by_vpid(pid_t vpid)
2187 {
2188         struct task_struct *task;
2189         int err;
2190
2191         rcu_read_lock();
2192         if (!vpid)
2193                 task = current;
2194         else
2195                 task = find_task_by_vpid(vpid);
2196         if (task)
2197                 get_task_struct(task);
2198         rcu_read_unlock();
2199
2200         if (!task)
2201                 return ERR_PTR(-ESRCH);
2202
2203         /* Reuse ptrace permission checks for now. */
2204         err = -EACCES;
2205         if (!ptrace_may_access(task, PTRACE_MODE_READ))
2206                 goto errout;
2207
2208         return task;
2209 errout:
2210         put_task_struct(task);
2211         return ERR_PTR(err);
2212
2213 }
2214
2215 static struct perf_event_context *
2216 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2217 {
2218         struct perf_event_context *ctx;
2219         struct perf_cpu_context *cpuctx;
2220         unsigned long flags;
2221         int ctxn, err;
2222
2223         if (!task) {
2224                 /* Must be root to operate on a CPU event: */
2225                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2226                         return ERR_PTR(-EACCES);
2227
2228                 /*
2229                  * We could be clever and allow to attach a event to an
2230                  * offline CPU and activate it when the CPU comes up, but
2231                  * that's for later.
2232                  */
2233                 if (!cpu_online(cpu))
2234                         return ERR_PTR(-ENODEV);
2235
2236                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2237                 ctx = &cpuctx->ctx;
2238                 get_ctx(ctx);
2239
2240                 return ctx;
2241         }
2242
2243         err = -EINVAL;
2244         ctxn = pmu->task_ctx_nr;
2245         if (ctxn < 0)
2246                 goto errout;
2247
2248 retry:
2249         ctx = perf_lock_task_context(task, ctxn, &flags);
2250         if (ctx) {
2251                 unclone_ctx(ctx);
2252                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2253         }
2254
2255         if (!ctx) {
2256                 ctx = alloc_perf_context(pmu, task);
2257                 err = -ENOMEM;
2258                 if (!ctx)
2259                         goto errout;
2260
2261                 get_ctx(ctx);
2262
2263                 err = 0;
2264                 mutex_lock(&task->perf_event_mutex);
2265                 /*
2266                  * If it has already passed perf_event_exit_task().
2267                  * we must see PF_EXITING, it takes this mutex too.
2268                  */
2269                 if (task->flags & PF_EXITING)
2270                         err = -ESRCH;
2271                 else if (task->perf_event_ctxp[ctxn])
2272                         err = -EAGAIN;
2273                 else
2274                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2275                 mutex_unlock(&task->perf_event_mutex);
2276
2277                 if (unlikely(err)) {
2278                         put_task_struct(task);
2279                         kfree(ctx);
2280
2281                         if (err == -EAGAIN)
2282                                 goto retry;
2283                         goto errout;
2284                 }
2285         }
2286
2287         return ctx;
2288
2289 errout:
2290         return ERR_PTR(err);
2291 }
2292
2293 static void perf_event_free_filter(struct perf_event *event);
2294
2295 static void free_event_rcu(struct rcu_head *head)
2296 {
2297         struct perf_event *event;
2298
2299         event = container_of(head, struct perf_event, rcu_head);
2300         if (event->ns)
2301                 put_pid_ns(event->ns);
2302         perf_event_free_filter(event);
2303         kfree(event);
2304 }
2305
2306 static void perf_buffer_put(struct perf_buffer *buffer);
2307
2308 static void free_event(struct perf_event *event)
2309 {
2310         irq_work_sync(&event->pending);
2311
2312         if (!event->parent) {
2313                 if (event->attach_state & PERF_ATTACH_TASK)
2314                         jump_label_dec(&perf_task_events);
2315                 if (event->attr.mmap || event->attr.mmap_data)
2316                         atomic_dec(&nr_mmap_events);
2317                 if (event->attr.comm)
2318                         atomic_dec(&nr_comm_events);
2319                 if (event->attr.task)
2320                         atomic_dec(&nr_task_events);
2321                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2322                         put_callchain_buffers();
2323         }
2324
2325         if (event->buffer) {
2326                 perf_buffer_put(event->buffer);
2327                 event->buffer = NULL;
2328         }
2329
2330         if (event->destroy)
2331                 event->destroy(event);
2332
2333         if (event->ctx)
2334                 put_ctx(event->ctx);
2335
2336         call_rcu(&event->rcu_head, free_event_rcu);
2337 }
2338
2339 int perf_event_release_kernel(struct perf_event *event)
2340 {
2341         struct perf_event_context *ctx = event->ctx;
2342
2343         /*
2344          * Remove from the PMU, can't get re-enabled since we got
2345          * here because the last ref went.
2346          */
2347         perf_event_disable(event);
2348
2349         WARN_ON_ONCE(ctx->parent_ctx);
2350         /*
2351          * There are two ways this annotation is useful:
2352          *
2353          *  1) there is a lock recursion from perf_event_exit_task
2354          *     see the comment there.
2355          *
2356          *  2) there is a lock-inversion with mmap_sem through
2357          *     perf_event_read_group(), which takes faults while
2358          *     holding ctx->mutex, however this is called after
2359          *     the last filedesc died, so there is no possibility
2360          *     to trigger the AB-BA case.
2361          */
2362         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2363         raw_spin_lock_irq(&ctx->lock);
2364         perf_group_detach(event);
2365         list_del_event(event, ctx);
2366         raw_spin_unlock_irq(&ctx->lock);
2367         mutex_unlock(&ctx->mutex);
2368
2369         free_event(event);
2370
2371         return 0;
2372 }
2373 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2374
2375 /*
2376  * Called when the last reference to the file is gone.
2377  */
2378 static int perf_release(struct inode *inode, struct file *file)
2379 {
2380         struct perf_event *event = file->private_data;
2381         struct task_struct *owner;
2382
2383         file->private_data = NULL;
2384
2385         rcu_read_lock();
2386         owner = ACCESS_ONCE(event->owner);
2387         /*
2388          * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2389          * !owner it means the list deletion is complete and we can indeed
2390          * free this event, otherwise we need to serialize on
2391          * owner->perf_event_mutex.
2392          */
2393         smp_read_barrier_depends();
2394         if (owner) {
2395                 /*
2396                  * Since delayed_put_task_struct() also drops the last
2397                  * task reference we can safely take a new reference
2398                  * while holding the rcu_read_lock().
2399                  */
2400                 get_task_struct(owner);
2401         }
2402         rcu_read_unlock();
2403
2404         if (owner) {
2405                 mutex_lock(&owner->perf_event_mutex);
2406                 /*
2407                  * We have to re-check the event->owner field, if it is cleared
2408                  * we raced with perf_event_exit_task(), acquiring the mutex
2409                  * ensured they're done, and we can proceed with freeing the
2410                  * event.
2411                  */
2412                 if (event->owner)
2413                         list_del_init(&event->owner_entry);
2414                 mutex_unlock(&owner->perf_event_mutex);
2415                 put_task_struct(owner);
2416         }
2417
2418         return perf_event_release_kernel(event);
2419 }
2420
2421 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2422 {
2423         struct perf_event *child;
2424         u64 total = 0;
2425
2426         *enabled = 0;
2427         *running = 0;
2428
2429         mutex_lock(&event->child_mutex);
2430         total += perf_event_read(event);
2431         *enabled += event->total_time_enabled +
2432                         atomic64_read(&event->child_total_time_enabled);
2433         *running += event->total_time_running +
2434                         atomic64_read(&event->child_total_time_running);
2435
2436         list_for_each_entry(child, &event->child_list, child_list) {
2437                 total += perf_event_read(child);
2438                 *enabled += child->total_time_enabled;
2439                 *running += child->total_time_running;
2440         }
2441         mutex_unlock(&event->child_mutex);
2442
2443         return total;
2444 }
2445 EXPORT_SYMBOL_GPL(perf_event_read_value);
2446
2447 static int perf_event_read_group(struct perf_event *event,
2448                                    u64 read_format, char __user *buf)
2449 {
2450         struct perf_event *leader = event->group_leader, *sub;
2451         int n = 0, size = 0, ret = -EFAULT;
2452         struct perf_event_context *ctx = leader->ctx;
2453         u64 values[5];
2454         u64 count, enabled, running;
2455
2456         mutex_lock(&ctx->mutex);
2457         count = perf_event_read_value(leader, &enabled, &running);
2458
2459         values[n++] = 1 + leader->nr_siblings;
2460         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2461                 values[n++] = enabled;
2462         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2463                 values[n++] = running;
2464         values[n++] = count;
2465         if (read_format & PERF_FORMAT_ID)
2466                 values[n++] = primary_event_id(leader);
2467
2468         size = n * sizeof(u64);
2469
2470         if (copy_to_user(buf, values, size))
2471                 goto unlock;
2472
2473         ret = size;
2474
2475         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2476                 n = 0;
2477
2478                 values[n++] = perf_event_read_value(sub, &enabled, &running);
2479                 if (read_format & PERF_FORMAT_ID)
2480                         values[n++] = primary_event_id(sub);
2481
2482                 size = n * sizeof(u64);
2483
2484                 if (copy_to_user(buf + ret, values, size)) {
2485                         ret = -EFAULT;
2486                         goto unlock;
2487                 }
2488
2489                 ret += size;
2490         }
2491 unlock:
2492         mutex_unlock(&ctx->mutex);
2493
2494         return ret;
2495 }
2496
2497 static int perf_event_read_one(struct perf_event *event,
2498                                  u64 read_format, char __user *buf)
2499 {
2500         u64 enabled, running;
2501         u64 values[4];
2502         int n = 0;
2503
2504         values[n++] = perf_event_read_value(event, &enabled, &running);
2505         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2506                 values[n++] = enabled;
2507         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2508                 values[n++] = running;
2509         if (read_format & PERF_FORMAT_ID)
2510                 values[n++] = primary_event_id(event);
2511
2512         if (copy_to_user(buf, values, n * sizeof(u64)))
2513                 return -EFAULT;
2514
2515         return n * sizeof(u64);
2516 }
2517
2518 /*
2519  * Read the performance event - simple non blocking version for now
2520  */
2521 static ssize_t
2522 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2523 {
2524         u64 read_format = event->attr.read_format;
2525         int ret;
2526
2527         /*
2528          * Return end-of-file for a read on a event that is in
2529          * error state (i.e. because it was pinned but it couldn't be
2530          * scheduled on to the CPU at some point).
2531          */
2532         if (event->state == PERF_EVENT_STATE_ERROR)
2533                 return 0;
2534
2535         if (count < event->read_size)
2536                 return -ENOSPC;
2537
2538         WARN_ON_ONCE(event->ctx->parent_ctx);
2539         if (read_format & PERF_FORMAT_GROUP)
2540                 ret = perf_event_read_group(event, read_format, buf);
2541         else
2542                 ret = perf_event_read_one(event, read_format, buf);
2543
2544         return ret;
2545 }
2546
2547 static ssize_t
2548 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2549 {
2550         struct perf_event *event = file->private_data;
2551
2552         return perf_read_hw(event, buf, count);
2553 }
2554
2555 static unsigned int perf_poll(struct file *file, poll_table *wait)
2556 {
2557         struct perf_event *event = file->private_data;
2558         struct perf_buffer *buffer;
2559         unsigned int events = POLL_HUP;
2560
2561         rcu_read_lock();
2562         buffer = rcu_dereference(event->buffer);
2563         if (buffer)
2564                 events = atomic_xchg(&buffer->poll, 0);
2565         rcu_read_unlock();
2566
2567         poll_wait(file, &event->waitq, wait);
2568
2569         return events;
2570 }
2571
2572 static void perf_event_reset(struct perf_event *event)
2573 {
2574         (void)perf_event_read(event);
2575         local64_set(&event->count, 0);
2576         perf_event_update_userpage(event);
2577 }
2578
2579 /*
2580  * Holding the top-level event's child_mutex means that any
2581  * descendant process that has inherited this event will block
2582  * in sync_child_event if it goes to exit, thus satisfying the
2583  * task existence requirements of perf_event_enable/disable.
2584  */
2585 static void perf_event_for_each_child(struct perf_event *event,
2586                                         void (*func)(struct perf_event *))
2587 {
2588         struct perf_event *child;
2589
2590         WARN_ON_ONCE(event->ctx->parent_ctx);
2591         mutex_lock(&event->child_mutex);
2592         func(event);
2593         list_for_each_entry(child, &event->child_list, child_list)
2594                 func(child);
2595         mutex_unlock(&event->child_mutex);
2596 }
2597
2598 static void perf_event_for_each(struct perf_event *event,
2599                                   void (*func)(struct perf_event *))
2600 {
2601         struct perf_event_context *ctx = event->ctx;
2602         struct perf_event *sibling;
2603
2604         WARN_ON_ONCE(ctx->parent_ctx);
2605         mutex_lock(&ctx->mutex);
2606         event = event->group_leader;
2607
2608         perf_event_for_each_child(event, func);
2609         func(event);
2610         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2611                 perf_event_for_each_child(event, func);
2612         mutex_unlock(&ctx->mutex);
2613 }
2614
2615 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2616 {
2617         struct perf_event_context *ctx = event->ctx;
2618         int ret = 0;
2619         u64 value;
2620
2621         if (!is_sampling_event(event))
2622                 return -EINVAL;
2623
2624         if (copy_from_user(&value, arg, sizeof(value)))
2625                 return -EFAULT;
2626
2627         if (!value)
2628                 return -EINVAL;
2629
2630         raw_spin_lock_irq(&ctx->lock);
2631         if (event->attr.freq) {
2632                 if (value > sysctl_perf_event_sample_rate) {
2633                         ret = -EINVAL;
2634                         goto unlock;
2635                 }
2636
2637                 event->attr.sample_freq = value;
2638         } else {
2639                 event->attr.sample_period = value;
2640                 event->hw.sample_period = value;
2641         }
2642 unlock:
2643         raw_spin_unlock_irq(&ctx->lock);
2644
2645         return ret;
2646 }
2647
2648 static const struct file_operations perf_fops;
2649
2650 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2651 {
2652         struct file *file;
2653
2654         file = fget_light(fd, fput_needed);
2655         if (!file)
2656                 return ERR_PTR(-EBADF);
2657
2658         if (file->f_op != &perf_fops) {
2659                 fput_light(file, *fput_needed);
2660                 *fput_needed = 0;
2661                 return ERR_PTR(-EBADF);
2662         }
2663
2664         return file->private_data;
2665 }
2666
2667 static int perf_event_set_output(struct perf_event *event,
2668                                  struct perf_event *output_event);
2669 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2670
2671 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2672 {
2673         struct perf_event *event = file->private_data;
2674         void (*func)(struct perf_event *);
2675         u32 flags = arg;
2676
2677         switch (cmd) {
2678         case PERF_EVENT_IOC_ENABLE:
2679                 func = perf_event_enable;
2680                 break;
2681         case PERF_EVENT_IOC_DISABLE:
2682                 func = perf_event_disable;
2683                 break;
2684         case PERF_EVENT_IOC_RESET:
2685                 func = perf_event_reset;
2686                 break;
2687
2688         case PERF_EVENT_IOC_REFRESH:
2689                 return perf_event_refresh(event, arg);
2690
2691         case PERF_EVENT_IOC_PERIOD:
2692                 return perf_event_period(event, (u64 __user *)arg);
2693
2694         case PERF_EVENT_IOC_SET_OUTPUT:
2695         {
2696                 struct perf_event *output_event = NULL;
2697                 int fput_needed = 0;
2698                 int ret;
2699
2700                 if (arg != -1) {
2701                         output_event = perf_fget_light(arg, &fput_needed);
2702                         if (IS_ERR(output_event))
2703                                 return PTR_ERR(output_event);
2704                 }
2705
2706                 ret = perf_event_set_output(event, output_event);
2707                 if (output_event)
2708                         fput_light(output_event->filp, fput_needed);
2709
2710                 return ret;
2711         }
2712
2713         case PERF_EVENT_IOC_SET_FILTER:
2714                 return perf_event_set_filter(event, (void __user *)arg);
2715
2716         default:
2717                 return -ENOTTY;
2718         }
2719
2720         if (flags & PERF_IOC_FLAG_GROUP)
2721                 perf_event_for_each(event, func);
2722         else
2723                 perf_event_for_each_child(event, func);
2724
2725         return 0;
2726 }
2727
2728 int perf_event_task_enable(void)
2729 {
2730         struct perf_event *event;
2731
2732         mutex_lock(&current->perf_event_mutex);
2733         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2734                 perf_event_for_each_child(event, perf_event_enable);
2735         mutex_unlock(&current->perf_event_mutex);
2736
2737         return 0;
2738 }
2739
2740 int perf_event_task_disable(void)
2741 {
2742         struct perf_event *event;
2743
2744         mutex_lock(&current->perf_event_mutex);
2745         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2746                 perf_event_for_each_child(event, perf_event_disable);
2747         mutex_unlock(&current->perf_event_mutex);
2748
2749         return 0;
2750 }
2751
2752 #ifndef PERF_EVENT_INDEX_OFFSET
2753 # define PERF_EVENT_INDEX_OFFSET 0
2754 #endif
2755
2756 static int perf_event_index(struct perf_event *event)
2757 {
2758         if (event->hw.state & PERF_HES_STOPPED)
2759                 return 0;
2760
2761         if (event->state != PERF_EVENT_STATE_ACTIVE)
2762                 return 0;
2763
2764         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2765 }
2766
2767 /*
2768  * Callers need to ensure there can be no nesting of this function, otherwise
2769  * the seqlock logic goes bad. We can not serialize this because the arch
2770  * code calls this from NMI context.
2771  */
2772 void perf_event_update_userpage(struct perf_event *event)
2773 {
2774         struct perf_event_mmap_page *userpg;
2775         struct perf_buffer *buffer;
2776
2777         rcu_read_lock();
2778         buffer = rcu_dereference(event->buffer);
2779         if (!buffer)
2780                 goto unlock;
2781
2782         userpg = buffer->user_page;
2783
2784         /*
2785          * Disable preemption so as to not let the corresponding user-space
2786          * spin too long if we get preempted.
2787          */
2788         preempt_disable();
2789         ++userpg->lock;
2790         barrier();
2791         userpg->index = perf_event_index(event);
2792         userpg->offset = perf_event_count(event);
2793         if (event->state == PERF_EVENT_STATE_ACTIVE)
2794                 userpg->offset -= local64_read(&event->hw.prev_count);
2795
2796         userpg->time_enabled = event->total_time_enabled +
2797                         atomic64_read(&event->child_total_time_enabled);
2798
2799         userpg->time_running = event->total_time_running +
2800                         atomic64_read(&event->child_total_time_running);
2801
2802         barrier();
2803         ++userpg->lock;
2804         preempt_enable();
2805 unlock:
2806         rcu_read_unlock();
2807 }
2808
2809 static unsigned long perf_data_size(struct perf_buffer *buffer);
2810
2811 static void
2812 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2813 {
2814         long max_size = perf_data_size(buffer);
2815
2816         if (watermark)
2817                 buffer->watermark = min(max_size, watermark);
2818
2819         if (!buffer->watermark)
2820                 buffer->watermark = max_size / 2;
2821
2822         if (flags & PERF_BUFFER_WRITABLE)
2823                 buffer->writable = 1;
2824
2825         atomic_set(&buffer->refcount, 1);
2826 }
2827
2828 #ifndef CONFIG_PERF_USE_VMALLOC
2829
2830 /*
2831  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2832  */
2833
2834 static struct page *
2835 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2836 {
2837         if (pgoff > buffer->nr_pages)
2838                 return NULL;
2839
2840         if (pgoff == 0)
2841                 return virt_to_page(buffer->user_page);
2842
2843         return virt_to_page(buffer->data_pages[pgoff - 1]);
2844 }
2845
2846 static void *perf_mmap_alloc_page(int cpu)
2847 {
2848         struct page *page;
2849         int node;
2850
2851         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2852         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2853         if (!page)
2854                 return NULL;
2855
2856         return page_address(page);
2857 }
2858
2859 static struct perf_buffer *
2860 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2861 {
2862         struct perf_buffer *buffer;
2863         unsigned long size;
2864         int i;
2865
2866         size = sizeof(struct perf_buffer);
2867         size += nr_pages * sizeof(void *);
2868
2869         buffer = kzalloc(size, GFP_KERNEL);
2870         if (!buffer)
2871                 goto fail;
2872
2873         buffer->user_page = perf_mmap_alloc_page(cpu);
2874         if (!buffer->user_page)
2875                 goto fail_user_page;
2876
2877         for (i = 0; i < nr_pages; i++) {
2878                 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2879                 if (!buffer->data_pages[i])
2880                         goto fail_data_pages;
2881         }
2882
2883         buffer->nr_pages = nr_pages;
2884
2885         perf_buffer_init(buffer, watermark, flags);
2886
2887         return buffer;
2888
2889 fail_data_pages:
2890         for (i--; i >= 0; i--)
2891                 free_page((unsigned long)buffer->data_pages[i]);
2892
2893         free_page((unsigned long)buffer->user_page);
2894
2895 fail_user_page:
2896         kfree(buffer);
2897
2898 fail:
2899         return NULL;
2900 }
2901
2902 static void perf_mmap_free_page(unsigned long addr)
2903 {
2904         struct page *page = virt_to_page((void *)addr);
2905
2906         page->mapping = NULL;
2907         __free_page(page);
2908 }
2909
2910 static void perf_buffer_free(struct perf_buffer *buffer)
2911 {
2912         int i;
2913
2914         perf_mmap_free_page((unsigned long)buffer->user_page);
2915         for (i = 0; i < buffer->nr_pages; i++)
2916                 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2917         kfree(buffer);
2918 }
2919
2920 static inline int page_order(struct perf_buffer *buffer)
2921 {
2922         return 0;
2923 }
2924
2925 #else
2926
2927 /*
2928  * Back perf_mmap() with vmalloc memory.
2929  *
2930  * Required for architectures that have d-cache aliasing issues.
2931  */
2932
2933 static inline int page_order(struct perf_buffer *buffer)
2934 {
2935         return buffer->page_order;
2936 }
2937
2938 static struct page *
2939 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2940 {
2941         if (pgoff > (1UL << page_order(buffer)))
2942                 return NULL;
2943
2944         return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2945 }
2946
2947 static void perf_mmap_unmark_page(void *addr)
2948 {
2949         struct page *page = vmalloc_to_page(addr);
2950
2951         page->mapping = NULL;
2952 }
2953
2954 static void perf_buffer_free_work(struct work_struct *work)
2955 {
2956         struct perf_buffer *buffer;
2957         void *base;
2958         int i, nr;
2959
2960         buffer = container_of(work, struct perf_buffer, work);
2961         nr = 1 << page_order(buffer);
2962
2963         base = buffer->user_page;
2964         for (i = 0; i < nr + 1; i++)
2965                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2966
2967         vfree(base);
2968         kfree(buffer);
2969 }
2970
2971 static void perf_buffer_free(struct perf_buffer *buffer)
2972 {
2973         schedule_work(&buffer->work);
2974 }
2975
2976 static struct perf_buffer *
2977 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2978 {
2979         struct perf_buffer *buffer;
2980         unsigned long size;
2981         void *all_buf;
2982
2983         size = sizeof(struct perf_buffer);
2984         size += sizeof(void *);
2985
2986         buffer = kzalloc(size, GFP_KERNEL);
2987         if (!buffer)
2988                 goto fail;
2989
2990         INIT_WORK(&buffer->work, perf_buffer_free_work);
2991
2992         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2993         if (!all_buf)
2994                 goto fail_all_buf;
2995
2996         buffer->user_page = all_buf;
2997         buffer->data_pages[0] = all_buf + PAGE_SIZE;
2998         buffer->page_order = ilog2(nr_pages);
2999         buffer->nr_pages = 1;
3000
3001         perf_buffer_init(buffer, watermark, flags);
3002
3003         return buffer;
3004
3005 fail_all_buf:
3006         kfree(buffer);
3007
3008 fail:
3009         return NULL;
3010 }
3011
3012 #endif
3013
3014 static unsigned long perf_data_size(struct perf_buffer *buffer)
3015 {
3016         return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
3017 }
3018
3019 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3020 {
3021         struct perf_event *event = vma->vm_file->private_data;
3022         struct perf_buffer *buffer;
3023         int ret = VM_FAULT_SIGBUS;
3024
3025         if (vmf->flags & FAULT_FLAG_MKWRITE) {
3026                 if (vmf->pgoff == 0)
3027                         ret = 0;
3028                 return ret;
3029         }
3030
3031         rcu_read_lock();
3032         buffer = rcu_dereference(event->buffer);
3033         if (!buffer)
3034                 goto unlock;
3035
3036         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3037                 goto unlock;
3038
3039         vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
3040         if (!vmf->page)
3041                 goto unlock;
3042
3043         get_page(vmf->page);
3044         vmf->page->mapping = vma->vm_file->f_mapping;
3045         vmf->page->index   = vmf->pgoff;
3046
3047         ret = 0;
3048 unlock:
3049         rcu_read_unlock();
3050
3051         return ret;
3052 }
3053
3054 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
3055 {
3056         struct perf_buffer *buffer;
3057
3058         buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
3059         perf_buffer_free(buffer);
3060 }
3061
3062 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
3063 {
3064         struct perf_buffer *buffer;
3065
3066         rcu_read_lock();
3067         buffer = rcu_dereference(event->buffer);
3068         if (buffer) {
3069                 if (!atomic_inc_not_zero(&buffer->refcount))
3070                         buffer = NULL;
3071         }
3072         rcu_read_unlock();
3073
3074         return buffer;
3075 }
3076
3077 static void perf_buffer_put(struct perf_buffer *buffer)
3078 {
3079         if (!atomic_dec_and_test(&buffer->refcount))
3080                 return;
3081
3082         call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
3083 }
3084
3085 static void perf_mmap_open(struct vm_area_struct *vma)
3086 {
3087         struct perf_event *event = vma->vm_file->private_data;
3088
3089         atomic_inc(&event->mmap_count);
3090 }
3091
3092 static void perf_mmap_close(struct vm_area_struct *vma)
3093 {
3094         struct perf_event *event = vma->vm_file->private_data;
3095
3096         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3097                 unsigned long size = perf_data_size(event->buffer);
3098                 struct user_struct *user = event->mmap_user;
3099                 struct perf_buffer *buffer = event->buffer;
3100
3101                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3102                 vma->vm_mm->locked_vm -= event->mmap_locked;
3103                 rcu_assign_pointer(event->buffer, NULL);
3104                 mutex_unlock(&event->mmap_mutex);
3105
3106                 perf_buffer_put(buffer);
3107                 free_uid(user);
3108         }
3109 }
3110
3111 static const struct vm_operations_struct perf_mmap_vmops = {
3112         .open           = perf_mmap_open,
3113         .close          = perf_mmap_close,
3114         .fault          = perf_mmap_fault,
3115         .page_mkwrite   = perf_mmap_fault,
3116 };
3117
3118 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3119 {
3120         struct perf_event *event = file->private_data;
3121         unsigned long user_locked, user_lock_limit;
3122         struct user_struct *user = current_user();
3123         unsigned long locked, lock_limit;
3124         struct perf_buffer *buffer;
3125         unsigned long vma_size;
3126         unsigned long nr_pages;
3127         long user_extra, extra;
3128         int ret = 0, flags = 0;
3129
3130         /*
3131          * Don't allow mmap() of inherited per-task counters. This would
3132          * create a performance issue due to all children writing to the
3133          * same buffer.
3134          */
3135         if (event->cpu == -1 && event->attr.inherit)
3136                 return -EINVAL;
3137
3138         if (!(vma->vm_flags & VM_SHARED))
3139                 return -EINVAL;
3140
3141         vma_size = vma->vm_end - vma->vm_start;
3142         nr_pages = (vma_size / PAGE_SIZE) - 1;
3143
3144         /*
3145          * If we have buffer pages ensure they're a power-of-two number, so we
3146          * can do bitmasks instead of modulo.
3147          */
3148         if (nr_pages != 0 && !is_power_of_2(nr_pages))
3149                 return -EINVAL;
3150
3151         if (vma_size != PAGE_SIZE * (1 + nr_pages))
3152                 return -EINVAL;
3153
3154         if (vma->vm_pgoff != 0)
3155                 return -EINVAL;
3156
3157         WARN_ON_ONCE(event->ctx->parent_ctx);
3158         mutex_lock(&event->mmap_mutex);
3159         if (event->buffer) {
3160                 if (event->buffer->nr_pages == nr_pages)
3161                         atomic_inc(&event->buffer->refcount);
3162                 else
3163                         ret = -EINVAL;
3164                 goto unlock;
3165         }
3166
3167         user_extra = nr_pages + 1;
3168         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3169
3170         /*
3171          * Increase the limit linearly with more CPUs:
3172          */
3173         user_lock_limit *= num_online_cpus();
3174
3175         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3176
3177         extra = 0;
3178         if (user_locked > user_lock_limit)
3179                 extra = user_locked - user_lock_limit;
3180
3181         lock_limit = rlimit(RLIMIT_MEMLOCK);
3182         lock_limit >>= PAGE_SHIFT;
3183         locked = vma->vm_mm->locked_vm + extra;
3184
3185         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3186                 !capable(CAP_IPC_LOCK)) {
3187                 ret = -EPERM;
3188                 goto unlock;
3189         }
3190
3191         WARN_ON(event->buffer);
3192
3193         if (vma->vm_flags & VM_WRITE)
3194                 flags |= PERF_BUFFER_WRITABLE;
3195
3196         buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3197                                    event->cpu, flags);
3198         if (!buffer) {
3199                 ret = -ENOMEM;
3200                 goto unlock;
3201         }
3202         rcu_assign_pointer(event->buffer, buffer);
3203
3204         atomic_long_add(user_extra, &user->locked_vm);
3205         event->mmap_locked = extra;
3206         event->mmap_user = get_current_user();
3207         vma->vm_mm->locked_vm += event->mmap_locked;
3208
3209 unlock:
3210         if (!ret)
3211                 atomic_inc(&event->mmap_count);
3212         mutex_unlock(&event->mmap_mutex);
3213
3214         vma->vm_flags |= VM_RESERVED;
3215         vma->vm_ops = &perf_mmap_vmops;
3216
3217         return ret;
3218 }
3219
3220 static int perf_fasync(int fd, struct file *filp, int on)
3221 {
3222         struct inode *inode = filp->f_path.dentry->d_inode;
3223         struct perf_event *event = filp->private_data;
3224         int retval;
3225
3226         mutex_lock(&inode->i_mutex);
3227         retval = fasync_helper(fd, filp, on, &event->fasync);
3228         mutex_unlock(&inode->i_mutex);
3229
3230         if (retval < 0)
3231                 return retval;
3232
3233         return 0;
3234 }
3235
3236 static const struct file_operations perf_fops = {
3237         .llseek                 = no_llseek,
3238         .release                = perf_release,
3239         .read                   = perf_read,
3240         .poll                   = perf_poll,
3241         .unlocked_ioctl         = perf_ioctl,
3242         .compat_ioctl           = perf_ioctl,
3243         .mmap                   = perf_mmap,
3244         .fasync                 = perf_fasync,
3245 };
3246
3247 /*
3248  * Perf event wakeup
3249  *
3250  * If there's data, ensure we set the poll() state and publish everything
3251  * to user-space before waking everybody up.
3252  */
3253
3254 void perf_event_wakeup(struct perf_event *event)
3255 {
3256         wake_up_all(&event->waitq);
3257
3258         if (event->pending_kill) {
3259                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3260                 event->pending_kill = 0;
3261         }
3262 }
3263
3264 static void perf_pending_event(struct irq_work *entry)
3265 {
3266         struct perf_event *event = container_of(entry,
3267                         struct perf_event, pending);
3268
3269         if (event->pending_disable) {
3270                 event->pending_disable = 0;
3271                 __perf_event_disable(event);
3272         }
3273
3274         if (event->pending_wakeup) {
3275                 event->pending_wakeup = 0;
3276                 perf_event_wakeup(event);
3277         }
3278 }
3279
3280 /*
3281  * We assume there is only KVM supporting the callbacks.
3282  * Later on, we might change it to a list if there is
3283  * another virtualization implementation supporting the callbacks.
3284  */
3285 struct perf_guest_info_callbacks *perf_guest_cbs;
3286
3287 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3288 {
3289         perf_guest_cbs = cbs;
3290         return 0;
3291 }
3292 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3293
3294 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3295 {
3296         perf_guest_cbs = NULL;
3297         return 0;
3298 }
3299 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3300
3301 /*
3302  * Output
3303  */
3304 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3305                               unsigned long offset, unsigned long head)
3306 {
3307         unsigned long mask;
3308
3309         if (!buffer->writable)
3310                 return true;
3311
3312         mask = perf_data_size(buffer) - 1;
3313
3314         offset = (offset - tail) & mask;
3315         head   = (head   - tail) & mask;
3316
3317         if ((int)(head - offset) < 0)
3318                 return false;
3319
3320         return true;
3321 }
3322
3323 static void perf_output_wakeup(struct perf_output_handle *handle)
3324 {
3325         atomic_set(&handle->buffer->poll, POLL_IN);
3326
3327         if (handle->nmi) {
3328                 handle->event->pending_wakeup = 1;
3329                 irq_work_queue(&handle->event->pending);
3330         } else
3331                 perf_event_wakeup(handle->event);
3332 }
3333
3334 /*
3335  * We need to ensure a later event_id doesn't publish a head when a former
3336  * event isn't done writing. However since we need to deal with NMIs we
3337  * cannot fully serialize things.
3338  *
3339  * We only publish the head (and generate a wakeup) when the outer-most
3340  * event completes.
3341  */
3342 static void perf_output_get_handle(struct perf_output_handle *handle)
3343 {
3344         struct perf_buffer *buffer = handle->buffer;
3345
3346         preempt_disable();
3347         local_inc(&buffer->nest);
3348         handle->wakeup = local_read(&buffer->wakeup);
3349 }
3350
3351 static void perf_output_put_handle(struct perf_output_handle *handle)
3352 {
3353         struct perf_buffer *buffer = handle->buffer;
3354         unsigned long head;
3355
3356 again:
3357         head = local_read(&buffer->head);
3358
3359         /*
3360          * IRQ/NMI can happen here, which means we can miss a head update.
3361          */
3362
3363         if (!local_dec_and_test(&buffer->nest))
3364                 goto out;
3365
3366         /*
3367          * Publish the known good head. Rely on the full barrier implied
3368          * by atomic_dec_and_test() order the buffer->head read and this
3369          * write.
3370          */
3371         buffer->user_page->data_head = head;
3372
3373         /*
3374          * Now check if we missed an update, rely on the (compiler)
3375          * barrier in atomic_dec_and_test() to re-read buffer->head.
3376          */
3377         if (unlikely(head != local_read(&buffer->head))) {
3378                 local_inc(&buffer->nest);
3379                 goto again;
3380         }
3381
3382         if (handle->wakeup != local_read(&buffer->wakeup))
3383                 perf_output_wakeup(handle);
3384
3385 out:
3386         preempt_enable();
3387 }
3388
3389 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3390                       const void *buf, unsigned int len)
3391 {
3392         do {
3393                 unsigned long size = min_t(unsigned long, handle->size, len);
3394
3395                 memcpy(handle->addr, buf, size);
3396
3397                 len -= size;
3398                 handle->addr += size;
3399                 buf += size;
3400                 handle->size -= size;
3401                 if (!handle->size) {
3402                         struct perf_buffer *buffer = handle->buffer;
3403
3404                         handle->page++;
3405                         handle->page &= buffer->nr_pages - 1;
3406                         handle->addr = buffer->data_pages[handle->page];
3407                         handle->size = PAGE_SIZE << page_order(buffer);
3408                 }
3409         } while (len);
3410 }
3411
3412 static void __perf_event_header__init_id(struct perf_event_header *header,
3413                                          struct perf_sample_data *data,
3414                                          struct perf_event *event)
3415 {
3416         u64 sample_type = event->attr.sample_type;
3417
3418         data->type = sample_type;
3419         header->size += event->id_header_size;
3420
3421         if (sample_type & PERF_SAMPLE_TID) {
3422                 /* namespace issues */
3423                 data->tid_entry.pid = perf_event_pid(event, current);
3424                 data->tid_entry.tid = perf_event_tid(event, current);
3425         }
3426
3427         if (sample_type & PERF_SAMPLE_TIME)
3428                 data->time = perf_clock();
3429
3430         if (sample_type & PERF_SAMPLE_ID)
3431                 data->id = primary_event_id(event);
3432
3433         if (sample_type & PERF_SAMPLE_STREAM_ID)
3434                 data->stream_id = event->id;
3435
3436         if (sample_type & PERF_SAMPLE_CPU) {
3437                 data->cpu_entry.cpu      = raw_smp_processor_id();
3438                 data->cpu_entry.reserved = 0;
3439         }
3440 }
3441
3442 static void perf_event_header__init_id(struct perf_event_header *header,
3443                                        struct perf_sample_data *data,
3444                                        struct perf_event *event)
3445 {
3446         if (event->attr.sample_id_all)
3447                 __perf_event_header__init_id(header, data, event);
3448 }
3449
3450 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3451                                            struct perf_sample_data *data)
3452 {
3453         u64 sample_type = data->type;
3454
3455         if (sample_type & PERF_SAMPLE_TID)
3456                 perf_output_put(handle, data->tid_entry);
3457
3458         if (sample_type & PERF_SAMPLE_TIME)
3459                 perf_output_put(handle, data->time);
3460
3461         if (sample_type & PERF_SAMPLE_ID)
3462                 perf_output_put(handle, data->id);
3463
3464         if (sample_type & PERF_SAMPLE_STREAM_ID)
3465                 perf_output_put(handle, data->stream_id);
3466
3467         if (sample_type & PERF_SAMPLE_CPU)
3468                 perf_output_put(handle, data->cpu_entry);
3469 }
3470
3471 static void perf_event__output_id_sample(struct perf_event *event,
3472                                          struct perf_output_handle *handle,
3473                                          struct perf_sample_data *sample)
3474 {
3475         if (event->attr.sample_id_all)
3476                 __perf_event__output_id_sample(handle, sample);
3477 }
3478
3479 int perf_output_begin(struct perf_output_handle *handle,
3480                       struct perf_event *event, unsigned int size,
3481                       int nmi, int sample)
3482 {
3483         struct perf_buffer *buffer;
3484         unsigned long tail, offset, head;
3485         int have_lost;
3486         struct perf_sample_data sample_data;
3487         struct {
3488                 struct perf_event_header header;
3489                 u64                      id;
3490                 u64                      lost;
3491         } lost_event;
3492
3493         rcu_read_lock();
3494         /*
3495          * For inherited events we send all the output towards the parent.
3496          */
3497         if (event->parent)
3498                 event = event->parent;
3499
3500         buffer = rcu_dereference(event->buffer);
3501         if (!buffer)
3502                 goto out;
3503
3504         handle->buffer  = buffer;
3505         handle->event   = event;
3506         handle->nmi     = nmi;
3507         handle->sample  = sample;
3508
3509         if (!buffer->nr_pages)
3510                 goto out;
3511
3512         have_lost = local_read(&buffer->lost);
3513         if (have_lost) {
3514                 lost_event.header.size = sizeof(lost_event);
3515                 perf_event_header__init_id(&lost_event.header, &sample_data,
3516                                            event);
3517                 size += lost_event.header.size;
3518         }
3519
3520         perf_output_get_handle(handle);
3521
3522         do {
3523                 /*
3524                  * Userspace could choose to issue a mb() before updating the
3525                  * tail pointer. So that all reads will be completed before the
3526                  * write is issued.
3527                  */
3528                 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3529                 smp_rmb();
3530                 offset = head = local_read(&buffer->head);
3531                 head += size;
3532                 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3533                         goto fail;
3534         } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3535
3536         if (head - local_read(&buffer->wakeup) > buffer->watermark)
3537                 local_add(buffer->watermark, &buffer->wakeup);
3538
3539         handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3540         handle->page &= buffer->nr_pages - 1;
3541         handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3542         handle->addr = buffer->data_pages[handle->page];
3543         handle->addr += handle->size;
3544         handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3545
3546         if (have_lost) {
3547                 lost_event.header.type = PERF_RECORD_LOST;
3548                 lost_event.header.misc = 0;
3549                 lost_event.id          = event->id;
3550                 lost_event.lost        = local_xchg(&buffer->lost, 0);
3551
3552                 perf_output_put(handle, lost_event);
3553                 perf_event__output_id_sample(event, handle, &sample_data);
3554         }
3555
3556         return 0;
3557
3558 fail:
3559         local_inc(&buffer->lost);
3560         perf_output_put_handle(handle);
3561 out:
3562         rcu_read_unlock();
3563
3564         return -ENOSPC;
3565 }
3566
3567 void perf_output_end(struct perf_output_handle *handle)
3568 {
3569         struct perf_event *event = handle->event;
3570         struct perf_buffer *buffer = handle->buffer;
3571
3572         int wakeup_events = event->attr.wakeup_events;
3573
3574         if (handle->sample && wakeup_events) {
3575                 int events = local_inc_return(&buffer->events);
3576                 if (events >= wakeup_events) {
3577                         local_sub(wakeup_events, &buffer->events);
3578                         local_inc(&buffer->wakeup);
3579                 }
3580         }
3581
3582         perf_output_put_handle(handle);
3583         rcu_read_unlock();
3584 }
3585
3586 static void perf_output_read_one(struct perf_output_handle *handle,
3587                                  struct perf_event *event,
3588                                  u64 enabled, u64 running)
3589 {
3590         u64 read_format = event->attr.read_format;
3591         u64 values[4];
3592         int n = 0;
3593
3594         values[n++] = perf_event_count(event);
3595         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3596                 values[n++] = enabled +
3597                         atomic64_read(&event->child_total_time_enabled);
3598         }
3599         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3600                 values[n++] = running +
3601                         atomic64_read(&event->child_total_time_running);
3602         }
3603         if (read_format & PERF_FORMAT_ID)
3604                 values[n++] = primary_event_id(event);
3605
3606         perf_output_copy(handle, values, n * sizeof(u64));
3607 }
3608
3609 /*
3610  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3611  */
3612 static void perf_output_read_group(struct perf_output_handle *handle,
3613                             struct perf_event *event,
3614                             u64 enabled, u64 running)
3615 {
3616         struct perf_event *leader = event->group_leader, *sub;
3617         u64 read_format = event->attr.read_format;
3618         u64 values[5];
3619         int n = 0;
3620
3621         values[n++] = 1 + leader->nr_siblings;
3622
3623         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3624                 values[n++] = enabled;
3625
3626         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3627                 values[n++] = running;
3628
3629         if (leader != event)
3630                 leader->pmu->read(leader);
3631
3632         values[n++] = perf_event_count(leader);
3633         if (read_format & PERF_FORMAT_ID)
3634                 values[n++] = primary_event_id(leader);
3635
3636         perf_output_copy(handle, values, n * sizeof(u64));
3637
3638         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3639                 n = 0;
3640
3641                 if (sub != event)
3642                         sub->pmu->read(sub);
3643
3644                 values[n++] = perf_event_count(sub);
3645                 if (read_format & PERF_FORMAT_ID)
3646                         values[n++] = primary_event_id(sub);
3647
3648                 perf_output_copy(handle, values, n * sizeof(u64));
3649         }
3650 }
3651
3652 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3653                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
3654
3655 static void perf_output_read(struct perf_output_handle *handle,
3656                              struct perf_event *event)
3657 {
3658         u64 enabled = 0, running = 0, now, ctx_time;
3659         u64 read_format = event->attr.read_format;
3660
3661         /*
3662          * compute total_time_enabled, total_time_running
3663          * based on snapshot values taken when the event
3664          * was last scheduled in.
3665          *
3666          * we cannot simply called update_context_time()
3667          * because of locking issue as we are called in
3668          * NMI context
3669          */
3670         if (read_format & PERF_FORMAT_TOTAL_TIMES) {
3671                 now = perf_clock();
3672                 ctx_time = event->shadow_ctx_time + now;
3673                 enabled = ctx_time - event->tstamp_enabled;
3674                 running = ctx_time - event->tstamp_running;
3675         }
3676
3677         if (event->attr.read_format & PERF_FORMAT_GROUP)
3678                 perf_output_read_group(handle, event, enabled, running);
3679         else
3680                 perf_output_read_one(handle, event, enabled, running);
3681 }
3682
3683 void perf_output_sample(struct perf_output_handle *handle,
3684                         struct perf_event_header *header,
3685                         struct perf_sample_data *data,
3686                         struct perf_event *event)
3687 {
3688         u64 sample_type = data->type;
3689
3690         perf_output_put(handle, *header);
3691
3692         if (sample_type & PERF_SAMPLE_IP)
3693                 perf_output_put(handle, data->ip);
3694
3695         if (sample_type & PERF_SAMPLE_TID)
3696                 perf_output_put(handle, data->tid_entry);
3697
3698         if (sample_type & PERF_SAMPLE_TIME)
3699                 perf_output_put(handle, data->time);
3700
3701         if (sample_type & PERF_SAMPLE_ADDR)
3702                 perf_output_put(handle, data->addr);
3703
3704         if (sample_type & PERF_SAMPLE_ID)
3705                 perf_output_put(handle, data->id);
3706
3707         if (sample_type & PERF_SAMPLE_STREAM_ID)
3708                 perf_output_put(handle, data->stream_id);
3709
3710         if (sample_type & PERF_SAMPLE_CPU)
3711                 perf_output_put(handle, data->cpu_entry);
3712
3713         if (sample_type & PERF_SAMPLE_PERIOD)
3714                 perf_output_put(handle, data->period);
3715
3716         if (sample_type & PERF_SAMPLE_READ)
3717                 perf_output_read(handle, event);
3718
3719         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3720                 if (data->callchain) {
3721                         int size = 1;
3722
3723                         if (data->callchain)
3724                                 size += data->callchain->nr;
3725
3726                         size *= sizeof(u64);
3727
3728                         perf_output_copy(handle, data->callchain, size);
3729                 } else {
3730                         u64 nr = 0;
3731                         perf_output_put(handle, nr);
3732                 }
3733         }
3734
3735         if (sample_type & PERF_SAMPLE_RAW) {
3736                 if (data->raw) {
3737                         perf_output_put(handle, data->raw->size);
3738                         perf_output_copy(handle, data->raw->data,
3739                                          data->raw->size);
3740                 } else {
3741                         struct {
3742                                 u32     size;
3743                                 u32     data;
3744                         } raw = {
3745                                 .size = sizeof(u32),
3746                                 .data = 0,
3747                         };
3748                         perf_output_put(handle, raw);
3749                 }
3750         }
3751 }
3752
3753 void perf_prepare_sample(struct perf_event_header *header,
3754                          struct perf_sample_data *data,
3755                          struct perf_event *event,
3756                          struct pt_regs *regs)
3757 {
3758         u64 sample_type = event->attr.sample_type;
3759
3760         header->type = PERF_RECORD_SAMPLE;
3761         header->size = sizeof(*header) + event->header_size;
3762
3763         header->misc = 0;
3764         header->misc |= perf_misc_flags(regs);
3765
3766         __perf_event_header__init_id(header, data, event);
3767
3768         if (sample_type & PERF_SAMPLE_IP)
3769                 data->ip = perf_instruction_pointer(regs);
3770
3771         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3772                 int size = 1;
3773
3774                 data->callchain = perf_callchain(regs);
3775
3776                 if (data->callchain)
3777                         size += data->callchain->nr;
3778
3779                 header->size += size * sizeof(u64);
3780         }
3781
3782         if (sample_type & PERF_SAMPLE_RAW) {
3783                 int size = sizeof(u32);
3784
3785                 if (data->raw)
3786                         size += data->raw->size;
3787                 else
3788                         size += sizeof(u32);
3789
3790                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3791                 header->size += size;
3792         }
3793 }
3794
3795 static void perf_event_output(struct perf_event *event, int nmi,
3796                                 struct perf_sample_data *data,
3797                                 struct pt_regs *regs)
3798 {
3799         struct perf_output_handle handle;
3800         struct perf_event_header header;
3801
3802         /* protect the callchain buffers */
3803         rcu_read_lock();
3804
3805         perf_prepare_sample(&header, data, event, regs);
3806
3807         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3808                 goto exit;
3809
3810         perf_output_sample(&handle, &header, data, event);
3811
3812         perf_output_end(&handle);
3813
3814 exit:
3815         rcu_read_unlock();
3816 }
3817
3818 /*
3819  * read event_id
3820  */
3821
3822 struct perf_read_event {
3823         struct perf_event_header        header;
3824
3825         u32                             pid;
3826         u32                             tid;
3827 };
3828
3829 static void
3830 perf_event_read_event(struct perf_event *event,
3831                         struct task_struct *task)
3832 {
3833         struct perf_output_handle handle;
3834         struct perf_sample_data sample;
3835         struct perf_read_event read_event = {
3836                 .header = {
3837                         .type = PERF_RECORD_READ,
3838                         .misc = 0,
3839                         .size = sizeof(read_event) + event->read_size,
3840                 },
3841                 .pid = perf_event_pid(event, task),
3842                 .tid = perf_event_tid(event, task),
3843         };
3844         int ret;
3845
3846         perf_event_header__init_id(&read_event.header, &sample, event);
3847         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3848         if (ret)
3849                 return;
3850
3851         perf_output_put(&handle, read_event);
3852         perf_output_read(&handle, event);
3853         perf_event__output_id_sample(event, &handle, &sample);
3854
3855         perf_output_end(&handle);
3856 }
3857
3858 /*
3859  * task tracking -- fork/exit
3860  *
3861  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3862  */
3863
3864 struct perf_task_event {
3865         struct task_struct              *task;
3866         struct perf_event_context       *task_ctx;
3867
3868         struct {
3869                 struct perf_event_header        header;
3870
3871                 u32                             pid;
3872                 u32                             ppid;
3873                 u32                             tid;
3874                 u32                             ptid;
3875                 u64                             time;
3876         } event_id;
3877 };
3878
3879 static void perf_event_task_output(struct perf_event *event,
3880                                      struct perf_task_event *task_event)
3881 {
3882         struct perf_output_handle handle;
3883         struct perf_sample_data sample;
3884         struct task_struct *task = task_event->task;
3885         int ret, size = task_event->event_id.header.size;
3886
3887         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
3888
3889         ret = perf_output_begin(&handle, event,
3890                                 task_event->event_id.header.size, 0, 0);
3891         if (ret)
3892                 goto out;
3893
3894         task_event->event_id.pid = perf_event_pid(event, task);
3895         task_event->event_id.ppid = perf_event_pid(event, current);
3896
3897         task_event->event_id.tid = perf_event_tid(event, task);
3898         task_event->event_id.ptid = perf_event_tid(event, current);
3899
3900         perf_output_put(&handle, task_event->event_id);
3901
3902         perf_event__output_id_sample(event, &handle, &sample);
3903
3904         perf_output_end(&handle);
3905 out:
3906         task_event->event_id.header.size = size;
3907 }
3908
3909 static int perf_event_task_match(struct perf_event *event)
3910 {
3911         if (event->state < PERF_EVENT_STATE_INACTIVE)
3912                 return 0;
3913
3914         if (!event_filter_match(event))
3915                 return 0;
3916
3917         if (event->attr.comm || event->attr.mmap ||
3918             event->attr.mmap_data || event->attr.task)
3919                 return 1;
3920
3921         return 0;
3922 }
3923
3924 static void perf_event_task_ctx(struct perf_event_context *ctx,
3925                                   struct perf_task_event *task_event)
3926 {
3927         struct perf_event *event;
3928
3929         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3930                 if (perf_event_task_match(event))
3931                         perf_event_task_output(event, task_event);
3932         }
3933 }
3934
3935 static void perf_event_task_event(struct perf_task_event *task_event)
3936 {
3937         struct perf_cpu_context *cpuctx;
3938         struct perf_event_context *ctx;
3939         struct pmu *pmu;
3940         int ctxn;
3941
3942         rcu_read_lock();
3943         list_for_each_entry_rcu(pmu, &pmus, entry) {
3944                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3945                 if (cpuctx->active_pmu != pmu)
3946                         goto next;
3947                 perf_event_task_ctx(&cpuctx->ctx, task_event);
3948
3949                 ctx = task_event->task_ctx;
3950                 if (!ctx) {
3951                         ctxn = pmu->task_ctx_nr;
3952                         if (ctxn < 0)
3953                                 goto next;
3954                         ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3955                 }
3956                 if (ctx)
3957                         perf_event_task_ctx(ctx, task_event);
3958 next:
3959                 put_cpu_ptr(pmu->pmu_cpu_context);
3960         }
3961         rcu_read_unlock();
3962 }
3963
3964 static void perf_event_task(struct task_struct *task,
3965                               struct perf_event_context *task_ctx,
3966                               int new)
3967 {
3968         struct perf_task_event task_event;
3969
3970         if (!atomic_read(&nr_comm_events) &&
3971             !atomic_read(&nr_mmap_events) &&
3972             !atomic_read(&nr_task_events))
3973                 return;
3974
3975         task_event = (struct perf_task_event){
3976                 .task     = task,
3977                 .task_ctx = task_ctx,
3978                 .event_id    = {
3979                         .header = {
3980                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3981                                 .misc = 0,
3982                                 .size = sizeof(task_event.event_id),
3983                         },
3984                         /* .pid  */
3985                         /* .ppid */
3986                         /* .tid  */
3987                         /* .ptid */
3988                         .time = perf_clock(),
3989                 },
3990         };
3991
3992         perf_event_task_event(&task_event);
3993 }
3994
3995 void perf_event_fork(struct task_struct *task)
3996 {
3997         perf_event_task(task, NULL, 1);
3998 }
3999
4000 /*
4001  * comm tracking
4002  */
4003
4004 struct perf_comm_event {
4005         struct task_struct      *task;
4006         char                    *comm;
4007         int                     comm_size;
4008
4009         struct {
4010                 struct perf_event_header        header;
4011
4012                 u32                             pid;
4013                 u32                             tid;
4014         } event_id;
4015 };
4016
4017 static void perf_event_comm_output(struct perf_event *event,
4018                                      struct perf_comm_event *comm_event)
4019 {
4020         struct perf_output_handle handle;
4021         struct perf_sample_data sample;
4022         int size = comm_event->event_id.header.size;
4023         int ret;
4024
4025         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4026         ret = perf_output_begin(&handle, event,
4027                                 comm_event->event_id.header.size, 0, 0);
4028
4029         if (ret)
4030                 goto out;
4031
4032         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4033         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4034
4035         perf_output_put(&handle, comm_event->event_id);
4036         perf_output_copy(&handle, comm_event->comm,
4037                                    comm_event->comm_size);
4038
4039         perf_event__output_id_sample(event, &handle, &sample);
4040
4041         perf_output_end(&handle);
4042 out:
4043         comm_event->event_id.header.size = size;
4044 }
4045
4046 static int perf_event_comm_match(struct perf_event *event)
4047 {
4048         if (event->state < PERF_EVENT_STATE_INACTIVE)
4049                 return 0;
4050
4051         if (!event_filter_match(event))
4052                 return 0;
4053
4054         if (event->attr.comm)
4055                 return 1;
4056
4057         return 0;
4058 }
4059
4060 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4061                                   struct perf_comm_event *comm_event)
4062 {
4063         struct perf_event *event;
4064
4065         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4066                 if (perf_event_comm_match(event))
4067                         perf_event_comm_output(event, comm_event);
4068         }
4069 }
4070
4071 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4072 {
4073         struct perf_cpu_context *cpuctx;
4074         struct perf_event_context *ctx;
4075         char comm[TASK_COMM_LEN];
4076         unsigned int size;
4077         struct pmu *pmu;
4078         int ctxn;
4079
4080         memset(comm, 0, sizeof(comm));
4081         strlcpy(comm, comm_event->task->comm, sizeof(comm));
4082         size = ALIGN(strlen(comm)+1, sizeof(u64));
4083
4084         comm_event->comm = comm;
4085         comm_event->comm_size = size;
4086
4087         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4088         rcu_read_lock();
4089         list_for_each_entry_rcu(pmu, &pmus, entry) {
4090                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4091                 if (cpuctx->active_pmu != pmu)
4092                         goto next;
4093                 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4094
4095                 ctxn = pmu->task_ctx_nr;
4096                 if (ctxn < 0)
4097                         goto next;
4098
4099                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4100                 if (ctx)
4101                         perf_event_comm_ctx(ctx, comm_event);
4102 next:
4103                 put_cpu_ptr(pmu->pmu_cpu_context);
4104         }
4105         rcu_read_unlock();
4106 }
4107
4108 void perf_event_comm(struct task_struct *task)
4109 {
4110         struct perf_comm_event comm_event;
4111         struct perf_event_context *ctx;
4112         int ctxn;
4113
4114         for_each_task_context_nr(ctxn) {
4115                 ctx = task->perf_event_ctxp[ctxn];
4116                 if (!ctx)
4117                         continue;
4118
4119                 perf_event_enable_on_exec(ctx);
4120         }
4121
4122         if (!atomic_read(&nr_comm_events))
4123                 return;
4124
4125         comm_event = (struct perf_comm_event){
4126                 .task   = task,
4127                 /* .comm      */
4128                 /* .comm_size */
4129                 .event_id  = {
4130                         .header = {
4131                                 .type = PERF_RECORD_COMM,
4132                                 .misc = 0,
4133                                 /* .size */
4134                         },
4135                         /* .pid */
4136                         /* .tid */
4137                 },
4138         };
4139
4140         perf_event_comm_event(&comm_event);
4141 }
4142
4143 /*
4144  * mmap tracking
4145  */
4146
4147 struct perf_mmap_event {
4148         struct vm_area_struct   *vma;
4149
4150         const char              *file_name;
4151         int                     file_size;
4152
4153         struct {
4154                 struct perf_event_header        header;
4155
4156                 u32                             pid;
4157                 u32                             tid;
4158                 u64                             start;
4159                 u64                             len;
4160                 u64                             pgoff;
4161         } event_id;
4162 };
4163
4164 static void perf_event_mmap_output(struct perf_event *event,
4165                                      struct perf_mmap_event *mmap_event)
4166 {
4167         struct perf_output_handle handle;
4168         struct perf_sample_data sample;
4169         int size = mmap_event->event_id.header.size;
4170         int ret;
4171
4172         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4173         ret = perf_output_begin(&handle, event,
4174                                 mmap_event->event_id.header.size, 0, 0);
4175         if (ret)
4176                 goto out;
4177
4178         mmap_event->event_id.pid = perf_event_pid(event, current);
4179         mmap_event->event_id.tid = perf_event_tid(event, current);
4180
4181         perf_output_put(&handle, mmap_event->event_id);
4182         perf_output_copy(&handle, mmap_event->file_name,
4183                                    mmap_event->file_size);
4184
4185         perf_event__output_id_sample(event, &handle, &sample);
4186
4187         perf_output_end(&handle);
4188 out:
4189         mmap_event->event_id.header.size = size;
4190 }
4191
4192 static int perf_event_mmap_match(struct perf_event *event,
4193                                    struct perf_mmap_event *mmap_event,
4194                                    int executable)
4195 {
4196         if (event->state < PERF_EVENT_STATE_INACTIVE)
4197                 return 0;
4198
4199         if (!event_filter_match(event))
4200                 return 0;
4201
4202         if ((!executable && event->attr.mmap_data) ||
4203             (executable && event->attr.mmap))
4204                 return 1;
4205
4206         return 0;
4207 }
4208
4209 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4210                                   struct perf_mmap_event *mmap_event,
4211                                   int executable)
4212 {
4213         struct perf_event *event;
4214
4215         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4216                 if (perf_event_mmap_match(event, mmap_event, executable))
4217                         perf_event_mmap_output(event, mmap_event);
4218         }
4219 }
4220
4221 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4222 {
4223         struct perf_cpu_context *cpuctx;
4224         struct perf_event_context *ctx;
4225         struct vm_area_struct *vma = mmap_event->vma;
4226         struct file *file = vma->vm_file;
4227         unsigned int size;
4228         char tmp[16];
4229         char *buf = NULL;
4230         const char *name;
4231         struct pmu *pmu;
4232         int ctxn;
4233
4234         memset(tmp, 0, sizeof(tmp));
4235
4236         if (file) {
4237                 /*
4238                  * d_path works from the end of the buffer backwards, so we
4239                  * need to add enough zero bytes after the string to handle
4240                  * the 64bit alignment we do later.
4241                  */
4242                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4243                 if (!buf) {
4244                         name = strncpy(tmp, "//enomem", sizeof(tmp));
4245                         goto got_name;
4246                 }
4247                 name = d_path(&file->f_path, buf, PATH_MAX);
4248                 if (IS_ERR(name)) {
4249                         name = strncpy(tmp, "//toolong", sizeof(tmp));
4250                         goto got_name;
4251                 }
4252         } else {
4253                 if (arch_vma_name(mmap_event->vma)) {
4254                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4255                                        sizeof(tmp));
4256                         goto got_name;
4257                 }
4258
4259                 if (!vma->vm_mm) {
4260                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
4261                         goto got_name;
4262                 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4263                                 vma->vm_end >= vma->vm_mm->brk) {
4264                         name = strncpy(tmp, "[heap]", sizeof(tmp));
4265                         goto got_name;
4266                 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4267                                 vma->vm_end >= vma->vm_mm->start_stack) {
4268                         name = strncpy(tmp, "[stack]", sizeof(tmp));
4269                         goto got_name;
4270                 }
4271
4272                 name = strncpy(tmp, "//anon", sizeof(tmp));
4273                 goto got_name;
4274         }
4275
4276 got_name:
4277         size = ALIGN(strlen(name)+1, sizeof(u64));
4278
4279         mmap_event->file_name = name;
4280         mmap_event->file_size = size;
4281
4282         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4283
4284         rcu_read_lock();
4285         list_for_each_entry_rcu(pmu, &pmus, entry) {
4286                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4287                 if (cpuctx->active_pmu != pmu)
4288                         goto next;
4289                 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4290                                         vma->vm_flags & VM_EXEC);
4291
4292                 ctxn = pmu->task_ctx_nr;
4293                 if (ctxn < 0)
4294                         goto next;
4295
4296                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4297                 if (ctx) {
4298                         perf_event_mmap_ctx(ctx, mmap_event,
4299                                         vma->vm_flags & VM_EXEC);
4300                 }
4301 next:
4302                 put_cpu_ptr(pmu->pmu_cpu_context);
4303         }
4304         rcu_read_unlock();
4305
4306         kfree(buf);
4307 }
4308
4309 void perf_event_mmap(struct vm_area_struct *vma)
4310 {
4311         struct perf_mmap_event mmap_event;
4312
4313         if (!atomic_read(&nr_mmap_events))
4314                 return;
4315
4316         mmap_event = (struct perf_mmap_event){
4317                 .vma    = vma,
4318                 /* .file_name */
4319                 /* .file_size */
4320                 .event_id  = {
4321                         .header = {
4322                                 .type = PERF_RECORD_MMAP,
4323                                 .misc = PERF_RECORD_MISC_USER,
4324                                 /* .size */
4325                         },
4326                         /* .pid */
4327                         /* .tid */
4328                         .start  = vma->vm_start,
4329                         .len    = vma->vm_end - vma->vm_start,
4330                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4331                 },
4332         };
4333
4334         perf_event_mmap_event(&mmap_event);
4335 }
4336
4337 /*
4338  * IRQ throttle logging
4339  */
4340
4341 static void perf_log_throttle(struct perf_event *event, int enable)
4342 {
4343         struct perf_output_handle handle;
4344         struct perf_sample_data sample;
4345         int ret;
4346
4347         struct {
4348                 struct perf_event_header        header;
4349                 u64                             time;
4350                 u64                             id;
4351                 u64                             stream_id;
4352         } throttle_event = {
4353                 .header = {
4354                         .type = PERF_RECORD_THROTTLE,
4355                         .misc = 0,
4356                         .size = sizeof(throttle_event),
4357                 },
4358                 .time           = perf_clock(),
4359                 .id             = primary_event_id(event),
4360                 .stream_id      = event->id,
4361         };
4362
4363         if (enable)
4364                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4365
4366         perf_event_header__init_id(&throttle_event.header, &sample, event);
4367
4368         ret = perf_output_begin(&handle, event,
4369                                 throttle_event.header.size, 1, 0);
4370         if (ret)
4371                 return;
4372
4373         perf_output_put(&handle, throttle_event);
4374         perf_event__output_id_sample(event, &handle, &sample);
4375         perf_output_end(&handle);
4376 }
4377
4378 /*
4379  * Generic event overflow handling, sampling.
4380  */
4381
4382 static int __perf_event_overflow(struct perf_event *event, int nmi,
4383                                    int throttle, struct perf_sample_data *data,
4384                                    struct pt_regs *regs)
4385 {
4386         int events = atomic_read(&event->event_limit);
4387         struct hw_perf_event *hwc = &event->hw;
4388         int ret = 0;
4389
4390         /*
4391          * Non-sampling counters might still use the PMI to fold short
4392          * hardware counters, ignore those.
4393          */
4394         if (unlikely(!is_sampling_event(event)))
4395                 return 0;
4396
4397         if (!throttle) {
4398                 hwc->interrupts++;
4399         } else {
4400                 if (hwc->interrupts != MAX_INTERRUPTS) {
4401                         hwc->interrupts++;
4402                         if (HZ * hwc->interrupts >
4403                                         (u64)sysctl_perf_event_sample_rate) {
4404                                 hwc->interrupts = MAX_INTERRUPTS;
4405                                 perf_log_throttle(event, 0);
4406                                 ret = 1;
4407                         }
4408                 } else {
4409                         /*
4410                          * Keep re-disabling events even though on the previous
4411                          * pass we disabled it - just in case we raced with a
4412                          * sched-in and the event got enabled again:
4413                          */
4414                         ret = 1;
4415                 }
4416         }
4417
4418         if (event->attr.freq) {
4419                 u64 now = perf_clock();
4420                 s64 delta = now - hwc->freq_time_stamp;
4421
4422                 hwc->freq_time_stamp = now;
4423
4424                 if (delta > 0 && delta < 2*TICK_NSEC)
4425                         perf_adjust_period(event, delta, hwc->last_period);
4426         }
4427
4428         /*
4429          * XXX event_limit might not quite work as expected on inherited
4430          * events
4431          */
4432
4433         event->pending_kill = POLL_IN;
4434         if (events && atomic_dec_and_test(&event->event_limit)) {
4435                 ret = 1;
4436                 event->pending_kill = POLL_HUP;
4437                 if (nmi) {
4438                         event->pending_disable = 1;
4439                         irq_work_queue(&event->pending);
4440                 } else
4441                         perf_event_disable(event);
4442         }
4443
4444         if (event->overflow_handler)
4445                 event->overflow_handler(event, nmi, data, regs);
4446         else
4447                 perf_event_output(event, nmi, data, regs);
4448
4449         return ret;
4450 }
4451
4452 int perf_event_overflow(struct perf_event *event, int nmi,
4453                           struct perf_sample_data *data,
4454                           struct pt_regs *regs)
4455 {
4456         return __perf_event_overflow(event, nmi, 1, data, regs);
4457 }
4458
4459 /*
4460  * Generic software event infrastructure
4461  */
4462
4463 struct swevent_htable {
4464         struct swevent_hlist            *swevent_hlist;
4465         struct mutex                    hlist_mutex;
4466         int                             hlist_refcount;
4467
4468         /* Recursion avoidance in each contexts */
4469         int                             recursion[PERF_NR_CONTEXTS];
4470 };
4471
4472 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4473
4474 /*
4475  * We directly increment event->count and keep a second value in
4476  * event->hw.period_left to count intervals. This period event
4477  * is kept in the range [-sample_period, 0] so that we can use the
4478  * sign as trigger.
4479  */
4480
4481 static u64 perf_swevent_set_period(struct perf_event *event)
4482 {
4483         struct hw_perf_event *hwc = &event->hw;
4484         u64 period = hwc->last_period;
4485         u64 nr, offset;
4486         s64 old, val;
4487
4488         hwc->last_period = hwc->sample_period;
4489
4490 again:
4491         old = val = local64_read(&hwc->period_left);
4492         if (val < 0)
4493                 return 0;
4494
4495         nr = div64_u64(period + val, period);
4496         offset = nr * period;
4497         val -= offset;
4498         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4499                 goto again;
4500
4501         return nr;
4502 }
4503
4504 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4505                                     int nmi, struct perf_sample_data *data,
4506                                     struct pt_regs *regs)
4507 {
4508         struct hw_perf_event *hwc = &event->hw;
4509         int throttle = 0;
4510
4511         data->period = event->hw.last_period;
4512         if (!overflow)
4513                 overflow = perf_swevent_set_period(event);
4514
4515         if (hwc->interrupts == MAX_INTERRUPTS)
4516                 return;
4517
4518         for (; overflow; overflow--) {
4519                 if (__perf_event_overflow(event, nmi, throttle,
4520                                             data, regs)) {
4521                         /*
4522                          * We inhibit the overflow from happening when
4523                          * hwc->interrupts == MAX_INTERRUPTS.
4524                          */
4525                         break;
4526                 }
4527                 throttle = 1;
4528         }
4529 }
4530
4531 static void perf_swevent_event(struct perf_event *event, u64 nr,
4532                                int nmi, struct perf_sample_data *data,
4533                                struct pt_regs *regs)
4534 {
4535         struct hw_perf_event *hwc = &event->hw;
4536
4537         local64_add(nr, &event->count);
4538
4539         if (!regs)
4540                 return;
4541
4542         if (!is_sampling_event(event))
4543                 return;
4544
4545         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4546                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4547
4548         if (local64_add_negative(nr, &hwc->period_left))
4549                 return;
4550
4551         perf_swevent_overflow(event, 0, nmi, data, regs);
4552 }
4553
4554 static int perf_exclude_event(struct perf_event *event,
4555                               struct pt_regs *regs)
4556 {
4557         if (event->hw.state & PERF_HES_STOPPED)
4558                 return 0;
4559
4560         if (regs) {
4561                 if (event->attr.exclude_user && user_mode(regs))
4562                         return 1;
4563
4564                 if (event->attr.exclude_kernel && !user_mode(regs))
4565                         return 1;
4566         }
4567
4568         return 0;
4569 }
4570
4571 static int perf_swevent_match(struct perf_event *event,
4572                                 enum perf_type_id type,
4573                                 u32 event_id,
4574                                 struct perf_sample_data *data,
4575                                 struct pt_regs *regs)
4576 {
4577         if (event->attr.type != type)
4578                 return 0;
4579
4580         if (event->attr.config != event_id)
4581                 return 0;
4582
4583         if (perf_exclude_event(event, regs))
4584                 return 0;
4585
4586         return 1;
4587 }
4588
4589 static inline u64 swevent_hash(u64 type, u32 event_id)
4590 {
4591         u64 val = event_id | (type << 32);
4592
4593         return hash_64(val, SWEVENT_HLIST_BITS);
4594 }
4595
4596 static inline struct hlist_head *
4597 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4598 {
4599         u64 hash = swevent_hash(type, event_id);
4600
4601         return &hlist->heads[hash];
4602 }
4603
4604 /* For the read side: events when they trigger */
4605 static inline struct hlist_head *
4606 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4607 {
4608         struct swevent_hlist *hlist;
4609
4610         hlist = rcu_dereference(swhash->swevent_hlist);
4611         if (!hlist)
4612                 return NULL;
4613
4614         return __find_swevent_head(hlist, type, event_id);
4615 }
4616
4617 /* For the event head insertion and removal in the hlist */
4618 static inline struct hlist_head *
4619 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4620 {
4621         struct swevent_hlist *hlist;
4622         u32 event_id = event->attr.config;
4623         u64 type = event->attr.type;
4624
4625         /*
4626          * Event scheduling is always serialized against hlist allocation
4627          * and release. Which makes the protected version suitable here.
4628          * The context lock guarantees that.
4629          */
4630         hlist = rcu_dereference_protected(swhash->swevent_hlist,
4631                                           lockdep_is_held(&event->ctx->lock));
4632         if (!hlist)
4633                 return NULL;
4634
4635         return __find_swevent_head(hlist, type, event_id);
4636 }
4637
4638 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4639                                     u64 nr, int nmi,
4640                                     struct perf_sample_data *data,
4641                                     struct pt_regs *regs)
4642 {
4643         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4644         struct perf_event *event;
4645         struct hlist_node *node;
4646         struct hlist_head *head;
4647
4648         rcu_read_lock();
4649         head = find_swevent_head_rcu(swhash, type, event_id);
4650         if (!head)
4651                 goto end;
4652
4653         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4654                 if (perf_swevent_match(event, type, event_id, data, regs))
4655                         perf_swevent_event(event, nr, nmi, data, regs);
4656         }
4657 end:
4658         rcu_read_unlock();
4659 }
4660
4661 int perf_swevent_get_recursion_context(void)
4662 {
4663         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4664
4665         return get_recursion_context(swhash->recursion);
4666 }
4667 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4668
4669 inline void perf_swevent_put_recursion_context(int rctx)
4670 {
4671         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4672
4673         put_recursion_context(swhash->recursion, rctx);
4674 }
4675
4676 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4677                             struct pt_regs *regs, u64 addr)
4678 {
4679         struct perf_sample_data data;
4680         int rctx;
4681
4682         preempt_disable_notrace();
4683         rctx = perf_swevent_get_recursion_context();
4684         if (rctx < 0)
4685                 return;
4686
4687         perf_sample_data_init(&data, addr);
4688
4689         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4690
4691         perf_swevent_put_recursion_context(rctx);
4692         preempt_enable_notrace();
4693 }
4694
4695 static void perf_swevent_read(struct perf_event *event)
4696 {
4697 }
4698
4699 static int perf_swevent_add(struct perf_event *event, int flags)
4700 {
4701         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4702         struct hw_perf_event *hwc = &event->hw;
4703         struct hlist_head *head;
4704
4705         if (is_sampling_event(event)) {
4706                 hwc->last_period = hwc->sample_period;
4707                 perf_swevent_set_period(event);
4708         }
4709
4710         hwc->state = !(flags & PERF_EF_START);
4711
4712         head = find_swevent_head(swhash, event);
4713         if (WARN_ON_ONCE(!head))
4714                 return -EINVAL;
4715
4716         hlist_add_head_rcu(&event->hlist_entry, head);
4717
4718         return 0;
4719 }
4720
4721 static void perf_swevent_del(struct perf_event *event, int flags)
4722 {
4723         hlist_del_rcu(&event->hlist_entry);
4724 }
4725
4726 static void perf_swevent_start(struct perf_event *event, int flags)
4727 {
4728         event->hw.state = 0;
4729 }
4730
4731 static void perf_swevent_stop(struct perf_event *event, int flags)
4732 {
4733         event->hw.state = PERF_HES_STOPPED;
4734 }
4735
4736 /* Deref the hlist from the update side */
4737 static inline struct swevent_hlist *
4738 swevent_hlist_deref(struct swevent_htable *swhash)
4739 {
4740         return rcu_dereference_protected(swhash->swevent_hlist,
4741                                          lockdep_is_held(&swhash->hlist_mutex));
4742 }
4743
4744 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4745 {
4746         struct swevent_hlist *hlist;
4747
4748         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4749         kfree(hlist);
4750 }
4751
4752 static void swevent_hlist_release(struct swevent_htable *swhash)
4753 {
4754         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4755
4756         if (!hlist)
4757                 return;
4758
4759         rcu_assign_pointer(swhash->swevent_hlist, NULL);
4760         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4761 }
4762
4763 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4764 {
4765         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4766
4767         mutex_lock(&swhash->hlist_mutex);
4768
4769         if (!--swhash->hlist_refcount)
4770                 swevent_hlist_release(swhash);
4771
4772         mutex_unlock(&swhash->hlist_mutex);
4773 }
4774
4775 static void swevent_hlist_put(struct perf_event *event)
4776 {
4777         int cpu;
4778
4779         if (event->cpu != -1) {
4780                 swevent_hlist_put_cpu(event, event->cpu);
4781                 return;
4782         }
4783
4784         for_each_possible_cpu(cpu)
4785                 swevent_hlist_put_cpu(event, cpu);
4786 }
4787
4788 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4789 {
4790         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4791         int err = 0;
4792
4793         mutex_lock(&swhash->hlist_mutex);
4794
4795         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4796                 struct swevent_hlist *hlist;
4797
4798                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4799                 if (!hlist) {
4800                         err = -ENOMEM;
4801                         goto exit;
4802                 }
4803                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4804         }
4805         swhash->hlist_refcount++;
4806 exit:
4807         mutex_unlock(&swhash->hlist_mutex);
4808
4809         return err;
4810 }
4811
4812 static int swevent_hlist_get(struct perf_event *event)
4813 {
4814         int err;
4815         int cpu, failed_cpu;
4816
4817         if (event->cpu != -1)
4818                 return swevent_hlist_get_cpu(event, event->cpu);
4819
4820         get_online_cpus();
4821         for_each_possible_cpu(cpu) {
4822                 err = swevent_hlist_get_cpu(event, cpu);
4823                 if (err) {
4824                         failed_cpu = cpu;
4825                         goto fail;
4826                 }
4827         }
4828         put_online_cpus();
4829
4830         return 0;
4831 fail:
4832         for_each_possible_cpu(cpu) {
4833                 if (cpu == failed_cpu)
4834                         break;
4835                 swevent_hlist_put_cpu(event, cpu);
4836         }
4837
4838         put_online_cpus();
4839         return err;
4840 }
4841
4842 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4843
4844 static void sw_perf_event_destroy(struct perf_event *event)
4845 {
4846         u64 event_id = event->attr.config;
4847
4848         WARN_ON(event->parent);
4849
4850         jump_label_dec(&perf_swevent_enabled[event_id]);
4851         swevent_hlist_put(event);
4852 }
4853
4854 static int perf_swevent_init(struct perf_event *event)
4855 {
4856         int event_id = event->attr.config;
4857
4858         if (event->attr.type != PERF_TYPE_SOFTWARE)
4859                 return -ENOENT;
4860
4861         switch (event_id) {
4862         case PERF_COUNT_SW_CPU_CLOCK:
4863         case PERF_COUNT_SW_TASK_CLOCK:
4864                 return -ENOENT;
4865
4866         default:
4867                 break;
4868         }
4869
4870         if (event_id >= PERF_COUNT_SW_MAX)
4871                 return -ENOENT;
4872
4873         if (!event->parent) {
4874                 int err;
4875
4876                 err = swevent_hlist_get(event);
4877                 if (err)
4878                         return err;
4879
4880                 jump_label_inc(&perf_swevent_enabled[event_id]);
4881                 event->destroy = sw_perf_event_destroy;
4882         }
4883
4884         return 0;
4885 }
4886
4887 static struct pmu perf_swevent = {
4888         .task_ctx_nr    = perf_sw_context,
4889
4890         .event_init     = perf_swevent_init,
4891         .add            = perf_swevent_add,
4892         .del            = perf_swevent_del,
4893         .start          = perf_swevent_start,
4894         .stop           = perf_swevent_stop,
4895         .read           = perf_swevent_read,
4896 };
4897
4898 #ifdef CONFIG_EVENT_TRACING
4899
4900 static int perf_tp_filter_match(struct perf_event *event,
4901                                 struct perf_sample_data *data)
4902 {
4903         void *record = data->raw->data;
4904
4905         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4906                 return 1;
4907         return 0;
4908 }
4909
4910 static int perf_tp_event_match(struct perf_event *event,
4911                                 struct perf_sample_data *data,
4912                                 struct pt_regs *regs)
4913 {
4914         /*
4915          * All tracepoints are from kernel-space.
4916          */
4917         if (event->attr.exclude_kernel)
4918                 return 0;
4919
4920         if (!perf_tp_filter_match(event, data))
4921                 return 0;
4922
4923         return 1;
4924 }
4925
4926 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4927                    struct pt_regs *regs, struct hlist_head *head, int rctx)
4928 {
4929         struct perf_sample_data data;
4930         struct perf_event *event;
4931         struct hlist_node *node;
4932
4933         struct perf_raw_record raw = {
4934                 .size = entry_size,
4935                 .data = record,
4936         };
4937
4938         perf_sample_data_init(&data, addr);
4939         data.raw = &raw;
4940
4941         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4942                 if (perf_tp_event_match(event, &data, regs))
4943                         perf_swevent_event(event, count, 1, &data, regs);
4944         }
4945
4946         perf_swevent_put_recursion_context(rctx);
4947 }
4948 EXPORT_SYMBOL_GPL(perf_tp_event);
4949
4950 static void tp_perf_event_destroy(struct perf_event *event)
4951 {
4952         perf_trace_destroy(event);
4953 }
4954
4955 static int perf_tp_event_init(struct perf_event *event)
4956 {
4957         int err;
4958
4959         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4960                 return -ENOENT;
4961
4962         err = perf_trace_init(event);
4963         if (err)
4964                 return err;
4965
4966         event->destroy = tp_perf_event_destroy;
4967
4968         return 0;
4969 }
4970
4971 static struct pmu perf_tracepoint = {
4972         .task_ctx_nr    = perf_sw_context,
4973
4974         .event_init     = perf_tp_event_init,
4975         .add            = perf_trace_add,
4976         .del            = perf_trace_del,
4977         .start          = perf_swevent_start,
4978         .stop           = perf_swevent_stop,
4979         .read           = perf_swevent_read,
4980 };
4981
4982 static inline void perf_tp_register(void)
4983 {
4984         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
4985 }
4986
4987 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4988 {
4989         char *filter_str;
4990         int ret;
4991
4992         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4993                 return -EINVAL;
4994
4995         filter_str = strndup_user(arg, PAGE_SIZE);
4996         if (IS_ERR(filter_str))
4997                 return PTR_ERR(filter_str);
4998
4999         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5000
5001         kfree(filter_str);
5002         return ret;
5003 }
5004
5005 static void perf_event_free_filter(struct perf_event *event)
5006 {
5007         ftrace_profile_free_filter(event);
5008 }
5009
5010 #else
5011
5012 static inline void perf_tp_register(void)
5013 {
5014 }
5015
5016 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5017 {
5018         return -ENOENT;
5019 }
5020
5021 static void perf_event_free_filter(struct perf_event *event)
5022 {
5023 }
5024
5025 #endif /* CONFIG_EVENT_TRACING */
5026
5027 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5028 void perf_bp_event(struct perf_event *bp, void *data)
5029 {
5030         struct perf_sample_data sample;
5031         struct pt_regs *regs = data;
5032
5033         perf_sample_data_init(&sample, bp->attr.bp_addr);
5034
5035         if (!bp->hw.state && !perf_exclude_event(bp, regs))
5036                 perf_swevent_event(bp, 1, 1, &sample, regs);
5037 }
5038 #endif
5039
5040 /*
5041  * hrtimer based swevent callback
5042  */
5043
5044 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5045 {
5046         enum hrtimer_restart ret = HRTIMER_RESTART;
5047         struct perf_sample_data data;
5048         struct pt_regs *regs;
5049         struct perf_event *event;
5050         u64 period;
5051
5052         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5053         event->pmu->read(event);
5054
5055         perf_sample_data_init(&data, 0);
5056         data.period = event->hw.last_period;
5057         regs = get_irq_regs();
5058
5059         if (regs && !perf_exclude_event(event, regs)) {
5060                 if (!(event->attr.exclude_idle && current->pid == 0))
5061                         if (perf_event_overflow(event, 0, &data, regs))
5062                                 ret = HRTIMER_NORESTART;
5063         }
5064
5065         period = max_t(u64, 10000, event->hw.sample_period);
5066         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5067
5068         return ret;
5069 }
5070
5071 static void perf_swevent_start_hrtimer(struct perf_event *event)
5072 {
5073         struct hw_perf_event *hwc = &event->hw;
5074         s64 period;
5075
5076         if (!is_sampling_event(event))
5077                 return;
5078
5079         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5080         hwc->hrtimer.function = perf_swevent_hrtimer;
5081
5082         period = local64_read(&hwc->period_left);
5083         if (period) {
5084                 if (period < 0)
5085                         period = 10000;
5086
5087                 local64_set(&hwc->period_left, 0);
5088         } else {
5089                 period = max_t(u64, 10000, hwc->sample_period);
5090         }
5091         __hrtimer_start_range_ns(&hwc->hrtimer,
5092                                 ns_to_ktime(period), 0,
5093                                 HRTIMER_MODE_REL_PINNED, 0);
5094 }
5095
5096 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5097 {
5098         struct hw_perf_event *hwc = &event->hw;
5099
5100         if (is_sampling_event(event)) {
5101                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5102                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5103
5104                 hrtimer_cancel(&hwc->hrtimer);
5105         }
5106 }
5107
5108 /*
5109  * Software event: cpu wall time clock
5110  */
5111
5112 static void cpu_clock_event_update(struct perf_event *event)
5113 {
5114         s64 prev;
5115         u64 now;
5116
5117         now = local_clock();
5118         prev = local64_xchg(&event->hw.prev_count, now);
5119         local64_add(now - prev, &event->count);
5120 }
5121
5122 static void cpu_clock_event_start(struct perf_event *event, int flags)
5123 {
5124         local64_set(&event->hw.prev_count, local_clock());
5125         perf_swevent_start_hrtimer(event);
5126 }
5127
5128 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5129 {
5130         perf_swevent_cancel_hrtimer(event);
5131         cpu_clock_event_update(event);
5132 }
5133
5134 static int cpu_clock_event_add(struct perf_event *event, int flags)
5135 {
5136         if (flags & PERF_EF_START)
5137                 cpu_clock_event_start(event, flags);
5138
5139         return 0;
5140 }
5141
5142 static void cpu_clock_event_del(struct perf_event *event, int flags)
5143 {
5144         cpu_clock_event_stop(event, flags);
5145 }
5146
5147 static void cpu_clock_event_read(struct perf_event *event)
5148 {
5149         cpu_clock_event_update(event);
5150 }
5151
5152 static int cpu_clock_event_init(struct perf_event *event)
5153 {
5154         if (event->attr.type != PERF_TYPE_SOFTWARE)
5155                 return -ENOENT;
5156
5157         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5158                 return -ENOENT;
5159
5160         return 0;
5161 }
5162
5163 static struct pmu perf_cpu_clock = {
5164         .task_ctx_nr    = perf_sw_context,
5165
5166         .event_init     = cpu_clock_event_init,
5167         .add            = cpu_clock_event_add,
5168         .del            = cpu_clock_event_del,
5169         .start          = cpu_clock_event_start,
5170         .stop           = cpu_clock_event_stop,
5171         .read           = cpu_clock_event_read,
5172 };
5173
5174 /*
5175  * Software event: task time clock
5176  */
5177
5178 static void task_clock_event_update(struct perf_event *event, u64 now)
5179 {
5180         u64 prev;
5181         s64 delta;
5182
5183         prev = local64_xchg(&event->hw.prev_count, now);
5184         delta = now - prev;
5185         local64_add(delta, &event->count);
5186 }
5187
5188 static void task_clock_event_start(struct perf_event *event, int flags)
5189 {
5190         local64_set(&event->hw.prev_count, event->ctx->time);
5191         perf_swevent_start_hrtimer(event);
5192 }
5193
5194 static void task_clock_event_stop(struct perf_event *event, int flags)
5195 {
5196         perf_swevent_cancel_hrtimer(event);
5197         task_clock_event_update(event, event->ctx->time);
5198 }
5199
5200 static int task_clock_event_add(struct perf_event *event, int flags)
5201 {
5202         if (flags & PERF_EF_START)
5203                 task_clock_event_start(event, flags);
5204
5205         return 0;
5206 }
5207
5208 static void task_clock_event_del(struct perf_event *event, int flags)
5209 {
5210         task_clock_event_stop(event, PERF_EF_UPDATE);
5211 }
5212
5213 static void task_clock_event_read(struct perf_event *event)
5214 {
5215         u64 time;
5216
5217         if (!in_nmi()) {
5218                 update_context_time(event->ctx);
5219                 time = event->ctx->time;
5220         } else {
5221                 u64 now = perf_clock();
5222                 u64 delta = now - event->ctx->timestamp;
5223                 time = event->ctx->time + delta;
5224         }
5225
5226         task_clock_event_update(event, time);
5227 }
5228
5229 static int task_clock_event_init(struct perf_event *event)
5230 {
5231         if (event->attr.type != PERF_TYPE_SOFTWARE)
5232                 return -ENOENT;
5233
5234         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5235                 return -ENOENT;
5236
5237         return 0;
5238 }
5239
5240 static struct pmu perf_task_clock = {
5241         .task_ctx_nr    = perf_sw_context,
5242
5243         .event_init     = task_clock_event_init,
5244         .add            = task_clock_event_add,
5245         .del            = task_clock_event_del,
5246         .start          = task_clock_event_start,
5247         .stop           = task_clock_event_stop,
5248         .read           = task_clock_event_read,
5249 };
5250
5251 static void perf_pmu_nop_void(struct pmu *pmu)
5252 {
5253 }
5254
5255 static int perf_pmu_nop_int(struct pmu *pmu)
5256 {
5257         return 0;
5258 }
5259
5260 static void perf_pmu_start_txn(struct pmu *pmu)
5261 {
5262         perf_pmu_disable(pmu);
5263 }
5264
5265 static int perf_pmu_commit_txn(struct pmu *pmu)
5266 {
5267         perf_pmu_enable(pmu);
5268         return 0;
5269 }
5270
5271 static void perf_pmu_cancel_txn(struct pmu *pmu)
5272 {
5273         perf_pmu_enable(pmu);
5274 }
5275
5276 /*
5277  * Ensures all contexts with the same task_ctx_nr have the same
5278  * pmu_cpu_context too.
5279  */
5280 static void *find_pmu_context(int ctxn)
5281 {
5282         struct pmu *pmu;
5283
5284         if (ctxn < 0)
5285                 return NULL;
5286
5287         list_for_each_entry(pmu, &pmus, entry) {
5288                 if (pmu->task_ctx_nr == ctxn)
5289                         return pmu->pmu_cpu_context;
5290         }
5291
5292         return NULL;
5293 }
5294
5295 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5296 {
5297         int cpu;
5298
5299         for_each_possible_cpu(cpu) {
5300                 struct perf_cpu_context *cpuctx;
5301
5302                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5303
5304                 if (cpuctx->active_pmu == old_pmu)
5305                         cpuctx->active_pmu = pmu;
5306         }
5307 }
5308
5309 static void free_pmu_context(struct pmu *pmu)
5310 {
5311         struct pmu *i;
5312
5313         mutex_lock(&pmus_lock);
5314         /*
5315          * Like a real lame refcount.
5316          */
5317         list_for_each_entry(i, &pmus, entry) {
5318                 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5319                         update_pmu_context(i, pmu);
5320                         goto out;
5321                 }
5322         }
5323
5324         free_percpu(pmu->pmu_cpu_context);
5325 out:
5326         mutex_unlock(&pmus_lock);
5327 }
5328 static struct idr pmu_idr;
5329
5330 static ssize_t
5331 type_show(struct device *dev, struct device_attribute *attr, char *page)
5332 {
5333         struct pmu *pmu = dev_get_drvdata(dev);
5334
5335         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5336 }
5337
5338 static struct device_attribute pmu_dev_attrs[] = {
5339        __ATTR_RO(type),
5340        __ATTR_NULL,
5341 };
5342
5343 static int pmu_bus_running;
5344 static struct bus_type pmu_bus = {
5345         .name           = "event_source",
5346         .dev_attrs      = pmu_dev_attrs,
5347 };
5348
5349 static void pmu_dev_release(struct device *dev)
5350 {
5351         kfree(dev);
5352 }
5353
5354 static int pmu_dev_alloc(struct pmu *pmu)
5355 {
5356         int ret = -ENOMEM;
5357
5358         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5359         if (!pmu->dev)
5360                 goto out;
5361
5362         device_initialize(pmu->dev);
5363         ret = dev_set_name(pmu->dev, "%s", pmu->name);
5364         if (ret)
5365                 goto free_dev;
5366
5367         dev_set_drvdata(pmu->dev, pmu);
5368         pmu->dev->bus = &pmu_bus;
5369         pmu->dev->release = pmu_dev_release;
5370         ret = device_add(pmu->dev);
5371         if (ret)
5372                 goto free_dev;
5373
5374 out:
5375         return ret;
5376
5377 free_dev:
5378         put_device(pmu->dev);
5379         goto out;
5380 }
5381
5382 static struct lock_class_key cpuctx_mutex;
5383
5384 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5385 {
5386         int cpu, ret;
5387
5388         mutex_lock(&pmus_lock);
5389         ret = -ENOMEM;
5390         pmu->pmu_disable_count = alloc_percpu(int);
5391         if (!pmu->pmu_disable_count)
5392                 goto unlock;
5393
5394         pmu->type = -1;
5395         if (!name)
5396                 goto skip_type;
5397         pmu->name = name;
5398
5399         if (type < 0) {
5400                 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5401                 if (!err)
5402                         goto free_pdc;
5403
5404                 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5405                 if (err) {
5406                         ret = err;
5407                         goto free_pdc;
5408                 }
5409         }
5410         pmu->type = type;
5411
5412         if (pmu_bus_running) {
5413                 ret = pmu_dev_alloc(pmu);
5414                 if (ret)
5415                         goto free_idr;
5416         }
5417
5418 skip_type:
5419         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5420         if (pmu->pmu_cpu_context)
5421                 goto got_cpu_context;
5422
5423         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5424         if (!pmu->pmu_cpu_context)
5425                 goto free_dev;
5426
5427         for_each_possible_cpu(cpu) {
5428                 struct perf_cpu_context *cpuctx;
5429
5430                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5431                 __perf_event_init_context(&cpuctx->ctx);
5432                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5433                 cpuctx->ctx.type = cpu_context;
5434                 cpuctx->ctx.pmu = pmu;
5435                 cpuctx->jiffies_interval = 1;
5436                 INIT_LIST_HEAD(&cpuctx->rotation_list);
5437                 cpuctx->active_pmu = pmu;
5438         }
5439
5440 got_cpu_context:
5441         if (!pmu->start_txn) {
5442                 if (pmu->pmu_enable) {
5443                         /*
5444                          * If we have pmu_enable/pmu_disable calls, install
5445                          * transaction stubs that use that to try and batch
5446                          * hardware accesses.
5447                          */
5448                         pmu->start_txn  = perf_pmu_start_txn;
5449                         pmu->commit_txn = perf_pmu_commit_txn;
5450                         pmu->cancel_txn = perf_pmu_cancel_txn;
5451                 } else {
5452                         pmu->start_txn  = perf_pmu_nop_void;
5453                         pmu->commit_txn = perf_pmu_nop_int;
5454                         pmu->cancel_txn = perf_pmu_nop_void;
5455                 }
5456         }
5457
5458         if (!pmu->pmu_enable) {
5459                 pmu->pmu_enable  = perf_pmu_nop_void;
5460                 pmu->pmu_disable = perf_pmu_nop_void;
5461         }
5462
5463         list_add_rcu(&pmu->entry, &pmus);
5464         ret = 0;
5465 unlock:
5466         mutex_unlock(&pmus_lock);
5467
5468         return ret;
5469
5470 free_dev:
5471         device_del(pmu->dev);
5472         put_device(pmu->dev);
5473
5474 free_idr:
5475         if (pmu->type >= PERF_TYPE_MAX)
5476                 idr_remove(&pmu_idr, pmu->type);
5477
5478 free_pdc:
5479         free_percpu(pmu->pmu_disable_count);
5480         goto unlock;
5481 }
5482
5483 void perf_pmu_unregister(struct pmu *pmu)
5484 {
5485         mutex_lock(&pmus_lock);
5486         list_del_rcu(&pmu->entry);
5487         mutex_unlock(&pmus_lock);
5488
5489         /*
5490          * We dereference the pmu list under both SRCU and regular RCU, so
5491          * synchronize against both of those.
5492          */
5493         synchronize_srcu(&pmus_srcu);
5494         synchronize_rcu();
5495
5496         free_percpu(pmu->pmu_disable_count);
5497         if (pmu->type >= PERF_TYPE_MAX)
5498                 idr_remove(&pmu_idr, pmu->type);
5499         device_del(pmu->dev);
5500         put_device(pmu->dev);
5501         free_pmu_context(pmu);
5502 }
5503
5504 struct pmu *perf_init_event(struct perf_event *event)
5505 {
5506         struct pmu *pmu = NULL;
5507         int idx;
5508
5509         idx = srcu_read_lock(&pmus_srcu);
5510
5511         rcu_read_lock();
5512         pmu = idr_find(&pmu_idr, event->attr.type);
5513         rcu_read_unlock();
5514         if (pmu)
5515                 goto unlock;
5516
5517         list_for_each_entry_rcu(pmu, &pmus, entry) {
5518                 int ret = pmu->event_init(event);
5519                 if (!ret)
5520                         goto unlock;
5521
5522                 if (ret != -ENOENT) {
5523                         pmu = ERR_PTR(ret);
5524                         goto unlock;
5525                 }
5526         }
5527         pmu = ERR_PTR(-ENOENT);
5528 unlock:
5529         srcu_read_unlock(&pmus_srcu, idx);
5530
5531         return pmu;
5532 }
5533
5534 /*
5535  * Allocate and initialize a event structure
5536  */
5537 static struct perf_event *
5538 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5539                  struct task_struct *task,
5540                  struct perf_event *group_leader,
5541                  struct perf_event *parent_event,
5542                  perf_overflow_handler_t overflow_handler)
5543 {
5544         struct pmu *pmu;
5545         struct perf_event *event;
5546         struct hw_perf_event *hwc;
5547         long err;
5548
5549         if ((unsigned)cpu >= nr_cpu_ids) {
5550                 if (!task || cpu != -1)
5551                         return ERR_PTR(-EINVAL);
5552         }
5553
5554         event = kzalloc(sizeof(*event), GFP_KERNEL);
5555         if (!event)
5556                 return ERR_PTR(-ENOMEM);
5557
5558         /*
5559          * Single events are their own group leaders, with an
5560          * empty sibling list:
5561          */
5562         if (!group_leader)
5563                 group_leader = event;
5564
5565         mutex_init(&event->child_mutex);
5566         INIT_LIST_HEAD(&event->child_list);
5567
5568         INIT_LIST_HEAD(&event->group_entry);
5569         INIT_LIST_HEAD(&event->event_entry);
5570         INIT_LIST_HEAD(&event->sibling_list);
5571         init_waitqueue_head(&event->waitq);
5572         init_irq_work(&event->pending, perf_pending_event);
5573
5574         mutex_init(&event->mmap_mutex);
5575
5576         event->cpu              = cpu;
5577         event->attr             = *attr;
5578         event->group_leader     = group_leader;
5579         event->pmu              = NULL;
5580         event->oncpu            = -1;
5581
5582         event->parent           = parent_event;
5583
5584         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
5585         event->id               = atomic64_inc_return(&perf_event_id);
5586
5587         event->state            = PERF_EVENT_STATE_INACTIVE;
5588
5589         if (task) {
5590                 event->attach_state = PERF_ATTACH_TASK;
5591 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5592                 /*
5593                  * hw_breakpoint is a bit difficult here..
5594                  */
5595                 if (attr->type == PERF_TYPE_BREAKPOINT)
5596                         event->hw.bp_target = task;
5597 #endif
5598         }
5599
5600         if (!overflow_handler && parent_event)
5601                 overflow_handler = parent_event->overflow_handler;
5602
5603         event->overflow_handler = overflow_handler;
5604
5605         if (attr->disabled)
5606                 event->state = PERF_EVENT_STATE_OFF;
5607
5608         pmu = NULL;
5609
5610         hwc = &event->hw;
5611         hwc->sample_period = attr->sample_period;
5612         if (attr->freq && attr->sample_freq)
5613                 hwc->sample_period = 1;
5614         hwc->last_period = hwc->sample_period;
5615
5616         local64_set(&hwc->period_left, hwc->sample_period);
5617
5618         /*
5619          * we currently do not support PERF_FORMAT_GROUP on inherited events
5620          */
5621         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5622                 goto done;
5623
5624         pmu = perf_init_event(event);
5625
5626 done:
5627         err = 0;
5628         if (!pmu)
5629                 err = -EINVAL;
5630         else if (IS_ERR(pmu))
5631                 err = PTR_ERR(pmu);
5632
5633         if (err) {
5634                 if (event->ns)
5635                         put_pid_ns(event->ns);
5636                 kfree(event);
5637                 return ERR_PTR(err);
5638         }
5639
5640         event->pmu = pmu;
5641
5642         if (!event->parent) {
5643                 if (event->attach_state & PERF_ATTACH_TASK)
5644                         jump_label_inc(&perf_task_events);
5645                 if (event->attr.mmap || event->attr.mmap_data)
5646                         atomic_inc(&nr_mmap_events);
5647                 if (event->attr.comm)
5648                         atomic_inc(&nr_comm_events);
5649                 if (event->attr.task)
5650                         atomic_inc(&nr_task_events);
5651                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5652                         err = get_callchain_buffers();
5653                         if (err) {
5654                                 free_event(event);
5655                                 return ERR_PTR(err);
5656                         }
5657                 }
5658         }
5659
5660         return event;
5661 }
5662
5663 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5664                           struct perf_event_attr *attr)
5665 {
5666         u32 size;
5667         int ret;
5668
5669         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5670                 return -EFAULT;
5671
5672         /*
5673          * zero the full structure, so that a short copy will be nice.
5674          */
5675         memset(attr, 0, sizeof(*attr));
5676
5677         ret = get_user(size, &uattr->size);
5678         if (ret)
5679                 return ret;
5680
5681         if (size > PAGE_SIZE)   /* silly large */
5682                 goto err_size;
5683
5684         if (!size)              /* abi compat */
5685                 size = PERF_ATTR_SIZE_VER0;
5686
5687         if (size < PERF_ATTR_SIZE_VER0)
5688                 goto err_size;
5689
5690         /*
5691          * If we're handed a bigger struct than we know of,
5692          * ensure all the unknown bits are 0 - i.e. new
5693          * user-space does not rely on any kernel feature
5694          * extensions we dont know about yet.
5695          */
5696         if (size > sizeof(*attr)) {
5697                 unsigned char __user *addr;
5698                 unsigned char __user *end;
5699                 unsigned char val;
5700
5701                 addr = (void __user *)uattr + sizeof(*attr);
5702                 end  = (void __user *)uattr + size;
5703
5704                 for (; addr < end; addr++) {
5705                         ret = get_user(val, addr);
5706                         if (ret)
5707                                 return ret;
5708                         if (val)
5709                                 goto err_size;
5710                 }
5711                 size = sizeof(*attr);
5712         }
5713
5714         ret = copy_from_user(attr, uattr, size);
5715         if (ret)
5716                 return -EFAULT;
5717
5718         /*
5719          * If the type exists, the corresponding creation will verify
5720          * the attr->config.
5721          */
5722         if (attr->type >= PERF_TYPE_MAX)
5723                 return -EINVAL;
5724
5725         if (attr->__reserved_1)
5726                 return -EINVAL;
5727
5728         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5729                 return -EINVAL;
5730
5731         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5732                 return -EINVAL;
5733
5734 out:
5735         return ret;
5736
5737 err_size:
5738         put_user(sizeof(*attr), &uattr->size);
5739         ret = -E2BIG;
5740         goto out;
5741 }
5742
5743 static int
5744 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5745 {
5746         struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5747         int ret = -EINVAL;
5748
5749         if (!output_event)
5750                 goto set;
5751
5752         /* don't allow circular references */
5753         if (event == output_event)
5754                 goto out;
5755
5756         /*
5757          * Don't allow cross-cpu buffers
5758          */
5759         if (output_event->cpu != event->cpu)
5760                 goto out;
5761
5762         /*
5763          * If its not a per-cpu buffer, it must be the same task.
5764          */
5765         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5766                 goto out;
5767
5768 set:
5769         mutex_lock(&event->mmap_mutex);
5770         /* Can't redirect output if we've got an active mmap() */
5771         if (atomic_read(&event->mmap_count))
5772                 goto unlock;
5773
5774         if (output_event) {
5775                 /* get the buffer we want to redirect to */
5776                 buffer = perf_buffer_get(output_event);
5777                 if (!buffer)
5778                         goto unlock;
5779         }
5780
5781         old_buffer = event->buffer;
5782         rcu_assign_pointer(event->buffer, buffer);
5783         ret = 0;
5784 unlock:
5785         mutex_unlock(&event->mmap_mutex);
5786
5787         if (old_buffer)
5788                 perf_buffer_put(old_buffer);
5789 out:
5790         return ret;
5791 }
5792
5793 /**
5794  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5795  *
5796  * @attr_uptr:  event_id type attributes for monitoring/sampling
5797  * @pid:                target pid
5798  * @cpu:                target cpu
5799  * @group_fd:           group leader event fd
5800  */
5801 SYSCALL_DEFINE5(perf_event_open,
5802                 struct perf_event_attr __user *, attr_uptr,
5803                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5804 {
5805         struct perf_event *group_leader = NULL, *output_event = NULL;
5806         struct perf_event *event, *sibling;
5807         struct perf_event_attr attr;
5808         struct perf_event_context *ctx;
5809         struct file *event_file = NULL;
5810         struct file *group_file = NULL;
5811         struct task_struct *task = NULL;
5812         struct pmu *pmu;
5813         int event_fd;
5814         int move_group = 0;
5815         int fput_needed = 0;
5816         int err;
5817
5818         /* for future expandability... */
5819         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5820                 return -EINVAL;
5821
5822         err = perf_copy_attr(attr_uptr, &attr);
5823         if (err)
5824                 return err;
5825
5826         if (!attr.exclude_kernel) {
5827                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5828                         return -EACCES;
5829         }
5830
5831         if (attr.freq) {
5832                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5833                         return -EINVAL;
5834         }
5835
5836         event_fd = get_unused_fd_flags(O_RDWR);
5837         if (event_fd < 0)
5838                 return event_fd;
5839
5840         if (group_fd != -1) {
5841                 group_leader = perf_fget_light(group_fd, &fput_needed);
5842                 if (IS_ERR(group_leader)) {
5843                         err = PTR_ERR(group_leader);
5844                         goto err_fd;
5845                 }
5846                 group_file = group_leader->filp;
5847                 if (flags & PERF_FLAG_FD_OUTPUT)
5848                         output_event = group_leader;
5849                 if (flags & PERF_FLAG_FD_NO_GROUP)
5850                         group_leader = NULL;
5851         }
5852
5853         if (pid != -1) {
5854                 task = find_lively_task_by_vpid(pid);
5855                 if (IS_ERR(task)) {
5856                         err = PTR_ERR(task);
5857                         goto err_group_fd;
5858                 }
5859         }
5860
5861         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5862         if (IS_ERR(event)) {
5863                 err = PTR_ERR(event);
5864                 goto err_task;
5865         }
5866
5867         /*
5868          * Special case software events and allow them to be part of
5869          * any hardware group.
5870          */
5871         pmu = event->pmu;
5872
5873         if (group_leader &&
5874             (is_software_event(event) != is_software_event(group_leader))) {
5875                 if (is_software_event(event)) {
5876                         /*
5877                          * If event and group_leader are not both a software
5878                          * event, and event is, then group leader is not.
5879                          *
5880                          * Allow the addition of software events to !software
5881                          * groups, this is safe because software events never
5882                          * fail to schedule.
5883                          */
5884                         pmu = group_leader->pmu;
5885                 } else if (is_software_event(group_leader) &&
5886                            (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5887                         /*
5888                          * In case the group is a pure software group, and we
5889                          * try to add a hardware event, move the whole group to
5890                          * the hardware context.
5891                          */
5892                         move_group = 1;
5893                 }
5894         }
5895
5896         /*
5897          * Get the target context (task or percpu):
5898          */
5899         ctx = find_get_context(pmu, task, cpu);
5900         if (IS_ERR(ctx)) {
5901                 err = PTR_ERR(ctx);
5902                 goto err_alloc;
5903         }
5904
5905         /*
5906          * Look up the group leader (we will attach this event to it):
5907          */
5908         if (group_leader) {
5909                 err = -EINVAL;
5910
5911                 /*
5912                  * Do not allow a recursive hierarchy (this new sibling
5913                  * becoming part of another group-sibling):
5914                  */
5915                 if (group_leader->group_leader != group_leader)
5916                         goto err_context;
5917                 /*
5918                  * Do not allow to attach to a group in a different
5919                  * task or CPU context:
5920                  */
5921                 if (move_group) {
5922                         if (group_leader->ctx->type != ctx->type)
5923                                 goto err_context;
5924                 } else {
5925                         if (group_leader->ctx != ctx)
5926                                 goto err_context;
5927                 }
5928
5929                 /*
5930                  * Only a group leader can be exclusive or pinned
5931                  */
5932                 if (attr.exclusive || attr.pinned)
5933                         goto err_context;
5934         }
5935
5936         if (output_event) {
5937                 err = perf_event_set_output(event, output_event);
5938                 if (err)
5939                         goto err_context;
5940         }
5941
5942         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5943         if (IS_ERR(event_file)) {
5944                 err = PTR_ERR(event_file);
5945                 goto err_context;
5946         }
5947
5948         if (move_group) {
5949                 struct perf_event_context *gctx = group_leader->ctx;
5950
5951                 mutex_lock(&gctx->mutex);
5952                 perf_event_remove_from_context(group_leader);
5953                 list_for_each_entry(sibling, &group_leader->sibling_list,
5954                                     group_entry) {
5955                         perf_event_remove_from_context(sibling);
5956                         put_ctx(gctx);
5957                 }
5958                 mutex_unlock(&gctx->mutex);
5959                 put_ctx(gctx);
5960         }
5961
5962         event->filp = event_file;
5963         WARN_ON_ONCE(ctx->parent_ctx);
5964         mutex_lock(&ctx->mutex);
5965
5966         if (move_group) {
5967                 perf_install_in_context(ctx, group_leader, cpu);
5968                 get_ctx(ctx);
5969                 list_for_each_entry(sibling, &group_leader->sibling_list,
5970                                     group_entry) {
5971                         perf_install_in_context(ctx, sibling, cpu);
5972                         get_ctx(ctx);
5973                 }
5974         }
5975
5976         perf_install_in_context(ctx, event, cpu);
5977         ++ctx->generation;
5978         mutex_unlock(&ctx->mutex);
5979
5980         event->owner = current;
5981
5982         mutex_lock(&current->perf_event_mutex);
5983         list_add_tail(&event->owner_entry, &current->perf_event_list);
5984         mutex_unlock(&current->perf_event_mutex);
5985
5986         /*
5987          * Precalculate sample_data sizes
5988          */
5989         perf_event__header_size(event);
5990         perf_event__id_header_size(event);
5991
5992         /*
5993          * Drop the reference on the group_event after placing the
5994          * new event on the sibling_list. This ensures destruction
5995          * of the group leader will find the pointer to itself in
5996          * perf_group_detach().
5997          */
5998         fput_light(group_file, fput_needed);
5999         fd_install(event_fd, event_file);
6000         return event_fd;
6001
6002 err_context:
6003         put_ctx(ctx);
6004 err_alloc:
6005         free_event(event);
6006 err_task:
6007         if (task)
6008                 put_task_struct(task);
6009 err_group_fd:
6010         fput_light(group_file, fput_needed);
6011 err_fd:
6012         put_unused_fd(event_fd);
6013         return err;
6014 }
6015
6016 /**
6017  * perf_event_create_kernel_counter
6018  *
6019  * @attr: attributes of the counter to create
6020  * @cpu: cpu in which the counter is bound
6021  * @task: task to profile (NULL for percpu)
6022  */
6023 struct perf_event *
6024 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6025                                  struct task_struct *task,
6026                                  perf_overflow_handler_t overflow_handler)
6027 {
6028         struct perf_event_context *ctx;
6029         struct perf_event *event;
6030         int err;
6031
6032         /*
6033          * Get the target context (task or percpu):
6034          */
6035
6036         event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
6037         if (IS_ERR(event)) {
6038                 err = PTR_ERR(event);
6039                 goto err;
6040         }
6041
6042         ctx = find_get_context(event->pmu, task, cpu);
6043         if (IS_ERR(ctx)) {
6044                 err = PTR_ERR(ctx);
6045                 goto err_free;
6046         }
6047
6048         event->filp = NULL;
6049         WARN_ON_ONCE(ctx->parent_ctx);
6050         mutex_lock(&ctx->mutex);
6051         perf_install_in_context(ctx, event, cpu);
6052         ++ctx->generation;
6053         mutex_unlock(&ctx->mutex);
6054
6055         return event;
6056
6057 err_free:
6058         free_event(event);
6059 err:
6060         return ERR_PTR(err);
6061 }
6062 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6063
6064 static void sync_child_event(struct perf_event *child_event,
6065                                struct task_struct *child)
6066 {
6067         struct perf_event *parent_event = child_event->parent;
6068         u64 child_val;
6069
6070         if (child_event->attr.inherit_stat)
6071                 perf_event_read_event(child_event, child);
6072
6073         child_val = perf_event_count(child_event);
6074
6075         /*
6076          * Add back the child's count to the parent's count:
6077          */
6078         atomic64_add(child_val, &parent_event->child_count);
6079         atomic64_add(child_event->total_time_enabled,
6080                      &parent_event->child_total_time_enabled);
6081         atomic64_add(child_event->total_time_running,
6082                      &parent_event->child_total_time_running);
6083
6084         /*
6085          * Remove this event from the parent's list
6086          */
6087         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6088         mutex_lock(&parent_event->child_mutex);
6089         list_del_init(&child_event->child_list);
6090         mutex_unlock(&parent_event->child_mutex);
6091
6092         /*
6093          * Release the parent event, if this was the last
6094          * reference to it.
6095          */
6096         fput(parent_event->filp);
6097 }
6098
6099 static void
6100 __perf_event_exit_task(struct perf_event *child_event,
6101                          struct perf_event_context *child_ctx,
6102                          struct task_struct *child)
6103 {
6104         struct perf_event *parent_event;
6105
6106         perf_event_remove_from_context(child_event);
6107
6108         parent_event = child_event->parent;
6109         /*
6110          * It can happen that parent exits first, and has events
6111          * that are still around due to the child reference. These
6112          * events need to be zapped - but otherwise linger.
6113          */
6114         if (parent_event) {
6115                 sync_child_event(child_event, child);
6116                 free_event(child_event);
6117         }
6118 }
6119
6120 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6121 {
6122         struct perf_event *child_event, *tmp;
6123         struct perf_event_context *child_ctx;
6124         unsigned long flags;
6125
6126         if (likely(!child->perf_event_ctxp[ctxn])) {
6127                 perf_event_task(child, NULL, 0);
6128                 return;
6129         }
6130
6131         local_irq_save(flags);
6132         /*
6133          * We can't reschedule here because interrupts are disabled,
6134          * and either child is current or it is a task that can't be
6135          * scheduled, so we are now safe from rescheduling changing
6136          * our context.
6137          */
6138         child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6139         task_ctx_sched_out(child_ctx, EVENT_ALL);
6140
6141         /*
6142          * Take the context lock here so that if find_get_context is
6143          * reading child->perf_event_ctxp, we wait until it has
6144          * incremented the context's refcount before we do put_ctx below.
6145          */
6146         raw_spin_lock(&child_ctx->lock);
6147         child->perf_event_ctxp[ctxn] = NULL;
6148         /*
6149          * If this context is a clone; unclone it so it can't get
6150          * swapped to another process while we're removing all
6151          * the events from it.
6152          */
6153         unclone_ctx(child_ctx);
6154         update_context_time(child_ctx);
6155         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6156
6157         /*
6158          * Report the task dead after unscheduling the events so that we
6159          * won't get any samples after PERF_RECORD_EXIT. We can however still
6160          * get a few PERF_RECORD_READ events.
6161          */
6162         perf_event_task(child, child_ctx, 0);
6163
6164         /*
6165          * We can recurse on the same lock type through:
6166          *
6167          *   __perf_event_exit_task()
6168          *     sync_child_event()
6169          *       fput(parent_event->filp)
6170          *         perf_release()
6171          *           mutex_lock(&ctx->mutex)
6172          *
6173          * But since its the parent context it won't be the same instance.
6174          */
6175         mutex_lock(&child_ctx->mutex);
6176
6177 again:
6178         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6179                                  group_entry)
6180                 __perf_event_exit_task(child_event, child_ctx, child);
6181
6182         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6183                                  group_entry)
6184                 __perf_event_exit_task(child_event, child_ctx, child);
6185
6186         /*
6187          * If the last event was a group event, it will have appended all
6188          * its siblings to the list, but we obtained 'tmp' before that which
6189          * will still point to the list head terminating the iteration.
6190          */
6191         if (!list_empty(&child_ctx->pinned_groups) ||
6192             !list_empty(&child_ctx->flexible_groups))
6193                 goto again;
6194
6195         mutex_unlock(&child_ctx->mutex);
6196
6197         put_ctx(child_ctx);
6198 }
6199
6200 /*
6201  * When a child task exits, feed back event values to parent events.
6202  */
6203 void perf_event_exit_task(struct task_struct *child)
6204 {
6205         struct perf_event *event, *tmp;
6206         int ctxn;
6207
6208         mutex_lock(&child->perf_event_mutex);
6209         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6210                                  owner_entry) {
6211                 list_del_init(&event->owner_entry);
6212
6213                 /*
6214                  * Ensure the list deletion is visible before we clear
6215                  * the owner, closes a race against perf_release() where
6216                  * we need to serialize on the owner->perf_event_mutex.
6217                  */
6218                 smp_wmb();
6219                 event->owner = NULL;
6220         }
6221         mutex_unlock(&child->perf_event_mutex);
6222
6223         for_each_task_context_nr(ctxn)
6224                 perf_event_exit_task_context(child, ctxn);
6225 }
6226
6227 static void perf_free_event(struct perf_event *event,
6228                             struct perf_event_context *ctx)
6229 {
6230         struct perf_event *parent = event->parent;
6231
6232         if (WARN_ON_ONCE(!parent))
6233                 return;
6234
6235         mutex_lock(&parent->child_mutex);
6236         list_del_init(&event->child_list);
6237         mutex_unlock(&parent->child_mutex);
6238
6239         fput(parent->filp);
6240
6241         perf_group_detach(event);
6242         list_del_event(event, ctx);
6243         free_event(event);
6244 }
6245
6246 /*
6247  * free an unexposed, unused context as created by inheritance by
6248  * perf_event_init_task below, used by fork() in case of fail.
6249  */
6250 void perf_event_free_task(struct task_struct *task)
6251 {
6252         struct perf_event_context *ctx;
6253         struct perf_event *event, *tmp;
6254         int ctxn;
6255
6256         for_each_task_context_nr(ctxn) {
6257                 ctx = task->perf_event_ctxp[ctxn];
6258                 if (!ctx)
6259                         continue;
6260
6261                 mutex_lock(&ctx->mutex);
6262 again:
6263                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6264                                 group_entry)
6265                         perf_free_event(event, ctx);
6266
6267                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6268                                 group_entry)
6269                         perf_free_event(event, ctx);
6270
6271                 if (!list_empty(&ctx->pinned_groups) ||
6272                                 !list_empty(&ctx->flexible_groups))
6273                         goto again;
6274
6275                 mutex_unlock(&ctx->mutex);
6276
6277                 put_ctx(ctx);
6278         }
6279 }
6280
6281 void perf_event_delayed_put(struct task_struct *task)
6282 {
6283         int ctxn;
6284
6285         for_each_task_context_nr(ctxn)
6286                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6287 }
6288
6289 /*
6290  * inherit a event from parent task to child task:
6291  */
6292 static struct perf_event *
6293 inherit_event(struct perf_event *parent_event,
6294               struct task_struct *parent,
6295               struct perf_event_context *parent_ctx,
6296               struct task_struct *child,
6297               struct perf_event *group_leader,
6298               struct perf_event_context *child_ctx)
6299 {
6300         struct perf_event *child_event;
6301         unsigned long flags;
6302
6303         /*
6304          * Instead of creating recursive hierarchies of events,
6305          * we link inherited events back to the original parent,
6306          * which has a filp for sure, which we use as the reference
6307          * count:
6308          */
6309         if (parent_event->parent)
6310                 parent_event = parent_event->parent;
6311
6312         child_event = perf_event_alloc(&parent_event->attr,
6313                                            parent_event->cpu,
6314                                            child,
6315                                            group_leader, parent_event,
6316                                            NULL);
6317         if (IS_ERR(child_event))
6318                 return child_event;
6319         get_ctx(child_ctx);
6320
6321         /*
6322          * Make the child state follow the state of the parent event,
6323          * not its attr.disabled bit.  We hold the parent's mutex,
6324          * so we won't race with perf_event_{en, dis}able_family.
6325          */
6326         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6327                 child_event->state = PERF_EVENT_STATE_INACTIVE;
6328         else
6329                 child_event->state = PERF_EVENT_STATE_OFF;
6330
6331         if (parent_event->attr.freq) {
6332                 u64 sample_period = parent_event->hw.sample_period;
6333                 struct hw_perf_event *hwc = &child_event->hw;
6334
6335                 hwc->sample_period = sample_period;
6336                 hwc->last_period   = sample_period;
6337
6338                 local64_set(&hwc->period_left, sample_period);
6339         }
6340
6341         child_event->ctx = child_ctx;
6342         child_event->overflow_handler = parent_event->overflow_handler;
6343
6344         /*
6345          * Precalculate sample_data sizes
6346          */
6347         perf_event__header_size(child_event);
6348         perf_event__id_header_size(child_event);
6349
6350         /*
6351          * Link it up in the child's context:
6352          */
6353         raw_spin_lock_irqsave(&child_ctx->lock, flags);
6354         add_event_to_ctx(child_event, child_ctx);
6355         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6356
6357         /*
6358          * Get a reference to the parent filp - we will fput it
6359          * when the child event exits. This is safe to do because
6360          * we are in the parent and we know that the filp still
6361          * exists and has a nonzero count:
6362          */
6363         atomic_long_inc(&parent_event->filp->f_count);
6364
6365         /*
6366          * Link this into the parent event's child list
6367          */
6368         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6369         mutex_lock(&parent_event->child_mutex);
6370         list_add_tail(&child_event->child_list, &parent_event->child_list);
6371         mutex_unlock(&parent_event->child_mutex);
6372
6373         return child_event;
6374 }
6375
6376 static int inherit_group(struct perf_event *parent_event,
6377               struct task_struct *parent,
6378               struct perf_event_context *parent_ctx,
6379               struct task_struct *child,
6380               struct perf_event_context *child_ctx)
6381 {
6382         struct perf_event *leader;
6383         struct perf_event *sub;
6384         struct perf_event *child_ctr;
6385
6386         leader = inherit_event(parent_event, parent, parent_ctx,
6387                                  child, NULL, child_ctx);
6388         if (IS_ERR(leader))
6389                 return PTR_ERR(leader);
6390         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6391                 child_ctr = inherit_event(sub, parent, parent_ctx,
6392                                             child, leader, child_ctx);
6393                 if (IS_ERR(child_ctr))
6394                         return PTR_ERR(child_ctr);
6395         }
6396         return 0;
6397 }
6398
6399 static int
6400 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6401                    struct perf_event_context *parent_ctx,
6402                    struct task_struct *child, int ctxn,
6403                    int *inherited_all)
6404 {
6405         int ret;
6406         struct perf_event_context *child_ctx;
6407
6408         if (!event->attr.inherit) {
6409                 *inherited_all = 0;
6410                 return 0;
6411         }
6412
6413         child_ctx = child->perf_event_ctxp[ctxn];
6414         if (!child_ctx) {
6415                 /*
6416                  * This is executed from the parent task context, so
6417                  * inherit events that have been marked for cloning.
6418                  * First allocate and initialize a context for the
6419                  * child.
6420                  */
6421
6422                 child_ctx = alloc_perf_context(event->pmu, child);
6423                 if (!child_ctx)
6424                         return -ENOMEM;
6425
6426                 child->perf_event_ctxp[ctxn] = child_ctx;
6427         }
6428
6429         ret = inherit_group(event, parent, parent_ctx,
6430                             child, child_ctx);
6431
6432         if (ret)
6433                 *inherited_all = 0;
6434
6435         return ret;
6436 }
6437
6438 /*
6439  * Initialize the perf_event context in task_struct
6440  */
6441 int perf_event_init_context(struct task_struct *child, int ctxn)
6442 {
6443         struct perf_event_context *child_ctx, *parent_ctx;
6444         struct perf_event_context *cloned_ctx;
6445         struct perf_event *event;
6446         struct task_struct *parent = current;
6447         int inherited_all = 1;
6448         unsigned long flags;
6449         int ret = 0;
6450
6451         if (likely(!parent->perf_event_ctxp[ctxn]))
6452                 return 0;
6453
6454         /*
6455          * If the parent's context is a clone, pin it so it won't get
6456          * swapped under us.
6457          */
6458         parent_ctx = perf_pin_task_context(parent, ctxn);
6459
6460         /*
6461          * No need to check if parent_ctx != NULL here; since we saw
6462          * it non-NULL earlier, the only reason for it to become NULL
6463          * is if we exit, and since we're currently in the middle of
6464          * a fork we can't be exiting at the same time.
6465          */
6466
6467         /*
6468          * Lock the parent list. No need to lock the child - not PID
6469          * hashed yet and not running, so nobody can access it.
6470          */
6471         mutex_lock(&parent_ctx->mutex);
6472
6473         /*
6474          * We dont have to disable NMIs - we are only looking at
6475          * the list, not manipulating it:
6476          */
6477         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6478                 ret = inherit_task_group(event, parent, parent_ctx,
6479                                          child, ctxn, &inherited_all);
6480                 if (ret)
6481                         break;
6482         }
6483
6484         /*
6485          * We can't hold ctx->lock when iterating the ->flexible_group list due
6486          * to allocations, but we need to prevent rotation because
6487          * rotate_ctx() will change the list from interrupt context.
6488          */
6489         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6490         parent_ctx->rotate_disable = 1;
6491         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6492
6493         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6494                 ret = inherit_task_group(event, parent, parent_ctx,
6495                                          child, ctxn, &inherited_all);
6496                 if (ret)
6497                         break;
6498         }
6499
6500         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6501         parent_ctx->rotate_disable = 0;
6502
6503         child_ctx = child->perf_event_ctxp[ctxn];
6504
6505         if (child_ctx && inherited_all) {
6506                 /*
6507                  * Mark the child context as a clone of the parent
6508                  * context, or of whatever the parent is a clone of.
6509                  *
6510                  * Note that if the parent is a clone, the holding of
6511                  * parent_ctx->lock avoids it from being uncloned.
6512                  */
6513                 cloned_ctx = parent_ctx->parent_ctx;
6514                 if (cloned_ctx) {
6515                         child_ctx->parent_ctx = cloned_ctx;
6516                         child_ctx->parent_gen = parent_ctx->parent_gen;
6517                 } else {
6518                         child_ctx->parent_ctx = parent_ctx;
6519                         child_ctx->parent_gen = parent_ctx->generation;
6520                 }
6521                 get_ctx(child_ctx->parent_ctx);
6522         }
6523
6524         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6525         mutex_unlock(&parent_ctx->mutex);
6526
6527         perf_unpin_context(parent_ctx);
6528
6529         return ret;
6530 }
6531
6532 /*
6533  * Initialize the perf_event context in task_struct
6534  */
6535 int perf_event_init_task(struct task_struct *child)
6536 {
6537         int ctxn, ret;
6538
6539         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6540         mutex_init(&child->perf_event_mutex);
6541         INIT_LIST_HEAD(&child->perf_event_list);
6542
6543         for_each_task_context_nr(ctxn) {
6544                 ret = perf_event_init_context(child, ctxn);
6545                 if (ret)
6546                         return ret;
6547         }
6548
6549         return 0;
6550 }
6551
6552 static void __init perf_event_init_all_cpus(void)
6553 {
6554         struct swevent_htable *swhash;
6555         int cpu;
6556
6557         for_each_possible_cpu(cpu) {
6558                 swhash = &per_cpu(swevent_htable, cpu);
6559                 mutex_init(&swhash->hlist_mutex);
6560                 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6561         }
6562 }
6563
6564 static void __cpuinit perf_event_init_cpu(int cpu)
6565 {
6566         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6567
6568         mutex_lock(&swhash->hlist_mutex);
6569         if (swhash->hlist_refcount > 0) {
6570                 struct swevent_hlist *hlist;
6571
6572                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6573                 WARN_ON(!hlist);
6574                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6575         }
6576         mutex_unlock(&swhash->hlist_mutex);
6577 }
6578
6579 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6580 static void perf_pmu_rotate_stop(struct pmu *pmu)
6581 {
6582         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6583
6584         WARN_ON(!irqs_disabled());
6585
6586         list_del_init(&cpuctx->rotation_list);
6587 }
6588
6589 static void __perf_event_exit_context(void *__info)
6590 {
6591         struct perf_event_context *ctx = __info;
6592         struct perf_event *event, *tmp;
6593
6594         perf_pmu_rotate_stop(ctx->pmu);
6595
6596         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6597                 __perf_event_remove_from_context(event);
6598         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6599                 __perf_event_remove_from_context(event);
6600 }
6601
6602 static void perf_event_exit_cpu_context(int cpu)
6603 {
6604         struct perf_event_context *ctx;
6605         struct pmu *pmu;
6606         int idx;
6607
6608         idx = srcu_read_lock(&pmus_srcu);
6609         list_for_each_entry_rcu(pmu, &pmus, entry) {
6610                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6611
6612                 mutex_lock(&ctx->mutex);
6613                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6614                 mutex_unlock(&ctx->mutex);
6615         }
6616         srcu_read_unlock(&pmus_srcu, idx);
6617 }
6618
6619 static void perf_event_exit_cpu(int cpu)
6620 {
6621         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6622
6623         mutex_lock(&swhash->hlist_mutex);
6624         swevent_hlist_release(swhash);
6625         mutex_unlock(&swhash->hlist_mutex);
6626
6627         perf_event_exit_cpu_context(cpu);
6628 }
6629 #else
6630 static inline void perf_event_exit_cpu(int cpu) { }
6631 #endif
6632
6633 static int
6634 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6635 {
6636         int cpu;
6637
6638         for_each_online_cpu(cpu)
6639                 perf_event_exit_cpu(cpu);
6640
6641         return NOTIFY_OK;
6642 }
6643
6644 /*
6645  * Run the perf reboot notifier at the very last possible moment so that
6646  * the generic watchdog code runs as long as possible.
6647  */
6648 static struct notifier_block perf_reboot_notifier = {
6649         .notifier_call = perf_reboot,
6650         .priority = INT_MIN,
6651 };
6652
6653 static int __cpuinit
6654 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6655 {
6656         unsigned int cpu = (long)hcpu;
6657
6658         switch (action & ~CPU_TASKS_FROZEN) {
6659
6660         case CPU_UP_PREPARE:
6661         case CPU_DOWN_FAILED:
6662                 perf_event_init_cpu(cpu);
6663                 break;
6664
6665         case CPU_UP_CANCELED:
6666         case CPU_DOWN_PREPARE:
6667                 perf_event_exit_cpu(cpu);
6668                 break;
6669
6670         default:
6671                 break;
6672         }
6673
6674         return NOTIFY_OK;
6675 }
6676
6677 void __init perf_event_init(void)
6678 {
6679         int ret;
6680
6681         idr_init(&pmu_idr);
6682
6683         perf_event_init_all_cpus();
6684         init_srcu_struct(&pmus_srcu);
6685         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
6686         perf_pmu_register(&perf_cpu_clock, NULL, -1);
6687         perf_pmu_register(&perf_task_clock, NULL, -1);
6688         perf_tp_register();
6689         perf_cpu_notifier(perf_cpu_notify);
6690         register_reboot_notifier(&perf_reboot_notifier);
6691
6692         ret = init_hw_breakpoint();
6693         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6694 }
6695
6696 static int __init perf_event_sysfs_init(void)
6697 {
6698         struct pmu *pmu;
6699         int ret;
6700
6701         mutex_lock(&pmus_lock);
6702
6703         ret = bus_register(&pmu_bus);
6704         if (ret)
6705                 goto unlock;
6706
6707         list_for_each_entry(pmu, &pmus, entry) {
6708                 if (!pmu->name || pmu->type < 0)
6709                         continue;
6710
6711                 ret = pmu_dev_alloc(pmu);
6712                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
6713         }
6714         pmu_bus_running = 1;
6715         ret = 0;
6716
6717 unlock:
6718         mutex_unlock(&pmus_lock);
6719
6720         return ret;
6721 }
6722 device_initcall(perf_event_sysfs_init);