]> nv-tegra.nvidia Code Review - linux-3.10.git/blob - fs/namespace.c
71e75bcf4d28fe7454e24880a230498ce1cc016c
[linux-3.10.git] / fs / namespace.c
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *      Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10
11 #include <linux/config.h>
12 #include <linux/syscalls.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/smp_lock.h>
16 #include <linux/init.h>
17 #include <linux/quotaops.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/module.h>
21 #include <linux/seq_file.h>
22 #include <linux/namespace.h>
23 #include <linux/namei.h>
24 #include <linux/security.h>
25 #include <linux/mount.h>
26 #include <asm/uaccess.h>
27 #include <asm/unistd.h>
28 #include "pnode.h"
29
30 extern int __init init_rootfs(void);
31
32 #ifdef CONFIG_SYSFS
33 extern int __init sysfs_init(void);
34 #else
35 static inline int sysfs_init(void)
36 {
37         return 0;
38 }
39 #endif
40
41 /* spinlock for vfsmount related operations, inplace of dcache_lock */
42 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
43
44 static int event;
45
46 static struct list_head *mount_hashtable;
47 static int hash_mask __read_mostly, hash_bits __read_mostly;
48 static kmem_cache_t *mnt_cache;
49 static struct rw_semaphore namespace_sem;
50
51 /* /sys/fs */
52 decl_subsys(fs, NULL, NULL);
53 EXPORT_SYMBOL_GPL(fs_subsys);
54
55 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
56 {
57         unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
58         tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
59         tmp = tmp + (tmp >> hash_bits);
60         return tmp & hash_mask;
61 }
62
63 struct vfsmount *alloc_vfsmnt(const char *name)
64 {
65         struct vfsmount *mnt = kmem_cache_alloc(mnt_cache, GFP_KERNEL);
66         if (mnt) {
67                 memset(mnt, 0, sizeof(struct vfsmount));
68                 atomic_set(&mnt->mnt_count, 1);
69                 INIT_LIST_HEAD(&mnt->mnt_hash);
70                 INIT_LIST_HEAD(&mnt->mnt_child);
71                 INIT_LIST_HEAD(&mnt->mnt_mounts);
72                 INIT_LIST_HEAD(&mnt->mnt_list);
73                 INIT_LIST_HEAD(&mnt->mnt_expire);
74                 INIT_LIST_HEAD(&mnt->mnt_share);
75                 INIT_LIST_HEAD(&mnt->mnt_slave_list);
76                 INIT_LIST_HEAD(&mnt->mnt_slave);
77                 if (name) {
78                         int size = strlen(name) + 1;
79                         char *newname = kmalloc(size, GFP_KERNEL);
80                         if (newname) {
81                                 memcpy(newname, name, size);
82                                 mnt->mnt_devname = newname;
83                         }
84                 }
85         }
86         return mnt;
87 }
88
89 void free_vfsmnt(struct vfsmount *mnt)
90 {
91         kfree(mnt->mnt_devname);
92         kmem_cache_free(mnt_cache, mnt);
93 }
94
95 /*
96  * find the first or last mount at @dentry on vfsmount @mnt depending on
97  * @dir. If @dir is set return the first mount else return the last mount.
98  */
99 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
100                               int dir)
101 {
102         struct list_head *head = mount_hashtable + hash(mnt, dentry);
103         struct list_head *tmp = head;
104         struct vfsmount *p, *found = NULL;
105
106         for (;;) {
107                 tmp = dir ? tmp->next : tmp->prev;
108                 p = NULL;
109                 if (tmp == head)
110                         break;
111                 p = list_entry(tmp, struct vfsmount, mnt_hash);
112                 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
113                         found = p;
114                         break;
115                 }
116         }
117         return found;
118 }
119
120 /*
121  * lookup_mnt increments the ref count before returning
122  * the vfsmount struct.
123  */
124 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
125 {
126         struct vfsmount *child_mnt;
127         spin_lock(&vfsmount_lock);
128         if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
129                 mntget(child_mnt);
130         spin_unlock(&vfsmount_lock);
131         return child_mnt;
132 }
133
134 static inline int check_mnt(struct vfsmount *mnt)
135 {
136         return mnt->mnt_namespace == current->namespace;
137 }
138
139 static void touch_namespace(struct namespace *ns)
140 {
141         if (ns) {
142                 ns->event = ++event;
143                 wake_up_interruptible(&ns->poll);
144         }
145 }
146
147 static void __touch_namespace(struct namespace *ns)
148 {
149         if (ns && ns->event != event) {
150                 ns->event = event;
151                 wake_up_interruptible(&ns->poll);
152         }
153 }
154
155 static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd)
156 {
157         old_nd->dentry = mnt->mnt_mountpoint;
158         old_nd->mnt = mnt->mnt_parent;
159         mnt->mnt_parent = mnt;
160         mnt->mnt_mountpoint = mnt->mnt_root;
161         list_del_init(&mnt->mnt_child);
162         list_del_init(&mnt->mnt_hash);
163         old_nd->dentry->d_mounted--;
164 }
165
166 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
167                         struct vfsmount *child_mnt)
168 {
169         child_mnt->mnt_parent = mntget(mnt);
170         child_mnt->mnt_mountpoint = dget(dentry);
171         dentry->d_mounted++;
172 }
173
174 static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd)
175 {
176         mnt_set_mountpoint(nd->mnt, nd->dentry, mnt);
177         list_add_tail(&mnt->mnt_hash, mount_hashtable +
178                         hash(nd->mnt, nd->dentry));
179         list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts);
180 }
181
182 /*
183  * the caller must hold vfsmount_lock
184  */
185 static void commit_tree(struct vfsmount *mnt)
186 {
187         struct vfsmount *parent = mnt->mnt_parent;
188         struct vfsmount *m;
189         LIST_HEAD(head);
190         struct namespace *n = parent->mnt_namespace;
191
192         BUG_ON(parent == mnt);
193
194         list_add_tail(&head, &mnt->mnt_list);
195         list_for_each_entry(m, &head, mnt_list)
196                 m->mnt_namespace = n;
197         list_splice(&head, n->list.prev);
198
199         list_add_tail(&mnt->mnt_hash, mount_hashtable +
200                                 hash(parent, mnt->mnt_mountpoint));
201         list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
202         touch_namespace(n);
203 }
204
205 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
206 {
207         struct list_head *next = p->mnt_mounts.next;
208         if (next == &p->mnt_mounts) {
209                 while (1) {
210                         if (p == root)
211                                 return NULL;
212                         next = p->mnt_child.next;
213                         if (next != &p->mnt_parent->mnt_mounts)
214                                 break;
215                         p = p->mnt_parent;
216                 }
217         }
218         return list_entry(next, struct vfsmount, mnt_child);
219 }
220
221 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
222 {
223         struct list_head *prev = p->mnt_mounts.prev;
224         while (prev != &p->mnt_mounts) {
225                 p = list_entry(prev, struct vfsmount, mnt_child);
226                 prev = p->mnt_mounts.prev;
227         }
228         return p;
229 }
230
231 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
232                                         int flag)
233 {
234         struct super_block *sb = old->mnt_sb;
235         struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
236
237         if (mnt) {
238                 mnt->mnt_flags = old->mnt_flags;
239                 atomic_inc(&sb->s_active);
240                 mnt->mnt_sb = sb;
241                 mnt->mnt_root = dget(root);
242                 mnt->mnt_mountpoint = mnt->mnt_root;
243                 mnt->mnt_parent = mnt;
244
245                 if (flag & CL_SLAVE) {
246                         list_add(&mnt->mnt_slave, &old->mnt_slave_list);
247                         mnt->mnt_master = old;
248                         CLEAR_MNT_SHARED(mnt);
249                 } else {
250                         if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
251                                 list_add(&mnt->mnt_share, &old->mnt_share);
252                         if (IS_MNT_SLAVE(old))
253                                 list_add(&mnt->mnt_slave, &old->mnt_slave);
254                         mnt->mnt_master = old->mnt_master;
255                 }
256                 if (flag & CL_MAKE_SHARED)
257                         set_mnt_shared(mnt);
258
259                 /* stick the duplicate mount on the same expiry list
260                  * as the original if that was on one */
261                 if (flag & CL_EXPIRE) {
262                         spin_lock(&vfsmount_lock);
263                         if (!list_empty(&old->mnt_expire))
264                                 list_add(&mnt->mnt_expire, &old->mnt_expire);
265                         spin_unlock(&vfsmount_lock);
266                 }
267         }
268         return mnt;
269 }
270
271 static inline void __mntput(struct vfsmount *mnt)
272 {
273         struct super_block *sb = mnt->mnt_sb;
274         dput(mnt->mnt_root);
275         free_vfsmnt(mnt);
276         deactivate_super(sb);
277 }
278
279 void mntput_no_expire(struct vfsmount *mnt)
280 {
281 repeat:
282         if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
283                 if (likely(!mnt->mnt_pinned)) {
284                         spin_unlock(&vfsmount_lock);
285                         __mntput(mnt);
286                         return;
287                 }
288                 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
289                 mnt->mnt_pinned = 0;
290                 spin_unlock(&vfsmount_lock);
291                 acct_auto_close_mnt(mnt);
292                 security_sb_umount_close(mnt);
293                 goto repeat;
294         }
295 }
296
297 EXPORT_SYMBOL(mntput_no_expire);
298
299 void mnt_pin(struct vfsmount *mnt)
300 {
301         spin_lock(&vfsmount_lock);
302         mnt->mnt_pinned++;
303         spin_unlock(&vfsmount_lock);
304 }
305
306 EXPORT_SYMBOL(mnt_pin);
307
308 void mnt_unpin(struct vfsmount *mnt)
309 {
310         spin_lock(&vfsmount_lock);
311         if (mnt->mnt_pinned) {
312                 atomic_inc(&mnt->mnt_count);
313                 mnt->mnt_pinned--;
314         }
315         spin_unlock(&vfsmount_lock);
316 }
317
318 EXPORT_SYMBOL(mnt_unpin);
319
320 /* iterator */
321 static void *m_start(struct seq_file *m, loff_t *pos)
322 {
323         struct namespace *n = m->private;
324         struct list_head *p;
325         loff_t l = *pos;
326
327         down_read(&namespace_sem);
328         list_for_each(p, &n->list)
329                 if (!l--)
330                         return list_entry(p, struct vfsmount, mnt_list);
331         return NULL;
332 }
333
334 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
335 {
336         struct namespace *n = m->private;
337         struct list_head *p = ((struct vfsmount *)v)->mnt_list.next;
338         (*pos)++;
339         return p == &n->list ? NULL : list_entry(p, struct vfsmount, mnt_list);
340 }
341
342 static void m_stop(struct seq_file *m, void *v)
343 {
344         up_read(&namespace_sem);
345 }
346
347 static inline void mangle(struct seq_file *m, const char *s)
348 {
349         seq_escape(m, s, " \t\n\\");
350 }
351
352 static int show_vfsmnt(struct seq_file *m, void *v)
353 {
354         struct vfsmount *mnt = v;
355         int err = 0;
356         static struct proc_fs_info {
357                 int flag;
358                 char *str;
359         } fs_info[] = {
360                 { MS_SYNCHRONOUS, ",sync" },
361                 { MS_DIRSYNC, ",dirsync" },
362                 { MS_MANDLOCK, ",mand" },
363                 { 0, NULL }
364         };
365         static struct proc_fs_info mnt_info[] = {
366                 { MNT_NOSUID, ",nosuid" },
367                 { MNT_NODEV, ",nodev" },
368                 { MNT_NOEXEC, ",noexec" },
369                 { MNT_NOATIME, ",noatime" },
370                 { MNT_NODIRATIME, ",nodiratime" },
371                 { 0, NULL }
372         };
373         struct proc_fs_info *fs_infop;
374
375         mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
376         seq_putc(m, ' ');
377         seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
378         seq_putc(m, ' ');
379         mangle(m, mnt->mnt_sb->s_type->name);
380         seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
381         for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
382                 if (mnt->mnt_sb->s_flags & fs_infop->flag)
383                         seq_puts(m, fs_infop->str);
384         }
385         for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
386                 if (mnt->mnt_flags & fs_infop->flag)
387                         seq_puts(m, fs_infop->str);
388         }
389         if (mnt->mnt_sb->s_op->show_options)
390                 err = mnt->mnt_sb->s_op->show_options(m, mnt);
391         seq_puts(m, " 0 0\n");
392         return err;
393 }
394
395 struct seq_operations mounts_op = {
396         .start  = m_start,
397         .next   = m_next,
398         .stop   = m_stop,
399         .show   = show_vfsmnt
400 };
401
402 static int show_vfsstat(struct seq_file *m, void *v)
403 {
404         struct vfsmount *mnt = v;
405         int err = 0;
406
407         /* device */
408         if (mnt->mnt_devname) {
409                 seq_puts(m, "device ");
410                 mangle(m, mnt->mnt_devname);
411         } else
412                 seq_puts(m, "no device");
413
414         /* mount point */
415         seq_puts(m, " mounted on ");
416         seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
417         seq_putc(m, ' ');
418
419         /* file system type */
420         seq_puts(m, "with fstype ");
421         mangle(m, mnt->mnt_sb->s_type->name);
422
423         /* optional statistics */
424         if (mnt->mnt_sb->s_op->show_stats) {
425                 seq_putc(m, ' ');
426                 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
427         }
428
429         seq_putc(m, '\n');
430         return err;
431 }
432
433 struct seq_operations mountstats_op = {
434         .start  = m_start,
435         .next   = m_next,
436         .stop   = m_stop,
437         .show   = show_vfsstat,
438 };
439
440 /**
441  * may_umount_tree - check if a mount tree is busy
442  * @mnt: root of mount tree
443  *
444  * This is called to check if a tree of mounts has any
445  * open files, pwds, chroots or sub mounts that are
446  * busy.
447  */
448 int may_umount_tree(struct vfsmount *mnt)
449 {
450         int actual_refs = 0;
451         int minimum_refs = 0;
452         struct vfsmount *p;
453
454         spin_lock(&vfsmount_lock);
455         for (p = mnt; p; p = next_mnt(p, mnt)) {
456                 actual_refs += atomic_read(&p->mnt_count);
457                 minimum_refs += 2;
458         }
459         spin_unlock(&vfsmount_lock);
460
461         if (actual_refs > minimum_refs)
462                 return -EBUSY;
463
464         return 0;
465 }
466
467 EXPORT_SYMBOL(may_umount_tree);
468
469 /**
470  * may_umount - check if a mount point is busy
471  * @mnt: root of mount
472  *
473  * This is called to check if a mount point has any
474  * open files, pwds, chroots or sub mounts. If the
475  * mount has sub mounts this will return busy
476  * regardless of whether the sub mounts are busy.
477  *
478  * Doesn't take quota and stuff into account. IOW, in some cases it will
479  * give false negatives. The main reason why it's here is that we need
480  * a non-destructive way to look for easily umountable filesystems.
481  */
482 int may_umount(struct vfsmount *mnt)
483 {
484         int ret = 0;
485         spin_lock(&vfsmount_lock);
486         if (propagate_mount_busy(mnt, 2))
487                 ret = -EBUSY;
488         spin_unlock(&vfsmount_lock);
489         return ret;
490 }
491
492 EXPORT_SYMBOL(may_umount);
493
494 void release_mounts(struct list_head *head)
495 {
496         struct vfsmount *mnt;
497         while (!list_empty(head)) {
498                 mnt = list_entry(head->next, struct vfsmount, mnt_hash);
499                 list_del_init(&mnt->mnt_hash);
500                 if (mnt->mnt_parent != mnt) {
501                         struct dentry *dentry;
502                         struct vfsmount *m;
503                         spin_lock(&vfsmount_lock);
504                         dentry = mnt->mnt_mountpoint;
505                         m = mnt->mnt_parent;
506                         mnt->mnt_mountpoint = mnt->mnt_root;
507                         mnt->mnt_parent = mnt;
508                         spin_unlock(&vfsmount_lock);
509                         dput(dentry);
510                         mntput(m);
511                 }
512                 mntput(mnt);
513         }
514 }
515
516 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
517 {
518         struct vfsmount *p;
519
520         for (p = mnt; p; p = next_mnt(p, mnt)) {
521                 list_del(&p->mnt_hash);
522                 list_add(&p->mnt_hash, kill);
523         }
524
525         if (propagate)
526                 propagate_umount(kill);
527
528         list_for_each_entry(p, kill, mnt_hash) {
529                 list_del_init(&p->mnt_expire);
530                 list_del_init(&p->mnt_list);
531                 __touch_namespace(p->mnt_namespace);
532                 p->mnt_namespace = NULL;
533                 list_del_init(&p->mnt_child);
534                 if (p->mnt_parent != p)
535                         p->mnt_mountpoint->d_mounted--;
536                 change_mnt_propagation(p, MS_PRIVATE);
537         }
538 }
539
540 static int do_umount(struct vfsmount *mnt, int flags)
541 {
542         struct super_block *sb = mnt->mnt_sb;
543         int retval;
544         LIST_HEAD(umount_list);
545
546         retval = security_sb_umount(mnt, flags);
547         if (retval)
548                 return retval;
549
550         /*
551          * Allow userspace to request a mountpoint be expired rather than
552          * unmounting unconditionally. Unmount only happens if:
553          *  (1) the mark is already set (the mark is cleared by mntput())
554          *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
555          */
556         if (flags & MNT_EXPIRE) {
557                 if (mnt == current->fs->rootmnt ||
558                     flags & (MNT_FORCE | MNT_DETACH))
559                         return -EINVAL;
560
561                 if (atomic_read(&mnt->mnt_count) != 2)
562                         return -EBUSY;
563
564                 if (!xchg(&mnt->mnt_expiry_mark, 1))
565                         return -EAGAIN;
566         }
567
568         /*
569          * If we may have to abort operations to get out of this
570          * mount, and they will themselves hold resources we must
571          * allow the fs to do things. In the Unix tradition of
572          * 'Gee thats tricky lets do it in userspace' the umount_begin
573          * might fail to complete on the first run through as other tasks
574          * must return, and the like. Thats for the mount program to worry
575          * about for the moment.
576          */
577
578         lock_kernel();
579         if ((flags & MNT_FORCE) && sb->s_op->umount_begin)
580                 sb->s_op->umount_begin(sb);
581         unlock_kernel();
582
583         /*
584          * No sense to grab the lock for this test, but test itself looks
585          * somewhat bogus. Suggestions for better replacement?
586          * Ho-hum... In principle, we might treat that as umount + switch
587          * to rootfs. GC would eventually take care of the old vfsmount.
588          * Actually it makes sense, especially if rootfs would contain a
589          * /reboot - static binary that would close all descriptors and
590          * call reboot(9). Then init(8) could umount root and exec /reboot.
591          */
592         if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) {
593                 /*
594                  * Special case for "unmounting" root ...
595                  * we just try to remount it readonly.
596                  */
597                 down_write(&sb->s_umount);
598                 if (!(sb->s_flags & MS_RDONLY)) {
599                         lock_kernel();
600                         DQUOT_OFF(sb);
601                         retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
602                         unlock_kernel();
603                 }
604                 up_write(&sb->s_umount);
605                 return retval;
606         }
607
608         down_write(&namespace_sem);
609         spin_lock(&vfsmount_lock);
610         event++;
611
612         retval = -EBUSY;
613         if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
614                 if (!list_empty(&mnt->mnt_list))
615                         umount_tree(mnt, 1, &umount_list);
616                 retval = 0;
617         }
618         spin_unlock(&vfsmount_lock);
619         if (retval)
620                 security_sb_umount_busy(mnt);
621         up_write(&namespace_sem);
622         release_mounts(&umount_list);
623         return retval;
624 }
625
626 /*
627  * Now umount can handle mount points as well as block devices.
628  * This is important for filesystems which use unnamed block devices.
629  *
630  * We now support a flag for forced unmount like the other 'big iron'
631  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
632  */
633
634 asmlinkage long sys_umount(char __user * name, int flags)
635 {
636         struct nameidata nd;
637         int retval;
638
639         retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
640         if (retval)
641                 goto out;
642         retval = -EINVAL;
643         if (nd.dentry != nd.mnt->mnt_root)
644                 goto dput_and_out;
645         if (!check_mnt(nd.mnt))
646                 goto dput_and_out;
647
648         retval = -EPERM;
649         if (!capable(CAP_SYS_ADMIN))
650                 goto dput_and_out;
651
652         retval = do_umount(nd.mnt, flags);
653 dput_and_out:
654         path_release_on_umount(&nd);
655 out:
656         return retval;
657 }
658
659 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
660
661 /*
662  *      The 2.0 compatible umount. No flags.
663  */
664 asmlinkage long sys_oldumount(char __user * name)
665 {
666         return sys_umount(name, 0);
667 }
668
669 #endif
670
671 static int mount_is_safe(struct nameidata *nd)
672 {
673         if (capable(CAP_SYS_ADMIN))
674                 return 0;
675         return -EPERM;
676 #ifdef notyet
677         if (S_ISLNK(nd->dentry->d_inode->i_mode))
678                 return -EPERM;
679         if (nd->dentry->d_inode->i_mode & S_ISVTX) {
680                 if (current->uid != nd->dentry->d_inode->i_uid)
681                         return -EPERM;
682         }
683         if (vfs_permission(nd, MAY_WRITE))
684                 return -EPERM;
685         return 0;
686 #endif
687 }
688
689 static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
690 {
691         while (1) {
692                 if (d == dentry)
693                         return 1;
694                 if (d == NULL || d == d->d_parent)
695                         return 0;
696                 d = d->d_parent;
697         }
698 }
699
700 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
701                                         int flag)
702 {
703         struct vfsmount *res, *p, *q, *r, *s;
704         struct nameidata nd;
705
706         if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
707                 return NULL;
708
709         res = q = clone_mnt(mnt, dentry, flag);
710         if (!q)
711                 goto Enomem;
712         q->mnt_mountpoint = mnt->mnt_mountpoint;
713
714         p = mnt;
715         list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
716                 if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
717                         continue;
718
719                 for (s = r; s; s = next_mnt(s, r)) {
720                         if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
721                                 s = skip_mnt_tree(s);
722                                 continue;
723                         }
724                         while (p != s->mnt_parent) {
725                                 p = p->mnt_parent;
726                                 q = q->mnt_parent;
727                         }
728                         p = s;
729                         nd.mnt = q;
730                         nd.dentry = p->mnt_mountpoint;
731                         q = clone_mnt(p, p->mnt_root, flag);
732                         if (!q)
733                                 goto Enomem;
734                         spin_lock(&vfsmount_lock);
735                         list_add_tail(&q->mnt_list, &res->mnt_list);
736                         attach_mnt(q, &nd);
737                         spin_unlock(&vfsmount_lock);
738                 }
739         }
740         return res;
741 Enomem:
742         if (res) {
743                 LIST_HEAD(umount_list);
744                 spin_lock(&vfsmount_lock);
745                 umount_tree(res, 0, &umount_list);
746                 spin_unlock(&vfsmount_lock);
747                 release_mounts(&umount_list);
748         }
749         return NULL;
750 }
751
752 /*
753  *  @source_mnt : mount tree to be attached
754  *  @nd         : place the mount tree @source_mnt is attached
755  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
756  *                 store the parent mount and mountpoint dentry.
757  *                 (done when source_mnt is moved)
758  *
759  *  NOTE: in the table below explains the semantics when a source mount
760  *  of a given type is attached to a destination mount of a given type.
761  * ---------------------------------------------------------------------------
762  * |         BIND MOUNT OPERATION                                            |
763  * |**************************************************************************
764  * | source-->| shared        |       private  |       slave    | unbindable |
765  * | dest     |               |                |                |            |
766  * |   |      |               |                |                |            |
767  * |   v      |               |                |                |            |
768  * |**************************************************************************
769  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
770  * |          |               |                |                |            |
771  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
772  * ***************************************************************************
773  * A bind operation clones the source mount and mounts the clone on the
774  * destination mount.
775  *
776  * (++)  the cloned mount is propagated to all the mounts in the propagation
777  *       tree of the destination mount and the cloned mount is added to
778  *       the peer group of the source mount.
779  * (+)   the cloned mount is created under the destination mount and is marked
780  *       as shared. The cloned mount is added to the peer group of the source
781  *       mount.
782  * (+++) the mount is propagated to all the mounts in the propagation tree
783  *       of the destination mount and the cloned mount is made slave
784  *       of the same master as that of the source mount. The cloned mount
785  *       is marked as 'shared and slave'.
786  * (*)   the cloned mount is made a slave of the same master as that of the
787  *       source mount.
788  *
789  * ---------------------------------------------------------------------------
790  * |                    MOVE MOUNT OPERATION                                 |
791  * |**************************************************************************
792  * | source-->| shared        |       private  |       slave    | unbindable |
793  * | dest     |               |                |                |            |
794  * |   |      |               |                |                |            |
795  * |   v      |               |                |                |            |
796  * |**************************************************************************
797  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
798  * |          |               |                |                |            |
799  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
800  * ***************************************************************************
801  *
802  * (+)  the mount is moved to the destination. And is then propagated to
803  *      all the mounts in the propagation tree of the destination mount.
804  * (+*)  the mount is moved to the destination.
805  * (+++)  the mount is moved to the destination and is then propagated to
806  *      all the mounts belonging to the destination mount's propagation tree.
807  *      the mount is marked as 'shared and slave'.
808  * (*)  the mount continues to be a slave at the new location.
809  *
810  * if the source mount is a tree, the operations explained above is
811  * applied to each mount in the tree.
812  * Must be called without spinlocks held, since this function can sleep
813  * in allocations.
814  */
815 static int attach_recursive_mnt(struct vfsmount *source_mnt,
816                         struct nameidata *nd, struct nameidata *parent_nd)
817 {
818         LIST_HEAD(tree_list);
819         struct vfsmount *dest_mnt = nd->mnt;
820         struct dentry *dest_dentry = nd->dentry;
821         struct vfsmount *child, *p;
822
823         if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
824                 return -EINVAL;
825
826         if (IS_MNT_SHARED(dest_mnt)) {
827                 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
828                         set_mnt_shared(p);
829         }
830
831         spin_lock(&vfsmount_lock);
832         if (parent_nd) {
833                 detach_mnt(source_mnt, parent_nd);
834                 attach_mnt(source_mnt, nd);
835                 touch_namespace(current->namespace);
836         } else {
837                 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
838                 commit_tree(source_mnt);
839         }
840
841         list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
842                 list_del_init(&child->mnt_hash);
843                 commit_tree(child);
844         }
845         spin_unlock(&vfsmount_lock);
846         return 0;
847 }
848
849 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
850 {
851         int err;
852         if (mnt->mnt_sb->s_flags & MS_NOUSER)
853                 return -EINVAL;
854
855         if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
856               S_ISDIR(mnt->mnt_root->d_inode->i_mode))
857                 return -ENOTDIR;
858
859         err = -ENOENT;
860         mutex_lock(&nd->dentry->d_inode->i_mutex);
861         if (IS_DEADDIR(nd->dentry->d_inode))
862                 goto out_unlock;
863
864         err = security_sb_check_sb(mnt, nd);
865         if (err)
866                 goto out_unlock;
867
868         err = -ENOENT;
869         if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry))
870                 err = attach_recursive_mnt(mnt, nd, NULL);
871 out_unlock:
872         mutex_unlock(&nd->dentry->d_inode->i_mutex);
873         if (!err)
874                 security_sb_post_addmount(mnt, nd);
875         return err;
876 }
877
878 /*
879  * recursively change the type of the mountpoint.
880  */
881 static int do_change_type(struct nameidata *nd, int flag)
882 {
883         struct vfsmount *m, *mnt = nd->mnt;
884         int recurse = flag & MS_REC;
885         int type = flag & ~MS_REC;
886
887         if (nd->dentry != nd->mnt->mnt_root)
888                 return -EINVAL;
889
890         down_write(&namespace_sem);
891         spin_lock(&vfsmount_lock);
892         for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
893                 change_mnt_propagation(m, type);
894         spin_unlock(&vfsmount_lock);
895         up_write(&namespace_sem);
896         return 0;
897 }
898
899 /*
900  * do loopback mount.
901  */
902 static int do_loopback(struct nameidata *nd, char *old_name, int recurse)
903 {
904         struct nameidata old_nd;
905         struct vfsmount *mnt = NULL;
906         int err = mount_is_safe(nd);
907         if (err)
908                 return err;
909         if (!old_name || !*old_name)
910                 return -EINVAL;
911         err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
912         if (err)
913                 return err;
914
915         down_write(&namespace_sem);
916         err = -EINVAL;
917         if (IS_MNT_UNBINDABLE(old_nd.mnt))
918                 goto out;
919
920         if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
921                 goto out;
922
923         err = -ENOMEM;
924         if (recurse)
925                 mnt = copy_tree(old_nd.mnt, old_nd.dentry, 0);
926         else
927                 mnt = clone_mnt(old_nd.mnt, old_nd.dentry, 0);
928
929         if (!mnt)
930                 goto out;
931
932         err = graft_tree(mnt, nd);
933         if (err) {
934                 LIST_HEAD(umount_list);
935                 spin_lock(&vfsmount_lock);
936                 umount_tree(mnt, 0, &umount_list);
937                 spin_unlock(&vfsmount_lock);
938                 release_mounts(&umount_list);
939         }
940
941 out:
942         up_write(&namespace_sem);
943         path_release(&old_nd);
944         return err;
945 }
946
947 /*
948  * change filesystem flags. dir should be a physical root of filesystem.
949  * If you've mounted a non-root directory somewhere and want to do remount
950  * on it - tough luck.
951  */
952 static int do_remount(struct nameidata *nd, int flags, int mnt_flags,
953                       void *data)
954 {
955         int err;
956         struct super_block *sb = nd->mnt->mnt_sb;
957
958         if (!capable(CAP_SYS_ADMIN))
959                 return -EPERM;
960
961         if (!check_mnt(nd->mnt))
962                 return -EINVAL;
963
964         if (nd->dentry != nd->mnt->mnt_root)
965                 return -EINVAL;
966
967         down_write(&sb->s_umount);
968         err = do_remount_sb(sb, flags, data, 0);
969         if (!err)
970                 nd->mnt->mnt_flags = mnt_flags;
971         up_write(&sb->s_umount);
972         if (!err)
973                 security_sb_post_remount(nd->mnt, flags, data);
974         return err;
975 }
976
977 static inline int tree_contains_unbindable(struct vfsmount *mnt)
978 {
979         struct vfsmount *p;
980         for (p = mnt; p; p = next_mnt(p, mnt)) {
981                 if (IS_MNT_UNBINDABLE(p))
982                         return 1;
983         }
984         return 0;
985 }
986
987 static int do_move_mount(struct nameidata *nd, char *old_name)
988 {
989         struct nameidata old_nd, parent_nd;
990         struct vfsmount *p;
991         int err = 0;
992         if (!capable(CAP_SYS_ADMIN))
993                 return -EPERM;
994         if (!old_name || !*old_name)
995                 return -EINVAL;
996         err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
997         if (err)
998                 return err;
999
1000         down_write(&namespace_sem);
1001         while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1002                 ;
1003         err = -EINVAL;
1004         if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
1005                 goto out;
1006
1007         err = -ENOENT;
1008         mutex_lock(&nd->dentry->d_inode->i_mutex);
1009         if (IS_DEADDIR(nd->dentry->d_inode))
1010                 goto out1;
1011
1012         if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry))
1013                 goto out1;
1014
1015         err = -EINVAL;
1016         if (old_nd.dentry != old_nd.mnt->mnt_root)
1017                 goto out1;
1018
1019         if (old_nd.mnt == old_nd.mnt->mnt_parent)
1020                 goto out1;
1021
1022         if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
1023               S_ISDIR(old_nd.dentry->d_inode->i_mode))
1024                 goto out1;
1025         /*
1026          * Don't move a mount residing in a shared parent.
1027          */
1028         if (old_nd.mnt->mnt_parent && IS_MNT_SHARED(old_nd.mnt->mnt_parent))
1029                 goto out1;
1030         /*
1031          * Don't move a mount tree containing unbindable mounts to a destination
1032          * mount which is shared.
1033          */
1034         if (IS_MNT_SHARED(nd->mnt) && tree_contains_unbindable(old_nd.mnt))
1035                 goto out1;
1036         err = -ELOOP;
1037         for (p = nd->mnt; p->mnt_parent != p; p = p->mnt_parent)
1038                 if (p == old_nd.mnt)
1039                         goto out1;
1040
1041         if ((err = attach_recursive_mnt(old_nd.mnt, nd, &parent_nd)))
1042                 goto out1;
1043
1044         spin_lock(&vfsmount_lock);
1045         /* if the mount is moved, it should no longer be expire
1046          * automatically */
1047         list_del_init(&old_nd.mnt->mnt_expire);
1048         spin_unlock(&vfsmount_lock);
1049 out1:
1050         mutex_unlock(&nd->dentry->d_inode->i_mutex);
1051 out:
1052         up_write(&namespace_sem);
1053         if (!err)
1054                 path_release(&parent_nd);
1055         path_release(&old_nd);
1056         return err;
1057 }
1058
1059 /*
1060  * create a new mount for userspace and request it to be added into the
1061  * namespace's tree
1062  */
1063 static int do_new_mount(struct nameidata *nd, char *type, int flags,
1064                         int mnt_flags, char *name, void *data)
1065 {
1066         struct vfsmount *mnt;
1067
1068         if (!type || !memchr(type, 0, PAGE_SIZE))
1069                 return -EINVAL;
1070
1071         /* we need capabilities... */
1072         if (!capable(CAP_SYS_ADMIN))
1073                 return -EPERM;
1074
1075         mnt = do_kern_mount(type, flags, name, data);
1076         if (IS_ERR(mnt))
1077                 return PTR_ERR(mnt);
1078
1079         return do_add_mount(mnt, nd, mnt_flags, NULL);
1080 }
1081
1082 /*
1083  * add a mount into a namespace's mount tree
1084  * - provide the option of adding the new mount to an expiration list
1085  */
1086 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1087                  int mnt_flags, struct list_head *fslist)
1088 {
1089         int err;
1090
1091         down_write(&namespace_sem);
1092         /* Something was mounted here while we slept */
1093         while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1094                 ;
1095         err = -EINVAL;
1096         if (!check_mnt(nd->mnt))
1097                 goto unlock;
1098
1099         /* Refuse the same filesystem on the same mount point */
1100         err = -EBUSY;
1101         if (nd->mnt->mnt_sb == newmnt->mnt_sb &&
1102             nd->mnt->mnt_root == nd->dentry)
1103                 goto unlock;
1104
1105         err = -EINVAL;
1106         if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1107                 goto unlock;
1108
1109         newmnt->mnt_flags = mnt_flags;
1110         if ((err = graft_tree(newmnt, nd)))
1111                 goto unlock;
1112
1113         if (fslist) {
1114                 /* add to the specified expiration list */
1115                 spin_lock(&vfsmount_lock);
1116                 list_add_tail(&newmnt->mnt_expire, fslist);
1117                 spin_unlock(&vfsmount_lock);
1118         }
1119         up_write(&namespace_sem);
1120         return 0;
1121
1122 unlock:
1123         up_write(&namespace_sem);
1124         mntput(newmnt);
1125         return err;
1126 }
1127
1128 EXPORT_SYMBOL_GPL(do_add_mount);
1129
1130 static void expire_mount(struct vfsmount *mnt, struct list_head *mounts,
1131                                 struct list_head *umounts)
1132 {
1133         spin_lock(&vfsmount_lock);
1134
1135         /*
1136          * Check if mount is still attached, if not, let whoever holds it deal
1137          * with the sucker
1138          */
1139         if (mnt->mnt_parent == mnt) {
1140                 spin_unlock(&vfsmount_lock);
1141                 return;
1142         }
1143
1144         /*
1145          * Check that it is still dead: the count should now be 2 - as
1146          * contributed by the vfsmount parent and the mntget above
1147          */
1148         if (!propagate_mount_busy(mnt, 2)) {
1149                 /* delete from the namespace */
1150                 touch_namespace(mnt->mnt_namespace);
1151                 list_del_init(&mnt->mnt_list);
1152                 mnt->mnt_namespace = NULL;
1153                 umount_tree(mnt, 1, umounts);
1154                 spin_unlock(&vfsmount_lock);
1155         } else {
1156                 /*
1157                  * Someone brought it back to life whilst we didn't have any
1158                  * locks held so return it to the expiration list
1159                  */
1160                 list_add_tail(&mnt->mnt_expire, mounts);
1161                 spin_unlock(&vfsmount_lock);
1162         }
1163 }
1164
1165 /*
1166  * process a list of expirable mountpoints with the intent of discarding any
1167  * mountpoints that aren't in use and haven't been touched since last we came
1168  * here
1169  */
1170 void mark_mounts_for_expiry(struct list_head *mounts)
1171 {
1172         struct namespace *namespace;
1173         struct vfsmount *mnt, *next;
1174         LIST_HEAD(graveyard);
1175
1176         if (list_empty(mounts))
1177                 return;
1178
1179         spin_lock(&vfsmount_lock);
1180
1181         /* extract from the expiration list every vfsmount that matches the
1182          * following criteria:
1183          * - only referenced by its parent vfsmount
1184          * - still marked for expiry (marked on the last call here; marks are
1185          *   cleared by mntput())
1186          */
1187         list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1188                 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1189                     atomic_read(&mnt->mnt_count) != 1)
1190                         continue;
1191
1192                 mntget(mnt);
1193                 list_move(&mnt->mnt_expire, &graveyard);
1194         }
1195
1196         /*
1197          * go through the vfsmounts we've just consigned to the graveyard to
1198          * - check that they're still dead
1199          * - delete the vfsmount from the appropriate namespace under lock
1200          * - dispose of the corpse
1201          */
1202         while (!list_empty(&graveyard)) {
1203                 LIST_HEAD(umounts);
1204                 mnt = list_entry(graveyard.next, struct vfsmount, mnt_expire);
1205                 list_del_init(&mnt->mnt_expire);
1206
1207                 /* don't do anything if the namespace is dead - all the
1208                  * vfsmounts from it are going away anyway */
1209                 namespace = mnt->mnt_namespace;
1210                 if (!namespace || !namespace->root)
1211                         continue;
1212                 get_namespace(namespace);
1213
1214                 spin_unlock(&vfsmount_lock);
1215                 down_write(&namespace_sem);
1216                 expire_mount(mnt, mounts, &umounts);
1217                 up_write(&namespace_sem);
1218                 release_mounts(&umounts);
1219                 mntput(mnt);
1220                 put_namespace(namespace);
1221                 spin_lock(&vfsmount_lock);
1222         }
1223
1224         spin_unlock(&vfsmount_lock);
1225 }
1226
1227 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1228
1229 /*
1230  * Some copy_from_user() implementations do not return the exact number of
1231  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
1232  * Note that this function differs from copy_from_user() in that it will oops
1233  * on bad values of `to', rather than returning a short copy.
1234  */
1235 static long exact_copy_from_user(void *to, const void __user * from,
1236                                  unsigned long n)
1237 {
1238         char *t = to;
1239         const char __user *f = from;
1240         char c;
1241
1242         if (!access_ok(VERIFY_READ, from, n))
1243                 return n;
1244
1245         while (n) {
1246                 if (__get_user(c, f)) {
1247                         memset(t, 0, n);
1248                         break;
1249                 }
1250                 *t++ = c;
1251                 f++;
1252                 n--;
1253         }
1254         return n;
1255 }
1256
1257 int copy_mount_options(const void __user * data, unsigned long *where)
1258 {
1259         int i;
1260         unsigned long page;
1261         unsigned long size;
1262
1263         *where = 0;
1264         if (!data)
1265                 return 0;
1266
1267         if (!(page = __get_free_page(GFP_KERNEL)))
1268                 return -ENOMEM;
1269
1270         /* We only care that *some* data at the address the user
1271          * gave us is valid.  Just in case, we'll zero
1272          * the remainder of the page.
1273          */
1274         /* copy_from_user cannot cross TASK_SIZE ! */
1275         size = TASK_SIZE - (unsigned long)data;
1276         if (size > PAGE_SIZE)
1277                 size = PAGE_SIZE;
1278
1279         i = size - exact_copy_from_user((void *)page, data, size);
1280         if (!i) {
1281                 free_page(page);
1282                 return -EFAULT;
1283         }
1284         if (i != PAGE_SIZE)
1285                 memset((char *)page + i, 0, PAGE_SIZE - i);
1286         *where = page;
1287         return 0;
1288 }
1289
1290 /*
1291  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1292  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1293  *
1294  * data is a (void *) that can point to any structure up to
1295  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1296  * information (or be NULL).
1297  *
1298  * Pre-0.97 versions of mount() didn't have a flags word.
1299  * When the flags word was introduced its top half was required
1300  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1301  * Therefore, if this magic number is present, it carries no information
1302  * and must be discarded.
1303  */
1304 long do_mount(char *dev_name, char *dir_name, char *type_page,
1305                   unsigned long flags, void *data_page)
1306 {
1307         struct nameidata nd;
1308         int retval = 0;
1309         int mnt_flags = 0;
1310
1311         /* Discard magic */
1312         if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1313                 flags &= ~MS_MGC_MSK;
1314
1315         /* Basic sanity checks */
1316
1317         if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1318                 return -EINVAL;
1319         if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1320                 return -EINVAL;
1321
1322         if (data_page)
1323                 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1324
1325         /* Separate the per-mountpoint flags */
1326         if (flags & MS_NOSUID)
1327                 mnt_flags |= MNT_NOSUID;
1328         if (flags & MS_NODEV)
1329                 mnt_flags |= MNT_NODEV;
1330         if (flags & MS_NOEXEC)
1331                 mnt_flags |= MNT_NOEXEC;
1332         if (flags & MS_NOATIME)
1333                 mnt_flags |= MNT_NOATIME;
1334         if (flags & MS_NODIRATIME)
1335                 mnt_flags |= MNT_NODIRATIME;
1336
1337         flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1338                    MS_NOATIME | MS_NODIRATIME);
1339
1340         /* ... and get the mountpoint */
1341         retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1342         if (retval)
1343                 return retval;
1344
1345         retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
1346         if (retval)
1347                 goto dput_out;
1348
1349         if (flags & MS_REMOUNT)
1350                 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1351                                     data_page);
1352         else if (flags & MS_BIND)
1353                 retval = do_loopback(&nd, dev_name, flags & MS_REC);
1354         else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1355                 retval = do_change_type(&nd, flags);
1356         else if (flags & MS_MOVE)
1357                 retval = do_move_mount(&nd, dev_name);
1358         else
1359                 retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1360                                       dev_name, data_page);
1361 dput_out:
1362         path_release(&nd);
1363         return retval;
1364 }
1365
1366 /*
1367  * Allocate a new namespace structure and populate it with contents
1368  * copied from the namespace of the passed in task structure.
1369  */
1370 struct namespace *dup_namespace(struct task_struct *tsk, struct fs_struct *fs)
1371 {
1372         struct namespace *namespace = tsk->namespace;
1373         struct namespace *new_ns;
1374         struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1375         struct vfsmount *p, *q;
1376
1377         new_ns = kmalloc(sizeof(struct namespace), GFP_KERNEL);
1378         if (!new_ns)
1379                 return NULL;
1380
1381         atomic_set(&new_ns->count, 1);
1382         INIT_LIST_HEAD(&new_ns->list);
1383         init_waitqueue_head(&new_ns->poll);
1384         new_ns->event = 0;
1385
1386         down_write(&namespace_sem);
1387         /* First pass: copy the tree topology */
1388         new_ns->root = copy_tree(namespace->root, namespace->root->mnt_root,
1389                                         CL_COPY_ALL | CL_EXPIRE);
1390         if (!new_ns->root) {
1391                 up_write(&namespace_sem);
1392                 kfree(new_ns);
1393                 return NULL;
1394         }
1395         spin_lock(&vfsmount_lock);
1396         list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1397         spin_unlock(&vfsmount_lock);
1398
1399         /*
1400          * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1401          * as belonging to new namespace.  We have already acquired a private
1402          * fs_struct, so tsk->fs->lock is not needed.
1403          */
1404         p = namespace->root;
1405         q = new_ns->root;
1406         while (p) {
1407                 q->mnt_namespace = new_ns;
1408                 if (fs) {
1409                         if (p == fs->rootmnt) {
1410                                 rootmnt = p;
1411                                 fs->rootmnt = mntget(q);
1412                         }
1413                         if (p == fs->pwdmnt) {
1414                                 pwdmnt = p;
1415                                 fs->pwdmnt = mntget(q);
1416                         }
1417                         if (p == fs->altrootmnt) {
1418                                 altrootmnt = p;
1419                                 fs->altrootmnt = mntget(q);
1420                         }
1421                 }
1422                 p = next_mnt(p, namespace->root);
1423                 q = next_mnt(q, new_ns->root);
1424         }
1425         up_write(&namespace_sem);
1426
1427         if (rootmnt)
1428                 mntput(rootmnt);
1429         if (pwdmnt)
1430                 mntput(pwdmnt);
1431         if (altrootmnt)
1432                 mntput(altrootmnt);
1433
1434         return new_ns;
1435 }
1436
1437 int copy_namespace(int flags, struct task_struct *tsk)
1438 {
1439         struct namespace *namespace = tsk->namespace;
1440         struct namespace *new_ns;
1441         int err = 0;
1442
1443         if (!namespace)
1444                 return 0;
1445
1446         get_namespace(namespace);
1447
1448         if (!(flags & CLONE_NEWNS))
1449                 return 0;
1450
1451         if (!capable(CAP_SYS_ADMIN)) {
1452                 err = -EPERM;
1453                 goto out;
1454         }
1455
1456         new_ns = dup_namespace(tsk, tsk->fs);
1457         if (!new_ns) {
1458                 err = -ENOMEM;
1459                 goto out;
1460         }
1461
1462         tsk->namespace = new_ns;
1463
1464 out:
1465         put_namespace(namespace);
1466         return err;
1467 }
1468
1469 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1470                           char __user * type, unsigned long flags,
1471                           void __user * data)
1472 {
1473         int retval;
1474         unsigned long data_page;
1475         unsigned long type_page;
1476         unsigned long dev_page;
1477         char *dir_page;
1478
1479         retval = copy_mount_options(type, &type_page);
1480         if (retval < 0)
1481                 return retval;
1482
1483         dir_page = getname(dir_name);
1484         retval = PTR_ERR(dir_page);
1485         if (IS_ERR(dir_page))
1486                 goto out1;
1487
1488         retval = copy_mount_options(dev_name, &dev_page);
1489         if (retval < 0)
1490                 goto out2;
1491
1492         retval = copy_mount_options(data, &data_page);
1493         if (retval < 0)
1494                 goto out3;
1495
1496         lock_kernel();
1497         retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
1498                           flags, (void *)data_page);
1499         unlock_kernel();
1500         free_page(data_page);
1501
1502 out3:
1503         free_page(dev_page);
1504 out2:
1505         putname(dir_page);
1506 out1:
1507         free_page(type_page);
1508         return retval;
1509 }
1510
1511 /*
1512  * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1513  * It can block. Requires the big lock held.
1514  */
1515 void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt,
1516                  struct dentry *dentry)
1517 {
1518         struct dentry *old_root;
1519         struct vfsmount *old_rootmnt;
1520         write_lock(&fs->lock);
1521         old_root = fs->root;
1522         old_rootmnt = fs->rootmnt;
1523         fs->rootmnt = mntget(mnt);
1524         fs->root = dget(dentry);
1525         write_unlock(&fs->lock);
1526         if (old_root) {
1527                 dput(old_root);
1528                 mntput(old_rootmnt);
1529         }
1530 }
1531
1532 /*
1533  * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1534  * It can block. Requires the big lock held.
1535  */
1536 void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt,
1537                 struct dentry *dentry)
1538 {
1539         struct dentry *old_pwd;
1540         struct vfsmount *old_pwdmnt;
1541
1542         write_lock(&fs->lock);
1543         old_pwd = fs->pwd;
1544         old_pwdmnt = fs->pwdmnt;
1545         fs->pwdmnt = mntget(mnt);
1546         fs->pwd = dget(dentry);
1547         write_unlock(&fs->lock);
1548
1549         if (old_pwd) {
1550                 dput(old_pwd);
1551                 mntput(old_pwdmnt);
1552         }
1553 }
1554
1555 static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd)
1556 {
1557         struct task_struct *g, *p;
1558         struct fs_struct *fs;
1559
1560         read_lock(&tasklist_lock);
1561         do_each_thread(g, p) {
1562                 task_lock(p);
1563                 fs = p->fs;
1564                 if (fs) {
1565                         atomic_inc(&fs->count);
1566                         task_unlock(p);
1567                         if (fs->root == old_nd->dentry
1568                             && fs->rootmnt == old_nd->mnt)
1569                                 set_fs_root(fs, new_nd->mnt, new_nd->dentry);
1570                         if (fs->pwd == old_nd->dentry
1571                             && fs->pwdmnt == old_nd->mnt)
1572                                 set_fs_pwd(fs, new_nd->mnt, new_nd->dentry);
1573                         put_fs_struct(fs);
1574                 } else
1575                         task_unlock(p);
1576         } while_each_thread(g, p);
1577         read_unlock(&tasklist_lock);
1578 }
1579
1580 /*
1581  * pivot_root Semantics:
1582  * Moves the root file system of the current process to the directory put_old,
1583  * makes new_root as the new root file system of the current process, and sets
1584  * root/cwd of all processes which had them on the current root to new_root.
1585  *
1586  * Restrictions:
1587  * The new_root and put_old must be directories, and  must not be on the
1588  * same file  system as the current process root. The put_old  must  be
1589  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
1590  * pointed to by put_old must yield the same directory as new_root. No other
1591  * file system may be mounted on put_old. After all, new_root is a mountpoint.
1592  *
1593  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
1594  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
1595  * in this situation.
1596  *
1597  * Notes:
1598  *  - we don't move root/cwd if they are not at the root (reason: if something
1599  *    cared enough to change them, it's probably wrong to force them elsewhere)
1600  *  - it's okay to pick a root that isn't the root of a file system, e.g.
1601  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1602  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1603  *    first.
1604  */
1605 asmlinkage long sys_pivot_root(const char __user * new_root,
1606                                const char __user * put_old)
1607 {
1608         struct vfsmount *tmp;
1609         struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd;
1610         int error;
1611
1612         if (!capable(CAP_SYS_ADMIN))
1613                 return -EPERM;
1614
1615         lock_kernel();
1616
1617         error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
1618                             &new_nd);
1619         if (error)
1620                 goto out0;
1621         error = -EINVAL;
1622         if (!check_mnt(new_nd.mnt))
1623                 goto out1;
1624
1625         error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
1626         if (error)
1627                 goto out1;
1628
1629         error = security_sb_pivotroot(&old_nd, &new_nd);
1630         if (error) {
1631                 path_release(&old_nd);
1632                 goto out1;
1633         }
1634
1635         read_lock(&current->fs->lock);
1636         user_nd.mnt = mntget(current->fs->rootmnt);
1637         user_nd.dentry = dget(current->fs->root);
1638         read_unlock(&current->fs->lock);
1639         down_write(&namespace_sem);
1640         mutex_lock(&old_nd.dentry->d_inode->i_mutex);
1641         error = -EINVAL;
1642         if (IS_MNT_SHARED(old_nd.mnt) ||
1643                 IS_MNT_SHARED(new_nd.mnt->mnt_parent) ||
1644                 IS_MNT_SHARED(user_nd.mnt->mnt_parent))
1645                 goto out2;
1646         if (!check_mnt(user_nd.mnt))
1647                 goto out2;
1648         error = -ENOENT;
1649         if (IS_DEADDIR(new_nd.dentry->d_inode))
1650                 goto out2;
1651         if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry))
1652                 goto out2;
1653         if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry))
1654                 goto out2;
1655         error = -EBUSY;
1656         if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt)
1657                 goto out2; /* loop, on the same file system  */
1658         error = -EINVAL;
1659         if (user_nd.mnt->mnt_root != user_nd.dentry)
1660                 goto out2; /* not a mountpoint */
1661         if (user_nd.mnt->mnt_parent == user_nd.mnt)
1662                 goto out2; /* not attached */
1663         if (new_nd.mnt->mnt_root != new_nd.dentry)
1664                 goto out2; /* not a mountpoint */
1665         if (new_nd.mnt->mnt_parent == new_nd.mnt)
1666                 goto out2; /* not attached */
1667         tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */
1668         spin_lock(&vfsmount_lock);
1669         if (tmp != new_nd.mnt) {
1670                 for (;;) {
1671                         if (tmp->mnt_parent == tmp)
1672                                 goto out3; /* already mounted on put_old */
1673                         if (tmp->mnt_parent == new_nd.mnt)
1674                                 break;
1675                         tmp = tmp->mnt_parent;
1676                 }
1677                 if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry))
1678                         goto out3;
1679         } else if (!is_subdir(old_nd.dentry, new_nd.dentry))
1680                 goto out3;
1681         detach_mnt(new_nd.mnt, &parent_nd);
1682         detach_mnt(user_nd.mnt, &root_parent);
1683         attach_mnt(user_nd.mnt, &old_nd);     /* mount old root on put_old */
1684         attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */
1685         touch_namespace(current->namespace);
1686         spin_unlock(&vfsmount_lock);
1687         chroot_fs_refs(&user_nd, &new_nd);
1688         security_sb_post_pivotroot(&user_nd, &new_nd);
1689         error = 0;
1690         path_release(&root_parent);
1691         path_release(&parent_nd);
1692 out2:
1693         mutex_unlock(&old_nd.dentry->d_inode->i_mutex);
1694         up_write(&namespace_sem);
1695         path_release(&user_nd);
1696         path_release(&old_nd);
1697 out1:
1698         path_release(&new_nd);
1699 out0:
1700         unlock_kernel();
1701         return error;
1702 out3:
1703         spin_unlock(&vfsmount_lock);
1704         goto out2;
1705 }
1706
1707 static void __init init_mount_tree(void)
1708 {
1709         struct vfsmount *mnt;
1710         struct namespace *namespace;
1711         struct task_struct *g, *p;
1712
1713         mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
1714         if (IS_ERR(mnt))
1715                 panic("Can't create rootfs");
1716         namespace = kmalloc(sizeof(*namespace), GFP_KERNEL);
1717         if (!namespace)
1718                 panic("Can't allocate initial namespace");
1719         atomic_set(&namespace->count, 1);
1720         INIT_LIST_HEAD(&namespace->list);
1721         init_waitqueue_head(&namespace->poll);
1722         namespace->event = 0;
1723         list_add(&mnt->mnt_list, &namespace->list);
1724         namespace->root = mnt;
1725         mnt->mnt_namespace = namespace;
1726
1727         init_task.namespace = namespace;
1728         read_lock(&tasklist_lock);
1729         do_each_thread(g, p) {
1730                 get_namespace(namespace);
1731                 p->namespace = namespace;
1732         } while_each_thread(g, p);
1733         read_unlock(&tasklist_lock);
1734
1735         set_fs_pwd(current->fs, namespace->root, namespace->root->mnt_root);
1736         set_fs_root(current->fs, namespace->root, namespace->root->mnt_root);
1737 }
1738
1739 void __init mnt_init(unsigned long mempages)
1740 {
1741         struct list_head *d;
1742         unsigned int nr_hash;
1743         int i;
1744
1745         init_rwsem(&namespace_sem);
1746
1747         mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
1748                         0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL, NULL);
1749
1750         mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1751
1752         if (!mount_hashtable)
1753                 panic("Failed to allocate mount hash table\n");
1754
1755         /*
1756          * Find the power-of-two list-heads that can fit into the allocation..
1757          * We don't guarantee that "sizeof(struct list_head)" is necessarily
1758          * a power-of-two.
1759          */
1760         nr_hash = PAGE_SIZE / sizeof(struct list_head);
1761         hash_bits = 0;
1762         do {
1763                 hash_bits++;
1764         } while ((nr_hash >> hash_bits) != 0);
1765         hash_bits--;
1766
1767         /*
1768          * Re-calculate the actual number of entries and the mask
1769          * from the number of bits we can fit.
1770          */
1771         nr_hash = 1UL << hash_bits;
1772         hash_mask = nr_hash - 1;
1773
1774         printk("Mount-cache hash table entries: %d\n", nr_hash);
1775
1776         /* And initialize the newly allocated array */
1777         d = mount_hashtable;
1778         i = nr_hash;
1779         do {
1780                 INIT_LIST_HEAD(d);
1781                 d++;
1782                 i--;
1783         } while (i);
1784         sysfs_init();
1785         subsystem_register(&fs_subsys);
1786         init_rootfs();
1787         init_mount_tree();
1788 }
1789
1790 void __put_namespace(struct namespace *namespace)
1791 {
1792         struct vfsmount *root = namespace->root;
1793         LIST_HEAD(umount_list);
1794         namespace->root = NULL;
1795         spin_unlock(&vfsmount_lock);
1796         down_write(&namespace_sem);
1797         spin_lock(&vfsmount_lock);
1798         umount_tree(root, 0, &umount_list);
1799         spin_unlock(&vfsmount_lock);
1800         up_write(&namespace_sem);
1801         release_mounts(&umount_list);
1802         kfree(namespace);
1803 }