]> nv-tegra.nvidia Code Review - linux-3.10.git/blob - fs/xfs/xfs_buf.c
Merge branch 'master' into pm-sleep
[linux-3.10.git] / fs / xfs / xfs_buf.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 #include "xfs_sb.h"
38 #include "xfs_inum.h"
39 #include "xfs_log.h"
40 #include "xfs_ag.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43
44 static kmem_zone_t *xfs_buf_zone;
45 STATIC int xfsbufd(void *);
46
47 static struct workqueue_struct *xfslogd_workqueue;
48 struct workqueue_struct *xfsdatad_workqueue;
49 struct workqueue_struct *xfsconvertd_workqueue;
50
51 #ifdef XFS_BUF_LOCK_TRACKING
52 # define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
53 # define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
54 # define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
55 #else
56 # define XB_SET_OWNER(bp)       do { } while (0)
57 # define XB_CLEAR_OWNER(bp)     do { } while (0)
58 # define XB_GET_OWNER(bp)       do { } while (0)
59 #endif
60
61 #define xb_to_gfp(flags) \
62         ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
63           ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
64
65 #define xb_to_km(flags) \
66          (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
67
68
69 static inline int
70 xfs_buf_is_vmapped(
71         struct xfs_buf  *bp)
72 {
73         /*
74          * Return true if the buffer is vmapped.
75          *
76          * The XBF_MAPPED flag is set if the buffer should be mapped, but the
77          * code is clever enough to know it doesn't have to map a single page,
78          * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
79          */
80         return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
81 }
82
83 static inline int
84 xfs_buf_vmap_len(
85         struct xfs_buf  *bp)
86 {
87         return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
88 }
89
90 /*
91  * xfs_buf_lru_add - add a buffer to the LRU.
92  *
93  * The LRU takes a new reference to the buffer so that it will only be freed
94  * once the shrinker takes the buffer off the LRU.
95  */
96 STATIC void
97 xfs_buf_lru_add(
98         struct xfs_buf  *bp)
99 {
100         struct xfs_buftarg *btp = bp->b_target;
101
102         spin_lock(&btp->bt_lru_lock);
103         if (list_empty(&bp->b_lru)) {
104                 atomic_inc(&bp->b_hold);
105                 list_add_tail(&bp->b_lru, &btp->bt_lru);
106                 btp->bt_lru_nr++;
107         }
108         spin_unlock(&btp->bt_lru_lock);
109 }
110
111 /*
112  * xfs_buf_lru_del - remove a buffer from the LRU
113  *
114  * The unlocked check is safe here because it only occurs when there are not
115  * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
116  * to optimise the shrinker removing the buffer from the LRU and calling
117  * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
118  * bt_lru_lock.
119  */
120 STATIC void
121 xfs_buf_lru_del(
122         struct xfs_buf  *bp)
123 {
124         struct xfs_buftarg *btp = bp->b_target;
125
126         if (list_empty(&bp->b_lru))
127                 return;
128
129         spin_lock(&btp->bt_lru_lock);
130         if (!list_empty(&bp->b_lru)) {
131                 list_del_init(&bp->b_lru);
132                 btp->bt_lru_nr--;
133         }
134         spin_unlock(&btp->bt_lru_lock);
135 }
136
137 /*
138  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
139  * b_lru_ref count so that the buffer is freed immediately when the buffer
140  * reference count falls to zero. If the buffer is already on the LRU, we need
141  * to remove the reference that LRU holds on the buffer.
142  *
143  * This prevents build-up of stale buffers on the LRU.
144  */
145 void
146 xfs_buf_stale(
147         struct xfs_buf  *bp)
148 {
149         bp->b_flags |= XBF_STALE;
150         xfs_buf_delwri_dequeue(bp);
151         atomic_set(&(bp)->b_lru_ref, 0);
152         if (!list_empty(&bp->b_lru)) {
153                 struct xfs_buftarg *btp = bp->b_target;
154
155                 spin_lock(&btp->bt_lru_lock);
156                 if (!list_empty(&bp->b_lru)) {
157                         list_del_init(&bp->b_lru);
158                         btp->bt_lru_nr--;
159                         atomic_dec(&bp->b_hold);
160                 }
161                 spin_unlock(&btp->bt_lru_lock);
162         }
163         ASSERT(atomic_read(&bp->b_hold) >= 1);
164 }
165
166 struct xfs_buf *
167 xfs_buf_alloc(
168         struct xfs_buftarg      *target,
169         xfs_off_t               range_base,
170         size_t                  range_length,
171         xfs_buf_flags_t         flags)
172 {
173         struct xfs_buf          *bp;
174
175         bp = kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags));
176         if (unlikely(!bp))
177                 return NULL;
178
179         /*
180          * We don't want certain flags to appear in b_flags.
181          */
182         flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
183
184         memset(bp, 0, sizeof(xfs_buf_t));
185         atomic_set(&bp->b_hold, 1);
186         atomic_set(&bp->b_lru_ref, 1);
187         init_completion(&bp->b_iowait);
188         INIT_LIST_HEAD(&bp->b_lru);
189         INIT_LIST_HEAD(&bp->b_list);
190         RB_CLEAR_NODE(&bp->b_rbnode);
191         sema_init(&bp->b_sema, 0); /* held, no waiters */
192         XB_SET_OWNER(bp);
193         bp->b_target = target;
194         bp->b_file_offset = range_base;
195         /*
196          * Set buffer_length and count_desired to the same value initially.
197          * I/O routines should use count_desired, which will be the same in
198          * most cases but may be reset (e.g. XFS recovery).
199          */
200         bp->b_buffer_length = bp->b_count_desired = range_length;
201         bp->b_flags = flags;
202         bp->b_bn = XFS_BUF_DADDR_NULL;
203         atomic_set(&bp->b_pin_count, 0);
204         init_waitqueue_head(&bp->b_waiters);
205
206         XFS_STATS_INC(xb_create);
207         trace_xfs_buf_init(bp, _RET_IP_);
208
209         return bp;
210 }
211
212 /*
213  *      Allocate a page array capable of holding a specified number
214  *      of pages, and point the page buf at it.
215  */
216 STATIC int
217 _xfs_buf_get_pages(
218         xfs_buf_t               *bp,
219         int                     page_count,
220         xfs_buf_flags_t         flags)
221 {
222         /* Make sure that we have a page list */
223         if (bp->b_pages == NULL) {
224                 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
225                 bp->b_page_count = page_count;
226                 if (page_count <= XB_PAGES) {
227                         bp->b_pages = bp->b_page_array;
228                 } else {
229                         bp->b_pages = kmem_alloc(sizeof(struct page *) *
230                                         page_count, xb_to_km(flags));
231                         if (bp->b_pages == NULL)
232                                 return -ENOMEM;
233                 }
234                 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
235         }
236         return 0;
237 }
238
239 /*
240  *      Frees b_pages if it was allocated.
241  */
242 STATIC void
243 _xfs_buf_free_pages(
244         xfs_buf_t       *bp)
245 {
246         if (bp->b_pages != bp->b_page_array) {
247                 kmem_free(bp->b_pages);
248                 bp->b_pages = NULL;
249         }
250 }
251
252 /*
253  *      Releases the specified buffer.
254  *
255  *      The modification state of any associated pages is left unchanged.
256  *      The buffer most not be on any hash - use xfs_buf_rele instead for
257  *      hashed and refcounted buffers
258  */
259 void
260 xfs_buf_free(
261         xfs_buf_t               *bp)
262 {
263         trace_xfs_buf_free(bp, _RET_IP_);
264
265         ASSERT(list_empty(&bp->b_lru));
266
267         if (bp->b_flags & _XBF_PAGES) {
268                 uint            i;
269
270                 if (xfs_buf_is_vmapped(bp))
271                         vm_unmap_ram(bp->b_addr - bp->b_offset,
272                                         bp->b_page_count);
273
274                 for (i = 0; i < bp->b_page_count; i++) {
275                         struct page     *page = bp->b_pages[i];
276
277                         __free_page(page);
278                 }
279         } else if (bp->b_flags & _XBF_KMEM)
280                 kmem_free(bp->b_addr);
281         _xfs_buf_free_pages(bp);
282         kmem_zone_free(xfs_buf_zone, bp);
283 }
284
285 /*
286  * Allocates all the pages for buffer in question and builds it's page list.
287  */
288 STATIC int
289 xfs_buf_allocate_memory(
290         xfs_buf_t               *bp,
291         uint                    flags)
292 {
293         size_t                  size = bp->b_count_desired;
294         size_t                  nbytes, offset;
295         gfp_t                   gfp_mask = xb_to_gfp(flags);
296         unsigned short          page_count, i;
297         xfs_off_t               end;
298         int                     error;
299
300         /*
301          * for buffers that are contained within a single page, just allocate
302          * the memory from the heap - there's no need for the complexity of
303          * page arrays to keep allocation down to order 0.
304          */
305         if (bp->b_buffer_length < PAGE_SIZE) {
306                 bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags));
307                 if (!bp->b_addr) {
308                         /* low memory - use alloc_page loop instead */
309                         goto use_alloc_page;
310                 }
311
312                 if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) &
313                                                                 PAGE_MASK) !=
314                     ((unsigned long)bp->b_addr & PAGE_MASK)) {
315                         /* b_addr spans two pages - use alloc_page instead */
316                         kmem_free(bp->b_addr);
317                         bp->b_addr = NULL;
318                         goto use_alloc_page;
319                 }
320                 bp->b_offset = offset_in_page(bp->b_addr);
321                 bp->b_pages = bp->b_page_array;
322                 bp->b_pages[0] = virt_to_page(bp->b_addr);
323                 bp->b_page_count = 1;
324                 bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
325                 return 0;
326         }
327
328 use_alloc_page:
329         end = bp->b_file_offset + bp->b_buffer_length;
330         page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
331         error = _xfs_buf_get_pages(bp, page_count, flags);
332         if (unlikely(error))
333                 return error;
334
335         offset = bp->b_offset;
336         bp->b_flags |= _XBF_PAGES;
337
338         for (i = 0; i < bp->b_page_count; i++) {
339                 struct page     *page;
340                 uint            retries = 0;
341 retry:
342                 page = alloc_page(gfp_mask);
343                 if (unlikely(page == NULL)) {
344                         if (flags & XBF_READ_AHEAD) {
345                                 bp->b_page_count = i;
346                                 error = ENOMEM;
347                                 goto out_free_pages;
348                         }
349
350                         /*
351                          * This could deadlock.
352                          *
353                          * But until all the XFS lowlevel code is revamped to
354                          * handle buffer allocation failures we can't do much.
355                          */
356                         if (!(++retries % 100))
357                                 xfs_err(NULL,
358                 "possible memory allocation deadlock in %s (mode:0x%x)",
359                                         __func__, gfp_mask);
360
361                         XFS_STATS_INC(xb_page_retries);
362                         congestion_wait(BLK_RW_ASYNC, HZ/50);
363                         goto retry;
364                 }
365
366                 XFS_STATS_INC(xb_page_found);
367
368                 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
369                 size -= nbytes;
370                 bp->b_pages[i] = page;
371                 offset = 0;
372         }
373         return 0;
374
375 out_free_pages:
376         for (i = 0; i < bp->b_page_count; i++)
377                 __free_page(bp->b_pages[i]);
378         return error;
379 }
380
381 /*
382  *      Map buffer into kernel address-space if necessary.
383  */
384 STATIC int
385 _xfs_buf_map_pages(
386         xfs_buf_t               *bp,
387         uint                    flags)
388 {
389         ASSERT(bp->b_flags & _XBF_PAGES);
390         if (bp->b_page_count == 1) {
391                 /* A single page buffer is always mappable */
392                 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
393                 bp->b_flags |= XBF_MAPPED;
394         } else if (flags & XBF_MAPPED) {
395                 int retried = 0;
396
397                 do {
398                         bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
399                                                 -1, PAGE_KERNEL);
400                         if (bp->b_addr)
401                                 break;
402                         vm_unmap_aliases();
403                 } while (retried++ <= 1);
404
405                 if (!bp->b_addr)
406                         return -ENOMEM;
407                 bp->b_addr += bp->b_offset;
408                 bp->b_flags |= XBF_MAPPED;
409         }
410
411         return 0;
412 }
413
414 /*
415  *      Finding and Reading Buffers
416  */
417
418 /*
419  *      Look up, and creates if absent, a lockable buffer for
420  *      a given range of an inode.  The buffer is returned
421  *      locked. No I/O is implied by this call.
422  */
423 xfs_buf_t *
424 _xfs_buf_find(
425         xfs_buftarg_t           *btp,   /* block device target          */
426         xfs_off_t               ioff,   /* starting offset of range     */
427         size_t                  isize,  /* length of range              */
428         xfs_buf_flags_t         flags,
429         xfs_buf_t               *new_bp)
430 {
431         xfs_off_t               range_base;
432         size_t                  range_length;
433         struct xfs_perag        *pag;
434         struct rb_node          **rbp;
435         struct rb_node          *parent;
436         xfs_buf_t               *bp;
437
438         range_base = (ioff << BBSHIFT);
439         range_length = (isize << BBSHIFT);
440
441         /* Check for IOs smaller than the sector size / not sector aligned */
442         ASSERT(!(range_length < (1 << btp->bt_sshift)));
443         ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
444
445         /* get tree root */
446         pag = xfs_perag_get(btp->bt_mount,
447                                 xfs_daddr_to_agno(btp->bt_mount, ioff));
448
449         /* walk tree */
450         spin_lock(&pag->pag_buf_lock);
451         rbp = &pag->pag_buf_tree.rb_node;
452         parent = NULL;
453         bp = NULL;
454         while (*rbp) {
455                 parent = *rbp;
456                 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
457
458                 if (range_base < bp->b_file_offset)
459                         rbp = &(*rbp)->rb_left;
460                 else if (range_base > bp->b_file_offset)
461                         rbp = &(*rbp)->rb_right;
462                 else {
463                         /*
464                          * found a block offset match. If the range doesn't
465                          * match, the only way this is allowed is if the buffer
466                          * in the cache is stale and the transaction that made
467                          * it stale has not yet committed. i.e. we are
468                          * reallocating a busy extent. Skip this buffer and
469                          * continue searching to the right for an exact match.
470                          */
471                         if (bp->b_buffer_length != range_length) {
472                                 ASSERT(bp->b_flags & XBF_STALE);
473                                 rbp = &(*rbp)->rb_right;
474                                 continue;
475                         }
476                         atomic_inc(&bp->b_hold);
477                         goto found;
478                 }
479         }
480
481         /* No match found */
482         if (new_bp) {
483                 rb_link_node(&new_bp->b_rbnode, parent, rbp);
484                 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
485                 /* the buffer keeps the perag reference until it is freed */
486                 new_bp->b_pag = pag;
487                 spin_unlock(&pag->pag_buf_lock);
488         } else {
489                 XFS_STATS_INC(xb_miss_locked);
490                 spin_unlock(&pag->pag_buf_lock);
491                 xfs_perag_put(pag);
492         }
493         return new_bp;
494
495 found:
496         spin_unlock(&pag->pag_buf_lock);
497         xfs_perag_put(pag);
498
499         if (!xfs_buf_trylock(bp)) {
500                 if (flags & XBF_TRYLOCK) {
501                         xfs_buf_rele(bp);
502                         XFS_STATS_INC(xb_busy_locked);
503                         return NULL;
504                 }
505                 xfs_buf_lock(bp);
506                 XFS_STATS_INC(xb_get_locked_waited);
507         }
508
509         /*
510          * if the buffer is stale, clear all the external state associated with
511          * it. We need to keep flags such as how we allocated the buffer memory
512          * intact here.
513          */
514         if (bp->b_flags & XBF_STALE) {
515                 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
516                 bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
517         }
518
519         trace_xfs_buf_find(bp, flags, _RET_IP_);
520         XFS_STATS_INC(xb_get_locked);
521         return bp;
522 }
523
524 /*
525  * Assembles a buffer covering the specified range. The code is optimised for
526  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
527  * more hits than misses.
528  */
529 struct xfs_buf *
530 xfs_buf_get(
531         xfs_buftarg_t           *target,/* target for buffer            */
532         xfs_off_t               ioff,   /* starting offset of range     */
533         size_t                  isize,  /* length of range              */
534         xfs_buf_flags_t         flags)
535 {
536         struct xfs_buf          *bp;
537         struct xfs_buf          *new_bp;
538         int                     error = 0;
539
540         bp = _xfs_buf_find(target, ioff, isize, flags, NULL);
541         if (likely(bp))
542                 goto found;
543
544         new_bp = xfs_buf_alloc(target, ioff << BBSHIFT, isize << BBSHIFT,
545                                flags);
546         if (unlikely(!new_bp))
547                 return NULL;
548
549         bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
550         if (!bp) {
551                 kmem_zone_free(xfs_buf_zone, new_bp);
552                 return NULL;
553         }
554
555         if (bp == new_bp) {
556                 error = xfs_buf_allocate_memory(bp, flags);
557                 if (error)
558                         goto no_buffer;
559         } else
560                 kmem_zone_free(xfs_buf_zone, new_bp);
561
562         /*
563          * Now we have a workable buffer, fill in the block number so
564          * that we can do IO on it.
565          */
566         bp->b_bn = ioff;
567         bp->b_count_desired = bp->b_buffer_length;
568
569 found:
570         if (!(bp->b_flags & XBF_MAPPED)) {
571                 error = _xfs_buf_map_pages(bp, flags);
572                 if (unlikely(error)) {
573                         xfs_warn(target->bt_mount,
574                                 "%s: failed to map pages\n", __func__);
575                         goto no_buffer;
576                 }
577         }
578
579         XFS_STATS_INC(xb_get);
580         trace_xfs_buf_get(bp, flags, _RET_IP_);
581         return bp;
582
583 no_buffer:
584         if (flags & (XBF_LOCK | XBF_TRYLOCK))
585                 xfs_buf_unlock(bp);
586         xfs_buf_rele(bp);
587         return NULL;
588 }
589
590 STATIC int
591 _xfs_buf_read(
592         xfs_buf_t               *bp,
593         xfs_buf_flags_t         flags)
594 {
595         int                     status;
596
597         ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
598         ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
599
600         bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | XBF_READ_AHEAD);
601         bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
602
603         status = xfs_buf_iorequest(bp);
604         if (status || bp->b_error || (flags & XBF_ASYNC))
605                 return status;
606         return xfs_buf_iowait(bp);
607 }
608
609 xfs_buf_t *
610 xfs_buf_read(
611         xfs_buftarg_t           *target,
612         xfs_off_t               ioff,
613         size_t                  isize,
614         xfs_buf_flags_t         flags)
615 {
616         xfs_buf_t               *bp;
617
618         flags |= XBF_READ;
619
620         bp = xfs_buf_get(target, ioff, isize, flags);
621         if (bp) {
622                 trace_xfs_buf_read(bp, flags, _RET_IP_);
623
624                 if (!XFS_BUF_ISDONE(bp)) {
625                         XFS_STATS_INC(xb_get_read);
626                         _xfs_buf_read(bp, flags);
627                 } else if (flags & XBF_ASYNC) {
628                         /*
629                          * Read ahead call which is already satisfied,
630                          * drop the buffer
631                          */
632                         goto no_buffer;
633                 } else {
634                         /* We do not want read in the flags */
635                         bp->b_flags &= ~XBF_READ;
636                 }
637         }
638
639         return bp;
640
641  no_buffer:
642         if (flags & (XBF_LOCK | XBF_TRYLOCK))
643                 xfs_buf_unlock(bp);
644         xfs_buf_rele(bp);
645         return NULL;
646 }
647
648 /*
649  *      If we are not low on memory then do the readahead in a deadlock
650  *      safe manner.
651  */
652 void
653 xfs_buf_readahead(
654         xfs_buftarg_t           *target,
655         xfs_off_t               ioff,
656         size_t                  isize)
657 {
658         if (bdi_read_congested(target->bt_bdi))
659                 return;
660
661         xfs_buf_read(target, ioff, isize,
662                      XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
663 }
664
665 /*
666  * Read an uncached buffer from disk. Allocates and returns a locked
667  * buffer containing the disk contents or nothing.
668  */
669 struct xfs_buf *
670 xfs_buf_read_uncached(
671         struct xfs_mount        *mp,
672         struct xfs_buftarg      *target,
673         xfs_daddr_t             daddr,
674         size_t                  length,
675         int                     flags)
676 {
677         xfs_buf_t               *bp;
678         int                     error;
679
680         bp = xfs_buf_get_uncached(target, length, flags);
681         if (!bp)
682                 return NULL;
683
684         /* set up the buffer for a read IO */
685         XFS_BUF_SET_ADDR(bp, daddr);
686         XFS_BUF_READ(bp);
687
688         xfsbdstrat(mp, bp);
689         error = xfs_buf_iowait(bp);
690         if (error || bp->b_error) {
691                 xfs_buf_relse(bp);
692                 return NULL;
693         }
694         return bp;
695 }
696
697 /*
698  * Return a buffer allocated as an empty buffer and associated to external
699  * memory via xfs_buf_associate_memory() back to it's empty state.
700  */
701 void
702 xfs_buf_set_empty(
703         struct xfs_buf          *bp,
704         size_t                  len)
705 {
706         if (bp->b_pages)
707                 _xfs_buf_free_pages(bp);
708
709         bp->b_pages = NULL;
710         bp->b_page_count = 0;
711         bp->b_addr = NULL;
712         bp->b_file_offset = 0;
713         bp->b_buffer_length = bp->b_count_desired = len;
714         bp->b_bn = XFS_BUF_DADDR_NULL;
715         bp->b_flags &= ~XBF_MAPPED;
716 }
717
718 static inline struct page *
719 mem_to_page(
720         void                    *addr)
721 {
722         if ((!is_vmalloc_addr(addr))) {
723                 return virt_to_page(addr);
724         } else {
725                 return vmalloc_to_page(addr);
726         }
727 }
728
729 int
730 xfs_buf_associate_memory(
731         xfs_buf_t               *bp,
732         void                    *mem,
733         size_t                  len)
734 {
735         int                     rval;
736         int                     i = 0;
737         unsigned long           pageaddr;
738         unsigned long           offset;
739         size_t                  buflen;
740         int                     page_count;
741
742         pageaddr = (unsigned long)mem & PAGE_MASK;
743         offset = (unsigned long)mem - pageaddr;
744         buflen = PAGE_ALIGN(len + offset);
745         page_count = buflen >> PAGE_SHIFT;
746
747         /* Free any previous set of page pointers */
748         if (bp->b_pages)
749                 _xfs_buf_free_pages(bp);
750
751         bp->b_pages = NULL;
752         bp->b_addr = mem;
753
754         rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
755         if (rval)
756                 return rval;
757
758         bp->b_offset = offset;
759
760         for (i = 0; i < bp->b_page_count; i++) {
761                 bp->b_pages[i] = mem_to_page((void *)pageaddr);
762                 pageaddr += PAGE_SIZE;
763         }
764
765         bp->b_count_desired = len;
766         bp->b_buffer_length = buflen;
767         bp->b_flags |= XBF_MAPPED;
768
769         return 0;
770 }
771
772 xfs_buf_t *
773 xfs_buf_get_uncached(
774         struct xfs_buftarg      *target,
775         size_t                  len,
776         int                     flags)
777 {
778         unsigned long           page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
779         int                     error, i;
780         xfs_buf_t               *bp;
781
782         bp = xfs_buf_alloc(target, 0, len, 0);
783         if (unlikely(bp == NULL))
784                 goto fail;
785
786         error = _xfs_buf_get_pages(bp, page_count, 0);
787         if (error)
788                 goto fail_free_buf;
789
790         for (i = 0; i < page_count; i++) {
791                 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
792                 if (!bp->b_pages[i])
793                         goto fail_free_mem;
794         }
795         bp->b_flags |= _XBF_PAGES;
796
797         error = _xfs_buf_map_pages(bp, XBF_MAPPED);
798         if (unlikely(error)) {
799                 xfs_warn(target->bt_mount,
800                         "%s: failed to map pages\n", __func__);
801                 goto fail_free_mem;
802         }
803
804         trace_xfs_buf_get_uncached(bp, _RET_IP_);
805         return bp;
806
807  fail_free_mem:
808         while (--i >= 0)
809                 __free_page(bp->b_pages[i]);
810         _xfs_buf_free_pages(bp);
811  fail_free_buf:
812         kmem_zone_free(xfs_buf_zone, bp);
813  fail:
814         return NULL;
815 }
816
817 /*
818  *      Increment reference count on buffer, to hold the buffer concurrently
819  *      with another thread which may release (free) the buffer asynchronously.
820  *      Must hold the buffer already to call this function.
821  */
822 void
823 xfs_buf_hold(
824         xfs_buf_t               *bp)
825 {
826         trace_xfs_buf_hold(bp, _RET_IP_);
827         atomic_inc(&bp->b_hold);
828 }
829
830 /*
831  *      Releases a hold on the specified buffer.  If the
832  *      the hold count is 1, calls xfs_buf_free.
833  */
834 void
835 xfs_buf_rele(
836         xfs_buf_t               *bp)
837 {
838         struct xfs_perag        *pag = bp->b_pag;
839
840         trace_xfs_buf_rele(bp, _RET_IP_);
841
842         if (!pag) {
843                 ASSERT(list_empty(&bp->b_lru));
844                 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
845                 if (atomic_dec_and_test(&bp->b_hold))
846                         xfs_buf_free(bp);
847                 return;
848         }
849
850         ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
851
852         ASSERT(atomic_read(&bp->b_hold) > 0);
853         if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
854                 if (!(bp->b_flags & XBF_STALE) &&
855                            atomic_read(&bp->b_lru_ref)) {
856                         xfs_buf_lru_add(bp);
857                         spin_unlock(&pag->pag_buf_lock);
858                 } else {
859                         xfs_buf_lru_del(bp);
860                         ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
861                         rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
862                         spin_unlock(&pag->pag_buf_lock);
863                         xfs_perag_put(pag);
864                         xfs_buf_free(bp);
865                 }
866         }
867 }
868
869
870 /*
871  *      Lock a buffer object, if it is not already locked.
872  *
873  *      If we come across a stale, pinned, locked buffer, we know that we are
874  *      being asked to lock a buffer that has been reallocated. Because it is
875  *      pinned, we know that the log has not been pushed to disk and hence it
876  *      will still be locked.  Rather than continuing to have trylock attempts
877  *      fail until someone else pushes the log, push it ourselves before
878  *      returning.  This means that the xfsaild will not get stuck trying
879  *      to push on stale inode buffers.
880  */
881 int
882 xfs_buf_trylock(
883         struct xfs_buf          *bp)
884 {
885         int                     locked;
886
887         locked = down_trylock(&bp->b_sema) == 0;
888         if (locked)
889                 XB_SET_OWNER(bp);
890         else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
891                 xfs_log_force(bp->b_target->bt_mount, 0);
892
893         trace_xfs_buf_trylock(bp, _RET_IP_);
894         return locked;
895 }
896
897 /*
898  *      Lock a buffer object.
899  *
900  *      If we come across a stale, pinned, locked buffer, we know that we
901  *      are being asked to lock a buffer that has been reallocated. Because
902  *      it is pinned, we know that the log has not been pushed to disk and
903  *      hence it will still be locked. Rather than sleeping until someone
904  *      else pushes the log, push it ourselves before trying to get the lock.
905  */
906 void
907 xfs_buf_lock(
908         struct xfs_buf          *bp)
909 {
910         trace_xfs_buf_lock(bp, _RET_IP_);
911
912         if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
913                 xfs_log_force(bp->b_target->bt_mount, 0);
914         down(&bp->b_sema);
915         XB_SET_OWNER(bp);
916
917         trace_xfs_buf_lock_done(bp, _RET_IP_);
918 }
919
920 /*
921  *      Releases the lock on the buffer object.
922  *      If the buffer is marked delwri but is not queued, do so before we
923  *      unlock the buffer as we need to set flags correctly.  We also need to
924  *      take a reference for the delwri queue because the unlocker is going to
925  *      drop their's and they don't know we just queued it.
926  */
927 void
928 xfs_buf_unlock(
929         struct xfs_buf          *bp)
930 {
931         XB_CLEAR_OWNER(bp);
932         up(&bp->b_sema);
933
934         trace_xfs_buf_unlock(bp, _RET_IP_);
935 }
936
937 STATIC void
938 xfs_buf_wait_unpin(
939         xfs_buf_t               *bp)
940 {
941         DECLARE_WAITQUEUE       (wait, current);
942
943         if (atomic_read(&bp->b_pin_count) == 0)
944                 return;
945
946         add_wait_queue(&bp->b_waiters, &wait);
947         for (;;) {
948                 set_current_state(TASK_UNINTERRUPTIBLE);
949                 if (atomic_read(&bp->b_pin_count) == 0)
950                         break;
951                 io_schedule();
952         }
953         remove_wait_queue(&bp->b_waiters, &wait);
954         set_current_state(TASK_RUNNING);
955 }
956
957 /*
958  *      Buffer Utility Routines
959  */
960
961 STATIC void
962 xfs_buf_iodone_work(
963         struct work_struct      *work)
964 {
965         xfs_buf_t               *bp =
966                 container_of(work, xfs_buf_t, b_iodone_work);
967
968         if (bp->b_iodone)
969                 (*(bp->b_iodone))(bp);
970         else if (bp->b_flags & XBF_ASYNC)
971                 xfs_buf_relse(bp);
972 }
973
974 void
975 xfs_buf_ioend(
976         xfs_buf_t               *bp,
977         int                     schedule)
978 {
979         trace_xfs_buf_iodone(bp, _RET_IP_);
980
981         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
982         if (bp->b_error == 0)
983                 bp->b_flags |= XBF_DONE;
984
985         if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
986                 if (schedule) {
987                         INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
988                         queue_work(xfslogd_workqueue, &bp->b_iodone_work);
989                 } else {
990                         xfs_buf_iodone_work(&bp->b_iodone_work);
991                 }
992         } else {
993                 complete(&bp->b_iowait);
994         }
995 }
996
997 void
998 xfs_buf_ioerror(
999         xfs_buf_t               *bp,
1000         int                     error)
1001 {
1002         ASSERT(error >= 0 && error <= 0xffff);
1003         bp->b_error = (unsigned short)error;
1004         trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1005 }
1006
1007 void
1008 xfs_buf_ioerror_alert(
1009         struct xfs_buf          *bp,
1010         const char              *func)
1011 {
1012         xfs_alert(bp->b_target->bt_mount,
1013 "metadata I/O error: block 0x%llx (\"%s\") error %d buf count %zd",
1014                 (__uint64_t)XFS_BUF_ADDR(bp), func,
1015                 bp->b_error, XFS_BUF_COUNT(bp));
1016 }
1017
1018 int
1019 xfs_bwrite(
1020         struct xfs_buf          *bp)
1021 {
1022         int                     error;
1023
1024         bp->b_flags |= XBF_WRITE;
1025         bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1026
1027         xfs_buf_delwri_dequeue(bp);
1028         xfs_bdstrat_cb(bp);
1029
1030         error = xfs_buf_iowait(bp);
1031         if (error) {
1032                 xfs_force_shutdown(bp->b_target->bt_mount,
1033                                    SHUTDOWN_META_IO_ERROR);
1034         }
1035         return error;
1036 }
1037
1038 /*
1039  * Called when we want to stop a buffer from getting written or read.
1040  * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1041  * so that the proper iodone callbacks get called.
1042  */
1043 STATIC int
1044 xfs_bioerror(
1045         xfs_buf_t *bp)
1046 {
1047 #ifdef XFSERRORDEBUG
1048         ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1049 #endif
1050
1051         /*
1052          * No need to wait until the buffer is unpinned, we aren't flushing it.
1053          */
1054         xfs_buf_ioerror(bp, EIO);
1055
1056         /*
1057          * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1058          */
1059         XFS_BUF_UNREAD(bp);
1060         XFS_BUF_UNDONE(bp);
1061         xfs_buf_stale(bp);
1062
1063         xfs_buf_ioend(bp, 0);
1064
1065         return EIO;
1066 }
1067
1068 /*
1069  * Same as xfs_bioerror, except that we are releasing the buffer
1070  * here ourselves, and avoiding the xfs_buf_ioend call.
1071  * This is meant for userdata errors; metadata bufs come with
1072  * iodone functions attached, so that we can track down errors.
1073  */
1074 STATIC int
1075 xfs_bioerror_relse(
1076         struct xfs_buf  *bp)
1077 {
1078         int64_t         fl = bp->b_flags;
1079         /*
1080          * No need to wait until the buffer is unpinned.
1081          * We aren't flushing it.
1082          *
1083          * chunkhold expects B_DONE to be set, whether
1084          * we actually finish the I/O or not. We don't want to
1085          * change that interface.
1086          */
1087         XFS_BUF_UNREAD(bp);
1088         XFS_BUF_DONE(bp);
1089         xfs_buf_stale(bp);
1090         bp->b_iodone = NULL;
1091         if (!(fl & XBF_ASYNC)) {
1092                 /*
1093                  * Mark b_error and B_ERROR _both_.
1094                  * Lot's of chunkcache code assumes that.
1095                  * There's no reason to mark error for
1096                  * ASYNC buffers.
1097                  */
1098                 xfs_buf_ioerror(bp, EIO);
1099                 complete(&bp->b_iowait);
1100         } else {
1101                 xfs_buf_relse(bp);
1102         }
1103
1104         return EIO;
1105 }
1106
1107
1108 /*
1109  * All xfs metadata buffers except log state machine buffers
1110  * get this attached as their b_bdstrat callback function.
1111  * This is so that we can catch a buffer
1112  * after prematurely unpinning it to forcibly shutdown the filesystem.
1113  */
1114 int
1115 xfs_bdstrat_cb(
1116         struct xfs_buf  *bp)
1117 {
1118         if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1119                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1120                 /*
1121                  * Metadata write that didn't get logged but
1122                  * written delayed anyway. These aren't associated
1123                  * with a transaction, and can be ignored.
1124                  */
1125                 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1126                         return xfs_bioerror_relse(bp);
1127                 else
1128                         return xfs_bioerror(bp);
1129         }
1130
1131         xfs_buf_iorequest(bp);
1132         return 0;
1133 }
1134
1135 /*
1136  * Wrapper around bdstrat so that we can stop data from going to disk in case
1137  * we are shutting down the filesystem.  Typically user data goes thru this
1138  * path; one of the exceptions is the superblock.
1139  */
1140 void
1141 xfsbdstrat(
1142         struct xfs_mount        *mp,
1143         struct xfs_buf          *bp)
1144 {
1145         if (XFS_FORCED_SHUTDOWN(mp)) {
1146                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1147                 xfs_bioerror_relse(bp);
1148                 return;
1149         }
1150
1151         xfs_buf_iorequest(bp);
1152 }
1153
1154 STATIC void
1155 _xfs_buf_ioend(
1156         xfs_buf_t               *bp,
1157         int                     schedule)
1158 {
1159         if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1160                 xfs_buf_ioend(bp, schedule);
1161 }
1162
1163 STATIC void
1164 xfs_buf_bio_end_io(
1165         struct bio              *bio,
1166         int                     error)
1167 {
1168         xfs_buf_t               *bp = (xfs_buf_t *)bio->bi_private;
1169
1170         xfs_buf_ioerror(bp, -error);
1171
1172         if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1173                 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1174
1175         _xfs_buf_ioend(bp, 1);
1176         bio_put(bio);
1177 }
1178
1179 STATIC void
1180 _xfs_buf_ioapply(
1181         xfs_buf_t               *bp)
1182 {
1183         int                     rw, map_i, total_nr_pages, nr_pages;
1184         struct bio              *bio;
1185         int                     offset = bp->b_offset;
1186         int                     size = bp->b_count_desired;
1187         sector_t                sector = bp->b_bn;
1188
1189         total_nr_pages = bp->b_page_count;
1190         map_i = 0;
1191
1192         if (bp->b_flags & XBF_WRITE) {
1193                 if (bp->b_flags & XBF_SYNCIO)
1194                         rw = WRITE_SYNC;
1195                 else
1196                         rw = WRITE;
1197                 if (bp->b_flags & XBF_FUA)
1198                         rw |= REQ_FUA;
1199                 if (bp->b_flags & XBF_FLUSH)
1200                         rw |= REQ_FLUSH;
1201         } else if (bp->b_flags & XBF_READ_AHEAD) {
1202                 rw = READA;
1203         } else {
1204                 rw = READ;
1205         }
1206
1207         /* we only use the buffer cache for meta-data */
1208         rw |= REQ_META;
1209
1210 next_chunk:
1211         atomic_inc(&bp->b_io_remaining);
1212         nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1213         if (nr_pages > total_nr_pages)
1214                 nr_pages = total_nr_pages;
1215
1216         bio = bio_alloc(GFP_NOIO, nr_pages);
1217         bio->bi_bdev = bp->b_target->bt_bdev;
1218         bio->bi_sector = sector;
1219         bio->bi_end_io = xfs_buf_bio_end_io;
1220         bio->bi_private = bp;
1221
1222
1223         for (; size && nr_pages; nr_pages--, map_i++) {
1224                 int     rbytes, nbytes = PAGE_SIZE - offset;
1225
1226                 if (nbytes > size)
1227                         nbytes = size;
1228
1229                 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1230                 if (rbytes < nbytes)
1231                         break;
1232
1233                 offset = 0;
1234                 sector += nbytes >> BBSHIFT;
1235                 size -= nbytes;
1236                 total_nr_pages--;
1237         }
1238
1239         if (likely(bio->bi_size)) {
1240                 if (xfs_buf_is_vmapped(bp)) {
1241                         flush_kernel_vmap_range(bp->b_addr,
1242                                                 xfs_buf_vmap_len(bp));
1243                 }
1244                 submit_bio(rw, bio);
1245                 if (size)
1246                         goto next_chunk;
1247         } else {
1248                 xfs_buf_ioerror(bp, EIO);
1249                 bio_put(bio);
1250         }
1251 }
1252
1253 int
1254 xfs_buf_iorequest(
1255         xfs_buf_t               *bp)
1256 {
1257         trace_xfs_buf_iorequest(bp, _RET_IP_);
1258
1259         ASSERT(!(bp->b_flags & XBF_DELWRI));
1260
1261         if (bp->b_flags & XBF_WRITE)
1262                 xfs_buf_wait_unpin(bp);
1263         xfs_buf_hold(bp);
1264
1265         /* Set the count to 1 initially, this will stop an I/O
1266          * completion callout which happens before we have started
1267          * all the I/O from calling xfs_buf_ioend too early.
1268          */
1269         atomic_set(&bp->b_io_remaining, 1);
1270         _xfs_buf_ioapply(bp);
1271         _xfs_buf_ioend(bp, 0);
1272
1273         xfs_buf_rele(bp);
1274         return 0;
1275 }
1276
1277 /*
1278  *      Waits for I/O to complete on the buffer supplied.
1279  *      It returns immediately if no I/O is pending.
1280  *      It returns the I/O error code, if any, or 0 if there was no error.
1281  */
1282 int
1283 xfs_buf_iowait(
1284         xfs_buf_t               *bp)
1285 {
1286         trace_xfs_buf_iowait(bp, _RET_IP_);
1287
1288         wait_for_completion(&bp->b_iowait);
1289
1290         trace_xfs_buf_iowait_done(bp, _RET_IP_);
1291         return bp->b_error;
1292 }
1293
1294 xfs_caddr_t
1295 xfs_buf_offset(
1296         xfs_buf_t               *bp,
1297         size_t                  offset)
1298 {
1299         struct page             *page;
1300
1301         if (bp->b_flags & XBF_MAPPED)
1302                 return bp->b_addr + offset;
1303
1304         offset += bp->b_offset;
1305         page = bp->b_pages[offset >> PAGE_SHIFT];
1306         return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1307 }
1308
1309 /*
1310  *      Move data into or out of a buffer.
1311  */
1312 void
1313 xfs_buf_iomove(
1314         xfs_buf_t               *bp,    /* buffer to process            */
1315         size_t                  boff,   /* starting buffer offset       */
1316         size_t                  bsize,  /* length to copy               */
1317         void                    *data,  /* data address                 */
1318         xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1319 {
1320         size_t                  bend, cpoff, csize;
1321         struct page             *page;
1322
1323         bend = boff + bsize;
1324         while (boff < bend) {
1325                 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1326                 cpoff = xfs_buf_poff(boff + bp->b_offset);
1327                 csize = min_t(size_t,
1328                               PAGE_SIZE-cpoff, bp->b_count_desired-boff);
1329
1330                 ASSERT(((csize + cpoff) <= PAGE_SIZE));
1331
1332                 switch (mode) {
1333                 case XBRW_ZERO:
1334                         memset(page_address(page) + cpoff, 0, csize);
1335                         break;
1336                 case XBRW_READ:
1337                         memcpy(data, page_address(page) + cpoff, csize);
1338                         break;
1339                 case XBRW_WRITE:
1340                         memcpy(page_address(page) + cpoff, data, csize);
1341                 }
1342
1343                 boff += csize;
1344                 data += csize;
1345         }
1346 }
1347
1348 /*
1349  *      Handling of buffer targets (buftargs).
1350  */
1351
1352 /*
1353  * Wait for any bufs with callbacks that have been submitted but have not yet
1354  * returned. These buffers will have an elevated hold count, so wait on those
1355  * while freeing all the buffers only held by the LRU.
1356  */
1357 void
1358 xfs_wait_buftarg(
1359         struct xfs_buftarg      *btp)
1360 {
1361         struct xfs_buf          *bp;
1362
1363 restart:
1364         spin_lock(&btp->bt_lru_lock);
1365         while (!list_empty(&btp->bt_lru)) {
1366                 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1367                 if (atomic_read(&bp->b_hold) > 1) {
1368                         spin_unlock(&btp->bt_lru_lock);
1369                         delay(100);
1370                         goto restart;
1371                 }
1372                 /*
1373                  * clear the LRU reference count so the bufer doesn't get
1374                  * ignored in xfs_buf_rele().
1375                  */
1376                 atomic_set(&bp->b_lru_ref, 0);
1377                 spin_unlock(&btp->bt_lru_lock);
1378                 xfs_buf_rele(bp);
1379                 spin_lock(&btp->bt_lru_lock);
1380         }
1381         spin_unlock(&btp->bt_lru_lock);
1382 }
1383
1384 int
1385 xfs_buftarg_shrink(
1386         struct shrinker         *shrink,
1387         struct shrink_control   *sc)
1388 {
1389         struct xfs_buftarg      *btp = container_of(shrink,
1390                                         struct xfs_buftarg, bt_shrinker);
1391         struct xfs_buf          *bp;
1392         int nr_to_scan = sc->nr_to_scan;
1393         LIST_HEAD(dispose);
1394
1395         if (!nr_to_scan)
1396                 return btp->bt_lru_nr;
1397
1398         spin_lock(&btp->bt_lru_lock);
1399         while (!list_empty(&btp->bt_lru)) {
1400                 if (nr_to_scan-- <= 0)
1401                         break;
1402
1403                 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1404
1405                 /*
1406                  * Decrement the b_lru_ref count unless the value is already
1407                  * zero. If the value is already zero, we need to reclaim the
1408                  * buffer, otherwise it gets another trip through the LRU.
1409                  */
1410                 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1411                         list_move_tail(&bp->b_lru, &btp->bt_lru);
1412                         continue;
1413                 }
1414
1415                 /*
1416                  * remove the buffer from the LRU now to avoid needing another
1417                  * lock round trip inside xfs_buf_rele().
1418                  */
1419                 list_move(&bp->b_lru, &dispose);
1420                 btp->bt_lru_nr--;
1421         }
1422         spin_unlock(&btp->bt_lru_lock);
1423
1424         while (!list_empty(&dispose)) {
1425                 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1426                 list_del_init(&bp->b_lru);
1427                 xfs_buf_rele(bp);
1428         }
1429
1430         return btp->bt_lru_nr;
1431 }
1432
1433 void
1434 xfs_free_buftarg(
1435         struct xfs_mount        *mp,
1436         struct xfs_buftarg      *btp)
1437 {
1438         unregister_shrinker(&btp->bt_shrinker);
1439
1440         xfs_flush_buftarg(btp, 1);
1441         if (mp->m_flags & XFS_MOUNT_BARRIER)
1442                 xfs_blkdev_issue_flush(btp);
1443
1444         kthread_stop(btp->bt_task);
1445         kmem_free(btp);
1446 }
1447
1448 STATIC int
1449 xfs_setsize_buftarg_flags(
1450         xfs_buftarg_t           *btp,
1451         unsigned int            blocksize,
1452         unsigned int            sectorsize,
1453         int                     verbose)
1454 {
1455         btp->bt_bsize = blocksize;
1456         btp->bt_sshift = ffs(sectorsize) - 1;
1457         btp->bt_smask = sectorsize - 1;
1458
1459         if (set_blocksize(btp->bt_bdev, sectorsize)) {
1460                 char name[BDEVNAME_SIZE];
1461
1462                 bdevname(btp->bt_bdev, name);
1463
1464                 xfs_warn(btp->bt_mount,
1465                         "Cannot set_blocksize to %u on device %s\n",
1466                         sectorsize, name);
1467                 return EINVAL;
1468         }
1469
1470         return 0;
1471 }
1472
1473 /*
1474  *      When allocating the initial buffer target we have not yet
1475  *      read in the superblock, so don't know what sized sectors
1476  *      are being used is at this early stage.  Play safe.
1477  */
1478 STATIC int
1479 xfs_setsize_buftarg_early(
1480         xfs_buftarg_t           *btp,
1481         struct block_device     *bdev)
1482 {
1483         return xfs_setsize_buftarg_flags(btp,
1484                         PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1485 }
1486
1487 int
1488 xfs_setsize_buftarg(
1489         xfs_buftarg_t           *btp,
1490         unsigned int            blocksize,
1491         unsigned int            sectorsize)
1492 {
1493         return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1494 }
1495
1496 STATIC int
1497 xfs_alloc_delwri_queue(
1498         xfs_buftarg_t           *btp,
1499         const char              *fsname)
1500 {
1501         INIT_LIST_HEAD(&btp->bt_delwri_queue);
1502         spin_lock_init(&btp->bt_delwri_lock);
1503         btp->bt_flags = 0;
1504         btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1505         if (IS_ERR(btp->bt_task))
1506                 return PTR_ERR(btp->bt_task);
1507         return 0;
1508 }
1509
1510 xfs_buftarg_t *
1511 xfs_alloc_buftarg(
1512         struct xfs_mount        *mp,
1513         struct block_device     *bdev,
1514         int                     external,
1515         const char              *fsname)
1516 {
1517         xfs_buftarg_t           *btp;
1518
1519         btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1520
1521         btp->bt_mount = mp;
1522         btp->bt_dev =  bdev->bd_dev;
1523         btp->bt_bdev = bdev;
1524         btp->bt_bdi = blk_get_backing_dev_info(bdev);
1525         if (!btp->bt_bdi)
1526                 goto error;
1527
1528         INIT_LIST_HEAD(&btp->bt_lru);
1529         spin_lock_init(&btp->bt_lru_lock);
1530         if (xfs_setsize_buftarg_early(btp, bdev))
1531                 goto error;
1532         if (xfs_alloc_delwri_queue(btp, fsname))
1533                 goto error;
1534         btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1535         btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1536         register_shrinker(&btp->bt_shrinker);
1537         return btp;
1538
1539 error:
1540         kmem_free(btp);
1541         return NULL;
1542 }
1543
1544
1545 /*
1546  *      Delayed write buffer handling
1547  */
1548 void
1549 xfs_buf_delwri_queue(
1550         xfs_buf_t               *bp)
1551 {
1552         struct xfs_buftarg      *btp = bp->b_target;
1553
1554         trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1555
1556         ASSERT(!(bp->b_flags & XBF_READ));
1557
1558         spin_lock(&btp->bt_delwri_lock);
1559         if (!list_empty(&bp->b_list)) {
1560                 /* if already in the queue, move it to the tail */
1561                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1562                 list_move_tail(&bp->b_list, &btp->bt_delwri_queue);
1563         } else {
1564                 /* start xfsbufd as it is about to have something to do */
1565                 if (list_empty(&btp->bt_delwri_queue))
1566                         wake_up_process(bp->b_target->bt_task);
1567
1568                 atomic_inc(&bp->b_hold);
1569                 bp->b_flags |= XBF_DELWRI | _XBF_DELWRI_Q | XBF_ASYNC;
1570                 list_add_tail(&bp->b_list, &btp->bt_delwri_queue);
1571         }
1572         bp->b_queuetime = jiffies;
1573         spin_unlock(&btp->bt_delwri_lock);
1574 }
1575
1576 void
1577 xfs_buf_delwri_dequeue(
1578         xfs_buf_t               *bp)
1579 {
1580         int                     dequeued = 0;
1581
1582         spin_lock(&bp->b_target->bt_delwri_lock);
1583         if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1584                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1585                 list_del_init(&bp->b_list);
1586                 dequeued = 1;
1587         }
1588         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1589         spin_unlock(&bp->b_target->bt_delwri_lock);
1590
1591         if (dequeued)
1592                 xfs_buf_rele(bp);
1593
1594         trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1595 }
1596
1597 /*
1598  * If a delwri buffer needs to be pushed before it has aged out, then promote
1599  * it to the head of the delwri queue so that it will be flushed on the next
1600  * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1601  * than the age currently needed to flush the buffer. Hence the next time the
1602  * xfsbufd sees it is guaranteed to be considered old enough to flush.
1603  */
1604 void
1605 xfs_buf_delwri_promote(
1606         struct xfs_buf  *bp)
1607 {
1608         struct xfs_buftarg *btp = bp->b_target;
1609         long            age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1610
1611         ASSERT(bp->b_flags & XBF_DELWRI);
1612         ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1613
1614         /*
1615          * Check the buffer age before locking the delayed write queue as we
1616          * don't need to promote buffers that are already past the flush age.
1617          */
1618         if (bp->b_queuetime < jiffies - age)
1619                 return;
1620         bp->b_queuetime = jiffies - age;
1621         spin_lock(&btp->bt_delwri_lock);
1622         list_move(&bp->b_list, &btp->bt_delwri_queue);
1623         spin_unlock(&btp->bt_delwri_lock);
1624 }
1625
1626 /*
1627  * Move as many buffers as specified to the supplied list
1628  * idicating if we skipped any buffers to prevent deadlocks.
1629  */
1630 STATIC int
1631 xfs_buf_delwri_split(
1632         xfs_buftarg_t   *target,
1633         struct list_head *list,
1634         unsigned long   age)
1635 {
1636         xfs_buf_t       *bp, *n;
1637         int             skipped = 0;
1638         int             force;
1639
1640         force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1641         INIT_LIST_HEAD(list);
1642         spin_lock(&target->bt_delwri_lock);
1643         list_for_each_entry_safe(bp, n, &target->bt_delwri_queue, b_list) {
1644                 ASSERT(bp->b_flags & XBF_DELWRI);
1645
1646                 if (!xfs_buf_ispinned(bp) && xfs_buf_trylock(bp)) {
1647                         if (!force &&
1648                             time_before(jiffies, bp->b_queuetime + age)) {
1649                                 xfs_buf_unlock(bp);
1650                                 break;
1651                         }
1652
1653                         bp->b_flags &= ~(XBF_DELWRI | _XBF_DELWRI_Q);
1654                         bp->b_flags |= XBF_WRITE;
1655                         list_move_tail(&bp->b_list, list);
1656                         trace_xfs_buf_delwri_split(bp, _RET_IP_);
1657                 } else
1658                         skipped++;
1659         }
1660
1661         spin_unlock(&target->bt_delwri_lock);
1662         return skipped;
1663 }
1664
1665 /*
1666  * Compare function is more complex than it needs to be because
1667  * the return value is only 32 bits and we are doing comparisons
1668  * on 64 bit values
1669  */
1670 static int
1671 xfs_buf_cmp(
1672         void            *priv,
1673         struct list_head *a,
1674         struct list_head *b)
1675 {
1676         struct xfs_buf  *ap = container_of(a, struct xfs_buf, b_list);
1677         struct xfs_buf  *bp = container_of(b, struct xfs_buf, b_list);
1678         xfs_daddr_t             diff;
1679
1680         diff = ap->b_bn - bp->b_bn;
1681         if (diff < 0)
1682                 return -1;
1683         if (diff > 0)
1684                 return 1;
1685         return 0;
1686 }
1687
1688 STATIC int
1689 xfsbufd(
1690         void            *data)
1691 {
1692         xfs_buftarg_t   *target = (xfs_buftarg_t *)data;
1693
1694         current->flags |= PF_MEMALLOC;
1695
1696         set_freezable();
1697
1698         do {
1699                 long    age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1700                 long    tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1701                 struct list_head tmp;
1702                 struct blk_plug plug;
1703
1704                 if (unlikely(freezing(current))) {
1705                         set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1706                         try_to_freeze();
1707                 } else {
1708                         clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1709                 }
1710
1711                 /* sleep for a long time if there is nothing to do. */
1712                 if (list_empty(&target->bt_delwri_queue))
1713                         tout = MAX_SCHEDULE_TIMEOUT;
1714                 schedule_timeout_interruptible(tout);
1715
1716                 xfs_buf_delwri_split(target, &tmp, age);
1717                 list_sort(NULL, &tmp, xfs_buf_cmp);
1718
1719                 blk_start_plug(&plug);
1720                 while (!list_empty(&tmp)) {
1721                         struct xfs_buf *bp;
1722                         bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1723                         list_del_init(&bp->b_list);
1724                         xfs_bdstrat_cb(bp);
1725                 }
1726                 blk_finish_plug(&plug);
1727         } while (!kthread_should_stop());
1728
1729         return 0;
1730 }
1731
1732 /*
1733  *      Go through all incore buffers, and release buffers if they belong to
1734  *      the given device. This is used in filesystem error handling to
1735  *      preserve the consistency of its metadata.
1736  */
1737 int
1738 xfs_flush_buftarg(
1739         xfs_buftarg_t   *target,
1740         int             wait)
1741 {
1742         xfs_buf_t       *bp;
1743         int             pincount = 0;
1744         LIST_HEAD(tmp_list);
1745         LIST_HEAD(wait_list);
1746         struct blk_plug plug;
1747
1748         flush_workqueue(xfslogd_workqueue);
1749
1750         set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1751         pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1752
1753         /*
1754          * Dropped the delayed write list lock, now walk the temporary list.
1755          * All I/O is issued async and then if we need to wait for completion
1756          * we do that after issuing all the IO.
1757          */
1758         list_sort(NULL, &tmp_list, xfs_buf_cmp);
1759
1760         blk_start_plug(&plug);
1761         while (!list_empty(&tmp_list)) {
1762                 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1763                 ASSERT(target == bp->b_target);
1764                 list_del_init(&bp->b_list);
1765                 if (wait) {
1766                         bp->b_flags &= ~XBF_ASYNC;
1767                         list_add(&bp->b_list, &wait_list);
1768                 }
1769                 xfs_bdstrat_cb(bp);
1770         }
1771         blk_finish_plug(&plug);
1772
1773         if (wait) {
1774                 /* Wait for IO to complete. */
1775                 while (!list_empty(&wait_list)) {
1776                         bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1777
1778                         list_del_init(&bp->b_list);
1779                         xfs_buf_iowait(bp);
1780                         xfs_buf_relse(bp);
1781                 }
1782         }
1783
1784         return pincount;
1785 }
1786
1787 int __init
1788 xfs_buf_init(void)
1789 {
1790         xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1791                                                 KM_ZONE_HWALIGN, NULL);
1792         if (!xfs_buf_zone)
1793                 goto out;
1794
1795         xfslogd_workqueue = alloc_workqueue("xfslogd",
1796                                         WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1797         if (!xfslogd_workqueue)
1798                 goto out_free_buf_zone;
1799
1800         xfsdatad_workqueue = alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM, 1);
1801         if (!xfsdatad_workqueue)
1802                 goto out_destroy_xfslogd_workqueue;
1803
1804         xfsconvertd_workqueue = alloc_workqueue("xfsconvertd",
1805                                                 WQ_MEM_RECLAIM, 1);
1806         if (!xfsconvertd_workqueue)
1807                 goto out_destroy_xfsdatad_workqueue;
1808
1809         return 0;
1810
1811  out_destroy_xfsdatad_workqueue:
1812         destroy_workqueue(xfsdatad_workqueue);
1813  out_destroy_xfslogd_workqueue:
1814         destroy_workqueue(xfslogd_workqueue);
1815  out_free_buf_zone:
1816         kmem_zone_destroy(xfs_buf_zone);
1817  out:
1818         return -ENOMEM;
1819 }
1820
1821 void
1822 xfs_buf_terminate(void)
1823 {
1824         destroy_workqueue(xfsconvertd_workqueue);
1825         destroy_workqueue(xfsdatad_workqueue);
1826         destroy_workqueue(xfslogd_workqueue);
1827         kmem_zone_destroy(xfs_buf_zone);
1828 }