UBIFS: introduce helper functions for debugging checks and tests
[linux-3.10.git] / fs / ubifs / debug.c
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29
30 #define UBIFS_DBG_PRESERVE_UBI
31
32 #include "ubifs.h"
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/debugfs.h>
36 #include <linux/math64.h>
37
38 #ifdef CONFIG_UBIFS_FS_DEBUG
39
40 DEFINE_SPINLOCK(dbg_lock);
41
42 static char dbg_key_buf0[128];
43 static char dbg_key_buf1[128];
44
45 unsigned int ubifs_chk_flags;
46 unsigned int ubifs_tst_flags;
47
48 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
49 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
50
51 MODULE_PARM_DESC(debug_chks, "Debug check flags");
52 MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
53
54 static const char *get_key_fmt(int fmt)
55 {
56         switch (fmt) {
57         case UBIFS_SIMPLE_KEY_FMT:
58                 return "simple";
59         default:
60                 return "unknown/invalid format";
61         }
62 }
63
64 static const char *get_key_hash(int hash)
65 {
66         switch (hash) {
67         case UBIFS_KEY_HASH_R5:
68                 return "R5";
69         case UBIFS_KEY_HASH_TEST:
70                 return "test";
71         default:
72                 return "unknown/invalid name hash";
73         }
74 }
75
76 static const char *get_key_type(int type)
77 {
78         switch (type) {
79         case UBIFS_INO_KEY:
80                 return "inode";
81         case UBIFS_DENT_KEY:
82                 return "direntry";
83         case UBIFS_XENT_KEY:
84                 return "xentry";
85         case UBIFS_DATA_KEY:
86                 return "data";
87         case UBIFS_TRUN_KEY:
88                 return "truncate";
89         default:
90                 return "unknown/invalid key";
91         }
92 }
93
94 static const char *get_dent_type(int type)
95 {
96         switch (type) {
97         case UBIFS_ITYPE_REG:
98                 return "file";
99         case UBIFS_ITYPE_DIR:
100                 return "dir";
101         case UBIFS_ITYPE_LNK:
102                 return "symlink";
103         case UBIFS_ITYPE_BLK:
104                 return "blkdev";
105         case UBIFS_ITYPE_CHR:
106                 return "char dev";
107         case UBIFS_ITYPE_FIFO:
108                 return "fifo";
109         case UBIFS_ITYPE_SOCK:
110                 return "socket";
111         default:
112                 return "unknown/invalid type";
113         }
114 }
115
116 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
117                         char *buffer)
118 {
119         char *p = buffer;
120         int type = key_type(c, key);
121
122         if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
123                 switch (type) {
124                 case UBIFS_INO_KEY:
125                         sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
126                                get_key_type(type));
127                         break;
128                 case UBIFS_DENT_KEY:
129                 case UBIFS_XENT_KEY:
130                         sprintf(p, "(%lu, %s, %#08x)",
131                                 (unsigned long)key_inum(c, key),
132                                 get_key_type(type), key_hash(c, key));
133                         break;
134                 case UBIFS_DATA_KEY:
135                         sprintf(p, "(%lu, %s, %u)",
136                                 (unsigned long)key_inum(c, key),
137                                 get_key_type(type), key_block(c, key));
138                         break;
139                 case UBIFS_TRUN_KEY:
140                         sprintf(p, "(%lu, %s)",
141                                 (unsigned long)key_inum(c, key),
142                                 get_key_type(type));
143                         break;
144                 default:
145                         sprintf(p, "(bad key type: %#08x, %#08x)",
146                                 key->u32[0], key->u32[1]);
147                 }
148         } else
149                 sprintf(p, "bad key format %d", c->key_fmt);
150 }
151
152 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
153 {
154         /* dbg_lock must be held */
155         sprintf_key(c, key, dbg_key_buf0);
156         return dbg_key_buf0;
157 }
158
159 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
160 {
161         /* dbg_lock must be held */
162         sprintf_key(c, key, dbg_key_buf1);
163         return dbg_key_buf1;
164 }
165
166 const char *dbg_ntype(int type)
167 {
168         switch (type) {
169         case UBIFS_PAD_NODE:
170                 return "padding node";
171         case UBIFS_SB_NODE:
172                 return "superblock node";
173         case UBIFS_MST_NODE:
174                 return "master node";
175         case UBIFS_REF_NODE:
176                 return "reference node";
177         case UBIFS_INO_NODE:
178                 return "inode node";
179         case UBIFS_DENT_NODE:
180                 return "direntry node";
181         case UBIFS_XENT_NODE:
182                 return "xentry node";
183         case UBIFS_DATA_NODE:
184                 return "data node";
185         case UBIFS_TRUN_NODE:
186                 return "truncate node";
187         case UBIFS_IDX_NODE:
188                 return "indexing node";
189         case UBIFS_CS_NODE:
190                 return "commit start node";
191         case UBIFS_ORPH_NODE:
192                 return "orphan node";
193         default:
194                 return "unknown node";
195         }
196 }
197
198 static const char *dbg_gtype(int type)
199 {
200         switch (type) {
201         case UBIFS_NO_NODE_GROUP:
202                 return "no node group";
203         case UBIFS_IN_NODE_GROUP:
204                 return "in node group";
205         case UBIFS_LAST_OF_NODE_GROUP:
206                 return "last of node group";
207         default:
208                 return "unknown";
209         }
210 }
211
212 const char *dbg_cstate(int cmt_state)
213 {
214         switch (cmt_state) {
215         case COMMIT_RESTING:
216                 return "commit resting";
217         case COMMIT_BACKGROUND:
218                 return "background commit requested";
219         case COMMIT_REQUIRED:
220                 return "commit required";
221         case COMMIT_RUNNING_BACKGROUND:
222                 return "BACKGROUND commit running";
223         case COMMIT_RUNNING_REQUIRED:
224                 return "commit running and required";
225         case COMMIT_BROKEN:
226                 return "broken commit";
227         default:
228                 return "unknown commit state";
229         }
230 }
231
232 const char *dbg_jhead(int jhead)
233 {
234         switch (jhead) {
235         case GCHD:
236                 return "0 (GC)";
237         case BASEHD:
238                 return "1 (base)";
239         case DATAHD:
240                 return "2 (data)";
241         default:
242                 return "unknown journal head";
243         }
244 }
245
246 static void dump_ch(const struct ubifs_ch *ch)
247 {
248         printk(KERN_DEBUG "\tmagic          %#x\n", le32_to_cpu(ch->magic));
249         printk(KERN_DEBUG "\tcrc            %#x\n", le32_to_cpu(ch->crc));
250         printk(KERN_DEBUG "\tnode_type      %d (%s)\n", ch->node_type,
251                dbg_ntype(ch->node_type));
252         printk(KERN_DEBUG "\tgroup_type     %d (%s)\n", ch->group_type,
253                dbg_gtype(ch->group_type));
254         printk(KERN_DEBUG "\tsqnum          %llu\n",
255                (unsigned long long)le64_to_cpu(ch->sqnum));
256         printk(KERN_DEBUG "\tlen            %u\n", le32_to_cpu(ch->len));
257 }
258
259 void dbg_dump_inode(struct ubifs_info *c, const struct inode *inode)
260 {
261         const struct ubifs_inode *ui = ubifs_inode(inode);
262         struct qstr nm = { .name = NULL };
263         union ubifs_key key;
264         struct ubifs_dent_node *dent, *pdent = NULL;
265         int count = 2;
266
267         printk(KERN_DEBUG "Dump in-memory inode:");
268         printk(KERN_DEBUG "\tinode          %lu\n", inode->i_ino);
269         printk(KERN_DEBUG "\tsize           %llu\n",
270                (unsigned long long)i_size_read(inode));
271         printk(KERN_DEBUG "\tnlink          %u\n", inode->i_nlink);
272         printk(KERN_DEBUG "\tuid            %u\n", (unsigned int)inode->i_uid);
273         printk(KERN_DEBUG "\tgid            %u\n", (unsigned int)inode->i_gid);
274         printk(KERN_DEBUG "\tatime          %u.%u\n",
275                (unsigned int)inode->i_atime.tv_sec,
276                (unsigned int)inode->i_atime.tv_nsec);
277         printk(KERN_DEBUG "\tmtime          %u.%u\n",
278                (unsigned int)inode->i_mtime.tv_sec,
279                (unsigned int)inode->i_mtime.tv_nsec);
280         printk(KERN_DEBUG "\tctime          %u.%u\n",
281                (unsigned int)inode->i_ctime.tv_sec,
282                (unsigned int)inode->i_ctime.tv_nsec);
283         printk(KERN_DEBUG "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
284         printk(KERN_DEBUG "\txattr_size     %u\n", ui->xattr_size);
285         printk(KERN_DEBUG "\txattr_cnt      %u\n", ui->xattr_cnt);
286         printk(KERN_DEBUG "\txattr_names    %u\n", ui->xattr_names);
287         printk(KERN_DEBUG "\tdirty          %u\n", ui->dirty);
288         printk(KERN_DEBUG "\txattr          %u\n", ui->xattr);
289         printk(KERN_DEBUG "\tbulk_read      %u\n", ui->xattr);
290         printk(KERN_DEBUG "\tsynced_i_size  %llu\n",
291                (unsigned long long)ui->synced_i_size);
292         printk(KERN_DEBUG "\tui_size        %llu\n",
293                (unsigned long long)ui->ui_size);
294         printk(KERN_DEBUG "\tflags          %d\n", ui->flags);
295         printk(KERN_DEBUG "\tcompr_type     %d\n", ui->compr_type);
296         printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
297         printk(KERN_DEBUG "\tread_in_a_row  %lu\n", ui->read_in_a_row);
298         printk(KERN_DEBUG "\tdata_len       %d\n", ui->data_len);
299
300         if (!S_ISDIR(inode->i_mode))
301                 return;
302
303         printk(KERN_DEBUG "List of directory entries:\n");
304         ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
305
306         lowest_dent_key(c, &key, inode->i_ino);
307         while (1) {
308                 dent = ubifs_tnc_next_ent(c, &key, &nm);
309                 if (IS_ERR(dent)) {
310                         if (PTR_ERR(dent) != -ENOENT)
311                                 printk(KERN_DEBUG "error %ld\n", PTR_ERR(dent));
312                         break;
313                 }
314
315                 printk(KERN_DEBUG "\t%d: %s (%s)\n",
316                        count++, dent->name, get_dent_type(dent->type));
317
318                 nm.name = dent->name;
319                 nm.len = le16_to_cpu(dent->nlen);
320                 kfree(pdent);
321                 pdent = dent;
322                 key_read(c, &dent->key, &key);
323         }
324         kfree(pdent);
325 }
326
327 void dbg_dump_node(const struct ubifs_info *c, const void *node)
328 {
329         int i, n;
330         union ubifs_key key;
331         const struct ubifs_ch *ch = node;
332
333         if (dbg_is_tst_rcvry(c))
334                 return;
335
336         /* If the magic is incorrect, just hexdump the first bytes */
337         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
338                 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
339                 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
340                                (void *)node, UBIFS_CH_SZ, 1);
341                 return;
342         }
343
344         spin_lock(&dbg_lock);
345         dump_ch(node);
346
347         switch (ch->node_type) {
348         case UBIFS_PAD_NODE:
349         {
350                 const struct ubifs_pad_node *pad = node;
351
352                 printk(KERN_DEBUG "\tpad_len        %u\n",
353                        le32_to_cpu(pad->pad_len));
354                 break;
355         }
356         case UBIFS_SB_NODE:
357         {
358                 const struct ubifs_sb_node *sup = node;
359                 unsigned int sup_flags = le32_to_cpu(sup->flags);
360
361                 printk(KERN_DEBUG "\tkey_hash       %d (%s)\n",
362                        (int)sup->key_hash, get_key_hash(sup->key_hash));
363                 printk(KERN_DEBUG "\tkey_fmt        %d (%s)\n",
364                        (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
365                 printk(KERN_DEBUG "\tflags          %#x\n", sup_flags);
366                 printk(KERN_DEBUG "\t  big_lpt      %u\n",
367                        !!(sup_flags & UBIFS_FLG_BIGLPT));
368                 printk(KERN_DEBUG "\t  space_fixup  %u\n",
369                        !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
370                 printk(KERN_DEBUG "\tmin_io_size    %u\n",
371                        le32_to_cpu(sup->min_io_size));
372                 printk(KERN_DEBUG "\tleb_size       %u\n",
373                        le32_to_cpu(sup->leb_size));
374                 printk(KERN_DEBUG "\tleb_cnt        %u\n",
375                        le32_to_cpu(sup->leb_cnt));
376                 printk(KERN_DEBUG "\tmax_leb_cnt    %u\n",
377                        le32_to_cpu(sup->max_leb_cnt));
378                 printk(KERN_DEBUG "\tmax_bud_bytes  %llu\n",
379                        (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
380                 printk(KERN_DEBUG "\tlog_lebs       %u\n",
381                        le32_to_cpu(sup->log_lebs));
382                 printk(KERN_DEBUG "\tlpt_lebs       %u\n",
383                        le32_to_cpu(sup->lpt_lebs));
384                 printk(KERN_DEBUG "\torph_lebs      %u\n",
385                        le32_to_cpu(sup->orph_lebs));
386                 printk(KERN_DEBUG "\tjhead_cnt      %u\n",
387                        le32_to_cpu(sup->jhead_cnt));
388                 printk(KERN_DEBUG "\tfanout         %u\n",
389                        le32_to_cpu(sup->fanout));
390                 printk(KERN_DEBUG "\tlsave_cnt      %u\n",
391                        le32_to_cpu(sup->lsave_cnt));
392                 printk(KERN_DEBUG "\tdefault_compr  %u\n",
393                        (int)le16_to_cpu(sup->default_compr));
394                 printk(KERN_DEBUG "\trp_size        %llu\n",
395                        (unsigned long long)le64_to_cpu(sup->rp_size));
396                 printk(KERN_DEBUG "\trp_uid         %u\n",
397                        le32_to_cpu(sup->rp_uid));
398                 printk(KERN_DEBUG "\trp_gid         %u\n",
399                        le32_to_cpu(sup->rp_gid));
400                 printk(KERN_DEBUG "\tfmt_version    %u\n",
401                        le32_to_cpu(sup->fmt_version));
402                 printk(KERN_DEBUG "\ttime_gran      %u\n",
403                        le32_to_cpu(sup->time_gran));
404                 printk(KERN_DEBUG "\tUUID           %pUB\n",
405                        sup->uuid);
406                 break;
407         }
408         case UBIFS_MST_NODE:
409         {
410                 const struct ubifs_mst_node *mst = node;
411
412                 printk(KERN_DEBUG "\thighest_inum   %llu\n",
413                        (unsigned long long)le64_to_cpu(mst->highest_inum));
414                 printk(KERN_DEBUG "\tcommit number  %llu\n",
415                        (unsigned long long)le64_to_cpu(mst->cmt_no));
416                 printk(KERN_DEBUG "\tflags          %#x\n",
417                        le32_to_cpu(mst->flags));
418                 printk(KERN_DEBUG "\tlog_lnum       %u\n",
419                        le32_to_cpu(mst->log_lnum));
420                 printk(KERN_DEBUG "\troot_lnum      %u\n",
421                        le32_to_cpu(mst->root_lnum));
422                 printk(KERN_DEBUG "\troot_offs      %u\n",
423                        le32_to_cpu(mst->root_offs));
424                 printk(KERN_DEBUG "\troot_len       %u\n",
425                        le32_to_cpu(mst->root_len));
426                 printk(KERN_DEBUG "\tgc_lnum        %u\n",
427                        le32_to_cpu(mst->gc_lnum));
428                 printk(KERN_DEBUG "\tihead_lnum     %u\n",
429                        le32_to_cpu(mst->ihead_lnum));
430                 printk(KERN_DEBUG "\tihead_offs     %u\n",
431                        le32_to_cpu(mst->ihead_offs));
432                 printk(KERN_DEBUG "\tindex_size     %llu\n",
433                        (unsigned long long)le64_to_cpu(mst->index_size));
434                 printk(KERN_DEBUG "\tlpt_lnum       %u\n",
435                        le32_to_cpu(mst->lpt_lnum));
436                 printk(KERN_DEBUG "\tlpt_offs       %u\n",
437                        le32_to_cpu(mst->lpt_offs));
438                 printk(KERN_DEBUG "\tnhead_lnum     %u\n",
439                        le32_to_cpu(mst->nhead_lnum));
440                 printk(KERN_DEBUG "\tnhead_offs     %u\n",
441                        le32_to_cpu(mst->nhead_offs));
442                 printk(KERN_DEBUG "\tltab_lnum      %u\n",
443                        le32_to_cpu(mst->ltab_lnum));
444                 printk(KERN_DEBUG "\tltab_offs      %u\n",
445                        le32_to_cpu(mst->ltab_offs));
446                 printk(KERN_DEBUG "\tlsave_lnum     %u\n",
447                        le32_to_cpu(mst->lsave_lnum));
448                 printk(KERN_DEBUG "\tlsave_offs     %u\n",
449                        le32_to_cpu(mst->lsave_offs));
450                 printk(KERN_DEBUG "\tlscan_lnum     %u\n",
451                        le32_to_cpu(mst->lscan_lnum));
452                 printk(KERN_DEBUG "\tleb_cnt        %u\n",
453                        le32_to_cpu(mst->leb_cnt));
454                 printk(KERN_DEBUG "\tempty_lebs     %u\n",
455                        le32_to_cpu(mst->empty_lebs));
456                 printk(KERN_DEBUG "\tidx_lebs       %u\n",
457                        le32_to_cpu(mst->idx_lebs));
458                 printk(KERN_DEBUG "\ttotal_free     %llu\n",
459                        (unsigned long long)le64_to_cpu(mst->total_free));
460                 printk(KERN_DEBUG "\ttotal_dirty    %llu\n",
461                        (unsigned long long)le64_to_cpu(mst->total_dirty));
462                 printk(KERN_DEBUG "\ttotal_used     %llu\n",
463                        (unsigned long long)le64_to_cpu(mst->total_used));
464                 printk(KERN_DEBUG "\ttotal_dead     %llu\n",
465                        (unsigned long long)le64_to_cpu(mst->total_dead));
466                 printk(KERN_DEBUG "\ttotal_dark     %llu\n",
467                        (unsigned long long)le64_to_cpu(mst->total_dark));
468                 break;
469         }
470         case UBIFS_REF_NODE:
471         {
472                 const struct ubifs_ref_node *ref = node;
473
474                 printk(KERN_DEBUG "\tlnum           %u\n",
475                        le32_to_cpu(ref->lnum));
476                 printk(KERN_DEBUG "\toffs           %u\n",
477                        le32_to_cpu(ref->offs));
478                 printk(KERN_DEBUG "\tjhead          %u\n",
479                        le32_to_cpu(ref->jhead));
480                 break;
481         }
482         case UBIFS_INO_NODE:
483         {
484                 const struct ubifs_ino_node *ino = node;
485
486                 key_read(c, &ino->key, &key);
487                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
488                 printk(KERN_DEBUG "\tcreat_sqnum    %llu\n",
489                        (unsigned long long)le64_to_cpu(ino->creat_sqnum));
490                 printk(KERN_DEBUG "\tsize           %llu\n",
491                        (unsigned long long)le64_to_cpu(ino->size));
492                 printk(KERN_DEBUG "\tnlink          %u\n",
493                        le32_to_cpu(ino->nlink));
494                 printk(KERN_DEBUG "\tatime          %lld.%u\n",
495                        (long long)le64_to_cpu(ino->atime_sec),
496                        le32_to_cpu(ino->atime_nsec));
497                 printk(KERN_DEBUG "\tmtime          %lld.%u\n",
498                        (long long)le64_to_cpu(ino->mtime_sec),
499                        le32_to_cpu(ino->mtime_nsec));
500                 printk(KERN_DEBUG "\tctime          %lld.%u\n",
501                        (long long)le64_to_cpu(ino->ctime_sec),
502                        le32_to_cpu(ino->ctime_nsec));
503                 printk(KERN_DEBUG "\tuid            %u\n",
504                        le32_to_cpu(ino->uid));
505                 printk(KERN_DEBUG "\tgid            %u\n",
506                        le32_to_cpu(ino->gid));
507                 printk(KERN_DEBUG "\tmode           %u\n",
508                        le32_to_cpu(ino->mode));
509                 printk(KERN_DEBUG "\tflags          %#x\n",
510                        le32_to_cpu(ino->flags));
511                 printk(KERN_DEBUG "\txattr_cnt      %u\n",
512                        le32_to_cpu(ino->xattr_cnt));
513                 printk(KERN_DEBUG "\txattr_size     %u\n",
514                        le32_to_cpu(ino->xattr_size));
515                 printk(KERN_DEBUG "\txattr_names    %u\n",
516                        le32_to_cpu(ino->xattr_names));
517                 printk(KERN_DEBUG "\tcompr_type     %#x\n",
518                        (int)le16_to_cpu(ino->compr_type));
519                 printk(KERN_DEBUG "\tdata len       %u\n",
520                        le32_to_cpu(ino->data_len));
521                 break;
522         }
523         case UBIFS_DENT_NODE:
524         case UBIFS_XENT_NODE:
525         {
526                 const struct ubifs_dent_node *dent = node;
527                 int nlen = le16_to_cpu(dent->nlen);
528
529                 key_read(c, &dent->key, &key);
530                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
531                 printk(KERN_DEBUG "\tinum           %llu\n",
532                        (unsigned long long)le64_to_cpu(dent->inum));
533                 printk(KERN_DEBUG "\ttype           %d\n", (int)dent->type);
534                 printk(KERN_DEBUG "\tnlen           %d\n", nlen);
535                 printk(KERN_DEBUG "\tname           ");
536
537                 if (nlen > UBIFS_MAX_NLEN)
538                         printk(KERN_DEBUG "(bad name length, not printing, "
539                                           "bad or corrupted node)");
540                 else {
541                         for (i = 0; i < nlen && dent->name[i]; i++)
542                                 printk(KERN_CONT "%c", dent->name[i]);
543                 }
544                 printk(KERN_CONT "\n");
545
546                 break;
547         }
548         case UBIFS_DATA_NODE:
549         {
550                 const struct ubifs_data_node *dn = node;
551                 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
552
553                 key_read(c, &dn->key, &key);
554                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
555                 printk(KERN_DEBUG "\tsize           %u\n",
556                        le32_to_cpu(dn->size));
557                 printk(KERN_DEBUG "\tcompr_typ      %d\n",
558                        (int)le16_to_cpu(dn->compr_type));
559                 printk(KERN_DEBUG "\tdata size      %d\n",
560                        dlen);
561                 printk(KERN_DEBUG "\tdata:\n");
562                 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
563                                (void *)&dn->data, dlen, 0);
564                 break;
565         }
566         case UBIFS_TRUN_NODE:
567         {
568                 const struct ubifs_trun_node *trun = node;
569
570                 printk(KERN_DEBUG "\tinum           %u\n",
571                        le32_to_cpu(trun->inum));
572                 printk(KERN_DEBUG "\told_size       %llu\n",
573                        (unsigned long long)le64_to_cpu(trun->old_size));
574                 printk(KERN_DEBUG "\tnew_size       %llu\n",
575                        (unsigned long long)le64_to_cpu(trun->new_size));
576                 break;
577         }
578         case UBIFS_IDX_NODE:
579         {
580                 const struct ubifs_idx_node *idx = node;
581
582                 n = le16_to_cpu(idx->child_cnt);
583                 printk(KERN_DEBUG "\tchild_cnt      %d\n", n);
584                 printk(KERN_DEBUG "\tlevel          %d\n",
585                        (int)le16_to_cpu(idx->level));
586                 printk(KERN_DEBUG "\tBranches:\n");
587
588                 for (i = 0; i < n && i < c->fanout - 1; i++) {
589                         const struct ubifs_branch *br;
590
591                         br = ubifs_idx_branch(c, idx, i);
592                         key_read(c, &br->key, &key);
593                         printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
594                                i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
595                                le32_to_cpu(br->len), DBGKEY(&key));
596                 }
597                 break;
598         }
599         case UBIFS_CS_NODE:
600                 break;
601         case UBIFS_ORPH_NODE:
602         {
603                 const struct ubifs_orph_node *orph = node;
604
605                 printk(KERN_DEBUG "\tcommit number  %llu\n",
606                        (unsigned long long)
607                                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
608                 printk(KERN_DEBUG "\tlast node flag %llu\n",
609                        (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
610                 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
611                 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
612                 for (i = 0; i < n; i++)
613                         printk(KERN_DEBUG "\t  ino %llu\n",
614                                (unsigned long long)le64_to_cpu(orph->inos[i]));
615                 break;
616         }
617         default:
618                 printk(KERN_DEBUG "node type %d was not recognized\n",
619                        (int)ch->node_type);
620         }
621         spin_unlock(&dbg_lock);
622 }
623
624 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
625 {
626         spin_lock(&dbg_lock);
627         printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
628                req->new_ino, req->dirtied_ino);
629         printk(KERN_DEBUG "\tnew_ino_d   %d, dirtied_ino_d %d\n",
630                req->new_ino_d, req->dirtied_ino_d);
631         printk(KERN_DEBUG "\tnew_page    %d, dirtied_page %d\n",
632                req->new_page, req->dirtied_page);
633         printk(KERN_DEBUG "\tnew_dent    %d, mod_dent     %d\n",
634                req->new_dent, req->mod_dent);
635         printk(KERN_DEBUG "\tidx_growth  %d\n", req->idx_growth);
636         printk(KERN_DEBUG "\tdata_growth %d dd_growth     %d\n",
637                req->data_growth, req->dd_growth);
638         spin_unlock(&dbg_lock);
639 }
640
641 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
642 {
643         spin_lock(&dbg_lock);
644         printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
645                "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
646         printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
647                "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
648                lst->total_dirty);
649         printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
650                "total_dead %lld\n", lst->total_used, lst->total_dark,
651                lst->total_dead);
652         spin_unlock(&dbg_lock);
653 }
654
655 void dbg_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
656 {
657         int i;
658         struct rb_node *rb;
659         struct ubifs_bud *bud;
660         struct ubifs_gced_idx_leb *idx_gc;
661         long long available, outstanding, free;
662
663         spin_lock(&c->space_lock);
664         spin_lock(&dbg_lock);
665         printk(KERN_DEBUG "(pid %d) Budgeting info: data budget sum %lld, "
666                "total budget sum %lld\n", current->pid,
667                bi->data_growth + bi->dd_growth,
668                bi->data_growth + bi->dd_growth + bi->idx_growth);
669         printk(KERN_DEBUG "\tbudg_data_growth %lld, budg_dd_growth %lld, "
670                "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth,
671                bi->idx_growth);
672         printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %llu, "
673                "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz,
674                bi->uncommitted_idx);
675         printk(KERN_DEBUG "\tpage_budget %d, inode_budget %d, dent_budget %d\n",
676                bi->page_budget, bi->inode_budget, bi->dent_budget);
677         printk(KERN_DEBUG "\tnospace %u, nospace_rp %u\n",
678                bi->nospace, bi->nospace_rp);
679         printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
680                c->dark_wm, c->dead_wm, c->max_idx_node_sz);
681
682         if (bi != &c->bi)
683                 /*
684                  * If we are dumping saved budgeting data, do not print
685                  * additional information which is about the current state, not
686                  * the old one which corresponded to the saved budgeting data.
687                  */
688                 goto out_unlock;
689
690         printk(KERN_DEBUG "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
691                c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
692         printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
693                "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
694                atomic_long_read(&c->dirty_zn_cnt),
695                atomic_long_read(&c->clean_zn_cnt));
696         printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
697                c->gc_lnum, c->ihead_lnum);
698
699         /* If we are in R/O mode, journal heads do not exist */
700         if (c->jheads)
701                 for (i = 0; i < c->jhead_cnt; i++)
702                         printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
703                                dbg_jhead(c->jheads[i].wbuf.jhead),
704                                c->jheads[i].wbuf.lnum);
705         for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
706                 bud = rb_entry(rb, struct ubifs_bud, rb);
707                 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
708         }
709         list_for_each_entry(bud, &c->old_buds, list)
710                 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
711         list_for_each_entry(idx_gc, &c->idx_gc, list)
712                 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
713                        idx_gc->lnum, idx_gc->unmap);
714         printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
715
716         /* Print budgeting predictions */
717         available = ubifs_calc_available(c, c->bi.min_idx_lebs);
718         outstanding = c->bi.data_growth + c->bi.dd_growth;
719         free = ubifs_get_free_space_nolock(c);
720         printk(KERN_DEBUG "Budgeting predictions:\n");
721         printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
722                available, outstanding, free);
723 out_unlock:
724         spin_unlock(&dbg_lock);
725         spin_unlock(&c->space_lock);
726 }
727
728 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
729 {
730         int i, spc, dark = 0, dead = 0;
731         struct rb_node *rb;
732         struct ubifs_bud *bud;
733
734         spc = lp->free + lp->dirty;
735         if (spc < c->dead_wm)
736                 dead = spc;
737         else
738                 dark = ubifs_calc_dark(c, spc);
739
740         if (lp->flags & LPROPS_INDEX)
741                 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
742                        "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
743                        lp->dirty, c->leb_size - spc, spc, lp->flags);
744         else
745                 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
746                        "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
747                        "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
748                        c->leb_size - spc, spc, dark, dead,
749                        (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
750
751         if (lp->flags & LPROPS_TAKEN) {
752                 if (lp->flags & LPROPS_INDEX)
753                         printk(KERN_CONT "index, taken");
754                 else
755                         printk(KERN_CONT "taken");
756         } else {
757                 const char *s;
758
759                 if (lp->flags & LPROPS_INDEX) {
760                         switch (lp->flags & LPROPS_CAT_MASK) {
761                         case LPROPS_DIRTY_IDX:
762                                 s = "dirty index";
763                                 break;
764                         case LPROPS_FRDI_IDX:
765                                 s = "freeable index";
766                                 break;
767                         default:
768                                 s = "index";
769                         }
770                 } else {
771                         switch (lp->flags & LPROPS_CAT_MASK) {
772                         case LPROPS_UNCAT:
773                                 s = "not categorized";
774                                 break;
775                         case LPROPS_DIRTY:
776                                 s = "dirty";
777                                 break;
778                         case LPROPS_FREE:
779                                 s = "free";
780                                 break;
781                         case LPROPS_EMPTY:
782                                 s = "empty";
783                                 break;
784                         case LPROPS_FREEABLE:
785                                 s = "freeable";
786                                 break;
787                         default:
788                                 s = NULL;
789                                 break;
790                         }
791                 }
792                 printk(KERN_CONT "%s", s);
793         }
794
795         for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
796                 bud = rb_entry(rb, struct ubifs_bud, rb);
797                 if (bud->lnum == lp->lnum) {
798                         int head = 0;
799                         for (i = 0; i < c->jhead_cnt; i++) {
800                                 /*
801                                  * Note, if we are in R/O mode or in the middle
802                                  * of mounting/re-mounting, the write-buffers do
803                                  * not exist.
804                                  */
805                                 if (c->jheads &&
806                                     lp->lnum == c->jheads[i].wbuf.lnum) {
807                                         printk(KERN_CONT ", jhead %s",
808                                                dbg_jhead(i));
809                                         head = 1;
810                                 }
811                         }
812                         if (!head)
813                                 printk(KERN_CONT ", bud of jhead %s",
814                                        dbg_jhead(bud->jhead));
815                 }
816         }
817         if (lp->lnum == c->gc_lnum)
818                 printk(KERN_CONT ", GC LEB");
819         printk(KERN_CONT ")\n");
820 }
821
822 void dbg_dump_lprops(struct ubifs_info *c)
823 {
824         int lnum, err;
825         struct ubifs_lprops lp;
826         struct ubifs_lp_stats lst;
827
828         printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
829                current->pid);
830         ubifs_get_lp_stats(c, &lst);
831         dbg_dump_lstats(&lst);
832
833         for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
834                 err = ubifs_read_one_lp(c, lnum, &lp);
835                 if (err)
836                         ubifs_err("cannot read lprops for LEB %d", lnum);
837
838                 dbg_dump_lprop(c, &lp);
839         }
840         printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
841                current->pid);
842 }
843
844 void dbg_dump_lpt_info(struct ubifs_info *c)
845 {
846         int i;
847
848         spin_lock(&dbg_lock);
849         printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
850         printk(KERN_DEBUG "\tlpt_sz:        %lld\n", c->lpt_sz);
851         printk(KERN_DEBUG "\tpnode_sz:      %d\n", c->pnode_sz);
852         printk(KERN_DEBUG "\tnnode_sz:      %d\n", c->nnode_sz);
853         printk(KERN_DEBUG "\tltab_sz:       %d\n", c->ltab_sz);
854         printk(KERN_DEBUG "\tlsave_sz:      %d\n", c->lsave_sz);
855         printk(KERN_DEBUG "\tbig_lpt:       %d\n", c->big_lpt);
856         printk(KERN_DEBUG "\tlpt_hght:      %d\n", c->lpt_hght);
857         printk(KERN_DEBUG "\tpnode_cnt:     %d\n", c->pnode_cnt);
858         printk(KERN_DEBUG "\tnnode_cnt:     %d\n", c->nnode_cnt);
859         printk(KERN_DEBUG "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
860         printk(KERN_DEBUG "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
861         printk(KERN_DEBUG "\tlsave_cnt:     %d\n", c->lsave_cnt);
862         printk(KERN_DEBUG "\tspace_bits:    %d\n", c->space_bits);
863         printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
864         printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
865         printk(KERN_DEBUG "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
866         printk(KERN_DEBUG "\tpcnt_bits:     %d\n", c->pcnt_bits);
867         printk(KERN_DEBUG "\tlnum_bits:     %d\n", c->lnum_bits);
868         printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
869         printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
870                c->nhead_lnum, c->nhead_offs);
871         printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
872                c->ltab_lnum, c->ltab_offs);
873         if (c->big_lpt)
874                 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
875                        c->lsave_lnum, c->lsave_offs);
876         for (i = 0; i < c->lpt_lebs; i++)
877                 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
878                        "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
879                        c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
880         spin_unlock(&dbg_lock);
881 }
882
883 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
884 {
885         struct ubifs_scan_leb *sleb;
886         struct ubifs_scan_node *snod;
887         void *buf;
888
889         if (dbg_is_tst_rcvry(c))
890                 return;
891
892         printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
893                current->pid, lnum);
894
895         buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
896         if (!buf) {
897                 ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
898                 return;
899         }
900
901         sleb = ubifs_scan(c, lnum, 0, buf, 0);
902         if (IS_ERR(sleb)) {
903                 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
904                 goto out;
905         }
906
907         printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
908                sleb->nodes_cnt, sleb->endpt);
909
910         list_for_each_entry(snod, &sleb->nodes, list) {
911                 cond_resched();
912                 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
913                        snod->offs, snod->len);
914                 dbg_dump_node(c, snod->node);
915         }
916
917         printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
918                current->pid, lnum);
919         ubifs_scan_destroy(sleb);
920
921 out:
922         vfree(buf);
923         return;
924 }
925
926 void dbg_dump_znode(const struct ubifs_info *c,
927                     const struct ubifs_znode *znode)
928 {
929         int n;
930         const struct ubifs_zbranch *zbr;
931
932         spin_lock(&dbg_lock);
933         if (znode->parent)
934                 zbr = &znode->parent->zbranch[znode->iip];
935         else
936                 zbr = &c->zroot;
937
938         printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
939                " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
940                zbr->len, znode->parent, znode->iip, znode->level,
941                znode->child_cnt, znode->flags);
942
943         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
944                 spin_unlock(&dbg_lock);
945                 return;
946         }
947
948         printk(KERN_DEBUG "zbranches:\n");
949         for (n = 0; n < znode->child_cnt; n++) {
950                 zbr = &znode->zbranch[n];
951                 if (znode->level > 0)
952                         printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
953                                           "%s\n", n, zbr->znode, zbr->lnum,
954                                           zbr->offs, zbr->len,
955                                           DBGKEY(&zbr->key));
956                 else
957                         printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
958                                           "%s\n", n, zbr->znode, zbr->lnum,
959                                           zbr->offs, zbr->len,
960                                           DBGKEY(&zbr->key));
961         }
962         spin_unlock(&dbg_lock);
963 }
964
965 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
966 {
967         int i;
968
969         printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
970                current->pid, cat, heap->cnt);
971         for (i = 0; i < heap->cnt; i++) {
972                 struct ubifs_lprops *lprops = heap->arr[i];
973
974                 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
975                        "flags %d\n", i, lprops->lnum, lprops->hpos,
976                        lprops->free, lprops->dirty, lprops->flags);
977         }
978         printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
979 }
980
981 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
982                     struct ubifs_nnode *parent, int iip)
983 {
984         int i;
985
986         printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
987         printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
988                (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
989         printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
990                pnode->flags, iip, pnode->level, pnode->num);
991         for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
992                 struct ubifs_lprops *lp = &pnode->lprops[i];
993
994                 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
995                        i, lp->free, lp->dirty, lp->flags, lp->lnum);
996         }
997 }
998
999 void dbg_dump_tnc(struct ubifs_info *c)
1000 {
1001         struct ubifs_znode *znode;
1002         int level;
1003
1004         printk(KERN_DEBUG "\n");
1005         printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
1006         znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
1007         level = znode->level;
1008         printk(KERN_DEBUG "== Level %d ==\n", level);
1009         while (znode) {
1010                 if (level != znode->level) {
1011                         level = znode->level;
1012                         printk(KERN_DEBUG "== Level %d ==\n", level);
1013                 }
1014                 dbg_dump_znode(c, znode);
1015                 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
1016         }
1017         printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
1018 }
1019
1020 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
1021                       void *priv)
1022 {
1023         dbg_dump_znode(c, znode);
1024         return 0;
1025 }
1026
1027 /**
1028  * dbg_dump_index - dump the on-flash index.
1029  * @c: UBIFS file-system description object
1030  *
1031  * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
1032  * which dumps only in-memory znodes and does not read znodes which from flash.
1033  */
1034 void dbg_dump_index(struct ubifs_info *c)
1035 {
1036         dbg_walk_index(c, NULL, dump_znode, NULL);
1037 }
1038
1039 /**
1040  * dbg_save_space_info - save information about flash space.
1041  * @c: UBIFS file-system description object
1042  *
1043  * This function saves information about UBIFS free space, dirty space, etc, in
1044  * order to check it later.
1045  */
1046 void dbg_save_space_info(struct ubifs_info *c)
1047 {
1048         struct ubifs_debug_info *d = c->dbg;
1049         int freeable_cnt;
1050
1051         spin_lock(&c->space_lock);
1052         memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1053         memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1054         d->saved_idx_gc_cnt = c->idx_gc_cnt;
1055
1056         /*
1057          * We use a dirty hack here and zero out @c->freeable_cnt, because it
1058          * affects the free space calculations, and UBIFS might not know about
1059          * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1060          * only when we read their lprops, and we do this only lazily, upon the
1061          * need. So at any given point of time @c->freeable_cnt might be not
1062          * exactly accurate.
1063          *
1064          * Just one example about the issue we hit when we did not zero
1065          * @c->freeable_cnt.
1066          * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1067          *    amount of free space in @d->saved_free
1068          * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1069          *    information from flash, where we cache LEBs from various
1070          *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1071          *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1072          *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1073          *    -> 'ubifs_add_to_cat()').
1074          * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1075          *    becomes %1.
1076          * 4. We calculate the amount of free space when the re-mount is
1077          *    finished in 'dbg_check_space_info()' and it does not match
1078          *    @d->saved_free.
1079          */
1080         freeable_cnt = c->freeable_cnt;
1081         c->freeable_cnt = 0;
1082         d->saved_free = ubifs_get_free_space_nolock(c);
1083         c->freeable_cnt = freeable_cnt;
1084         spin_unlock(&c->space_lock);
1085 }
1086
1087 /**
1088  * dbg_check_space_info - check flash space information.
1089  * @c: UBIFS file-system description object
1090  *
1091  * This function compares current flash space information with the information
1092  * which was saved when the 'dbg_save_space_info()' function was called.
1093  * Returns zero if the information has not changed, and %-EINVAL it it has
1094  * changed.
1095  */
1096 int dbg_check_space_info(struct ubifs_info *c)
1097 {
1098         struct ubifs_debug_info *d = c->dbg;
1099         struct ubifs_lp_stats lst;
1100         long long free;
1101         int freeable_cnt;
1102
1103         spin_lock(&c->space_lock);
1104         freeable_cnt = c->freeable_cnt;
1105         c->freeable_cnt = 0;
1106         free = ubifs_get_free_space_nolock(c);
1107         c->freeable_cnt = freeable_cnt;
1108         spin_unlock(&c->space_lock);
1109
1110         if (free != d->saved_free) {
1111                 ubifs_err("free space changed from %lld to %lld",
1112                           d->saved_free, free);
1113                 goto out;
1114         }
1115
1116         return 0;
1117
1118 out:
1119         ubifs_msg("saved lprops statistics dump");
1120         dbg_dump_lstats(&d->saved_lst);
1121         ubifs_msg("saved budgeting info dump");
1122         dbg_dump_budg(c, &d->saved_bi);
1123         ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1124         ubifs_msg("current lprops statistics dump");
1125         ubifs_get_lp_stats(c, &lst);
1126         dbg_dump_lstats(&lst);
1127         ubifs_msg("current budgeting info dump");
1128         dbg_dump_budg(c, &c->bi);
1129         dump_stack();
1130         return -EINVAL;
1131 }
1132
1133 /**
1134  * dbg_check_synced_i_size - check synchronized inode size.
1135  * @c: UBIFS file-system description object
1136  * @inode: inode to check
1137  *
1138  * If inode is clean, synchronized inode size has to be equivalent to current
1139  * inode size. This function has to be called only for locked inodes (@i_mutex
1140  * has to be locked). Returns %0 if synchronized inode size if correct, and
1141  * %-EINVAL if not.
1142  */
1143 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1144 {
1145         int err = 0;
1146         struct ubifs_inode *ui = ubifs_inode(inode);
1147
1148         if (!dbg_is_chk_gen(c))
1149                 return 0;
1150         if (!S_ISREG(inode->i_mode))
1151                 return 0;
1152
1153         mutex_lock(&ui->ui_mutex);
1154         spin_lock(&ui->ui_lock);
1155         if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1156                 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1157                           "is clean", ui->ui_size, ui->synced_i_size);
1158                 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1159                           inode->i_mode, i_size_read(inode));
1160                 dbg_dump_stack();
1161                 err = -EINVAL;
1162         }
1163         spin_unlock(&ui->ui_lock);
1164         mutex_unlock(&ui->ui_mutex);
1165         return err;
1166 }
1167
1168 /*
1169  * dbg_check_dir - check directory inode size and link count.
1170  * @c: UBIFS file-system description object
1171  * @dir: the directory to calculate size for
1172  * @size: the result is returned here
1173  *
1174  * This function makes sure that directory size and link count are correct.
1175  * Returns zero in case of success and a negative error code in case of
1176  * failure.
1177  *
1178  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1179  * calling this function.
1180  */
1181 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1182 {
1183         unsigned int nlink = 2;
1184         union ubifs_key key;
1185         struct ubifs_dent_node *dent, *pdent = NULL;
1186         struct qstr nm = { .name = NULL };
1187         loff_t size = UBIFS_INO_NODE_SZ;
1188
1189         if (!dbg_is_chk_gen(c))
1190                 return 0;
1191
1192         if (!S_ISDIR(dir->i_mode))
1193                 return 0;
1194
1195         lowest_dent_key(c, &key, dir->i_ino);
1196         while (1) {
1197                 int err;
1198
1199                 dent = ubifs_tnc_next_ent(c, &key, &nm);
1200                 if (IS_ERR(dent)) {
1201                         err = PTR_ERR(dent);
1202                         if (err == -ENOENT)
1203                                 break;
1204                         return err;
1205                 }
1206
1207                 nm.name = dent->name;
1208                 nm.len = le16_to_cpu(dent->nlen);
1209                 size += CALC_DENT_SIZE(nm.len);
1210                 if (dent->type == UBIFS_ITYPE_DIR)
1211                         nlink += 1;
1212                 kfree(pdent);
1213                 pdent = dent;
1214                 key_read(c, &dent->key, &key);
1215         }
1216         kfree(pdent);
1217
1218         if (i_size_read(dir) != size) {
1219                 ubifs_err("directory inode %lu has size %llu, "
1220                           "but calculated size is %llu", dir->i_ino,
1221                           (unsigned long long)i_size_read(dir),
1222                           (unsigned long long)size);
1223                 dbg_dump_inode(c, dir);
1224                 dump_stack();
1225                 return -EINVAL;
1226         }
1227         if (dir->i_nlink != nlink) {
1228                 ubifs_err("directory inode %lu has nlink %u, but calculated "
1229                           "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1230                 dbg_dump_inode(c, dir);
1231                 dump_stack();
1232                 return -EINVAL;
1233         }
1234
1235         return 0;
1236 }
1237
1238 /**
1239  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1240  * @c: UBIFS file-system description object
1241  * @zbr1: first zbranch
1242  * @zbr2: following zbranch
1243  *
1244  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1245  * names of the direntries/xentries which are referred by the keys. This
1246  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1247  * sure the name of direntry/xentry referred by @zbr1 is less than
1248  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1249  * and a negative error code in case of failure.
1250  */
1251 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1252                                struct ubifs_zbranch *zbr2)
1253 {
1254         int err, nlen1, nlen2, cmp;
1255         struct ubifs_dent_node *dent1, *dent2;
1256         union ubifs_key key;
1257
1258         ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1259         dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1260         if (!dent1)
1261                 return -ENOMEM;
1262         dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1263         if (!dent2) {
1264                 err = -ENOMEM;
1265                 goto out_free;
1266         }
1267
1268         err = ubifs_tnc_read_node(c, zbr1, dent1);
1269         if (err)
1270                 goto out_free;
1271         err = ubifs_validate_entry(c, dent1);
1272         if (err)
1273                 goto out_free;
1274
1275         err = ubifs_tnc_read_node(c, zbr2, dent2);
1276         if (err)
1277                 goto out_free;
1278         err = ubifs_validate_entry(c, dent2);
1279         if (err)
1280                 goto out_free;
1281
1282         /* Make sure node keys are the same as in zbranch */
1283         err = 1;
1284         key_read(c, &dent1->key, &key);
1285         if (keys_cmp(c, &zbr1->key, &key)) {
1286                 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1287                         zbr1->offs, DBGKEY(&key));
1288                 dbg_err("but it should have key %s according to tnc",
1289                         DBGKEY(&zbr1->key));
1290                 dbg_dump_node(c, dent1);
1291                 goto out_free;
1292         }
1293
1294         key_read(c, &dent2->key, &key);
1295         if (keys_cmp(c, &zbr2->key, &key)) {
1296                 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1297                         zbr1->offs, DBGKEY(&key));
1298                 dbg_err("but it should have key %s according to tnc",
1299                         DBGKEY(&zbr2->key));
1300                 dbg_dump_node(c, dent2);
1301                 goto out_free;
1302         }
1303
1304         nlen1 = le16_to_cpu(dent1->nlen);
1305         nlen2 = le16_to_cpu(dent2->nlen);
1306
1307         cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1308         if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1309                 err = 0;
1310                 goto out_free;
1311         }
1312         if (cmp == 0 && nlen1 == nlen2)
1313                 dbg_err("2 xent/dent nodes with the same name");
1314         else
1315                 dbg_err("bad order of colliding key %s",
1316                         DBGKEY(&key));
1317
1318         ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1319         dbg_dump_node(c, dent1);
1320         ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1321         dbg_dump_node(c, dent2);
1322
1323 out_free:
1324         kfree(dent2);
1325         kfree(dent1);
1326         return err;
1327 }
1328
1329 /**
1330  * dbg_check_znode - check if znode is all right.
1331  * @c: UBIFS file-system description object
1332  * @zbr: zbranch which points to this znode
1333  *
1334  * This function makes sure that znode referred to by @zbr is all right.
1335  * Returns zero if it is, and %-EINVAL if it is not.
1336  */
1337 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1338 {
1339         struct ubifs_znode *znode = zbr->znode;
1340         struct ubifs_znode *zp = znode->parent;
1341         int n, err, cmp;
1342
1343         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1344                 err = 1;
1345                 goto out;
1346         }
1347         if (znode->level < 0) {
1348                 err = 2;
1349                 goto out;
1350         }
1351         if (znode->iip < 0 || znode->iip >= c->fanout) {
1352                 err = 3;
1353                 goto out;
1354         }
1355
1356         if (zbr->len == 0)
1357                 /* Only dirty zbranch may have no on-flash nodes */
1358                 if (!ubifs_zn_dirty(znode)) {
1359                         err = 4;
1360                         goto out;
1361                 }
1362
1363         if (ubifs_zn_dirty(znode)) {
1364                 /*
1365                  * If znode is dirty, its parent has to be dirty as well. The
1366                  * order of the operation is important, so we have to have
1367                  * memory barriers.
1368                  */
1369                 smp_mb();
1370                 if (zp && !ubifs_zn_dirty(zp)) {
1371                         /*
1372                          * The dirty flag is atomic and is cleared outside the
1373                          * TNC mutex, so znode's dirty flag may now have
1374                          * been cleared. The child is always cleared before the
1375                          * parent, so we just need to check again.
1376                          */
1377                         smp_mb();
1378                         if (ubifs_zn_dirty(znode)) {
1379                                 err = 5;
1380                                 goto out;
1381                         }
1382                 }
1383         }
1384
1385         if (zp) {
1386                 const union ubifs_key *min, *max;
1387
1388                 if (znode->level != zp->level - 1) {
1389                         err = 6;
1390                         goto out;
1391                 }
1392
1393                 /* Make sure the 'parent' pointer in our znode is correct */
1394                 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1395                 if (!err) {
1396                         /* This zbranch does not exist in the parent */
1397                         err = 7;
1398                         goto out;
1399                 }
1400
1401                 if (znode->iip >= zp->child_cnt) {
1402                         err = 8;
1403                         goto out;
1404                 }
1405
1406                 if (znode->iip != n) {
1407                         /* This may happen only in case of collisions */
1408                         if (keys_cmp(c, &zp->zbranch[n].key,
1409                                      &zp->zbranch[znode->iip].key)) {
1410                                 err = 9;
1411                                 goto out;
1412                         }
1413                         n = znode->iip;
1414                 }
1415
1416                 /*
1417                  * Make sure that the first key in our znode is greater than or
1418                  * equal to the key in the pointing zbranch.
1419                  */
1420                 min = &zbr->key;
1421                 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1422                 if (cmp == 1) {
1423                         err = 10;
1424                         goto out;
1425                 }
1426
1427                 if (n + 1 < zp->child_cnt) {
1428                         max = &zp->zbranch[n + 1].key;
1429
1430                         /*
1431                          * Make sure the last key in our znode is less or
1432                          * equivalent than the key in the zbranch which goes
1433                          * after our pointing zbranch.
1434                          */
1435                         cmp = keys_cmp(c, max,
1436                                 &znode->zbranch[znode->child_cnt - 1].key);
1437                         if (cmp == -1) {
1438                                 err = 11;
1439                                 goto out;
1440                         }
1441                 }
1442         } else {
1443                 /* This may only be root znode */
1444                 if (zbr != &c->zroot) {
1445                         err = 12;
1446                         goto out;
1447                 }
1448         }
1449
1450         /*
1451          * Make sure that next key is greater or equivalent then the previous
1452          * one.
1453          */
1454         for (n = 1; n < znode->child_cnt; n++) {
1455                 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1456                                &znode->zbranch[n].key);
1457                 if (cmp > 0) {
1458                         err = 13;
1459                         goto out;
1460                 }
1461                 if (cmp == 0) {
1462                         /* This can only be keys with colliding hash */
1463                         if (!is_hash_key(c, &znode->zbranch[n].key)) {
1464                                 err = 14;
1465                                 goto out;
1466                         }
1467
1468                         if (znode->level != 0 || c->replaying)
1469                                 continue;
1470
1471                         /*
1472                          * Colliding keys should follow binary order of
1473                          * corresponding xentry/dentry names.
1474                          */
1475                         err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1476                                                   &znode->zbranch[n]);
1477                         if (err < 0)
1478                                 return err;
1479                         if (err) {
1480                                 err = 15;
1481                                 goto out;
1482                         }
1483                 }
1484         }
1485
1486         for (n = 0; n < znode->child_cnt; n++) {
1487                 if (!znode->zbranch[n].znode &&
1488                     (znode->zbranch[n].lnum == 0 ||
1489                      znode->zbranch[n].len == 0)) {
1490                         err = 16;
1491                         goto out;
1492                 }
1493
1494                 if (znode->zbranch[n].lnum != 0 &&
1495                     znode->zbranch[n].len == 0) {
1496                         err = 17;
1497                         goto out;
1498                 }
1499
1500                 if (znode->zbranch[n].lnum == 0 &&
1501                     znode->zbranch[n].len != 0) {
1502                         err = 18;
1503                         goto out;
1504                 }
1505
1506                 if (znode->zbranch[n].lnum == 0 &&
1507                     znode->zbranch[n].offs != 0) {
1508                         err = 19;
1509                         goto out;
1510                 }
1511
1512                 if (znode->level != 0 && znode->zbranch[n].znode)
1513                         if (znode->zbranch[n].znode->parent != znode) {
1514                                 err = 20;
1515                                 goto out;
1516                         }
1517         }
1518
1519         return 0;
1520
1521 out:
1522         ubifs_err("failed, error %d", err);
1523         ubifs_msg("dump of the znode");
1524         dbg_dump_znode(c, znode);
1525         if (zp) {
1526                 ubifs_msg("dump of the parent znode");
1527                 dbg_dump_znode(c, zp);
1528         }
1529         dump_stack();
1530         return -EINVAL;
1531 }
1532
1533 /**
1534  * dbg_check_tnc - check TNC tree.
1535  * @c: UBIFS file-system description object
1536  * @extra: do extra checks that are possible at start commit
1537  *
1538  * This function traverses whole TNC tree and checks every znode. Returns zero
1539  * if everything is all right and %-EINVAL if something is wrong with TNC.
1540  */
1541 int dbg_check_tnc(struct ubifs_info *c, int extra)
1542 {
1543         struct ubifs_znode *znode;
1544         long clean_cnt = 0, dirty_cnt = 0;
1545         int err, last;
1546
1547         if (!dbg_is_chk_tnc(c))
1548                 return 0;
1549
1550         ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1551         if (!c->zroot.znode)
1552                 return 0;
1553
1554         znode = ubifs_tnc_postorder_first(c->zroot.znode);
1555         while (1) {
1556                 struct ubifs_znode *prev;
1557                 struct ubifs_zbranch *zbr;
1558
1559                 if (!znode->parent)
1560                         zbr = &c->zroot;
1561                 else
1562                         zbr = &znode->parent->zbranch[znode->iip];
1563
1564                 err = dbg_check_znode(c, zbr);
1565                 if (err)
1566                         return err;
1567
1568                 if (extra) {
1569                         if (ubifs_zn_dirty(znode))
1570                                 dirty_cnt += 1;
1571                         else
1572                                 clean_cnt += 1;
1573                 }
1574
1575                 prev = znode;
1576                 znode = ubifs_tnc_postorder_next(znode);
1577                 if (!znode)
1578                         break;
1579
1580                 /*
1581                  * If the last key of this znode is equivalent to the first key
1582                  * of the next znode (collision), then check order of the keys.
1583                  */
1584                 last = prev->child_cnt - 1;
1585                 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1586                     !keys_cmp(c, &prev->zbranch[last].key,
1587                               &znode->zbranch[0].key)) {
1588                         err = dbg_check_key_order(c, &prev->zbranch[last],
1589                                                   &znode->zbranch[0]);
1590                         if (err < 0)
1591                                 return err;
1592                         if (err) {
1593                                 ubifs_msg("first znode");
1594                                 dbg_dump_znode(c, prev);
1595                                 ubifs_msg("second znode");
1596                                 dbg_dump_znode(c, znode);
1597                                 return -EINVAL;
1598                         }
1599                 }
1600         }
1601
1602         if (extra) {
1603                 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1604                         ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1605                                   atomic_long_read(&c->clean_zn_cnt),
1606                                   clean_cnt);
1607                         return -EINVAL;
1608                 }
1609                 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1610                         ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1611                                   atomic_long_read(&c->dirty_zn_cnt),
1612                                   dirty_cnt);
1613                         return -EINVAL;
1614                 }
1615         }
1616
1617         return 0;
1618 }
1619
1620 /**
1621  * dbg_walk_index - walk the on-flash index.
1622  * @c: UBIFS file-system description object
1623  * @leaf_cb: called for each leaf node
1624  * @znode_cb: called for each indexing node
1625  * @priv: private data which is passed to callbacks
1626  *
1627  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1628  * node and @znode_cb for each indexing node. Returns zero in case of success
1629  * and a negative error code in case of failure.
1630  *
1631  * It would be better if this function removed every znode it pulled to into
1632  * the TNC, so that the behavior more closely matched the non-debugging
1633  * behavior.
1634  */
1635 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1636                    dbg_znode_callback znode_cb, void *priv)
1637 {
1638         int err;
1639         struct ubifs_zbranch *zbr;
1640         struct ubifs_znode *znode, *child;
1641
1642         mutex_lock(&c->tnc_mutex);
1643         /* If the root indexing node is not in TNC - pull it */
1644         if (!c->zroot.znode) {
1645                 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1646                 if (IS_ERR(c->zroot.znode)) {
1647                         err = PTR_ERR(c->zroot.znode);
1648                         c->zroot.znode = NULL;
1649                         goto out_unlock;
1650                 }
1651         }
1652
1653         /*
1654          * We are going to traverse the indexing tree in the postorder manner.
1655          * Go down and find the leftmost indexing node where we are going to
1656          * start from.
1657          */
1658         znode = c->zroot.znode;
1659         while (znode->level > 0) {
1660                 zbr = &znode->zbranch[0];
1661                 child = zbr->znode;
1662                 if (!child) {
1663                         child = ubifs_load_znode(c, zbr, znode, 0);
1664                         if (IS_ERR(child)) {
1665                                 err = PTR_ERR(child);
1666                                 goto out_unlock;
1667                         }
1668                         zbr->znode = child;
1669                 }
1670
1671                 znode = child;
1672         }
1673
1674         /* Iterate over all indexing nodes */
1675         while (1) {
1676                 int idx;
1677
1678                 cond_resched();
1679
1680                 if (znode_cb) {
1681                         err = znode_cb(c, znode, priv);
1682                         if (err) {
1683                                 ubifs_err("znode checking function returned "
1684                                           "error %d", err);
1685                                 dbg_dump_znode(c, znode);
1686                                 goto out_dump;
1687                         }
1688                 }
1689                 if (leaf_cb && znode->level == 0) {
1690                         for (idx = 0; idx < znode->child_cnt; idx++) {
1691                                 zbr = &znode->zbranch[idx];
1692                                 err = leaf_cb(c, zbr, priv);
1693                                 if (err) {
1694                                         ubifs_err("leaf checking function "
1695                                                   "returned error %d, for leaf "
1696                                                   "at LEB %d:%d",
1697                                                   err, zbr->lnum, zbr->offs);
1698                                         goto out_dump;
1699                                 }
1700                         }
1701                 }
1702
1703                 if (!znode->parent)
1704                         break;
1705
1706                 idx = znode->iip + 1;
1707                 znode = znode->parent;
1708                 if (idx < znode->child_cnt) {
1709                         /* Switch to the next index in the parent */
1710                         zbr = &znode->zbranch[idx];
1711                         child = zbr->znode;
1712                         if (!child) {
1713                                 child = ubifs_load_znode(c, zbr, znode, idx);
1714                                 if (IS_ERR(child)) {
1715                                         err = PTR_ERR(child);
1716                                         goto out_unlock;
1717                                 }
1718                                 zbr->znode = child;
1719                         }
1720                         znode = child;
1721                 } else
1722                         /*
1723                          * This is the last child, switch to the parent and
1724                          * continue.
1725                          */
1726                         continue;
1727
1728                 /* Go to the lowest leftmost znode in the new sub-tree */
1729                 while (znode->level > 0) {
1730                         zbr = &znode->zbranch[0];
1731                         child = zbr->znode;
1732                         if (!child) {
1733                                 child = ubifs_load_znode(c, zbr, znode, 0);
1734                                 if (IS_ERR(child)) {
1735                                         err = PTR_ERR(child);
1736                                         goto out_unlock;
1737                                 }
1738                                 zbr->znode = child;
1739                         }
1740                         znode = child;
1741                 }
1742         }
1743
1744         mutex_unlock(&c->tnc_mutex);
1745         return 0;
1746
1747 out_dump:
1748         if (znode->parent)
1749                 zbr = &znode->parent->zbranch[znode->iip];
1750         else
1751                 zbr = &c->zroot;
1752         ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1753         dbg_dump_znode(c, znode);
1754 out_unlock:
1755         mutex_unlock(&c->tnc_mutex);
1756         return err;
1757 }
1758
1759 /**
1760  * add_size - add znode size to partially calculated index size.
1761  * @c: UBIFS file-system description object
1762  * @znode: znode to add size for
1763  * @priv: partially calculated index size
1764  *
1765  * This is a helper function for 'dbg_check_idx_size()' which is called for
1766  * every indexing node and adds its size to the 'long long' variable pointed to
1767  * by @priv.
1768  */
1769 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1770 {
1771         long long *idx_size = priv;
1772         int add;
1773
1774         add = ubifs_idx_node_sz(c, znode->child_cnt);
1775         add = ALIGN(add, 8);
1776         *idx_size += add;
1777         return 0;
1778 }
1779
1780 /**
1781  * dbg_check_idx_size - check index size.
1782  * @c: UBIFS file-system description object
1783  * @idx_size: size to check
1784  *
1785  * This function walks the UBIFS index, calculates its size and checks that the
1786  * size is equivalent to @idx_size. Returns zero in case of success and a
1787  * negative error code in case of failure.
1788  */
1789 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1790 {
1791         int err;
1792         long long calc = 0;
1793
1794         if (!dbg_is_chk_idx_sz(c))
1795                 return 0;
1796
1797         err = dbg_walk_index(c, NULL, add_size, &calc);
1798         if (err) {
1799                 ubifs_err("error %d while walking the index", err);
1800                 return err;
1801         }
1802
1803         if (calc != idx_size) {
1804                 ubifs_err("index size check failed: calculated size is %lld, "
1805                           "should be %lld", calc, idx_size);
1806                 dump_stack();
1807                 return -EINVAL;
1808         }
1809
1810         return 0;
1811 }
1812
1813 /**
1814  * struct fsck_inode - information about an inode used when checking the file-system.
1815  * @rb: link in the RB-tree of inodes
1816  * @inum: inode number
1817  * @mode: inode type, permissions, etc
1818  * @nlink: inode link count
1819  * @xattr_cnt: count of extended attributes
1820  * @references: how many directory/xattr entries refer this inode (calculated
1821  *              while walking the index)
1822  * @calc_cnt: for directory inode count of child directories
1823  * @size: inode size (read from on-flash inode)
1824  * @xattr_sz: summary size of all extended attributes (read from on-flash
1825  *            inode)
1826  * @calc_sz: for directories calculated directory size
1827  * @calc_xcnt: count of extended attributes
1828  * @calc_xsz: calculated summary size of all extended attributes
1829  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1830  *             inode (read from on-flash inode)
1831  * @calc_xnms: calculated sum of lengths of all extended attribute names
1832  */
1833 struct fsck_inode {
1834         struct rb_node rb;
1835         ino_t inum;
1836         umode_t mode;
1837         unsigned int nlink;
1838         unsigned int xattr_cnt;
1839         int references;
1840         int calc_cnt;
1841         long long size;
1842         unsigned int xattr_sz;
1843         long long calc_sz;
1844         long long calc_xcnt;
1845         long long calc_xsz;
1846         unsigned int xattr_nms;
1847         long long calc_xnms;
1848 };
1849
1850 /**
1851  * struct fsck_data - private FS checking information.
1852  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1853  */
1854 struct fsck_data {
1855         struct rb_root inodes;
1856 };
1857
1858 /**
1859  * add_inode - add inode information to RB-tree of inodes.
1860  * @c: UBIFS file-system description object
1861  * @fsckd: FS checking information
1862  * @ino: raw UBIFS inode to add
1863  *
1864  * This is a helper function for 'check_leaf()' which adds information about
1865  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1866  * case of success and a negative error code in case of failure.
1867  */
1868 static struct fsck_inode *add_inode(struct ubifs_info *c,
1869                                     struct fsck_data *fsckd,
1870                                     struct ubifs_ino_node *ino)
1871 {
1872         struct rb_node **p, *parent = NULL;
1873         struct fsck_inode *fscki;
1874         ino_t inum = key_inum_flash(c, &ino->key);
1875         struct inode *inode;
1876         struct ubifs_inode *ui;
1877
1878         p = &fsckd->inodes.rb_node;
1879         while (*p) {
1880                 parent = *p;
1881                 fscki = rb_entry(parent, struct fsck_inode, rb);
1882                 if (inum < fscki->inum)
1883                         p = &(*p)->rb_left;
1884                 else if (inum > fscki->inum)
1885                         p = &(*p)->rb_right;
1886                 else
1887                         return fscki;
1888         }
1889
1890         if (inum > c->highest_inum) {
1891                 ubifs_err("too high inode number, max. is %lu",
1892                           (unsigned long)c->highest_inum);
1893                 return ERR_PTR(-EINVAL);
1894         }
1895
1896         fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1897         if (!fscki)
1898                 return ERR_PTR(-ENOMEM);
1899
1900         inode = ilookup(c->vfs_sb, inum);
1901
1902         fscki->inum = inum;
1903         /*
1904          * If the inode is present in the VFS inode cache, use it instead of
1905          * the on-flash inode which might be out-of-date. E.g., the size might
1906          * be out-of-date. If we do not do this, the following may happen, for
1907          * example:
1908          *   1. A power cut happens
1909          *   2. We mount the file-system R/O, the replay process fixes up the
1910          *      inode size in the VFS cache, but on on-flash.
1911          *   3. 'check_leaf()' fails because it hits a data node beyond inode
1912          *      size.
1913          */
1914         if (!inode) {
1915                 fscki->nlink = le32_to_cpu(ino->nlink);
1916                 fscki->size = le64_to_cpu(ino->size);
1917                 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1918                 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1919                 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1920                 fscki->mode = le32_to_cpu(ino->mode);
1921         } else {
1922                 ui = ubifs_inode(inode);
1923                 fscki->nlink = inode->i_nlink;
1924                 fscki->size = inode->i_size;
1925                 fscki->xattr_cnt = ui->xattr_cnt;
1926                 fscki->xattr_sz = ui->xattr_size;
1927                 fscki->xattr_nms = ui->xattr_names;
1928                 fscki->mode = inode->i_mode;
1929                 iput(inode);
1930         }
1931
1932         if (S_ISDIR(fscki->mode)) {
1933                 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1934                 fscki->calc_cnt = 2;
1935         }
1936
1937         rb_link_node(&fscki->rb, parent, p);
1938         rb_insert_color(&fscki->rb, &fsckd->inodes);
1939
1940         return fscki;
1941 }
1942
1943 /**
1944  * search_inode - search inode in the RB-tree of inodes.
1945  * @fsckd: FS checking information
1946  * @inum: inode number to search
1947  *
1948  * This is a helper function for 'check_leaf()' which searches inode @inum in
1949  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1950  * the inode was not found.
1951  */
1952 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1953 {
1954         struct rb_node *p;
1955         struct fsck_inode *fscki;
1956
1957         p = fsckd->inodes.rb_node;
1958         while (p) {
1959                 fscki = rb_entry(p, struct fsck_inode, rb);
1960                 if (inum < fscki->inum)
1961                         p = p->rb_left;
1962                 else if (inum > fscki->inum)
1963                         p = p->rb_right;
1964                 else
1965                         return fscki;
1966         }
1967         return NULL;
1968 }
1969
1970 /**
1971  * read_add_inode - read inode node and add it to RB-tree of inodes.
1972  * @c: UBIFS file-system description object
1973  * @fsckd: FS checking information
1974  * @inum: inode number to read
1975  *
1976  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1977  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1978  * information pointer in case of success and a negative error code in case of
1979  * failure.
1980  */
1981 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1982                                          struct fsck_data *fsckd, ino_t inum)
1983 {
1984         int n, err;
1985         union ubifs_key key;
1986         struct ubifs_znode *znode;
1987         struct ubifs_zbranch *zbr;
1988         struct ubifs_ino_node *ino;
1989         struct fsck_inode *fscki;
1990
1991         fscki = search_inode(fsckd, inum);
1992         if (fscki)
1993                 return fscki;
1994
1995         ino_key_init(c, &key, inum);
1996         err = ubifs_lookup_level0(c, &key, &znode, &n);
1997         if (!err) {
1998                 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1999                 return ERR_PTR(-ENOENT);
2000         } else if (err < 0) {
2001                 ubifs_err("error %d while looking up inode %lu",
2002                           err, (unsigned long)inum);
2003                 return ERR_PTR(err);
2004         }
2005
2006         zbr = &znode->zbranch[n];
2007         if (zbr->len < UBIFS_INO_NODE_SZ) {
2008                 ubifs_err("bad node %lu node length %d",
2009                           (unsigned long)inum, zbr->len);
2010                 return ERR_PTR(-EINVAL);
2011         }
2012
2013         ino = kmalloc(zbr->len, GFP_NOFS);
2014         if (!ino)
2015                 return ERR_PTR(-ENOMEM);
2016
2017         err = ubifs_tnc_read_node(c, zbr, ino);
2018         if (err) {
2019                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2020                           zbr->lnum, zbr->offs, err);
2021                 kfree(ino);
2022                 return ERR_PTR(err);
2023         }
2024
2025         fscki = add_inode(c, fsckd, ino);
2026         kfree(ino);
2027         if (IS_ERR(fscki)) {
2028                 ubifs_err("error %ld while adding inode %lu node",
2029                           PTR_ERR(fscki), (unsigned long)inum);
2030                 return fscki;
2031         }
2032
2033         return fscki;
2034 }
2035
2036 /**
2037  * check_leaf - check leaf node.
2038  * @c: UBIFS file-system description object
2039  * @zbr: zbranch of the leaf node to check
2040  * @priv: FS checking information
2041  *
2042  * This is a helper function for 'dbg_check_filesystem()' which is called for
2043  * every single leaf node while walking the indexing tree. It checks that the
2044  * leaf node referred from the indexing tree exists, has correct CRC, and does
2045  * some other basic validation. This function is also responsible for building
2046  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2047  * calculates reference count, size, etc for each inode in order to later
2048  * compare them to the information stored inside the inodes and detect possible
2049  * inconsistencies. Returns zero in case of success and a negative error code
2050  * in case of failure.
2051  */
2052 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2053                       void *priv)
2054 {
2055         ino_t inum;
2056         void *node;
2057         struct ubifs_ch *ch;
2058         int err, type = key_type(c, &zbr->key);
2059         struct fsck_inode *fscki;
2060
2061         if (zbr->len < UBIFS_CH_SZ) {
2062                 ubifs_err("bad leaf length %d (LEB %d:%d)",
2063                           zbr->len, zbr->lnum, zbr->offs);
2064                 return -EINVAL;
2065         }
2066
2067         node = kmalloc(zbr->len, GFP_NOFS);
2068         if (!node)
2069                 return -ENOMEM;
2070
2071         err = ubifs_tnc_read_node(c, zbr, node);
2072         if (err) {
2073                 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2074                           zbr->lnum, zbr->offs, err);
2075                 goto out_free;
2076         }
2077
2078         /* If this is an inode node, add it to RB-tree of inodes */
2079         if (type == UBIFS_INO_KEY) {
2080                 fscki = add_inode(c, priv, node);
2081                 if (IS_ERR(fscki)) {
2082                         err = PTR_ERR(fscki);
2083                         ubifs_err("error %d while adding inode node", err);
2084                         goto out_dump;
2085                 }
2086                 goto out;
2087         }
2088
2089         if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2090             type != UBIFS_DATA_KEY) {
2091                 ubifs_err("unexpected node type %d at LEB %d:%d",
2092                           type, zbr->lnum, zbr->offs);
2093                 err = -EINVAL;
2094                 goto out_free;
2095         }
2096
2097         ch = node;
2098         if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2099                 ubifs_err("too high sequence number, max. is %llu",
2100                           c->max_sqnum);
2101                 err = -EINVAL;
2102                 goto out_dump;
2103         }
2104
2105         if (type == UBIFS_DATA_KEY) {
2106                 long long blk_offs;
2107                 struct ubifs_data_node *dn = node;
2108
2109                 /*
2110                  * Search the inode node this data node belongs to and insert
2111                  * it to the RB-tree of inodes.
2112                  */
2113                 inum = key_inum_flash(c, &dn->key);
2114                 fscki = read_add_inode(c, priv, inum);
2115                 if (IS_ERR(fscki)) {
2116                         err = PTR_ERR(fscki);
2117                         ubifs_err("error %d while processing data node and "
2118                                   "trying to find inode node %lu",
2119                                   err, (unsigned long)inum);
2120                         goto out_dump;
2121                 }
2122
2123                 /* Make sure the data node is within inode size */
2124                 blk_offs = key_block_flash(c, &dn->key);
2125                 blk_offs <<= UBIFS_BLOCK_SHIFT;
2126                 blk_offs += le32_to_cpu(dn->size);
2127                 if (blk_offs > fscki->size) {
2128                         ubifs_err("data node at LEB %d:%d is not within inode "
2129                                   "size %lld", zbr->lnum, zbr->offs,
2130                                   fscki->size);
2131                         err = -EINVAL;
2132                         goto out_dump;
2133                 }
2134         } else {
2135                 int nlen;
2136                 struct ubifs_dent_node *dent = node;
2137                 struct fsck_inode *fscki1;
2138
2139                 err = ubifs_validate_entry(c, dent);
2140                 if (err)
2141                         goto out_dump;
2142
2143                 /*
2144                  * Search the inode node this entry refers to and the parent
2145                  * inode node and insert them to the RB-tree of inodes.
2146                  */
2147                 inum = le64_to_cpu(dent->inum);
2148                 fscki = read_add_inode(c, priv, inum);
2149                 if (IS_ERR(fscki)) {
2150                         err = PTR_ERR(fscki);
2151                         ubifs_err("error %d while processing entry node and "
2152                                   "trying to find inode node %lu",
2153                                   err, (unsigned long)inum);
2154                         goto out_dump;
2155                 }
2156
2157                 /* Count how many direntries or xentries refers this inode */
2158                 fscki->references += 1;
2159
2160                 inum = key_inum_flash(c, &dent->key);
2161                 fscki1 = read_add_inode(c, priv, inum);
2162                 if (IS_ERR(fscki1)) {
2163                         err = PTR_ERR(fscki1);
2164                         ubifs_err("error %d while processing entry node and "
2165                                   "trying to find parent inode node %lu",
2166                                   err, (unsigned long)inum);
2167                         goto out_dump;
2168                 }
2169
2170                 nlen = le16_to_cpu(dent->nlen);
2171                 if (type == UBIFS_XENT_KEY) {
2172                         fscki1->calc_xcnt += 1;
2173                         fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2174                         fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2175                         fscki1->calc_xnms += nlen;
2176                 } else {
2177                         fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2178                         if (dent->type == UBIFS_ITYPE_DIR)
2179                                 fscki1->calc_cnt += 1;
2180                 }
2181         }
2182
2183 out:
2184         kfree(node);
2185         return 0;
2186
2187 out_dump:
2188         ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2189         dbg_dump_node(c, node);
2190 out_free:
2191         kfree(node);
2192         return err;
2193 }
2194
2195 /**
2196  * free_inodes - free RB-tree of inodes.
2197  * @fsckd: FS checking information
2198  */
2199 static void free_inodes(struct fsck_data *fsckd)
2200 {
2201         struct rb_node *this = fsckd->inodes.rb_node;
2202         struct fsck_inode *fscki;
2203
2204         while (this) {
2205                 if (this->rb_left)
2206                         this = this->rb_left;
2207                 else if (this->rb_right)
2208                         this = this->rb_right;
2209                 else {
2210                         fscki = rb_entry(this, struct fsck_inode, rb);
2211                         this = rb_parent(this);
2212                         if (this) {
2213                                 if (this->rb_left == &fscki->rb)
2214                                         this->rb_left = NULL;
2215                                 else
2216                                         this->rb_right = NULL;
2217                         }
2218                         kfree(fscki);
2219                 }
2220         }
2221 }
2222
2223 /**
2224  * check_inodes - checks all inodes.
2225  * @c: UBIFS file-system description object
2226  * @fsckd: FS checking information
2227  *
2228  * This is a helper function for 'dbg_check_filesystem()' which walks the
2229  * RB-tree of inodes after the index scan has been finished, and checks that
2230  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2231  * %-EINVAL if not, and a negative error code in case of failure.
2232  */
2233 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2234 {
2235         int n, err;
2236         union ubifs_key key;
2237         struct ubifs_znode *znode;
2238         struct ubifs_zbranch *zbr;
2239         struct ubifs_ino_node *ino;
2240         struct fsck_inode *fscki;
2241         struct rb_node *this = rb_first(&fsckd->inodes);
2242
2243         while (this) {
2244                 fscki = rb_entry(this, struct fsck_inode, rb);
2245                 this = rb_next(this);
2246
2247                 if (S_ISDIR(fscki->mode)) {
2248                         /*
2249                          * Directories have to have exactly one reference (they
2250                          * cannot have hardlinks), although root inode is an
2251                          * exception.
2252                          */
2253                         if (fscki->inum != UBIFS_ROOT_INO &&
2254                             fscki->references != 1) {
2255                                 ubifs_err("directory inode %lu has %d "
2256                                           "direntries which refer it, but "
2257                                           "should be 1",
2258                                           (unsigned long)fscki->inum,
2259                                           fscki->references);
2260                                 goto out_dump;
2261                         }
2262                         if (fscki->inum == UBIFS_ROOT_INO &&
2263                             fscki->references != 0) {
2264                                 ubifs_err("root inode %lu has non-zero (%d) "
2265                                           "direntries which refer it",
2266                                           (unsigned long)fscki->inum,
2267                                           fscki->references);
2268                                 goto out_dump;
2269                         }
2270                         if (fscki->calc_sz != fscki->size) {
2271                                 ubifs_err("directory inode %lu size is %lld, "
2272                                           "but calculated size is %lld",
2273                                           (unsigned long)fscki->inum,
2274                                           fscki->size, fscki->calc_sz);
2275                                 goto out_dump;
2276                         }
2277                         if (fscki->calc_cnt != fscki->nlink) {
2278                                 ubifs_err("directory inode %lu nlink is %d, "
2279                                           "but calculated nlink is %d",
2280                                           (unsigned long)fscki->inum,
2281                                           fscki->nlink, fscki->calc_cnt);
2282                                 goto out_dump;
2283                         }
2284                 } else {
2285                         if (fscki->references != fscki->nlink) {
2286                                 ubifs_err("inode %lu nlink is %d, but "
2287                                           "calculated nlink is %d",
2288                                           (unsigned long)fscki->inum,
2289                                           fscki->nlink, fscki->references);
2290                                 goto out_dump;
2291                         }
2292                 }
2293                 if (fscki->xattr_sz != fscki->calc_xsz) {
2294                         ubifs_err("inode %lu has xattr size %u, but "
2295                                   "calculated size is %lld",
2296                                   (unsigned long)fscki->inum, fscki->xattr_sz,
2297                                   fscki->calc_xsz);
2298                         goto out_dump;
2299                 }
2300                 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2301                         ubifs_err("inode %lu has %u xattrs, but "
2302                                   "calculated count is %lld",
2303                                   (unsigned long)fscki->inum,
2304                                   fscki->xattr_cnt, fscki->calc_xcnt);
2305                         goto out_dump;
2306                 }
2307                 if (fscki->xattr_nms != fscki->calc_xnms) {
2308                         ubifs_err("inode %lu has xattr names' size %u, but "
2309                                   "calculated names' size is %lld",
2310                                   (unsigned long)fscki->inum, fscki->xattr_nms,
2311                                   fscki->calc_xnms);
2312                         goto out_dump;
2313                 }
2314         }
2315
2316         return 0;
2317
2318 out_dump:
2319         /* Read the bad inode and dump it */
2320         ino_key_init(c, &key, fscki->inum);
2321         err = ubifs_lookup_level0(c, &key, &znode, &n);
2322         if (!err) {
2323                 ubifs_err("inode %lu not found in index",
2324                           (unsigned long)fscki->inum);
2325                 return -ENOENT;
2326         } else if (err < 0) {
2327                 ubifs_err("error %d while looking up inode %lu",
2328                           err, (unsigned long)fscki->inum);
2329                 return err;
2330         }
2331
2332         zbr = &znode->zbranch[n];
2333         ino = kmalloc(zbr->len, GFP_NOFS);
2334         if (!ino)
2335                 return -ENOMEM;
2336
2337         err = ubifs_tnc_read_node(c, zbr, ino);
2338         if (err) {
2339                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2340                           zbr->lnum, zbr->offs, err);
2341                 kfree(ino);
2342                 return err;
2343         }
2344
2345         ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2346                   (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2347         dbg_dump_node(c, ino);
2348         kfree(ino);
2349         return -EINVAL;
2350 }
2351
2352 /**
2353  * dbg_check_filesystem - check the file-system.
2354  * @c: UBIFS file-system description object
2355  *
2356  * This function checks the file system, namely:
2357  * o makes sure that all leaf nodes exist and their CRCs are correct;
2358  * o makes sure inode nlink, size, xattr size/count are correct (for all
2359  *   inodes).
2360  *
2361  * The function reads whole indexing tree and all nodes, so it is pretty
2362  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2363  * not, and a negative error code in case of failure.
2364  */
2365 int dbg_check_filesystem(struct ubifs_info *c)
2366 {
2367         int err;
2368         struct fsck_data fsckd;
2369
2370         if (!dbg_is_chk_fs(c))
2371                 return 0;
2372
2373         fsckd.inodes = RB_ROOT;
2374         err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2375         if (err)
2376                 goto out_free;
2377
2378         err = check_inodes(c, &fsckd);
2379         if (err)
2380                 goto out_free;
2381
2382         free_inodes(&fsckd);
2383         return 0;
2384
2385 out_free:
2386         ubifs_err("file-system check failed with error %d", err);
2387         dump_stack();
2388         free_inodes(&fsckd);
2389         return err;
2390 }
2391
2392 /**
2393  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2394  * @c: UBIFS file-system description object
2395  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2396  *
2397  * This function returns zero if the list of data nodes is sorted correctly,
2398  * and %-EINVAL if not.
2399  */
2400 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2401 {
2402         struct list_head *cur;
2403         struct ubifs_scan_node *sa, *sb;
2404
2405         if (!dbg_is_chk_gen(c))
2406                 return 0;
2407
2408         for (cur = head->next; cur->next != head; cur = cur->next) {
2409                 ino_t inuma, inumb;
2410                 uint32_t blka, blkb;
2411
2412                 cond_resched();
2413                 sa = container_of(cur, struct ubifs_scan_node, list);
2414                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2415
2416                 if (sa->type != UBIFS_DATA_NODE) {
2417                         ubifs_err("bad node type %d", sa->type);
2418                         dbg_dump_node(c, sa->node);
2419                         return -EINVAL;
2420                 }
2421                 if (sb->type != UBIFS_DATA_NODE) {
2422                         ubifs_err("bad node type %d", sb->type);
2423                         dbg_dump_node(c, sb->node);
2424                         return -EINVAL;
2425                 }
2426
2427                 inuma = key_inum(c, &sa->key);
2428                 inumb = key_inum(c, &sb->key);
2429
2430                 if (inuma < inumb)
2431                         continue;
2432                 if (inuma > inumb) {
2433                         ubifs_err("larger inum %lu goes before inum %lu",
2434                                   (unsigned long)inuma, (unsigned long)inumb);
2435                         goto error_dump;
2436                 }
2437
2438                 blka = key_block(c, &sa->key);
2439                 blkb = key_block(c, &sb->key);
2440
2441                 if (blka > blkb) {
2442                         ubifs_err("larger block %u goes before %u", blka, blkb);
2443                         goto error_dump;
2444                 }
2445                 if (blka == blkb) {
2446                         ubifs_err("two data nodes for the same block");
2447                         goto error_dump;
2448                 }
2449         }
2450
2451         return 0;
2452
2453 error_dump:
2454         dbg_dump_node(c, sa->node);
2455         dbg_dump_node(c, sb->node);
2456         return -EINVAL;
2457 }
2458
2459 /**
2460  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2461  * @c: UBIFS file-system description object
2462  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2463  *
2464  * This function returns zero if the list of non-data nodes is sorted correctly,
2465  * and %-EINVAL if not.
2466  */
2467 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2468 {
2469         struct list_head *cur;
2470         struct ubifs_scan_node *sa, *sb;
2471
2472         if (!dbg_is_chk_gen(c))
2473                 return 0;
2474
2475         for (cur = head->next; cur->next != head; cur = cur->next) {
2476                 ino_t inuma, inumb;
2477                 uint32_t hasha, hashb;
2478
2479                 cond_resched();
2480                 sa = container_of(cur, struct ubifs_scan_node, list);
2481                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2482
2483                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2484                     sa->type != UBIFS_XENT_NODE) {
2485                         ubifs_err("bad node type %d", sa->type);
2486                         dbg_dump_node(c, sa->node);
2487                         return -EINVAL;
2488                 }
2489                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2490                     sa->type != UBIFS_XENT_NODE) {
2491                         ubifs_err("bad node type %d", sb->type);
2492                         dbg_dump_node(c, sb->node);
2493                         return -EINVAL;
2494                 }
2495
2496                 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2497                         ubifs_err("non-inode node goes before inode node");
2498                         goto error_dump;
2499                 }
2500
2501                 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2502                         continue;
2503
2504                 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2505                         /* Inode nodes are sorted in descending size order */
2506                         if (sa->len < sb->len) {
2507                                 ubifs_err("smaller inode node goes first");
2508                                 goto error_dump;
2509                         }
2510                         continue;
2511                 }
2512
2513                 /*
2514                  * This is either a dentry or xentry, which should be sorted in
2515                  * ascending (parent ino, hash) order.
2516                  */
2517                 inuma = key_inum(c, &sa->key);
2518                 inumb = key_inum(c, &sb->key);
2519
2520                 if (inuma < inumb)
2521                         continue;
2522                 if (inuma > inumb) {
2523                         ubifs_err("larger inum %lu goes before inum %lu",
2524                                   (unsigned long)inuma, (unsigned long)inumb);
2525                         goto error_dump;
2526                 }
2527
2528                 hasha = key_block(c, &sa->key);
2529                 hashb = key_block(c, &sb->key);
2530
2531                 if (hasha > hashb) {
2532                         ubifs_err("larger hash %u goes before %u",
2533                                   hasha, hashb);
2534                         goto error_dump;
2535                 }
2536         }
2537
2538         return 0;
2539
2540 error_dump:
2541         ubifs_msg("dumping first node");
2542         dbg_dump_node(c, sa->node);
2543         ubifs_msg("dumping second node");
2544         dbg_dump_node(c, sb->node);
2545         return -EINVAL;
2546         return 0;
2547 }
2548
2549 /* Failure mode for recovery testing */
2550
2551 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2552
2553 struct failure_mode_info {
2554         struct list_head list;
2555         struct ubifs_info *c;
2556 };
2557
2558 static LIST_HEAD(fmi_list);
2559 static DEFINE_SPINLOCK(fmi_lock);
2560
2561 static unsigned int next;
2562
2563 static int simple_rand(void)
2564 {
2565         if (next == 0)
2566                 next = current->pid;
2567         next = next * 1103515245 + 12345;
2568         return (next >> 16) & 32767;
2569 }
2570
2571 static void failure_mode_init(struct ubifs_info *c)
2572 {
2573         struct failure_mode_info *fmi;
2574
2575         fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2576         if (!fmi) {
2577                 ubifs_err("Failed to register failure mode - no memory");
2578                 return;
2579         }
2580         fmi->c = c;
2581         spin_lock(&fmi_lock);
2582         list_add_tail(&fmi->list, &fmi_list);
2583         spin_unlock(&fmi_lock);
2584 }
2585
2586 static void failure_mode_exit(struct ubifs_info *c)
2587 {
2588         struct failure_mode_info *fmi, *tmp;
2589
2590         spin_lock(&fmi_lock);
2591         list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2592                 if (fmi->c == c) {
2593                         list_del(&fmi->list);
2594                         kfree(fmi);
2595                 }
2596         spin_unlock(&fmi_lock);
2597 }
2598
2599 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2600 {
2601         struct failure_mode_info *fmi;
2602
2603         spin_lock(&fmi_lock);
2604         list_for_each_entry(fmi, &fmi_list, list)
2605                 if (fmi->c->ubi == desc) {
2606                         struct ubifs_info *c = fmi->c;
2607
2608                         spin_unlock(&fmi_lock);
2609                         return c;
2610                 }
2611         spin_unlock(&fmi_lock);
2612         return NULL;
2613 }
2614
2615 static int in_failure_mode(struct ubi_volume_desc *desc)
2616 {
2617         struct ubifs_info *c = dbg_find_info(desc);
2618
2619         if (c && dbg_is_tst_rcvry(c))
2620                 return c->dbg->failure_mode;
2621         return 0;
2622 }
2623
2624 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2625 {
2626         struct ubifs_info *c = dbg_find_info(desc);
2627         struct ubifs_debug_info *d;
2628
2629         if (!c || !dbg_is_tst_rcvry(c))
2630                 return 0;
2631         d = c->dbg;
2632         if (d->failure_mode)
2633                 return 1;
2634         if (!d->fail_cnt) {
2635                 /* First call - decide delay to failure */
2636                 if (chance(1, 2)) {
2637                         unsigned int delay = 1 << (simple_rand() >> 11);
2638
2639                         if (chance(1, 2)) {
2640                                 d->fail_delay = 1;
2641                                 d->fail_timeout = jiffies +
2642                                                   msecs_to_jiffies(delay);
2643                                 dbg_rcvry("failing after %ums", delay);
2644                         } else {
2645                                 d->fail_delay = 2;
2646                                 d->fail_cnt_max = delay;
2647                                 dbg_rcvry("failing after %u calls", delay);
2648                         }
2649                 }
2650                 d->fail_cnt += 1;
2651         }
2652         /* Determine if failure delay has expired */
2653         if (d->fail_delay == 1) {
2654                 if (time_before(jiffies, d->fail_timeout))
2655                         return 0;
2656         } else if (d->fail_delay == 2)
2657                 if (d->fail_cnt++ < d->fail_cnt_max)
2658                         return 0;
2659         if (lnum == UBIFS_SB_LNUM) {
2660                 if (write) {
2661                         if (chance(1, 2))
2662                                 return 0;
2663                 } else if (chance(19, 20))
2664                         return 0;
2665                 dbg_rcvry("failing in super block LEB %d", lnum);
2666         } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2667                 if (chance(19, 20))
2668                         return 0;
2669                 dbg_rcvry("failing in master LEB %d", lnum);
2670         } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2671                 if (write) {
2672                         if (chance(99, 100))
2673                                 return 0;
2674                 } else if (chance(399, 400))
2675                         return 0;
2676                 dbg_rcvry("failing in log LEB %d", lnum);
2677         } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2678                 if (write) {
2679                         if (chance(7, 8))
2680                                 return 0;
2681                 } else if (chance(19, 20))
2682                         return 0;
2683                 dbg_rcvry("failing in LPT LEB %d", lnum);
2684         } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2685                 if (write) {
2686                         if (chance(1, 2))
2687                                 return 0;
2688                 } else if (chance(9, 10))
2689                         return 0;
2690                 dbg_rcvry("failing in orphan LEB %d", lnum);
2691         } else if (lnum == c->ihead_lnum) {
2692                 if (chance(99, 100))
2693                         return 0;
2694                 dbg_rcvry("failing in index head LEB %d", lnum);
2695         } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2696                 if (chance(9, 10))
2697                         return 0;
2698                 dbg_rcvry("failing in GC head LEB %d", lnum);
2699         } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2700                    !ubifs_search_bud(c, lnum)) {
2701                 if (chance(19, 20))
2702                         return 0;
2703                 dbg_rcvry("failing in non-bud LEB %d", lnum);
2704         } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2705                    c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2706                 if (chance(999, 1000))
2707                         return 0;
2708                 dbg_rcvry("failing in bud LEB %d commit running", lnum);
2709         } else {
2710                 if (chance(9999, 10000))
2711                         return 0;
2712                 dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2713         }
2714         ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
2715         d->failure_mode = 1;
2716         dump_stack();
2717         return 1;
2718 }
2719
2720 static void cut_data(const void *buf, int len)
2721 {
2722         int flen, i;
2723         unsigned char *p = (void *)buf;
2724
2725         flen = (len * (long long)simple_rand()) >> 15;
2726         for (i = flen; i < len; i++)
2727                 p[i] = 0xff;
2728 }
2729
2730 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2731                  int len, int check)
2732 {
2733         if (in_failure_mode(desc))
2734                 return -EROFS;
2735         return ubi_leb_read(desc, lnum, buf, offset, len, check);
2736 }
2737
2738 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2739                   int offset, int len, int dtype)
2740 {
2741         int err, failing;
2742
2743         if (in_failure_mode(desc))
2744                 return -EROFS;
2745         failing = do_fail(desc, lnum, 1);
2746         if (failing)
2747                 cut_data(buf, len);
2748         err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2749         if (err)
2750                 return err;
2751         if (failing)
2752                 return -EROFS;
2753         return 0;
2754 }
2755
2756 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2757                    int len, int dtype)
2758 {
2759         int err;
2760
2761         if (do_fail(desc, lnum, 1))
2762                 return -EROFS;
2763         err = ubi_leb_change(desc, lnum, buf, len, dtype);
2764         if (err)
2765                 return err;
2766         if (do_fail(desc, lnum, 1))
2767                 return -EROFS;
2768         return 0;
2769 }
2770
2771 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2772 {
2773         int err;
2774
2775         if (do_fail(desc, lnum, 0))
2776                 return -EROFS;
2777         err = ubi_leb_erase(desc, lnum);
2778         if (err)
2779                 return err;
2780         if (do_fail(desc, lnum, 0))
2781                 return -EROFS;
2782         return 0;
2783 }
2784
2785 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2786 {
2787         int err;
2788
2789         if (do_fail(desc, lnum, 0))
2790                 return -EROFS;
2791         err = ubi_leb_unmap(desc, lnum);
2792         if (err)
2793                 return err;
2794         if (do_fail(desc, lnum, 0))
2795                 return -EROFS;
2796         return 0;
2797 }
2798
2799 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2800 {
2801         if (in_failure_mode(desc))
2802                 return -EROFS;
2803         return ubi_is_mapped(desc, lnum);
2804 }
2805
2806 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2807 {
2808         int err;
2809
2810         if (do_fail(desc, lnum, 0))
2811                 return -EROFS;
2812         err = ubi_leb_map(desc, lnum, dtype);
2813         if (err)
2814                 return err;
2815         if (do_fail(desc, lnum, 0))
2816                 return -EROFS;
2817         return 0;
2818 }
2819
2820 /**
2821  * ubifs_debugging_init - initialize UBIFS debugging.
2822  * @c: UBIFS file-system description object
2823  *
2824  * This function initializes debugging-related data for the file system.
2825  * Returns zero in case of success and a negative error code in case of
2826  * failure.
2827  */
2828 int ubifs_debugging_init(struct ubifs_info *c)
2829 {
2830         c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
2831         if (!c->dbg)
2832                 return -ENOMEM;
2833
2834         failure_mode_init(c);
2835         return 0;
2836 }
2837
2838 /**
2839  * ubifs_debugging_exit - free debugging data.
2840  * @c: UBIFS file-system description object
2841  */
2842 void ubifs_debugging_exit(struct ubifs_info *c)
2843 {
2844         failure_mode_exit(c);
2845         kfree(c->dbg);
2846 }
2847
2848 /*
2849  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2850  * contain the stuff specific to particular file-system mounts.
2851  */
2852 static struct dentry *dfs_rootdir;
2853
2854 /**
2855  * dbg_debugfs_init - initialize debugfs file-system.
2856  *
2857  * UBIFS uses debugfs file-system to expose various debugging knobs to
2858  * user-space. This function creates "ubifs" directory in the debugfs
2859  * file-system. Returns zero in case of success and a negative error code in
2860  * case of failure.
2861  */
2862 int dbg_debugfs_init(void)
2863 {
2864         dfs_rootdir = debugfs_create_dir("ubifs", NULL);
2865         if (IS_ERR_OR_NULL(dfs_rootdir)) {
2866                 int err = dfs_rootdir ? PTR_ERR(dfs_rootdir) : -ENODEV;
2867                 ubifs_err("cannot create \"ubifs\" debugfs directory, "
2868                           "error %d\n", err);
2869                 return err;
2870         }
2871
2872         return 0;
2873 }
2874
2875 /**
2876  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2877  */
2878 void dbg_debugfs_exit(void)
2879 {
2880         debugfs_remove(dfs_rootdir);
2881 }
2882
2883 static int open_debugfs_file(struct inode *inode, struct file *file)
2884 {
2885         file->private_data = inode->i_private;
2886         return nonseekable_open(inode, file);
2887 }
2888
2889 static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
2890                                   size_t count, loff_t *ppos)
2891 {
2892         struct ubifs_info *c = file->private_data;
2893         struct ubifs_debug_info *d = c->dbg;
2894
2895         if (file->f_path.dentry == d->dfs_dump_lprops)
2896                 dbg_dump_lprops(c);
2897         else if (file->f_path.dentry == d->dfs_dump_budg)
2898                 dbg_dump_budg(c, &c->bi);
2899         else if (file->f_path.dentry == d->dfs_dump_tnc) {
2900                 mutex_lock(&c->tnc_mutex);
2901                 dbg_dump_tnc(c);
2902                 mutex_unlock(&c->tnc_mutex);
2903         } else
2904                 return -EINVAL;
2905
2906         return count;
2907 }
2908
2909 static const struct file_operations dfs_fops = {
2910         .open = open_debugfs_file,
2911         .write = write_debugfs_file,
2912         .owner = THIS_MODULE,
2913         .llseek = no_llseek,
2914 };
2915
2916 /**
2917  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2918  * @c: UBIFS file-system description object
2919  *
2920  * This function creates all debugfs files for this instance of UBIFS. Returns
2921  * zero in case of success and a negative error code in case of failure.
2922  *
2923  * Note, the only reason we have not merged this function with the
2924  * 'ubifs_debugging_init()' function is because it is better to initialize
2925  * debugfs interfaces at the very end of the mount process, and remove them at
2926  * the very beginning of the mount process.
2927  */
2928 int dbg_debugfs_init_fs(struct ubifs_info *c)
2929 {
2930         int err, n;
2931         const char *fname;
2932         struct dentry *dent;
2933         struct ubifs_debug_info *d = c->dbg;
2934
2935         n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2936                      c->vi.ubi_num, c->vi.vol_id);
2937         if (n == UBIFS_DFS_DIR_LEN) {
2938                 /* The array size is too small */
2939                 fname = UBIFS_DFS_DIR_NAME;
2940                 dent = ERR_PTR(-EINVAL);
2941                 goto out;
2942         }
2943
2944         fname = d->dfs_dir_name;
2945         dent = debugfs_create_dir(fname, dfs_rootdir);
2946         if (IS_ERR_OR_NULL(dent))
2947                 goto out;
2948         d->dfs_dir = dent;
2949
2950         fname = "dump_lprops";
2951         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2952         if (IS_ERR_OR_NULL(dent))
2953                 goto out_remove;
2954         d->dfs_dump_lprops = dent;
2955
2956         fname = "dump_budg";
2957         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2958         if (IS_ERR_OR_NULL(dent))
2959                 goto out_remove;
2960         d->dfs_dump_budg = dent;
2961
2962         fname = "dump_tnc";
2963         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2964         if (IS_ERR_OR_NULL(dent))
2965                 goto out_remove;
2966         d->dfs_dump_tnc = dent;
2967
2968         return 0;
2969
2970 out_remove:
2971         debugfs_remove_recursive(d->dfs_dir);
2972 out:
2973         err = dent ? PTR_ERR(dent) : -ENODEV;
2974         ubifs_err("cannot create \"%s\" debugfs filr or directory, error %d\n",
2975                   fname, err);
2976         return err;
2977 }
2978
2979 /**
2980  * dbg_debugfs_exit_fs - remove all debugfs files.
2981  * @c: UBIFS file-system description object
2982  */
2983 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2984 {
2985         debugfs_remove_recursive(c->dbg->dfs_dir);
2986 }
2987
2988 #endif /* CONFIG_UBIFS_FS_DEBUG */