]> nv-tegra.nvidia Code Review - linux-3.10.git/blob - kernel/fork.c
[PATCH] slab: remove kmem_cache_t
[linux-3.10.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/smp_lock.h>
18 #include <linux/module.h>
19 #include <linux/vmalloc.h>
20 #include <linux/completion.h>
21 #include <linux/namespace.h>
22 #include <linux/personality.h>
23 #include <linux/mempolicy.h>
24 #include <linux/sem.h>
25 #include <linux/file.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/fs.h>
30 #include <linux/nsproxy.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/security.h>
35 #include <linux/swap.h>
36 #include <linux/syscalls.h>
37 #include <linux/jiffies.h>
38 #include <linux/futex.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/tsacct_kern.h>
47 #include <linux/cn_proc.h>
48 #include <linux/delayacct.h>
49 #include <linux/taskstats_kern.h>
50 #include <linux/random.h>
51
52 #include <asm/pgtable.h>
53 #include <asm/pgalloc.h>
54 #include <asm/uaccess.h>
55 #include <asm/mmu_context.h>
56 #include <asm/cacheflush.h>
57 #include <asm/tlbflush.h>
58
59 /*
60  * Protected counters by write_lock_irq(&tasklist_lock)
61  */
62 unsigned long total_forks;      /* Handle normal Linux uptimes. */
63 int nr_threads;                 /* The idle threads do not count.. */
64
65 int max_threads;                /* tunable limit on nr_threads */
66
67 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
68
69 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
70
71 int nr_processes(void)
72 {
73         int cpu;
74         int total = 0;
75
76         for_each_online_cpu(cpu)
77                 total += per_cpu(process_counts, cpu);
78
79         return total;
80 }
81
82 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
83 # define alloc_task_struct()    kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
84 # define free_task_struct(tsk)  kmem_cache_free(task_struct_cachep, (tsk))
85 static struct kmem_cache *task_struct_cachep;
86 #endif
87
88 /* SLAB cache for signal_struct structures (tsk->signal) */
89 static struct kmem_cache *signal_cachep;
90
91 /* SLAB cache for sighand_struct structures (tsk->sighand) */
92 struct kmem_cache *sighand_cachep;
93
94 /* SLAB cache for files_struct structures (tsk->files) */
95 struct kmem_cache *files_cachep;
96
97 /* SLAB cache for fs_struct structures (tsk->fs) */
98 struct kmem_cache *fs_cachep;
99
100 /* SLAB cache for vm_area_struct structures */
101 struct kmem_cache *vm_area_cachep;
102
103 /* SLAB cache for mm_struct structures (tsk->mm) */
104 static struct kmem_cache *mm_cachep;
105
106 void free_task(struct task_struct *tsk)
107 {
108         free_thread_info(tsk->thread_info);
109         rt_mutex_debug_task_free(tsk);
110         free_task_struct(tsk);
111 }
112 EXPORT_SYMBOL(free_task);
113
114 void __put_task_struct(struct task_struct *tsk)
115 {
116         WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
117         WARN_ON(atomic_read(&tsk->usage));
118         WARN_ON(tsk == current);
119
120         security_task_free(tsk);
121         free_uid(tsk->user);
122         put_group_info(tsk->group_info);
123         delayacct_tsk_free(tsk);
124
125         if (!profile_handoff_task(tsk))
126                 free_task(tsk);
127 }
128
129 void __init fork_init(unsigned long mempages)
130 {
131 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
132 #ifndef ARCH_MIN_TASKALIGN
133 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
134 #endif
135         /* create a slab on which task_structs can be allocated */
136         task_struct_cachep =
137                 kmem_cache_create("task_struct", sizeof(struct task_struct),
138                         ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
139 #endif
140
141         /*
142          * The default maximum number of threads is set to a safe
143          * value: the thread structures can take up at most half
144          * of memory.
145          */
146         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
147
148         /*
149          * we need to allow at least 20 threads to boot a system
150          */
151         if(max_threads < 20)
152                 max_threads = 20;
153
154         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
155         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
156         init_task.signal->rlim[RLIMIT_SIGPENDING] =
157                 init_task.signal->rlim[RLIMIT_NPROC];
158 }
159
160 static struct task_struct *dup_task_struct(struct task_struct *orig)
161 {
162         struct task_struct *tsk;
163         struct thread_info *ti;
164
165         prepare_to_copy(orig);
166
167         tsk = alloc_task_struct();
168         if (!tsk)
169                 return NULL;
170
171         ti = alloc_thread_info(tsk);
172         if (!ti) {
173                 free_task_struct(tsk);
174                 return NULL;
175         }
176
177         *tsk = *orig;
178         tsk->thread_info = ti;
179         setup_thread_stack(tsk, orig);
180
181 #ifdef CONFIG_CC_STACKPROTECTOR
182         tsk->stack_canary = get_random_int();
183 #endif
184
185         /* One for us, one for whoever does the "release_task()" (usually parent) */
186         atomic_set(&tsk->usage,2);
187         atomic_set(&tsk->fs_excl, 0);
188 #ifdef CONFIG_BLK_DEV_IO_TRACE
189         tsk->btrace_seq = 0;
190 #endif
191         tsk->splice_pipe = NULL;
192         return tsk;
193 }
194
195 #ifdef CONFIG_MMU
196 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
197 {
198         struct vm_area_struct *mpnt, *tmp, **pprev;
199         struct rb_node **rb_link, *rb_parent;
200         int retval;
201         unsigned long charge;
202         struct mempolicy *pol;
203
204         down_write(&oldmm->mmap_sem);
205         flush_cache_mm(oldmm);
206         /*
207          * Not linked in yet - no deadlock potential:
208          */
209         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
210
211         mm->locked_vm = 0;
212         mm->mmap = NULL;
213         mm->mmap_cache = NULL;
214         mm->free_area_cache = oldmm->mmap_base;
215         mm->cached_hole_size = ~0UL;
216         mm->map_count = 0;
217         cpus_clear(mm->cpu_vm_mask);
218         mm->mm_rb = RB_ROOT;
219         rb_link = &mm->mm_rb.rb_node;
220         rb_parent = NULL;
221         pprev = &mm->mmap;
222
223         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
224                 struct file *file;
225
226                 if (mpnt->vm_flags & VM_DONTCOPY) {
227                         long pages = vma_pages(mpnt);
228                         mm->total_vm -= pages;
229                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
230                                                                 -pages);
231                         continue;
232                 }
233                 charge = 0;
234                 if (mpnt->vm_flags & VM_ACCOUNT) {
235                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
236                         if (security_vm_enough_memory(len))
237                                 goto fail_nomem;
238                         charge = len;
239                 }
240                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
241                 if (!tmp)
242                         goto fail_nomem;
243                 *tmp = *mpnt;
244                 pol = mpol_copy(vma_policy(mpnt));
245                 retval = PTR_ERR(pol);
246                 if (IS_ERR(pol))
247                         goto fail_nomem_policy;
248                 vma_set_policy(tmp, pol);
249                 tmp->vm_flags &= ~VM_LOCKED;
250                 tmp->vm_mm = mm;
251                 tmp->vm_next = NULL;
252                 anon_vma_link(tmp);
253                 file = tmp->vm_file;
254                 if (file) {
255                         struct inode *inode = file->f_dentry->d_inode;
256                         get_file(file);
257                         if (tmp->vm_flags & VM_DENYWRITE)
258                                 atomic_dec(&inode->i_writecount);
259       
260                         /* insert tmp into the share list, just after mpnt */
261                         spin_lock(&file->f_mapping->i_mmap_lock);
262                         tmp->vm_truncate_count = mpnt->vm_truncate_count;
263                         flush_dcache_mmap_lock(file->f_mapping);
264                         vma_prio_tree_add(tmp, mpnt);
265                         flush_dcache_mmap_unlock(file->f_mapping);
266                         spin_unlock(&file->f_mapping->i_mmap_lock);
267                 }
268
269                 /*
270                  * Link in the new vma and copy the page table entries.
271                  */
272                 *pprev = tmp;
273                 pprev = &tmp->vm_next;
274
275                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
276                 rb_link = &tmp->vm_rb.rb_right;
277                 rb_parent = &tmp->vm_rb;
278
279                 mm->map_count++;
280                 retval = copy_page_range(mm, oldmm, mpnt);
281
282                 if (tmp->vm_ops && tmp->vm_ops->open)
283                         tmp->vm_ops->open(tmp);
284
285                 if (retval)
286                         goto out;
287         }
288         retval = 0;
289 out:
290         up_write(&mm->mmap_sem);
291         flush_tlb_mm(oldmm);
292         up_write(&oldmm->mmap_sem);
293         return retval;
294 fail_nomem_policy:
295         kmem_cache_free(vm_area_cachep, tmp);
296 fail_nomem:
297         retval = -ENOMEM;
298         vm_unacct_memory(charge);
299         goto out;
300 }
301
302 static inline int mm_alloc_pgd(struct mm_struct * mm)
303 {
304         mm->pgd = pgd_alloc(mm);
305         if (unlikely(!mm->pgd))
306                 return -ENOMEM;
307         return 0;
308 }
309
310 static inline void mm_free_pgd(struct mm_struct * mm)
311 {
312         pgd_free(mm->pgd);
313 }
314 #else
315 #define dup_mmap(mm, oldmm)     (0)
316 #define mm_alloc_pgd(mm)        (0)
317 #define mm_free_pgd(mm)
318 #endif /* CONFIG_MMU */
319
320  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
321
322 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
323 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
324
325 #include <linux/init_task.h>
326
327 static struct mm_struct * mm_init(struct mm_struct * mm)
328 {
329         atomic_set(&mm->mm_users, 1);
330         atomic_set(&mm->mm_count, 1);
331         init_rwsem(&mm->mmap_sem);
332         INIT_LIST_HEAD(&mm->mmlist);
333         mm->core_waiters = 0;
334         mm->nr_ptes = 0;
335         set_mm_counter(mm, file_rss, 0);
336         set_mm_counter(mm, anon_rss, 0);
337         spin_lock_init(&mm->page_table_lock);
338         rwlock_init(&mm->ioctx_list_lock);
339         mm->ioctx_list = NULL;
340         mm->free_area_cache = TASK_UNMAPPED_BASE;
341         mm->cached_hole_size = ~0UL;
342
343         if (likely(!mm_alloc_pgd(mm))) {
344                 mm->def_flags = 0;
345                 return mm;
346         }
347         free_mm(mm);
348         return NULL;
349 }
350
351 /*
352  * Allocate and initialize an mm_struct.
353  */
354 struct mm_struct * mm_alloc(void)
355 {
356         struct mm_struct * mm;
357
358         mm = allocate_mm();
359         if (mm) {
360                 memset(mm, 0, sizeof(*mm));
361                 mm = mm_init(mm);
362         }
363         return mm;
364 }
365
366 /*
367  * Called when the last reference to the mm
368  * is dropped: either by a lazy thread or by
369  * mmput. Free the page directory and the mm.
370  */
371 void fastcall __mmdrop(struct mm_struct *mm)
372 {
373         BUG_ON(mm == &init_mm);
374         mm_free_pgd(mm);
375         destroy_context(mm);
376         free_mm(mm);
377 }
378
379 /*
380  * Decrement the use count and release all resources for an mm.
381  */
382 void mmput(struct mm_struct *mm)
383 {
384         might_sleep();
385
386         if (atomic_dec_and_test(&mm->mm_users)) {
387                 exit_aio(mm);
388                 exit_mmap(mm);
389                 if (!list_empty(&mm->mmlist)) {
390                         spin_lock(&mmlist_lock);
391                         list_del(&mm->mmlist);
392                         spin_unlock(&mmlist_lock);
393                 }
394                 put_swap_token(mm);
395                 mmdrop(mm);
396         }
397 }
398 EXPORT_SYMBOL_GPL(mmput);
399
400 /**
401  * get_task_mm - acquire a reference to the task's mm
402  *
403  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
404  * this kernel workthread has transiently adopted a user mm with use_mm,
405  * to do its AIO) is not set and if so returns a reference to it, after
406  * bumping up the use count.  User must release the mm via mmput()
407  * after use.  Typically used by /proc and ptrace.
408  */
409 struct mm_struct *get_task_mm(struct task_struct *task)
410 {
411         struct mm_struct *mm;
412
413         task_lock(task);
414         mm = task->mm;
415         if (mm) {
416                 if (task->flags & PF_BORROWED_MM)
417                         mm = NULL;
418                 else
419                         atomic_inc(&mm->mm_users);
420         }
421         task_unlock(task);
422         return mm;
423 }
424 EXPORT_SYMBOL_GPL(get_task_mm);
425
426 /* Please note the differences between mmput and mm_release.
427  * mmput is called whenever we stop holding onto a mm_struct,
428  * error success whatever.
429  *
430  * mm_release is called after a mm_struct has been removed
431  * from the current process.
432  *
433  * This difference is important for error handling, when we
434  * only half set up a mm_struct for a new process and need to restore
435  * the old one.  Because we mmput the new mm_struct before
436  * restoring the old one. . .
437  * Eric Biederman 10 January 1998
438  */
439 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
440 {
441         struct completion *vfork_done = tsk->vfork_done;
442
443         /* Get rid of any cached register state */
444         deactivate_mm(tsk, mm);
445
446         /* notify parent sleeping on vfork() */
447         if (vfork_done) {
448                 tsk->vfork_done = NULL;
449                 complete(vfork_done);
450         }
451         if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
452                 u32 __user * tidptr = tsk->clear_child_tid;
453                 tsk->clear_child_tid = NULL;
454
455                 /*
456                  * We don't check the error code - if userspace has
457                  * not set up a proper pointer then tough luck.
458                  */
459                 put_user(0, tidptr);
460                 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
461         }
462 }
463
464 /*
465  * Allocate a new mm structure and copy contents from the
466  * mm structure of the passed in task structure.
467  */
468 static struct mm_struct *dup_mm(struct task_struct *tsk)
469 {
470         struct mm_struct *mm, *oldmm = current->mm;
471         int err;
472
473         if (!oldmm)
474                 return NULL;
475
476         mm = allocate_mm();
477         if (!mm)
478                 goto fail_nomem;
479
480         memcpy(mm, oldmm, sizeof(*mm));
481
482         /* Initializing for Swap token stuff */
483         mm->token_priority = 0;
484         mm->last_interval = 0;
485
486         if (!mm_init(mm))
487                 goto fail_nomem;
488
489         if (init_new_context(tsk, mm))
490                 goto fail_nocontext;
491
492         err = dup_mmap(mm, oldmm);
493         if (err)
494                 goto free_pt;
495
496         mm->hiwater_rss = get_mm_rss(mm);
497         mm->hiwater_vm = mm->total_vm;
498
499         return mm;
500
501 free_pt:
502         mmput(mm);
503
504 fail_nomem:
505         return NULL;
506
507 fail_nocontext:
508         /*
509          * If init_new_context() failed, we cannot use mmput() to free the mm
510          * because it calls destroy_context()
511          */
512         mm_free_pgd(mm);
513         free_mm(mm);
514         return NULL;
515 }
516
517 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
518 {
519         struct mm_struct * mm, *oldmm;
520         int retval;
521
522         tsk->min_flt = tsk->maj_flt = 0;
523         tsk->nvcsw = tsk->nivcsw = 0;
524
525         tsk->mm = NULL;
526         tsk->active_mm = NULL;
527
528         /*
529          * Are we cloning a kernel thread?
530          *
531          * We need to steal a active VM for that..
532          */
533         oldmm = current->mm;
534         if (!oldmm)
535                 return 0;
536
537         if (clone_flags & CLONE_VM) {
538                 atomic_inc(&oldmm->mm_users);
539                 mm = oldmm;
540                 goto good_mm;
541         }
542
543         retval = -ENOMEM;
544         mm = dup_mm(tsk);
545         if (!mm)
546                 goto fail_nomem;
547
548 good_mm:
549         /* Initializing for Swap token stuff */
550         mm->token_priority = 0;
551         mm->last_interval = 0;
552
553         tsk->mm = mm;
554         tsk->active_mm = mm;
555         return 0;
556
557 fail_nomem:
558         return retval;
559 }
560
561 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
562 {
563         struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
564         /* We don't need to lock fs - think why ;-) */
565         if (fs) {
566                 atomic_set(&fs->count, 1);
567                 rwlock_init(&fs->lock);
568                 fs->umask = old->umask;
569                 read_lock(&old->lock);
570                 fs->rootmnt = mntget(old->rootmnt);
571                 fs->root = dget(old->root);
572                 fs->pwdmnt = mntget(old->pwdmnt);
573                 fs->pwd = dget(old->pwd);
574                 if (old->altroot) {
575                         fs->altrootmnt = mntget(old->altrootmnt);
576                         fs->altroot = dget(old->altroot);
577                 } else {
578                         fs->altrootmnt = NULL;
579                         fs->altroot = NULL;
580                 }
581                 read_unlock(&old->lock);
582         }
583         return fs;
584 }
585
586 struct fs_struct *copy_fs_struct(struct fs_struct *old)
587 {
588         return __copy_fs_struct(old);
589 }
590
591 EXPORT_SYMBOL_GPL(copy_fs_struct);
592
593 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
594 {
595         if (clone_flags & CLONE_FS) {
596                 atomic_inc(&current->fs->count);
597                 return 0;
598         }
599         tsk->fs = __copy_fs_struct(current->fs);
600         if (!tsk->fs)
601                 return -ENOMEM;
602         return 0;
603 }
604
605 static int count_open_files(struct fdtable *fdt)
606 {
607         int size = fdt->max_fdset;
608         int i;
609
610         /* Find the last open fd */
611         for (i = size/(8*sizeof(long)); i > 0; ) {
612                 if (fdt->open_fds->fds_bits[--i])
613                         break;
614         }
615         i = (i+1) * 8 * sizeof(long);
616         return i;
617 }
618
619 static struct files_struct *alloc_files(void)
620 {
621         struct files_struct *newf;
622         struct fdtable *fdt;
623
624         newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
625         if (!newf)
626                 goto out;
627
628         atomic_set(&newf->count, 1);
629
630         spin_lock_init(&newf->file_lock);
631         newf->next_fd = 0;
632         fdt = &newf->fdtab;
633         fdt->max_fds = NR_OPEN_DEFAULT;
634         fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
635         fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
636         fdt->open_fds = (fd_set *)&newf->open_fds_init;
637         fdt->fd = &newf->fd_array[0];
638         INIT_RCU_HEAD(&fdt->rcu);
639         fdt->free_files = NULL;
640         fdt->next = NULL;
641         rcu_assign_pointer(newf->fdt, fdt);
642 out:
643         return newf;
644 }
645
646 /*
647  * Allocate a new files structure and copy contents from the
648  * passed in files structure.
649  * errorp will be valid only when the returned files_struct is NULL.
650  */
651 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
652 {
653         struct files_struct *newf;
654         struct file **old_fds, **new_fds;
655         int open_files, size, i, expand;
656         struct fdtable *old_fdt, *new_fdt;
657
658         *errorp = -ENOMEM;
659         newf = alloc_files();
660         if (!newf)
661                 goto out;
662
663         spin_lock(&oldf->file_lock);
664         old_fdt = files_fdtable(oldf);
665         new_fdt = files_fdtable(newf);
666         size = old_fdt->max_fdset;
667         open_files = count_open_files(old_fdt);
668         expand = 0;
669
670         /*
671          * Check whether we need to allocate a larger fd array or fd set.
672          * Note: we're not a clone task, so the open count won't  change.
673          */
674         if (open_files > new_fdt->max_fdset) {
675                 new_fdt->max_fdset = 0;
676                 expand = 1;
677         }
678         if (open_files > new_fdt->max_fds) {
679                 new_fdt->max_fds = 0;
680                 expand = 1;
681         }
682
683         /* if the old fdset gets grown now, we'll only copy up to "size" fds */
684         if (expand) {
685                 spin_unlock(&oldf->file_lock);
686                 spin_lock(&newf->file_lock);
687                 *errorp = expand_files(newf, open_files-1);
688                 spin_unlock(&newf->file_lock);
689                 if (*errorp < 0)
690                         goto out_release;
691                 new_fdt = files_fdtable(newf);
692                 /*
693                  * Reacquire the oldf lock and a pointer to its fd table
694                  * who knows it may have a new bigger fd table. We need
695                  * the latest pointer.
696                  */
697                 spin_lock(&oldf->file_lock);
698                 old_fdt = files_fdtable(oldf);
699         }
700
701         old_fds = old_fdt->fd;
702         new_fds = new_fdt->fd;
703
704         memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
705         memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
706
707         for (i = open_files; i != 0; i--) {
708                 struct file *f = *old_fds++;
709                 if (f) {
710                         get_file(f);
711                 } else {
712                         /*
713                          * The fd may be claimed in the fd bitmap but not yet
714                          * instantiated in the files array if a sibling thread
715                          * is partway through open().  So make sure that this
716                          * fd is available to the new process.
717                          */
718                         FD_CLR(open_files - i, new_fdt->open_fds);
719                 }
720                 rcu_assign_pointer(*new_fds++, f);
721         }
722         spin_unlock(&oldf->file_lock);
723
724         /* compute the remainder to be cleared */
725         size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
726
727         /* This is long word aligned thus could use a optimized version */ 
728         memset(new_fds, 0, size); 
729
730         if (new_fdt->max_fdset > open_files) {
731                 int left = (new_fdt->max_fdset-open_files)/8;
732                 int start = open_files / (8 * sizeof(unsigned long));
733
734                 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
735                 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
736         }
737
738 out:
739         return newf;
740
741 out_release:
742         free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
743         free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
744         free_fd_array(new_fdt->fd, new_fdt->max_fds);
745         kmem_cache_free(files_cachep, newf);
746         return NULL;
747 }
748
749 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
750 {
751         struct files_struct *oldf, *newf;
752         int error = 0;
753
754         /*
755          * A background process may not have any files ...
756          */
757         oldf = current->files;
758         if (!oldf)
759                 goto out;
760
761         if (clone_flags & CLONE_FILES) {
762                 atomic_inc(&oldf->count);
763                 goto out;
764         }
765
766         /*
767          * Note: we may be using current for both targets (See exec.c)
768          * This works because we cache current->files (old) as oldf. Don't
769          * break this.
770          */
771         tsk->files = NULL;
772         newf = dup_fd(oldf, &error);
773         if (!newf)
774                 goto out;
775
776         tsk->files = newf;
777         error = 0;
778 out:
779         return error;
780 }
781
782 /*
783  *      Helper to unshare the files of the current task.
784  *      We don't want to expose copy_files internals to
785  *      the exec layer of the kernel.
786  */
787
788 int unshare_files(void)
789 {
790         struct files_struct *files  = current->files;
791         int rc;
792
793         BUG_ON(!files);
794
795         /* This can race but the race causes us to copy when we don't
796            need to and drop the copy */
797         if(atomic_read(&files->count) == 1)
798         {
799                 atomic_inc(&files->count);
800                 return 0;
801         }
802         rc = copy_files(0, current);
803         if(rc)
804                 current->files = files;
805         return rc;
806 }
807
808 EXPORT_SYMBOL(unshare_files);
809
810 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
811 {
812         struct sighand_struct *sig;
813
814         if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
815                 atomic_inc(&current->sighand->count);
816                 return 0;
817         }
818         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
819         rcu_assign_pointer(tsk->sighand, sig);
820         if (!sig)
821                 return -ENOMEM;
822         atomic_set(&sig->count, 1);
823         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
824         return 0;
825 }
826
827 void __cleanup_sighand(struct sighand_struct *sighand)
828 {
829         if (atomic_dec_and_test(&sighand->count))
830                 kmem_cache_free(sighand_cachep, sighand);
831 }
832
833 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
834 {
835         struct signal_struct *sig;
836         int ret;
837
838         if (clone_flags & CLONE_THREAD) {
839                 atomic_inc(&current->signal->count);
840                 atomic_inc(&current->signal->live);
841                 taskstats_tgid_alloc(current);
842                 return 0;
843         }
844         sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
845         tsk->signal = sig;
846         if (!sig)
847                 return -ENOMEM;
848
849         ret = copy_thread_group_keys(tsk);
850         if (ret < 0) {
851                 kmem_cache_free(signal_cachep, sig);
852                 return ret;
853         }
854
855         atomic_set(&sig->count, 1);
856         atomic_set(&sig->live, 1);
857         init_waitqueue_head(&sig->wait_chldexit);
858         sig->flags = 0;
859         sig->group_exit_code = 0;
860         sig->group_exit_task = NULL;
861         sig->group_stop_count = 0;
862         sig->curr_target = NULL;
863         init_sigpending(&sig->shared_pending);
864         INIT_LIST_HEAD(&sig->posix_timers);
865
866         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
867         sig->it_real_incr.tv64 = 0;
868         sig->real_timer.function = it_real_fn;
869         sig->tsk = tsk;
870
871         sig->it_virt_expires = cputime_zero;
872         sig->it_virt_incr = cputime_zero;
873         sig->it_prof_expires = cputime_zero;
874         sig->it_prof_incr = cputime_zero;
875
876         sig->leader = 0;        /* session leadership doesn't inherit */
877         sig->tty_old_pgrp = 0;
878
879         sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
880         sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
881         sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
882         sig->sched_time = 0;
883         INIT_LIST_HEAD(&sig->cpu_timers[0]);
884         INIT_LIST_HEAD(&sig->cpu_timers[1]);
885         INIT_LIST_HEAD(&sig->cpu_timers[2]);
886         taskstats_tgid_init(sig);
887
888         task_lock(current->group_leader);
889         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
890         task_unlock(current->group_leader);
891
892         if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
893                 /*
894                  * New sole thread in the process gets an expiry time
895                  * of the whole CPU time limit.
896                  */
897                 tsk->it_prof_expires =
898                         secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
899         }
900         acct_init_pacct(&sig->pacct);
901
902         return 0;
903 }
904
905 void __cleanup_signal(struct signal_struct *sig)
906 {
907         exit_thread_group_keys(sig);
908         kmem_cache_free(signal_cachep, sig);
909 }
910
911 static inline void cleanup_signal(struct task_struct *tsk)
912 {
913         struct signal_struct *sig = tsk->signal;
914
915         atomic_dec(&sig->live);
916
917         if (atomic_dec_and_test(&sig->count))
918                 __cleanup_signal(sig);
919 }
920
921 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
922 {
923         unsigned long new_flags = p->flags;
924
925         new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
926         new_flags |= PF_FORKNOEXEC;
927         if (!(clone_flags & CLONE_PTRACE))
928                 p->ptrace = 0;
929         p->flags = new_flags;
930 }
931
932 asmlinkage long sys_set_tid_address(int __user *tidptr)
933 {
934         current->clear_child_tid = tidptr;
935
936         return current->pid;
937 }
938
939 static inline void rt_mutex_init_task(struct task_struct *p)
940 {
941 #ifdef CONFIG_RT_MUTEXES
942         spin_lock_init(&p->pi_lock);
943         plist_head_init(&p->pi_waiters, &p->pi_lock);
944         p->pi_blocked_on = NULL;
945 #endif
946 }
947
948 /*
949  * This creates a new process as a copy of the old one,
950  * but does not actually start it yet.
951  *
952  * It copies the registers, and all the appropriate
953  * parts of the process environment (as per the clone
954  * flags). The actual kick-off is left to the caller.
955  */
956 static struct task_struct *copy_process(unsigned long clone_flags,
957                                         unsigned long stack_start,
958                                         struct pt_regs *regs,
959                                         unsigned long stack_size,
960                                         int __user *parent_tidptr,
961                                         int __user *child_tidptr,
962                                         int pid)
963 {
964         int retval;
965         struct task_struct *p = NULL;
966
967         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
968                 return ERR_PTR(-EINVAL);
969
970         /*
971          * Thread groups must share signals as well, and detached threads
972          * can only be started up within the thread group.
973          */
974         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
975                 return ERR_PTR(-EINVAL);
976
977         /*
978          * Shared signal handlers imply shared VM. By way of the above,
979          * thread groups also imply shared VM. Blocking this case allows
980          * for various simplifications in other code.
981          */
982         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
983                 return ERR_PTR(-EINVAL);
984
985         retval = security_task_create(clone_flags);
986         if (retval)
987                 goto fork_out;
988
989         retval = -ENOMEM;
990         p = dup_task_struct(current);
991         if (!p)
992                 goto fork_out;
993
994         rt_mutex_init_task(p);
995
996 #ifdef CONFIG_TRACE_IRQFLAGS
997         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
998         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
999 #endif
1000         retval = -EAGAIN;
1001         if (atomic_read(&p->user->processes) >=
1002                         p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1003                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1004                                 p->user != &root_user)
1005                         goto bad_fork_free;
1006         }
1007
1008         atomic_inc(&p->user->__count);
1009         atomic_inc(&p->user->processes);
1010         get_group_info(p->group_info);
1011
1012         /*
1013          * If multiple threads are within copy_process(), then this check
1014          * triggers too late. This doesn't hurt, the check is only there
1015          * to stop root fork bombs.
1016          */
1017         if (nr_threads >= max_threads)
1018                 goto bad_fork_cleanup_count;
1019
1020         if (!try_module_get(task_thread_info(p)->exec_domain->module))
1021                 goto bad_fork_cleanup_count;
1022
1023         if (p->binfmt && !try_module_get(p->binfmt->module))
1024                 goto bad_fork_cleanup_put_domain;
1025
1026         p->did_exec = 0;
1027         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1028         copy_flags(clone_flags, p);
1029         p->pid = pid;
1030         retval = -EFAULT;
1031         if (clone_flags & CLONE_PARENT_SETTID)
1032                 if (put_user(p->pid, parent_tidptr))
1033                         goto bad_fork_cleanup_delays_binfmt;
1034
1035         INIT_LIST_HEAD(&p->children);
1036         INIT_LIST_HEAD(&p->sibling);
1037         p->vfork_done = NULL;
1038         spin_lock_init(&p->alloc_lock);
1039
1040         clear_tsk_thread_flag(p, TIF_SIGPENDING);
1041         init_sigpending(&p->pending);
1042
1043         p->utime = cputime_zero;
1044         p->stime = cputime_zero;
1045         p->sched_time = 0;
1046         p->rchar = 0;           /* I/O counter: bytes read */
1047         p->wchar = 0;           /* I/O counter: bytes written */
1048         p->syscr = 0;           /* I/O counter: read syscalls */
1049         p->syscw = 0;           /* I/O counter: write syscalls */
1050         acct_clear_integrals(p);
1051
1052         p->it_virt_expires = cputime_zero;
1053         p->it_prof_expires = cputime_zero;
1054         p->it_sched_expires = 0;
1055         INIT_LIST_HEAD(&p->cpu_timers[0]);
1056         INIT_LIST_HEAD(&p->cpu_timers[1]);
1057         INIT_LIST_HEAD(&p->cpu_timers[2]);
1058
1059         p->lock_depth = -1;             /* -1 = no lock */
1060         do_posix_clock_monotonic_gettime(&p->start_time);
1061         p->security = NULL;
1062         p->io_context = NULL;
1063         p->io_wait = NULL;
1064         p->audit_context = NULL;
1065         cpuset_fork(p);
1066 #ifdef CONFIG_NUMA
1067         p->mempolicy = mpol_copy(p->mempolicy);
1068         if (IS_ERR(p->mempolicy)) {
1069                 retval = PTR_ERR(p->mempolicy);
1070                 p->mempolicy = NULL;
1071                 goto bad_fork_cleanup_cpuset;
1072         }
1073         mpol_fix_fork_child_flag(p);
1074 #endif
1075 #ifdef CONFIG_TRACE_IRQFLAGS
1076         p->irq_events = 0;
1077 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1078         p->hardirqs_enabled = 1;
1079 #else
1080         p->hardirqs_enabled = 0;
1081 #endif
1082         p->hardirq_enable_ip = 0;
1083         p->hardirq_enable_event = 0;
1084         p->hardirq_disable_ip = _THIS_IP_;
1085         p->hardirq_disable_event = 0;
1086         p->softirqs_enabled = 1;
1087         p->softirq_enable_ip = _THIS_IP_;
1088         p->softirq_enable_event = 0;
1089         p->softirq_disable_ip = 0;
1090         p->softirq_disable_event = 0;
1091         p->hardirq_context = 0;
1092         p->softirq_context = 0;
1093 #endif
1094 #ifdef CONFIG_LOCKDEP
1095         p->lockdep_depth = 0; /* no locks held yet */
1096         p->curr_chain_key = 0;
1097         p->lockdep_recursion = 0;
1098 #endif
1099
1100 #ifdef CONFIG_DEBUG_MUTEXES
1101         p->blocked_on = NULL; /* not blocked yet */
1102 #endif
1103
1104         p->tgid = p->pid;
1105         if (clone_flags & CLONE_THREAD)
1106                 p->tgid = current->tgid;
1107
1108         if ((retval = security_task_alloc(p)))
1109                 goto bad_fork_cleanup_policy;
1110         if ((retval = audit_alloc(p)))
1111                 goto bad_fork_cleanup_security;
1112         /* copy all the process information */
1113         if ((retval = copy_semundo(clone_flags, p)))
1114                 goto bad_fork_cleanup_audit;
1115         if ((retval = copy_files(clone_flags, p)))
1116                 goto bad_fork_cleanup_semundo;
1117         if ((retval = copy_fs(clone_flags, p)))
1118                 goto bad_fork_cleanup_files;
1119         if ((retval = copy_sighand(clone_flags, p)))
1120                 goto bad_fork_cleanup_fs;
1121         if ((retval = copy_signal(clone_flags, p)))
1122                 goto bad_fork_cleanup_sighand;
1123         if ((retval = copy_mm(clone_flags, p)))
1124                 goto bad_fork_cleanup_signal;
1125         if ((retval = copy_keys(clone_flags, p)))
1126                 goto bad_fork_cleanup_mm;
1127         if ((retval = copy_namespaces(clone_flags, p)))
1128                 goto bad_fork_cleanup_keys;
1129         retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1130         if (retval)
1131                 goto bad_fork_cleanup_namespaces;
1132
1133         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1134         /*
1135          * Clear TID on mm_release()?
1136          */
1137         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1138         p->robust_list = NULL;
1139 #ifdef CONFIG_COMPAT
1140         p->compat_robust_list = NULL;
1141 #endif
1142         INIT_LIST_HEAD(&p->pi_state_list);
1143         p->pi_state_cache = NULL;
1144
1145         /*
1146          * sigaltstack should be cleared when sharing the same VM
1147          */
1148         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1149                 p->sas_ss_sp = p->sas_ss_size = 0;
1150
1151         /*
1152          * Syscall tracing should be turned off in the child regardless
1153          * of CLONE_PTRACE.
1154          */
1155         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1156 #ifdef TIF_SYSCALL_EMU
1157         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1158 #endif
1159
1160         /* Our parent execution domain becomes current domain
1161            These must match for thread signalling to apply */
1162         p->parent_exec_id = p->self_exec_id;
1163
1164         /* ok, now we should be set up.. */
1165         p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1166         p->pdeath_signal = 0;
1167         p->exit_state = 0;
1168
1169         /*
1170          * Ok, make it visible to the rest of the system.
1171          * We dont wake it up yet.
1172          */
1173         p->group_leader = p;
1174         INIT_LIST_HEAD(&p->thread_group);
1175         INIT_LIST_HEAD(&p->ptrace_children);
1176         INIT_LIST_HEAD(&p->ptrace_list);
1177
1178         /* Perform scheduler related setup. Assign this task to a CPU. */
1179         sched_fork(p, clone_flags);
1180
1181         /* Need tasklist lock for parent etc handling! */
1182         write_lock_irq(&tasklist_lock);
1183
1184         /* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
1185         p->ioprio = current->ioprio;
1186
1187         /*
1188          * The task hasn't been attached yet, so its cpus_allowed mask will
1189          * not be changed, nor will its assigned CPU.
1190          *
1191          * The cpus_allowed mask of the parent may have changed after it was
1192          * copied first time - so re-copy it here, then check the child's CPU
1193          * to ensure it is on a valid CPU (and if not, just force it back to
1194          * parent's CPU). This avoids alot of nasty races.
1195          */
1196         p->cpus_allowed = current->cpus_allowed;
1197         if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1198                         !cpu_online(task_cpu(p))))
1199                 set_task_cpu(p, smp_processor_id());
1200
1201         /* CLONE_PARENT re-uses the old parent */
1202         if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1203                 p->real_parent = current->real_parent;
1204         else
1205                 p->real_parent = current;
1206         p->parent = p->real_parent;
1207
1208         spin_lock(&current->sighand->siglock);
1209
1210         /*
1211          * Process group and session signals need to be delivered to just the
1212          * parent before the fork or both the parent and the child after the
1213          * fork. Restart if a signal comes in before we add the new process to
1214          * it's process group.
1215          * A fatal signal pending means that current will exit, so the new
1216          * thread can't slip out of an OOM kill (or normal SIGKILL).
1217          */
1218         recalc_sigpending();
1219         if (signal_pending(current)) {
1220                 spin_unlock(&current->sighand->siglock);
1221                 write_unlock_irq(&tasklist_lock);
1222                 retval = -ERESTARTNOINTR;
1223                 goto bad_fork_cleanup_namespaces;
1224         }
1225
1226         if (clone_flags & CLONE_THREAD) {
1227                 p->group_leader = current->group_leader;
1228                 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1229
1230                 if (!cputime_eq(current->signal->it_virt_expires,
1231                                 cputime_zero) ||
1232                     !cputime_eq(current->signal->it_prof_expires,
1233                                 cputime_zero) ||
1234                     current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1235                     !list_empty(&current->signal->cpu_timers[0]) ||
1236                     !list_empty(&current->signal->cpu_timers[1]) ||
1237                     !list_empty(&current->signal->cpu_timers[2])) {
1238                         /*
1239                          * Have child wake up on its first tick to check
1240                          * for process CPU timers.
1241                          */
1242                         p->it_prof_expires = jiffies_to_cputime(1);
1243                 }
1244         }
1245
1246         if (likely(p->pid)) {
1247                 add_parent(p);
1248                 if (unlikely(p->ptrace & PT_PTRACED))
1249                         __ptrace_link(p, current->parent);
1250
1251                 if (thread_group_leader(p)) {
1252                         p->signal->tty = current->signal->tty;
1253                         p->signal->pgrp = process_group(current);
1254                         p->signal->session = current->signal->session;
1255                         attach_pid(p, PIDTYPE_PGID, process_group(p));
1256                         attach_pid(p, PIDTYPE_SID, p->signal->session);
1257
1258                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1259                         __get_cpu_var(process_counts)++;
1260                 }
1261                 attach_pid(p, PIDTYPE_PID, p->pid);
1262                 nr_threads++;
1263         }
1264
1265         total_forks++;
1266         spin_unlock(&current->sighand->siglock);
1267         write_unlock_irq(&tasklist_lock);
1268         proc_fork_connector(p);
1269         return p;
1270
1271 bad_fork_cleanup_namespaces:
1272         exit_task_namespaces(p);
1273 bad_fork_cleanup_keys:
1274         exit_keys(p);
1275 bad_fork_cleanup_mm:
1276         if (p->mm)
1277                 mmput(p->mm);
1278 bad_fork_cleanup_signal:
1279         cleanup_signal(p);
1280 bad_fork_cleanup_sighand:
1281         __cleanup_sighand(p->sighand);
1282 bad_fork_cleanup_fs:
1283         exit_fs(p); /* blocking */
1284 bad_fork_cleanup_files:
1285         exit_files(p); /* blocking */
1286 bad_fork_cleanup_semundo:
1287         exit_sem(p);
1288 bad_fork_cleanup_audit:
1289         audit_free(p);
1290 bad_fork_cleanup_security:
1291         security_task_free(p);
1292 bad_fork_cleanup_policy:
1293 #ifdef CONFIG_NUMA
1294         mpol_free(p->mempolicy);
1295 bad_fork_cleanup_cpuset:
1296 #endif
1297         cpuset_exit(p);
1298 bad_fork_cleanup_delays_binfmt:
1299         delayacct_tsk_free(p);
1300         if (p->binfmt)
1301                 module_put(p->binfmt->module);
1302 bad_fork_cleanup_put_domain:
1303         module_put(task_thread_info(p)->exec_domain->module);
1304 bad_fork_cleanup_count:
1305         put_group_info(p->group_info);
1306         atomic_dec(&p->user->processes);
1307         free_uid(p->user);
1308 bad_fork_free:
1309         free_task(p);
1310 fork_out:
1311         return ERR_PTR(retval);
1312 }
1313
1314 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1315 {
1316         memset(regs, 0, sizeof(struct pt_regs));
1317         return regs;
1318 }
1319
1320 struct task_struct * __devinit fork_idle(int cpu)
1321 {
1322         struct task_struct *task;
1323         struct pt_regs regs;
1324
1325         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1326         if (!IS_ERR(task))
1327                 init_idle(task, cpu);
1328
1329         return task;
1330 }
1331
1332 static inline int fork_traceflag (unsigned clone_flags)
1333 {
1334         if (clone_flags & CLONE_UNTRACED)
1335                 return 0;
1336         else if (clone_flags & CLONE_VFORK) {
1337                 if (current->ptrace & PT_TRACE_VFORK)
1338                         return PTRACE_EVENT_VFORK;
1339         } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1340                 if (current->ptrace & PT_TRACE_CLONE)
1341                         return PTRACE_EVENT_CLONE;
1342         } else if (current->ptrace & PT_TRACE_FORK)
1343                 return PTRACE_EVENT_FORK;
1344
1345         return 0;
1346 }
1347
1348 /*
1349  *  Ok, this is the main fork-routine.
1350  *
1351  * It copies the process, and if successful kick-starts
1352  * it and waits for it to finish using the VM if required.
1353  */
1354 long do_fork(unsigned long clone_flags,
1355               unsigned long stack_start,
1356               struct pt_regs *regs,
1357               unsigned long stack_size,
1358               int __user *parent_tidptr,
1359               int __user *child_tidptr)
1360 {
1361         struct task_struct *p;
1362         int trace = 0;
1363         struct pid *pid = alloc_pid();
1364         long nr;
1365
1366         if (!pid)
1367                 return -EAGAIN;
1368         nr = pid->nr;
1369         if (unlikely(current->ptrace)) {
1370                 trace = fork_traceflag (clone_flags);
1371                 if (trace)
1372                         clone_flags |= CLONE_PTRACE;
1373         }
1374
1375         p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, nr);
1376         /*
1377          * Do this prior waking up the new thread - the thread pointer
1378          * might get invalid after that point, if the thread exits quickly.
1379          */
1380         if (!IS_ERR(p)) {
1381                 struct completion vfork;
1382
1383                 if (clone_flags & CLONE_VFORK) {
1384                         p->vfork_done = &vfork;
1385                         init_completion(&vfork);
1386                 }
1387
1388                 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1389                         /*
1390                          * We'll start up with an immediate SIGSTOP.
1391                          */
1392                         sigaddset(&p->pending.signal, SIGSTOP);
1393                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1394                 }
1395
1396                 if (!(clone_flags & CLONE_STOPPED))
1397                         wake_up_new_task(p, clone_flags);
1398                 else
1399                         p->state = TASK_STOPPED;
1400
1401                 if (unlikely (trace)) {
1402                         current->ptrace_message = nr;
1403                         ptrace_notify ((trace << 8) | SIGTRAP);
1404                 }
1405
1406                 if (clone_flags & CLONE_VFORK) {
1407                         wait_for_completion(&vfork);
1408                         if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1409                                 current->ptrace_message = nr;
1410                                 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1411                         }
1412                 }
1413         } else {
1414                 free_pid(pid);
1415                 nr = PTR_ERR(p);
1416         }
1417         return nr;
1418 }
1419
1420 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1421 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1422 #endif
1423
1424 static void sighand_ctor(void *data, struct kmem_cache *cachep, unsigned long flags)
1425 {
1426         struct sighand_struct *sighand = data;
1427
1428         if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
1429                                         SLAB_CTOR_CONSTRUCTOR)
1430                 spin_lock_init(&sighand->siglock);
1431 }
1432
1433 void __init proc_caches_init(void)
1434 {
1435         sighand_cachep = kmem_cache_create("sighand_cache",
1436                         sizeof(struct sighand_struct), 0,
1437                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1438                         sighand_ctor, NULL);
1439         signal_cachep = kmem_cache_create("signal_cache",
1440                         sizeof(struct signal_struct), 0,
1441                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1442         files_cachep = kmem_cache_create("files_cache", 
1443                         sizeof(struct files_struct), 0,
1444                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1445         fs_cachep = kmem_cache_create("fs_cache", 
1446                         sizeof(struct fs_struct), 0,
1447                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1448         vm_area_cachep = kmem_cache_create("vm_area_struct",
1449                         sizeof(struct vm_area_struct), 0,
1450                         SLAB_PANIC, NULL, NULL);
1451         mm_cachep = kmem_cache_create("mm_struct",
1452                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1453                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1454 }
1455
1456
1457 /*
1458  * Check constraints on flags passed to the unshare system call and
1459  * force unsharing of additional process context as appropriate.
1460  */
1461 static inline void check_unshare_flags(unsigned long *flags_ptr)
1462 {
1463         /*
1464          * If unsharing a thread from a thread group, must also
1465          * unshare vm.
1466          */
1467         if (*flags_ptr & CLONE_THREAD)
1468                 *flags_ptr |= CLONE_VM;
1469
1470         /*
1471          * If unsharing vm, must also unshare signal handlers.
1472          */
1473         if (*flags_ptr & CLONE_VM)
1474                 *flags_ptr |= CLONE_SIGHAND;
1475
1476         /*
1477          * If unsharing signal handlers and the task was created
1478          * using CLONE_THREAD, then must unshare the thread
1479          */
1480         if ((*flags_ptr & CLONE_SIGHAND) &&
1481             (atomic_read(&current->signal->count) > 1))
1482                 *flags_ptr |= CLONE_THREAD;
1483
1484         /*
1485          * If unsharing namespace, must also unshare filesystem information.
1486          */
1487         if (*flags_ptr & CLONE_NEWNS)
1488                 *flags_ptr |= CLONE_FS;
1489 }
1490
1491 /*
1492  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1493  */
1494 static int unshare_thread(unsigned long unshare_flags)
1495 {
1496         if (unshare_flags & CLONE_THREAD)
1497                 return -EINVAL;
1498
1499         return 0;
1500 }
1501
1502 /*
1503  * Unshare the filesystem structure if it is being shared
1504  */
1505 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1506 {
1507         struct fs_struct *fs = current->fs;
1508
1509         if ((unshare_flags & CLONE_FS) &&
1510             (fs && atomic_read(&fs->count) > 1)) {
1511                 *new_fsp = __copy_fs_struct(current->fs);
1512                 if (!*new_fsp)
1513                         return -ENOMEM;
1514         }
1515
1516         return 0;
1517 }
1518
1519 /*
1520  * Unshare the namespace structure if it is being shared
1521  */
1522 static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
1523 {
1524         struct namespace *ns = current->nsproxy->namespace;
1525
1526         if ((unshare_flags & CLONE_NEWNS) && ns) {
1527                 if (!capable(CAP_SYS_ADMIN))
1528                         return -EPERM;
1529
1530                 *new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
1531                 if (!*new_nsp)
1532                         return -ENOMEM;
1533         }
1534
1535         return 0;
1536 }
1537
1538 /*
1539  * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
1540  * supported yet
1541  */
1542 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1543 {
1544         struct sighand_struct *sigh = current->sighand;
1545
1546         if ((unshare_flags & CLONE_SIGHAND) &&
1547             (sigh && atomic_read(&sigh->count) > 1))
1548                 return -EINVAL;
1549         else
1550                 return 0;
1551 }
1552
1553 /*
1554  * Unshare vm if it is being shared
1555  */
1556 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1557 {
1558         struct mm_struct *mm = current->mm;
1559
1560         if ((unshare_flags & CLONE_VM) &&
1561             (mm && atomic_read(&mm->mm_users) > 1)) {
1562                 return -EINVAL;
1563         }
1564
1565         return 0;
1566 }
1567
1568 /*
1569  * Unshare file descriptor table if it is being shared
1570  */
1571 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1572 {
1573         struct files_struct *fd = current->files;
1574         int error = 0;
1575
1576         if ((unshare_flags & CLONE_FILES) &&
1577             (fd && atomic_read(&fd->count) > 1)) {
1578                 *new_fdp = dup_fd(fd, &error);
1579                 if (!*new_fdp)
1580                         return error;
1581         }
1582
1583         return 0;
1584 }
1585
1586 /*
1587  * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1588  * supported yet
1589  */
1590 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1591 {
1592         if (unshare_flags & CLONE_SYSVSEM)
1593                 return -EINVAL;
1594
1595         return 0;
1596 }
1597
1598 #ifndef CONFIG_IPC_NS
1599 static inline int unshare_ipcs(unsigned long flags, struct ipc_namespace **ns)
1600 {
1601         if (flags & CLONE_NEWIPC)
1602                 return -EINVAL;
1603
1604         return 0;
1605 }
1606 #endif
1607
1608 /*
1609  * unshare allows a process to 'unshare' part of the process
1610  * context which was originally shared using clone.  copy_*
1611  * functions used by do_fork() cannot be used here directly
1612  * because they modify an inactive task_struct that is being
1613  * constructed. Here we are modifying the current, active,
1614  * task_struct.
1615  */
1616 asmlinkage long sys_unshare(unsigned long unshare_flags)
1617 {
1618         int err = 0;
1619         struct fs_struct *fs, *new_fs = NULL;
1620         struct namespace *ns, *new_ns = NULL;
1621         struct sighand_struct *sigh, *new_sigh = NULL;
1622         struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1623         struct files_struct *fd, *new_fd = NULL;
1624         struct sem_undo_list *new_ulist = NULL;
1625         struct nsproxy *new_nsproxy = NULL, *old_nsproxy = NULL;
1626         struct uts_namespace *uts, *new_uts = NULL;
1627         struct ipc_namespace *ipc, *new_ipc = NULL;
1628
1629         check_unshare_flags(&unshare_flags);
1630
1631         /* Return -EINVAL for all unsupported flags */
1632         err = -EINVAL;
1633         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1634                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1635                                 CLONE_NEWUTS|CLONE_NEWIPC))
1636                 goto bad_unshare_out;
1637
1638         if ((err = unshare_thread(unshare_flags)))
1639                 goto bad_unshare_out;
1640         if ((err = unshare_fs(unshare_flags, &new_fs)))
1641                 goto bad_unshare_cleanup_thread;
1642         if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
1643                 goto bad_unshare_cleanup_fs;
1644         if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1645                 goto bad_unshare_cleanup_ns;
1646         if ((err = unshare_vm(unshare_flags, &new_mm)))
1647                 goto bad_unshare_cleanup_sigh;
1648         if ((err = unshare_fd(unshare_flags, &new_fd)))
1649                 goto bad_unshare_cleanup_vm;
1650         if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1651                 goto bad_unshare_cleanup_fd;
1652         if ((err = unshare_utsname(unshare_flags, &new_uts)))
1653                 goto bad_unshare_cleanup_semundo;
1654         if ((err = unshare_ipcs(unshare_flags, &new_ipc)))
1655                 goto bad_unshare_cleanup_uts;
1656
1657         if (new_ns || new_uts || new_ipc) {
1658                 old_nsproxy = current->nsproxy;
1659                 new_nsproxy = dup_namespaces(old_nsproxy);
1660                 if (!new_nsproxy) {
1661                         err = -ENOMEM;
1662                         goto bad_unshare_cleanup_ipc;
1663                 }
1664         }
1665
1666         if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist ||
1667                                 new_uts || new_ipc) {
1668
1669                 task_lock(current);
1670
1671                 if (new_nsproxy) {
1672                         current->nsproxy = new_nsproxy;
1673                         new_nsproxy = old_nsproxy;
1674                 }
1675
1676                 if (new_fs) {
1677                         fs = current->fs;
1678                         current->fs = new_fs;
1679                         new_fs = fs;
1680                 }
1681
1682                 if (new_ns) {
1683                         ns = current->nsproxy->namespace;
1684                         current->nsproxy->namespace = new_ns;
1685                         new_ns = ns;
1686                 }
1687
1688                 if (new_sigh) {
1689                         sigh = current->sighand;
1690                         rcu_assign_pointer(current->sighand, new_sigh);
1691                         new_sigh = sigh;
1692                 }
1693
1694                 if (new_mm) {
1695                         mm = current->mm;
1696                         active_mm = current->active_mm;
1697                         current->mm = new_mm;
1698                         current->active_mm = new_mm;
1699                         activate_mm(active_mm, new_mm);
1700                         new_mm = mm;
1701                 }
1702
1703                 if (new_fd) {
1704                         fd = current->files;
1705                         current->files = new_fd;
1706                         new_fd = fd;
1707                 }
1708
1709                 if (new_uts) {
1710                         uts = current->nsproxy->uts_ns;
1711                         current->nsproxy->uts_ns = new_uts;
1712                         new_uts = uts;
1713                 }
1714
1715                 if (new_ipc) {
1716                         ipc = current->nsproxy->ipc_ns;
1717                         current->nsproxy->ipc_ns = new_ipc;
1718                         new_ipc = ipc;
1719                 }
1720
1721                 task_unlock(current);
1722         }
1723
1724         if (new_nsproxy)
1725                 put_nsproxy(new_nsproxy);
1726
1727 bad_unshare_cleanup_ipc:
1728         if (new_ipc)
1729                 put_ipc_ns(new_ipc);
1730
1731 bad_unshare_cleanup_uts:
1732         if (new_uts)
1733                 put_uts_ns(new_uts);
1734
1735 bad_unshare_cleanup_semundo:
1736 bad_unshare_cleanup_fd:
1737         if (new_fd)
1738                 put_files_struct(new_fd);
1739
1740 bad_unshare_cleanup_vm:
1741         if (new_mm)
1742                 mmput(new_mm);
1743
1744 bad_unshare_cleanup_sigh:
1745         if (new_sigh)
1746                 if (atomic_dec_and_test(&new_sigh->count))
1747                         kmem_cache_free(sighand_cachep, new_sigh);
1748
1749 bad_unshare_cleanup_ns:
1750         if (new_ns)
1751                 put_namespace(new_ns);
1752
1753 bad_unshare_cleanup_fs:
1754         if (new_fs)
1755                 put_fs_struct(new_fs);
1756
1757 bad_unshare_cleanup_thread:
1758 bad_unshare_out:
1759         return err;
1760 }