nilfs2: remove double bio_put() in nilfs_end_bio_write() for BIO_EOPNOTSUPP error
[linux-3.10.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24
25 static struct kmem_cache *orphan_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27
28 /*
29  * We guarantee no failure on the returned page.
30  */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33         struct address_space *mapping = sbi->meta_inode->i_mapping;
34         struct page *page = NULL;
35 repeat:
36         page = grab_cache_page(mapping, index);
37         if (!page) {
38                 cond_resched();
39                 goto repeat;
40         }
41
42         /* We wait writeback only inside grab_meta_page() */
43         wait_on_page_writeback(page);
44         SetPageUptodate(page);
45         return page;
46 }
47
48 /*
49  * We guarantee no failure on the returned page.
50  */
51 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
52 {
53         struct address_space *mapping = sbi->meta_inode->i_mapping;
54         struct page *page;
55 repeat:
56         page = grab_cache_page(mapping, index);
57         if (!page) {
58                 cond_resched();
59                 goto repeat;
60         }
61         if (PageUptodate(page))
62                 goto out;
63
64         if (f2fs_readpage(sbi, page, index, READ_SYNC))
65                 goto repeat;
66
67         lock_page(page);
68         if (page->mapping != mapping) {
69                 f2fs_put_page(page, 1);
70                 goto repeat;
71         }
72 out:
73         mark_page_accessed(page);
74         return page;
75 }
76
77 static int f2fs_write_meta_page(struct page *page,
78                                 struct writeback_control *wbc)
79 {
80         struct inode *inode = page->mapping->host;
81         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
82
83         /* Should not write any meta pages, if any IO error was occurred */
84         if (wbc->for_reclaim ||
85                         is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)) {
86                 dec_page_count(sbi, F2FS_DIRTY_META);
87                 wbc->pages_skipped++;
88                 set_page_dirty(page);
89                 return AOP_WRITEPAGE_ACTIVATE;
90         }
91
92         wait_on_page_writeback(page);
93
94         write_meta_page(sbi, page);
95         dec_page_count(sbi, F2FS_DIRTY_META);
96         unlock_page(page);
97         return 0;
98 }
99
100 static int f2fs_write_meta_pages(struct address_space *mapping,
101                                 struct writeback_control *wbc)
102 {
103         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
104         struct block_device *bdev = sbi->sb->s_bdev;
105         long written;
106
107         if (wbc->for_kupdate)
108                 return 0;
109
110         if (get_pages(sbi, F2FS_DIRTY_META) == 0)
111                 return 0;
112
113         /* if mounting is failed, skip writing node pages */
114         mutex_lock(&sbi->cp_mutex);
115         written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
116         mutex_unlock(&sbi->cp_mutex);
117         wbc->nr_to_write -= written;
118         return 0;
119 }
120
121 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
122                                                 long nr_to_write)
123 {
124         struct address_space *mapping = sbi->meta_inode->i_mapping;
125         pgoff_t index = 0, end = LONG_MAX;
126         struct pagevec pvec;
127         long nwritten = 0;
128         struct writeback_control wbc = {
129                 .for_reclaim = 0,
130         };
131
132         pagevec_init(&pvec, 0);
133
134         while (index <= end) {
135                 int i, nr_pages;
136                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
137                                 PAGECACHE_TAG_DIRTY,
138                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
139                 if (nr_pages == 0)
140                         break;
141
142                 for (i = 0; i < nr_pages; i++) {
143                         struct page *page = pvec.pages[i];
144                         lock_page(page);
145                         BUG_ON(page->mapping != mapping);
146                         BUG_ON(!PageDirty(page));
147                         clear_page_dirty_for_io(page);
148                         if (f2fs_write_meta_page(page, &wbc)) {
149                                 unlock_page(page);
150                                 break;
151                         }
152                         if (nwritten++ >= nr_to_write)
153                                 break;
154                 }
155                 pagevec_release(&pvec);
156                 cond_resched();
157         }
158
159         if (nwritten)
160                 f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
161
162         return nwritten;
163 }
164
165 static int f2fs_set_meta_page_dirty(struct page *page)
166 {
167         struct address_space *mapping = page->mapping;
168         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
169
170         SetPageUptodate(page);
171         if (!PageDirty(page)) {
172                 __set_page_dirty_nobuffers(page);
173                 inc_page_count(sbi, F2FS_DIRTY_META);
174                 return 1;
175         }
176         return 0;
177 }
178
179 const struct address_space_operations f2fs_meta_aops = {
180         .writepage      = f2fs_write_meta_page,
181         .writepages     = f2fs_write_meta_pages,
182         .set_page_dirty = f2fs_set_meta_page_dirty,
183 };
184
185 int check_orphan_space(struct f2fs_sb_info *sbi)
186 {
187         unsigned int max_orphans;
188         int err = 0;
189
190         /*
191          * considering 512 blocks in a segment 5 blocks are needed for cp
192          * and log segment summaries. Remaining blocks are used to keep
193          * orphan entries with the limitation one reserved segment
194          * for cp pack we can have max 1020*507 orphan entries
195          */
196         max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
197         mutex_lock(&sbi->orphan_inode_mutex);
198         if (sbi->n_orphans >= max_orphans)
199                 err = -ENOSPC;
200         mutex_unlock(&sbi->orphan_inode_mutex);
201         return err;
202 }
203
204 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
205 {
206         struct list_head *head, *this;
207         struct orphan_inode_entry *new = NULL, *orphan = NULL;
208
209         mutex_lock(&sbi->orphan_inode_mutex);
210         head = &sbi->orphan_inode_list;
211         list_for_each(this, head) {
212                 orphan = list_entry(this, struct orphan_inode_entry, list);
213                 if (orphan->ino == ino)
214                         goto out;
215                 if (orphan->ino > ino)
216                         break;
217                 orphan = NULL;
218         }
219 retry:
220         new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
221         if (!new) {
222                 cond_resched();
223                 goto retry;
224         }
225         new->ino = ino;
226
227         /* add new_oentry into list which is sorted by inode number */
228         if (orphan)
229                 list_add(&new->list, this->prev);
230         else
231                 list_add_tail(&new->list, head);
232
233         sbi->n_orphans++;
234 out:
235         mutex_unlock(&sbi->orphan_inode_mutex);
236 }
237
238 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
239 {
240         struct list_head *this, *next, *head;
241         struct orphan_inode_entry *orphan;
242
243         mutex_lock(&sbi->orphan_inode_mutex);
244         head = &sbi->orphan_inode_list;
245         list_for_each_safe(this, next, head) {
246                 orphan = list_entry(this, struct orphan_inode_entry, list);
247                 if (orphan->ino == ino) {
248                         list_del(&orphan->list);
249                         kmem_cache_free(orphan_entry_slab, orphan);
250                         sbi->n_orphans--;
251                         break;
252                 }
253         }
254         mutex_unlock(&sbi->orphan_inode_mutex);
255 }
256
257 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
258 {
259         struct inode *inode = f2fs_iget(sbi->sb, ino);
260         BUG_ON(IS_ERR(inode));
261         clear_nlink(inode);
262
263         /* truncate all the data during iput */
264         iput(inode);
265 }
266
267 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
268 {
269         block_t start_blk, orphan_blkaddr, i, j;
270
271         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
272                 return 0;
273
274         sbi->por_doing = 1;
275         start_blk = __start_cp_addr(sbi) + 1;
276         orphan_blkaddr = __start_sum_addr(sbi) - 1;
277
278         for (i = 0; i < orphan_blkaddr; i++) {
279                 struct page *page = get_meta_page(sbi, start_blk + i);
280                 struct f2fs_orphan_block *orphan_blk;
281
282                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
283                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
284                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
285                         recover_orphan_inode(sbi, ino);
286                 }
287                 f2fs_put_page(page, 1);
288         }
289         /* clear Orphan Flag */
290         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
291         sbi->por_doing = 0;
292         return 0;
293 }
294
295 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
296 {
297         struct list_head *head, *this, *next;
298         struct f2fs_orphan_block *orphan_blk = NULL;
299         struct page *page = NULL;
300         unsigned int nentries = 0;
301         unsigned short index = 1;
302         unsigned short orphan_blocks;
303
304         orphan_blocks = (unsigned short)((sbi->n_orphans +
305                 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
306
307         mutex_lock(&sbi->orphan_inode_mutex);
308         head = &sbi->orphan_inode_list;
309
310         /* loop for each orphan inode entry and write them in Jornal block */
311         list_for_each_safe(this, next, head) {
312                 struct orphan_inode_entry *orphan;
313
314                 orphan = list_entry(this, struct orphan_inode_entry, list);
315
316                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
317                         /*
318                          * an orphan block is full of 1020 entries,
319                          * then we need to flush current orphan blocks
320                          * and bring another one in memory
321                          */
322                         orphan_blk->blk_addr = cpu_to_le16(index);
323                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
324                         orphan_blk->entry_count = cpu_to_le32(nentries);
325                         set_page_dirty(page);
326                         f2fs_put_page(page, 1);
327                         index++;
328                         start_blk++;
329                         nentries = 0;
330                         page = NULL;
331                 }
332                 if (page)
333                         goto page_exist;
334
335                 page = grab_meta_page(sbi, start_blk);
336                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
337                 memset(orphan_blk, 0, sizeof(*orphan_blk));
338 page_exist:
339                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
340         }
341         if (!page)
342                 goto end;
343
344         orphan_blk->blk_addr = cpu_to_le16(index);
345         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
346         orphan_blk->entry_count = cpu_to_le32(nentries);
347         set_page_dirty(page);
348         f2fs_put_page(page, 1);
349 end:
350         mutex_unlock(&sbi->orphan_inode_mutex);
351 }
352
353 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
354                                 block_t cp_addr, unsigned long long *version)
355 {
356         struct page *cp_page_1, *cp_page_2 = NULL;
357         unsigned long blk_size = sbi->blocksize;
358         struct f2fs_checkpoint *cp_block;
359         unsigned long long cur_version = 0, pre_version = 0;
360         unsigned int crc = 0;
361         size_t crc_offset;
362
363         /* Read the 1st cp block in this CP pack */
364         cp_page_1 = get_meta_page(sbi, cp_addr);
365
366         /* get the version number */
367         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
368         crc_offset = le32_to_cpu(cp_block->checksum_offset);
369         if (crc_offset >= blk_size)
370                 goto invalid_cp1;
371
372         crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
373         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
374                 goto invalid_cp1;
375
376         pre_version = le64_to_cpu(cp_block->checkpoint_ver);
377
378         /* Read the 2nd cp block in this CP pack */
379         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
380         cp_page_2 = get_meta_page(sbi, cp_addr);
381
382         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
383         crc_offset = le32_to_cpu(cp_block->checksum_offset);
384         if (crc_offset >= blk_size)
385                 goto invalid_cp2;
386
387         crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
388         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
389                 goto invalid_cp2;
390
391         cur_version = le64_to_cpu(cp_block->checkpoint_ver);
392
393         if (cur_version == pre_version) {
394                 *version = cur_version;
395                 f2fs_put_page(cp_page_2, 1);
396                 return cp_page_1;
397         }
398 invalid_cp2:
399         f2fs_put_page(cp_page_2, 1);
400 invalid_cp1:
401         f2fs_put_page(cp_page_1, 1);
402         return NULL;
403 }
404
405 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
406 {
407         struct f2fs_checkpoint *cp_block;
408         struct f2fs_super_block *fsb = sbi->raw_super;
409         struct page *cp1, *cp2, *cur_page;
410         unsigned long blk_size = sbi->blocksize;
411         unsigned long long cp1_version = 0, cp2_version = 0;
412         unsigned long long cp_start_blk_no;
413
414         sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
415         if (!sbi->ckpt)
416                 return -ENOMEM;
417         /*
418          * Finding out valid cp block involves read both
419          * sets( cp pack1 and cp pack 2)
420          */
421         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
422         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
423
424         /* The second checkpoint pack should start at the next segment */
425         cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
426         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
427
428         if (cp1 && cp2) {
429                 if (ver_after(cp2_version, cp1_version))
430                         cur_page = cp2;
431                 else
432                         cur_page = cp1;
433         } else if (cp1) {
434                 cur_page = cp1;
435         } else if (cp2) {
436                 cur_page = cp2;
437         } else {
438                 goto fail_no_cp;
439         }
440
441         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
442         memcpy(sbi->ckpt, cp_block, blk_size);
443
444         f2fs_put_page(cp1, 1);
445         f2fs_put_page(cp2, 1);
446         return 0;
447
448 fail_no_cp:
449         kfree(sbi->ckpt);
450         return -EINVAL;
451 }
452
453 void set_dirty_dir_page(struct inode *inode, struct page *page)
454 {
455         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
456         struct list_head *head = &sbi->dir_inode_list;
457         struct dir_inode_entry *new;
458         struct list_head *this;
459
460         if (!S_ISDIR(inode->i_mode))
461                 return;
462 retry:
463         new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
464         if (!new) {
465                 cond_resched();
466                 goto retry;
467         }
468         new->inode = inode;
469         INIT_LIST_HEAD(&new->list);
470
471         spin_lock(&sbi->dir_inode_lock);
472         list_for_each(this, head) {
473                 struct dir_inode_entry *entry;
474                 entry = list_entry(this, struct dir_inode_entry, list);
475                 if (entry->inode == inode) {
476                         kmem_cache_free(inode_entry_slab, new);
477                         goto out;
478                 }
479         }
480         list_add_tail(&new->list, head);
481         sbi->n_dirty_dirs++;
482
483         BUG_ON(!S_ISDIR(inode->i_mode));
484 out:
485         inc_page_count(sbi, F2FS_DIRTY_DENTS);
486         inode_inc_dirty_dents(inode);
487         SetPagePrivate(page);
488
489         spin_unlock(&sbi->dir_inode_lock);
490 }
491
492 void remove_dirty_dir_inode(struct inode *inode)
493 {
494         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
495         struct list_head *head = &sbi->dir_inode_list;
496         struct list_head *this;
497
498         if (!S_ISDIR(inode->i_mode))
499                 return;
500
501         spin_lock(&sbi->dir_inode_lock);
502         if (atomic_read(&F2FS_I(inode)->dirty_dents))
503                 goto out;
504
505         list_for_each(this, head) {
506                 struct dir_inode_entry *entry;
507                 entry = list_entry(this, struct dir_inode_entry, list);
508                 if (entry->inode == inode) {
509                         list_del(&entry->list);
510                         kmem_cache_free(inode_entry_slab, entry);
511                         sbi->n_dirty_dirs--;
512                         break;
513                 }
514         }
515 out:
516         spin_unlock(&sbi->dir_inode_lock);
517 }
518
519 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
520 {
521         struct list_head *head = &sbi->dir_inode_list;
522         struct dir_inode_entry *entry;
523         struct inode *inode;
524 retry:
525         spin_lock(&sbi->dir_inode_lock);
526         if (list_empty(head)) {
527                 spin_unlock(&sbi->dir_inode_lock);
528                 return;
529         }
530         entry = list_entry(head->next, struct dir_inode_entry, list);
531         inode = igrab(entry->inode);
532         spin_unlock(&sbi->dir_inode_lock);
533         if (inode) {
534                 filemap_flush(inode->i_mapping);
535                 iput(inode);
536         } else {
537                 /*
538                  * We should submit bio, since it exists several
539                  * wribacking dentry pages in the freeing inode.
540                  */
541                 f2fs_submit_bio(sbi, DATA, true);
542         }
543         goto retry;
544 }
545
546 /*
547  * Freeze all the FS-operations for checkpoint.
548  */
549 static void block_operations(struct f2fs_sb_info *sbi)
550 {
551         struct writeback_control wbc = {
552                 .sync_mode = WB_SYNC_ALL,
553                 .nr_to_write = LONG_MAX,
554                 .for_reclaim = 0,
555         };
556         struct blk_plug plug;
557
558         blk_start_plug(&plug);
559
560 retry_flush_dents:
561         mutex_lock_all(sbi);
562
563         /* write all the dirty dentry pages */
564         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
565                 mutex_unlock_all(sbi);
566                 sync_dirty_dir_inodes(sbi);
567                 goto retry_flush_dents;
568         }
569
570         /*
571          * POR: we should ensure that there is no dirty node pages
572          * until finishing nat/sit flush.
573          */
574 retry_flush_nodes:
575         mutex_lock(&sbi->node_write);
576
577         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
578                 mutex_unlock(&sbi->node_write);
579                 sync_node_pages(sbi, 0, &wbc);
580                 goto retry_flush_nodes;
581         }
582         blk_finish_plug(&plug);
583 }
584
585 static void unblock_operations(struct f2fs_sb_info *sbi)
586 {
587         mutex_unlock(&sbi->node_write);
588         mutex_unlock_all(sbi);
589 }
590
591 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
592 {
593         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
594         nid_t last_nid = 0;
595         block_t start_blk;
596         struct page *cp_page;
597         unsigned int data_sum_blocks, orphan_blocks;
598         unsigned int crc32 = 0;
599         void *kaddr;
600         int i;
601
602         /* Flush all the NAT/SIT pages */
603         while (get_pages(sbi, F2FS_DIRTY_META))
604                 sync_meta_pages(sbi, META, LONG_MAX);
605
606         next_free_nid(sbi, &last_nid);
607
608         /*
609          * modify checkpoint
610          * version number is already updated
611          */
612         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
613         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
614         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
615         for (i = 0; i < 3; i++) {
616                 ckpt->cur_node_segno[i] =
617                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
618                 ckpt->cur_node_blkoff[i] =
619                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
620                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
621                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
622         }
623         for (i = 0; i < 3; i++) {
624                 ckpt->cur_data_segno[i] =
625                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
626                 ckpt->cur_data_blkoff[i] =
627                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
628                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
629                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
630         }
631
632         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
633         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
634         ckpt->next_free_nid = cpu_to_le32(last_nid);
635
636         /* 2 cp  + n data seg summary + orphan inode blocks */
637         data_sum_blocks = npages_for_summary_flush(sbi);
638         if (data_sum_blocks < 3)
639                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
640         else
641                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
642
643         orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
644                                         / F2FS_ORPHANS_PER_BLOCK;
645         ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
646
647         if (is_umount) {
648                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
649                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
650                         data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
651         } else {
652                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
653                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
654                         data_sum_blocks + orphan_blocks);
655         }
656
657         if (sbi->n_orphans)
658                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
659         else
660                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
661
662         /* update SIT/NAT bitmap */
663         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
664         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
665
666         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
667         *(__le32 *)((unsigned char *)ckpt +
668                                 le32_to_cpu(ckpt->checksum_offset))
669                                 = cpu_to_le32(crc32);
670
671         start_blk = __start_cp_addr(sbi);
672
673         /* write out checkpoint buffer at block 0 */
674         cp_page = grab_meta_page(sbi, start_blk++);
675         kaddr = page_address(cp_page);
676         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
677         set_page_dirty(cp_page);
678         f2fs_put_page(cp_page, 1);
679
680         if (sbi->n_orphans) {
681                 write_orphan_inodes(sbi, start_blk);
682                 start_blk += orphan_blocks;
683         }
684
685         write_data_summaries(sbi, start_blk);
686         start_blk += data_sum_blocks;
687         if (is_umount) {
688                 write_node_summaries(sbi, start_blk);
689                 start_blk += NR_CURSEG_NODE_TYPE;
690         }
691
692         /* writeout checkpoint block */
693         cp_page = grab_meta_page(sbi, start_blk);
694         kaddr = page_address(cp_page);
695         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
696         set_page_dirty(cp_page);
697         f2fs_put_page(cp_page, 1);
698
699         /* wait for previous submitted node/meta pages writeback */
700         while (get_pages(sbi, F2FS_WRITEBACK))
701                 congestion_wait(BLK_RW_ASYNC, HZ / 50);
702
703         filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
704         filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
705
706         /* update user_block_counts */
707         sbi->last_valid_block_count = sbi->total_valid_block_count;
708         sbi->alloc_valid_block_count = 0;
709
710         /* Here, we only have one bio having CP pack */
711         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
712
713         if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) {
714                 clear_prefree_segments(sbi);
715                 F2FS_RESET_SB_DIRT(sbi);
716         }
717 }
718
719 /*
720  * We guarantee that this checkpoint procedure should not fail.
721  */
722 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
723 {
724         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
725         unsigned long long ckpt_ver;
726
727         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
728
729         mutex_lock(&sbi->cp_mutex);
730         block_operations(sbi);
731
732         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
733
734         f2fs_submit_bio(sbi, DATA, true);
735         f2fs_submit_bio(sbi, NODE, true);
736         f2fs_submit_bio(sbi, META, true);
737
738         /*
739          * update checkpoint pack index
740          * Increase the version number so that
741          * SIT entries and seg summaries are written at correct place
742          */
743         ckpt_ver = le64_to_cpu(ckpt->checkpoint_ver);
744         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
745
746         /* write cached NAT/SIT entries to NAT/SIT area */
747         flush_nat_entries(sbi);
748         flush_sit_entries(sbi);
749
750         /* unlock all the fs_lock[] in do_checkpoint() */
751         do_checkpoint(sbi, is_umount);
752
753         unblock_operations(sbi);
754         mutex_unlock(&sbi->cp_mutex);
755
756         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
757 }
758
759 void init_orphan_info(struct f2fs_sb_info *sbi)
760 {
761         mutex_init(&sbi->orphan_inode_mutex);
762         INIT_LIST_HEAD(&sbi->orphan_inode_list);
763         sbi->n_orphans = 0;
764 }
765
766 int __init create_checkpoint_caches(void)
767 {
768         orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
769                         sizeof(struct orphan_inode_entry), NULL);
770         if (unlikely(!orphan_entry_slab))
771                 return -ENOMEM;
772         inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
773                         sizeof(struct dir_inode_entry), NULL);
774         if (unlikely(!inode_entry_slab)) {
775                 kmem_cache_destroy(orphan_entry_slab);
776                 return -ENOMEM;
777         }
778         return 0;
779 }
780
781 void destroy_checkpoint_caches(void)
782 {
783         kmem_cache_destroy(orphan_entry_slab);
784         kmem_cache_destroy(inode_entry_slab);
785 }