]> nv-tegra.nvidia Code Review - linux-3.10.git/blob - fs/buffer.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/bunk/trivial
[linux-3.10.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/percpu.h>
27 #include <linux/slab.h>
28 #include <linux/smp_lock.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/writeback.h>
36 #include <linux/hash.h>
37 #include <linux/suspend.h>
38 #include <linux/buffer_head.h>
39 #include <linux/bio.h>
40 #include <linux/notifier.h>
41 #include <linux/cpu.h>
42 #include <linux/bitops.h>
43 #include <linux/mpage.h>
44 #include <linux/bit_spinlock.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 static void invalidate_bh_lrus(void);
48
49 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50
51 inline void
52 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
53 {
54         bh->b_end_io = handler;
55         bh->b_private = private;
56 }
57
58 static int sync_buffer(void *word)
59 {
60         struct block_device *bd;
61         struct buffer_head *bh
62                 = container_of(word, struct buffer_head, b_state);
63
64         smp_mb();
65         bd = bh->b_bdev;
66         if (bd)
67                 blk_run_address_space(bd->bd_inode->i_mapping);
68         io_schedule();
69         return 0;
70 }
71
72 void fastcall __lock_buffer(struct buffer_head *bh)
73 {
74         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
75                                                         TASK_UNINTERRUPTIBLE);
76 }
77 EXPORT_SYMBOL(__lock_buffer);
78
79 void fastcall unlock_buffer(struct buffer_head *bh)
80 {
81         clear_buffer_locked(bh);
82         smp_mb__after_clear_bit();
83         wake_up_bit(&bh->b_state, BH_Lock);
84 }
85
86 /*
87  * Block until a buffer comes unlocked.  This doesn't stop it
88  * from becoming locked again - you have to lock it yourself
89  * if you want to preserve its state.
90  */
91 void __wait_on_buffer(struct buffer_head * bh)
92 {
93         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
94 }
95
96 static void
97 __clear_page_buffers(struct page *page)
98 {
99         ClearPagePrivate(page);
100         set_page_private(page, 0);
101         page_cache_release(page);
102 }
103
104 static void buffer_io_error(struct buffer_head *bh)
105 {
106         char b[BDEVNAME_SIZE];
107
108         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
109                         bdevname(bh->b_bdev, b),
110                         (unsigned long long)bh->b_blocknr);
111 }
112
113 /*
114  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
115  * unlock the buffer. This is what ll_rw_block uses too.
116  */
117 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
118 {
119         if (uptodate) {
120                 set_buffer_uptodate(bh);
121         } else {
122                 /* This happens, due to failed READA attempts. */
123                 clear_buffer_uptodate(bh);
124         }
125         unlock_buffer(bh);
126         put_bh(bh);
127 }
128
129 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
130 {
131         char b[BDEVNAME_SIZE];
132
133         if (uptodate) {
134                 set_buffer_uptodate(bh);
135         } else {
136                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
137                         buffer_io_error(bh);
138                         printk(KERN_WARNING "lost page write due to "
139                                         "I/O error on %s\n",
140                                        bdevname(bh->b_bdev, b));
141                 }
142                 set_buffer_write_io_error(bh);
143                 clear_buffer_uptodate(bh);
144         }
145         unlock_buffer(bh);
146         put_bh(bh);
147 }
148
149 /*
150  * Write out and wait upon all the dirty data associated with a block
151  * device via its mapping.  Does not take the superblock lock.
152  */
153 int sync_blockdev(struct block_device *bdev)
154 {
155         int ret = 0;
156
157         if (bdev)
158                 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
159         return ret;
160 }
161 EXPORT_SYMBOL(sync_blockdev);
162
163 static void __fsync_super(struct super_block *sb)
164 {
165         sync_inodes_sb(sb, 0);
166         DQUOT_SYNC(sb);
167         lock_super(sb);
168         if (sb->s_dirt && sb->s_op->write_super)
169                 sb->s_op->write_super(sb);
170         unlock_super(sb);
171         if (sb->s_op->sync_fs)
172                 sb->s_op->sync_fs(sb, 1);
173         sync_blockdev(sb->s_bdev);
174         sync_inodes_sb(sb, 1);
175 }
176
177 /*
178  * Write out and wait upon all dirty data associated with this
179  * superblock.  Filesystem data as well as the underlying block
180  * device.  Takes the superblock lock.
181  */
182 int fsync_super(struct super_block *sb)
183 {
184         __fsync_super(sb);
185         return sync_blockdev(sb->s_bdev);
186 }
187
188 /*
189  * Write out and wait upon all dirty data associated with this
190  * device.   Filesystem data as well as the underlying block
191  * device.  Takes the superblock lock.
192  */
193 int fsync_bdev(struct block_device *bdev)
194 {
195         struct super_block *sb = get_super(bdev);
196         if (sb) {
197                 int res = fsync_super(sb);
198                 drop_super(sb);
199                 return res;
200         }
201         return sync_blockdev(bdev);
202 }
203
204 /**
205  * freeze_bdev  --  lock a filesystem and force it into a consistent state
206  * @bdev:       blockdevice to lock
207  *
208  * This takes the block device bd_mount_mutex to make sure no new mounts
209  * happen on bdev until thaw_bdev() is called.
210  * If a superblock is found on this device, we take the s_umount semaphore
211  * on it to make sure nobody unmounts until the snapshot creation is done.
212  */
213 struct super_block *freeze_bdev(struct block_device *bdev)
214 {
215         struct super_block *sb;
216
217         mutex_lock(&bdev->bd_mount_mutex);
218         sb = get_super(bdev);
219         if (sb && !(sb->s_flags & MS_RDONLY)) {
220                 sb->s_frozen = SB_FREEZE_WRITE;
221                 smp_wmb();
222
223                 __fsync_super(sb);
224
225                 sb->s_frozen = SB_FREEZE_TRANS;
226                 smp_wmb();
227
228                 sync_blockdev(sb->s_bdev);
229
230                 if (sb->s_op->write_super_lockfs)
231                         sb->s_op->write_super_lockfs(sb);
232         }
233
234         sync_blockdev(bdev);
235         return sb;      /* thaw_bdev releases s->s_umount and bd_mount_sem */
236 }
237 EXPORT_SYMBOL(freeze_bdev);
238
239 /**
240  * thaw_bdev  -- unlock filesystem
241  * @bdev:       blockdevice to unlock
242  * @sb:         associated superblock
243  *
244  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
245  */
246 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
247 {
248         if (sb) {
249                 BUG_ON(sb->s_bdev != bdev);
250
251                 if (sb->s_op->unlockfs)
252                         sb->s_op->unlockfs(sb);
253                 sb->s_frozen = SB_UNFROZEN;
254                 smp_wmb();
255                 wake_up(&sb->s_wait_unfrozen);
256                 drop_super(sb);
257         }
258
259         mutex_unlock(&bdev->bd_mount_mutex);
260 }
261 EXPORT_SYMBOL(thaw_bdev);
262
263 /*
264  * sync everything.  Start out by waking pdflush, because that writes back
265  * all queues in parallel.
266  */
267 static void do_sync(unsigned long wait)
268 {
269         wakeup_pdflush(0);
270         sync_inodes(0);         /* All mappings, inodes and their blockdevs */
271         DQUOT_SYNC(NULL);
272         sync_supers();          /* Write the superblocks */
273         sync_filesystems(0);    /* Start syncing the filesystems */
274         sync_filesystems(wait); /* Waitingly sync the filesystems */
275         sync_inodes(wait);      /* Mappings, inodes and blockdevs, again. */
276         if (!wait)
277                 printk("Emergency Sync complete\n");
278         if (unlikely(laptop_mode))
279                 laptop_sync_completion();
280 }
281
282 asmlinkage long sys_sync(void)
283 {
284         do_sync(1);
285         return 0;
286 }
287
288 void emergency_sync(void)
289 {
290         pdflush_operation(do_sync, 0);
291 }
292
293 /*
294  * Generic function to fsync a file.
295  *
296  * filp may be NULL if called via the msync of a vma.
297  */
298  
299 int file_fsync(struct file *filp, struct dentry *dentry, int datasync)
300 {
301         struct inode * inode = dentry->d_inode;
302         struct super_block * sb;
303         int ret, err;
304
305         /* sync the inode to buffers */
306         ret = write_inode_now(inode, 0);
307
308         /* sync the superblock to buffers */
309         sb = inode->i_sb;
310         lock_super(sb);
311         if (sb->s_op->write_super)
312                 sb->s_op->write_super(sb);
313         unlock_super(sb);
314
315         /* .. finally sync the buffers to disk */
316         err = sync_blockdev(sb->s_bdev);
317         if (!ret)
318                 ret = err;
319         return ret;
320 }
321
322 long do_fsync(struct file *file, int datasync)
323 {
324         int ret;
325         int err;
326         struct address_space *mapping = file->f_mapping;
327
328         if (!file->f_op || !file->f_op->fsync) {
329                 /* Why?  We can still call filemap_fdatawrite */
330                 ret = -EINVAL;
331                 goto out;
332         }
333
334         current->flags |= PF_SYNCWRITE;
335         ret = filemap_fdatawrite(mapping);
336
337         /*
338          * We need to protect against concurrent writers, which could cause
339          * livelocks in fsync_buffers_list().
340          */
341         mutex_lock(&mapping->host->i_mutex);
342         err = file->f_op->fsync(file, file->f_dentry, datasync);
343         if (!ret)
344                 ret = err;
345         mutex_unlock(&mapping->host->i_mutex);
346         err = filemap_fdatawait(mapping);
347         if (!ret)
348                 ret = err;
349         current->flags &= ~PF_SYNCWRITE;
350 out:
351         return ret;
352 }
353
354 static long __do_fsync(unsigned int fd, int datasync)
355 {
356         struct file *file;
357         int ret = -EBADF;
358
359         file = fget(fd);
360         if (file) {
361                 ret = do_fsync(file, datasync);
362                 fput(file);
363         }
364         return ret;
365 }
366
367 asmlinkage long sys_fsync(unsigned int fd)
368 {
369         return __do_fsync(fd, 0);
370 }
371
372 asmlinkage long sys_fdatasync(unsigned int fd)
373 {
374         return __do_fsync(fd, 1);
375 }
376
377 /*
378  * Various filesystems appear to want __find_get_block to be non-blocking.
379  * But it's the page lock which protects the buffers.  To get around this,
380  * we get exclusion from try_to_free_buffers with the blockdev mapping's
381  * private_lock.
382  *
383  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
384  * may be quite high.  This code could TryLock the page, and if that
385  * succeeds, there is no need to take private_lock. (But if
386  * private_lock is contended then so is mapping->tree_lock).
387  */
388 static struct buffer_head *
389 __find_get_block_slow(struct block_device *bdev, sector_t block)
390 {
391         struct inode *bd_inode = bdev->bd_inode;
392         struct address_space *bd_mapping = bd_inode->i_mapping;
393         struct buffer_head *ret = NULL;
394         pgoff_t index;
395         struct buffer_head *bh;
396         struct buffer_head *head;
397         struct page *page;
398         int all_mapped = 1;
399
400         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
401         page = find_get_page(bd_mapping, index);
402         if (!page)
403                 goto out;
404
405         spin_lock(&bd_mapping->private_lock);
406         if (!page_has_buffers(page))
407                 goto out_unlock;
408         head = page_buffers(page);
409         bh = head;
410         do {
411                 if (bh->b_blocknr == block) {
412                         ret = bh;
413                         get_bh(bh);
414                         goto out_unlock;
415                 }
416                 if (!buffer_mapped(bh))
417                         all_mapped = 0;
418                 bh = bh->b_this_page;
419         } while (bh != head);
420
421         /* we might be here because some of the buffers on this page are
422          * not mapped.  This is due to various races between
423          * file io on the block device and getblk.  It gets dealt with
424          * elsewhere, don't buffer_error if we had some unmapped buffers
425          */
426         if (all_mapped) {
427                 printk("__find_get_block_slow() failed. "
428                         "block=%llu, b_blocknr=%llu\n",
429                         (unsigned long long)block,
430                         (unsigned long long)bh->b_blocknr);
431                 printk("b_state=0x%08lx, b_size=%zu\n",
432                         bh->b_state, bh->b_size);
433                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
434         }
435 out_unlock:
436         spin_unlock(&bd_mapping->private_lock);
437         page_cache_release(page);
438 out:
439         return ret;
440 }
441
442 /* If invalidate_buffers() will trash dirty buffers, it means some kind
443    of fs corruption is going on. Trashing dirty data always imply losing
444    information that was supposed to be just stored on the physical layer
445    by the user.
446
447    Thus invalidate_buffers in general usage is not allwowed to trash
448    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
449    be preserved.  These buffers are simply skipped.
450   
451    We also skip buffers which are still in use.  For example this can
452    happen if a userspace program is reading the block device.
453
454    NOTE: In the case where the user removed a removable-media-disk even if
455    there's still dirty data not synced on disk (due a bug in the device driver
456    or due an error of the user), by not destroying the dirty buffers we could
457    generate corruption also on the next media inserted, thus a parameter is
458    necessary to handle this case in the most safe way possible (trying
459    to not corrupt also the new disk inserted with the data belonging to
460    the old now corrupted disk). Also for the ramdisk the natural thing
461    to do in order to release the ramdisk memory is to destroy dirty buffers.
462
463    These are two special cases. Normal usage imply the device driver
464    to issue a sync on the device (without waiting I/O completion) and
465    then an invalidate_buffers call that doesn't trash dirty buffers.
466
467    For handling cache coherency with the blkdev pagecache the 'update' case
468    is been introduced. It is needed to re-read from disk any pinned
469    buffer. NOTE: re-reading from disk is destructive so we can do it only
470    when we assume nobody is changing the buffercache under our I/O and when
471    we think the disk contains more recent information than the buffercache.
472    The update == 1 pass marks the buffers we need to update, the update == 2
473    pass does the actual I/O. */
474 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
475 {
476         invalidate_bh_lrus();
477         /*
478          * FIXME: what about destroy_dirty_buffers?
479          * We really want to use invalidate_inode_pages2() for
480          * that, but not until that's cleaned up.
481          */
482         invalidate_inode_pages(bdev->bd_inode->i_mapping);
483 }
484
485 /*
486  * Kick pdflush then try to free up some ZONE_NORMAL memory.
487  */
488 static void free_more_memory(void)
489 {
490         struct zone **zones;
491         pg_data_t *pgdat;
492
493         wakeup_pdflush(1024);
494         yield();
495
496         for_each_pgdat(pgdat) {
497                 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
498                 if (*zones)
499                         try_to_free_pages(zones, GFP_NOFS);
500         }
501 }
502
503 /*
504  * I/O completion handler for block_read_full_page() - pages
505  * which come unlocked at the end of I/O.
506  */
507 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
508 {
509         unsigned long flags;
510         struct buffer_head *first;
511         struct buffer_head *tmp;
512         struct page *page;
513         int page_uptodate = 1;
514
515         BUG_ON(!buffer_async_read(bh));
516
517         page = bh->b_page;
518         if (uptodate) {
519                 set_buffer_uptodate(bh);
520         } else {
521                 clear_buffer_uptodate(bh);
522                 if (printk_ratelimit())
523                         buffer_io_error(bh);
524                 SetPageError(page);
525         }
526
527         /*
528          * Be _very_ careful from here on. Bad things can happen if
529          * two buffer heads end IO at almost the same time and both
530          * decide that the page is now completely done.
531          */
532         first = page_buffers(page);
533         local_irq_save(flags);
534         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
535         clear_buffer_async_read(bh);
536         unlock_buffer(bh);
537         tmp = bh;
538         do {
539                 if (!buffer_uptodate(tmp))
540                         page_uptodate = 0;
541                 if (buffer_async_read(tmp)) {
542                         BUG_ON(!buffer_locked(tmp));
543                         goto still_busy;
544                 }
545                 tmp = tmp->b_this_page;
546         } while (tmp != bh);
547         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
548         local_irq_restore(flags);
549
550         /*
551          * If none of the buffers had errors and they are all
552          * uptodate then we can set the page uptodate.
553          */
554         if (page_uptodate && !PageError(page))
555                 SetPageUptodate(page);
556         unlock_page(page);
557         return;
558
559 still_busy:
560         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
561         local_irq_restore(flags);
562         return;
563 }
564
565 /*
566  * Completion handler for block_write_full_page() - pages which are unlocked
567  * during I/O, and which have PageWriteback cleared upon I/O completion.
568  */
569 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
570 {
571         char b[BDEVNAME_SIZE];
572         unsigned long flags;
573         struct buffer_head *first;
574         struct buffer_head *tmp;
575         struct page *page;
576
577         BUG_ON(!buffer_async_write(bh));
578
579         page = bh->b_page;
580         if (uptodate) {
581                 set_buffer_uptodate(bh);
582         } else {
583                 if (printk_ratelimit()) {
584                         buffer_io_error(bh);
585                         printk(KERN_WARNING "lost page write due to "
586                                         "I/O error on %s\n",
587                                bdevname(bh->b_bdev, b));
588                 }
589                 set_bit(AS_EIO, &page->mapping->flags);
590                 clear_buffer_uptodate(bh);
591                 SetPageError(page);
592         }
593
594         first = page_buffers(page);
595         local_irq_save(flags);
596         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
597
598         clear_buffer_async_write(bh);
599         unlock_buffer(bh);
600         tmp = bh->b_this_page;
601         while (tmp != bh) {
602                 if (buffer_async_write(tmp)) {
603                         BUG_ON(!buffer_locked(tmp));
604                         goto still_busy;
605                 }
606                 tmp = tmp->b_this_page;
607         }
608         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
609         local_irq_restore(flags);
610         end_page_writeback(page);
611         return;
612
613 still_busy:
614         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
615         local_irq_restore(flags);
616         return;
617 }
618
619 /*
620  * If a page's buffers are under async readin (end_buffer_async_read
621  * completion) then there is a possibility that another thread of
622  * control could lock one of the buffers after it has completed
623  * but while some of the other buffers have not completed.  This
624  * locked buffer would confuse end_buffer_async_read() into not unlocking
625  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
626  * that this buffer is not under async I/O.
627  *
628  * The page comes unlocked when it has no locked buffer_async buffers
629  * left.
630  *
631  * PageLocked prevents anyone starting new async I/O reads any of
632  * the buffers.
633  *
634  * PageWriteback is used to prevent simultaneous writeout of the same
635  * page.
636  *
637  * PageLocked prevents anyone from starting writeback of a page which is
638  * under read I/O (PageWriteback is only ever set against a locked page).
639  */
640 static void mark_buffer_async_read(struct buffer_head *bh)
641 {
642         bh->b_end_io = end_buffer_async_read;
643         set_buffer_async_read(bh);
644 }
645
646 void mark_buffer_async_write(struct buffer_head *bh)
647 {
648         bh->b_end_io = end_buffer_async_write;
649         set_buffer_async_write(bh);
650 }
651 EXPORT_SYMBOL(mark_buffer_async_write);
652
653
654 /*
655  * fs/buffer.c contains helper functions for buffer-backed address space's
656  * fsync functions.  A common requirement for buffer-based filesystems is
657  * that certain data from the backing blockdev needs to be written out for
658  * a successful fsync().  For example, ext2 indirect blocks need to be
659  * written back and waited upon before fsync() returns.
660  *
661  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
662  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
663  * management of a list of dependent buffers at ->i_mapping->private_list.
664  *
665  * Locking is a little subtle: try_to_free_buffers() will remove buffers
666  * from their controlling inode's queue when they are being freed.  But
667  * try_to_free_buffers() will be operating against the *blockdev* mapping
668  * at the time, not against the S_ISREG file which depends on those buffers.
669  * So the locking for private_list is via the private_lock in the address_space
670  * which backs the buffers.  Which is different from the address_space 
671  * against which the buffers are listed.  So for a particular address_space,
672  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
673  * mapping->private_list will always be protected by the backing blockdev's
674  * ->private_lock.
675  *
676  * Which introduces a requirement: all buffers on an address_space's
677  * ->private_list must be from the same address_space: the blockdev's.
678  *
679  * address_spaces which do not place buffers at ->private_list via these
680  * utility functions are free to use private_lock and private_list for
681  * whatever they want.  The only requirement is that list_empty(private_list)
682  * be true at clear_inode() time.
683  *
684  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
685  * filesystems should do that.  invalidate_inode_buffers() should just go
686  * BUG_ON(!list_empty).
687  *
688  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
689  * take an address_space, not an inode.  And it should be called
690  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
691  * queued up.
692  *
693  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
694  * list if it is already on a list.  Because if the buffer is on a list,
695  * it *must* already be on the right one.  If not, the filesystem is being
696  * silly.  This will save a ton of locking.  But first we have to ensure
697  * that buffers are taken *off* the old inode's list when they are freed
698  * (presumably in truncate).  That requires careful auditing of all
699  * filesystems (do it inside bforget()).  It could also be done by bringing
700  * b_inode back.
701  */
702
703 /*
704  * The buffer's backing address_space's private_lock must be held
705  */
706 static inline void __remove_assoc_queue(struct buffer_head *bh)
707 {
708         list_del_init(&bh->b_assoc_buffers);
709 }
710
711 int inode_has_buffers(struct inode *inode)
712 {
713         return !list_empty(&inode->i_data.private_list);
714 }
715
716 /*
717  * osync is designed to support O_SYNC io.  It waits synchronously for
718  * all already-submitted IO to complete, but does not queue any new
719  * writes to the disk.
720  *
721  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
722  * you dirty the buffers, and then use osync_inode_buffers to wait for
723  * completion.  Any other dirty buffers which are not yet queued for
724  * write will not be flushed to disk by the osync.
725  */
726 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
727 {
728         struct buffer_head *bh;
729         struct list_head *p;
730         int err = 0;
731
732         spin_lock(lock);
733 repeat:
734         list_for_each_prev(p, list) {
735                 bh = BH_ENTRY(p);
736                 if (buffer_locked(bh)) {
737                         get_bh(bh);
738                         spin_unlock(lock);
739                         wait_on_buffer(bh);
740                         if (!buffer_uptodate(bh))
741                                 err = -EIO;
742                         brelse(bh);
743                         spin_lock(lock);
744                         goto repeat;
745                 }
746         }
747         spin_unlock(lock);
748         return err;
749 }
750
751 /**
752  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
753  *                        buffers
754  * @mapping: the mapping which wants those buffers written
755  *
756  * Starts I/O against the buffers at mapping->private_list, and waits upon
757  * that I/O.
758  *
759  * Basically, this is a convenience function for fsync().
760  * @mapping is a file or directory which needs those buffers to be written for
761  * a successful fsync().
762  */
763 int sync_mapping_buffers(struct address_space *mapping)
764 {
765         struct address_space *buffer_mapping = mapping->assoc_mapping;
766
767         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
768                 return 0;
769
770         return fsync_buffers_list(&buffer_mapping->private_lock,
771                                         &mapping->private_list);
772 }
773 EXPORT_SYMBOL(sync_mapping_buffers);
774
775 /*
776  * Called when we've recently written block `bblock', and it is known that
777  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
778  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
779  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
780  */
781 void write_boundary_block(struct block_device *bdev,
782                         sector_t bblock, unsigned blocksize)
783 {
784         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
785         if (bh) {
786                 if (buffer_dirty(bh))
787                         ll_rw_block(WRITE, 1, &bh);
788                 put_bh(bh);
789         }
790 }
791
792 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
793 {
794         struct address_space *mapping = inode->i_mapping;
795         struct address_space *buffer_mapping = bh->b_page->mapping;
796
797         mark_buffer_dirty(bh);
798         if (!mapping->assoc_mapping) {
799                 mapping->assoc_mapping = buffer_mapping;
800         } else {
801                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
802         }
803         if (list_empty(&bh->b_assoc_buffers)) {
804                 spin_lock(&buffer_mapping->private_lock);
805                 list_move_tail(&bh->b_assoc_buffers,
806                                 &mapping->private_list);
807                 spin_unlock(&buffer_mapping->private_lock);
808         }
809 }
810 EXPORT_SYMBOL(mark_buffer_dirty_inode);
811
812 /*
813  * Add a page to the dirty page list.
814  *
815  * It is a sad fact of life that this function is called from several places
816  * deeply under spinlocking.  It may not sleep.
817  *
818  * If the page has buffers, the uptodate buffers are set dirty, to preserve
819  * dirty-state coherency between the page and the buffers.  It the page does
820  * not have buffers then when they are later attached they will all be set
821  * dirty.
822  *
823  * The buffers are dirtied before the page is dirtied.  There's a small race
824  * window in which a writepage caller may see the page cleanness but not the
825  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
826  * before the buffers, a concurrent writepage caller could clear the page dirty
827  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
828  * page on the dirty page list.
829  *
830  * We use private_lock to lock against try_to_free_buffers while using the
831  * page's buffer list.  Also use this to protect against clean buffers being
832  * added to the page after it was set dirty.
833  *
834  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
835  * address_space though.
836  */
837 int __set_page_dirty_buffers(struct page *page)
838 {
839         struct address_space * const mapping = page->mapping;
840
841         spin_lock(&mapping->private_lock);
842         if (page_has_buffers(page)) {
843                 struct buffer_head *head = page_buffers(page);
844                 struct buffer_head *bh = head;
845
846                 do {
847                         set_buffer_dirty(bh);
848                         bh = bh->b_this_page;
849                 } while (bh != head);
850         }
851         spin_unlock(&mapping->private_lock);
852
853         if (!TestSetPageDirty(page)) {
854                 write_lock_irq(&mapping->tree_lock);
855                 if (page->mapping) {    /* Race with truncate? */
856                         if (mapping_cap_account_dirty(mapping))
857                                 inc_page_state(nr_dirty);
858                         radix_tree_tag_set(&mapping->page_tree,
859                                                 page_index(page),
860                                                 PAGECACHE_TAG_DIRTY);
861                 }
862                 write_unlock_irq(&mapping->tree_lock);
863                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
864                 return 1;
865         }
866         return 0;
867 }
868 EXPORT_SYMBOL(__set_page_dirty_buffers);
869
870 /*
871  * Write out and wait upon a list of buffers.
872  *
873  * We have conflicting pressures: we want to make sure that all
874  * initially dirty buffers get waited on, but that any subsequently
875  * dirtied buffers don't.  After all, we don't want fsync to last
876  * forever if somebody is actively writing to the file.
877  *
878  * Do this in two main stages: first we copy dirty buffers to a
879  * temporary inode list, queueing the writes as we go.  Then we clean
880  * up, waiting for those writes to complete.
881  * 
882  * During this second stage, any subsequent updates to the file may end
883  * up refiling the buffer on the original inode's dirty list again, so
884  * there is a chance we will end up with a buffer queued for write but
885  * not yet completed on that list.  So, as a final cleanup we go through
886  * the osync code to catch these locked, dirty buffers without requeuing
887  * any newly dirty buffers for write.
888  */
889 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
890 {
891         struct buffer_head *bh;
892         struct list_head tmp;
893         int err = 0, err2;
894
895         INIT_LIST_HEAD(&tmp);
896
897         spin_lock(lock);
898         while (!list_empty(list)) {
899                 bh = BH_ENTRY(list->next);
900                 list_del_init(&bh->b_assoc_buffers);
901                 if (buffer_dirty(bh) || buffer_locked(bh)) {
902                         list_add(&bh->b_assoc_buffers, &tmp);
903                         if (buffer_dirty(bh)) {
904                                 get_bh(bh);
905                                 spin_unlock(lock);
906                                 /*
907                                  * Ensure any pending I/O completes so that
908                                  * ll_rw_block() actually writes the current
909                                  * contents - it is a noop if I/O is still in
910                                  * flight on potentially older contents.
911                                  */
912                                 ll_rw_block(SWRITE, 1, &bh);
913                                 brelse(bh);
914                                 spin_lock(lock);
915                         }
916                 }
917         }
918
919         while (!list_empty(&tmp)) {
920                 bh = BH_ENTRY(tmp.prev);
921                 __remove_assoc_queue(bh);
922                 get_bh(bh);
923                 spin_unlock(lock);
924                 wait_on_buffer(bh);
925                 if (!buffer_uptodate(bh))
926                         err = -EIO;
927                 brelse(bh);
928                 spin_lock(lock);
929         }
930         
931         spin_unlock(lock);
932         err2 = osync_buffers_list(lock, list);
933         if (err)
934                 return err;
935         else
936                 return err2;
937 }
938
939 /*
940  * Invalidate any and all dirty buffers on a given inode.  We are
941  * probably unmounting the fs, but that doesn't mean we have already
942  * done a sync().  Just drop the buffers from the inode list.
943  *
944  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
945  * assumes that all the buffers are against the blockdev.  Not true
946  * for reiserfs.
947  */
948 void invalidate_inode_buffers(struct inode *inode)
949 {
950         if (inode_has_buffers(inode)) {
951                 struct address_space *mapping = &inode->i_data;
952                 struct list_head *list = &mapping->private_list;
953                 struct address_space *buffer_mapping = mapping->assoc_mapping;
954
955                 spin_lock(&buffer_mapping->private_lock);
956                 while (!list_empty(list))
957                         __remove_assoc_queue(BH_ENTRY(list->next));
958                 spin_unlock(&buffer_mapping->private_lock);
959         }
960 }
961
962 /*
963  * Remove any clean buffers from the inode's buffer list.  This is called
964  * when we're trying to free the inode itself.  Those buffers can pin it.
965  *
966  * Returns true if all buffers were removed.
967  */
968 int remove_inode_buffers(struct inode *inode)
969 {
970         int ret = 1;
971
972         if (inode_has_buffers(inode)) {
973                 struct address_space *mapping = &inode->i_data;
974                 struct list_head *list = &mapping->private_list;
975                 struct address_space *buffer_mapping = mapping->assoc_mapping;
976
977                 spin_lock(&buffer_mapping->private_lock);
978                 while (!list_empty(list)) {
979                         struct buffer_head *bh = BH_ENTRY(list->next);
980                         if (buffer_dirty(bh)) {
981                                 ret = 0;
982                                 break;
983                         }
984                         __remove_assoc_queue(bh);
985                 }
986                 spin_unlock(&buffer_mapping->private_lock);
987         }
988         return ret;
989 }
990
991 /*
992  * Create the appropriate buffers when given a page for data area and
993  * the size of each buffer.. Use the bh->b_this_page linked list to
994  * follow the buffers created.  Return NULL if unable to create more
995  * buffers.
996  *
997  * The retry flag is used to differentiate async IO (paging, swapping)
998  * which may not fail from ordinary buffer allocations.
999  */
1000 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
1001                 int retry)
1002 {
1003         struct buffer_head *bh, *head;
1004         long offset;
1005
1006 try_again:
1007         head = NULL;
1008         offset = PAGE_SIZE;
1009         while ((offset -= size) >= 0) {
1010                 bh = alloc_buffer_head(GFP_NOFS);
1011                 if (!bh)
1012                         goto no_grow;
1013
1014                 bh->b_bdev = NULL;
1015                 bh->b_this_page = head;
1016                 bh->b_blocknr = -1;
1017                 head = bh;
1018
1019                 bh->b_state = 0;
1020                 atomic_set(&bh->b_count, 0);
1021                 bh->b_private = NULL;
1022                 bh->b_size = size;
1023
1024                 /* Link the buffer to its page */
1025                 set_bh_page(bh, page, offset);
1026
1027                 init_buffer(bh, NULL, NULL);
1028         }
1029         return head;
1030 /*
1031  * In case anything failed, we just free everything we got.
1032  */
1033 no_grow:
1034         if (head) {
1035                 do {
1036                         bh = head;
1037                         head = head->b_this_page;
1038                         free_buffer_head(bh);
1039                 } while (head);
1040         }
1041
1042         /*
1043          * Return failure for non-async IO requests.  Async IO requests
1044          * are not allowed to fail, so we have to wait until buffer heads
1045          * become available.  But we don't want tasks sleeping with 
1046          * partially complete buffers, so all were released above.
1047          */
1048         if (!retry)
1049                 return NULL;
1050
1051         /* We're _really_ low on memory. Now we just
1052          * wait for old buffer heads to become free due to
1053          * finishing IO.  Since this is an async request and
1054          * the reserve list is empty, we're sure there are 
1055          * async buffer heads in use.
1056          */
1057         free_more_memory();
1058         goto try_again;
1059 }
1060 EXPORT_SYMBOL_GPL(alloc_page_buffers);
1061
1062 static inline void
1063 link_dev_buffers(struct page *page, struct buffer_head *head)
1064 {
1065         struct buffer_head *bh, *tail;
1066
1067         bh = head;
1068         do {
1069                 tail = bh;
1070                 bh = bh->b_this_page;
1071         } while (bh);
1072         tail->b_this_page = head;
1073         attach_page_buffers(page, head);
1074 }
1075
1076 /*
1077  * Initialise the state of a blockdev page's buffers.
1078  */ 
1079 static void
1080 init_page_buffers(struct page *page, struct block_device *bdev,
1081                         sector_t block, int size)
1082 {
1083         struct buffer_head *head = page_buffers(page);
1084         struct buffer_head *bh = head;
1085         int uptodate = PageUptodate(page);
1086
1087         do {
1088                 if (!buffer_mapped(bh)) {
1089                         init_buffer(bh, NULL, NULL);
1090                         bh->b_bdev = bdev;
1091                         bh->b_blocknr = block;
1092                         if (uptodate)
1093                                 set_buffer_uptodate(bh);
1094                         set_buffer_mapped(bh);
1095                 }
1096                 block++;
1097                 bh = bh->b_this_page;
1098         } while (bh != head);
1099 }
1100
1101 /*
1102  * Create the page-cache page that contains the requested block.
1103  *
1104  * This is user purely for blockdev mappings.
1105  */
1106 static struct page *
1107 grow_dev_page(struct block_device *bdev, sector_t block,
1108                 pgoff_t index, int size)
1109 {
1110         struct inode *inode = bdev->bd_inode;
1111         struct page *page;
1112         struct buffer_head *bh;
1113
1114         page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
1115         if (!page)
1116                 return NULL;
1117
1118         BUG_ON(!PageLocked(page));
1119
1120         if (page_has_buffers(page)) {
1121                 bh = page_buffers(page);
1122                 if (bh->b_size == size) {
1123                         init_page_buffers(page, bdev, block, size);
1124                         return page;
1125                 }
1126                 if (!try_to_free_buffers(page))
1127                         goto failed;
1128         }
1129
1130         /*
1131          * Allocate some buffers for this page
1132          */
1133         bh = alloc_page_buffers(page, size, 0);
1134         if (!bh)
1135                 goto failed;
1136
1137         /*
1138          * Link the page to the buffers and initialise them.  Take the
1139          * lock to be atomic wrt __find_get_block(), which does not
1140          * run under the page lock.
1141          */
1142         spin_lock(&inode->i_mapping->private_lock);
1143         link_dev_buffers(page, bh);
1144         init_page_buffers(page, bdev, block, size);
1145         spin_unlock(&inode->i_mapping->private_lock);
1146         return page;
1147
1148 failed:
1149         BUG();
1150         unlock_page(page);
1151         page_cache_release(page);
1152         return NULL;
1153 }
1154
1155 /*
1156  * Create buffers for the specified block device block's page.  If
1157  * that page was dirty, the buffers are set dirty also.
1158  *
1159  * Except that's a bug.  Attaching dirty buffers to a dirty
1160  * blockdev's page can result in filesystem corruption, because
1161  * some of those buffers may be aliases of filesystem data.
1162  * grow_dev_page() will go BUG() if this happens.
1163  */
1164 static int
1165 grow_buffers(struct block_device *bdev, sector_t block, int size)
1166 {
1167         struct page *page;
1168         pgoff_t index;
1169         int sizebits;
1170
1171         sizebits = -1;
1172         do {
1173                 sizebits++;
1174         } while ((size << sizebits) < PAGE_SIZE);
1175
1176         index = block >> sizebits;
1177         block = index << sizebits;
1178
1179         /* Create a page with the proper size buffers.. */
1180         page = grow_dev_page(bdev, block, index, size);
1181         if (!page)
1182                 return 0;
1183         unlock_page(page);
1184         page_cache_release(page);
1185         return 1;
1186 }
1187
1188 static struct buffer_head *
1189 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1190 {
1191         /* Size must be multiple of hard sectorsize */
1192         if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1193                         (size < 512 || size > PAGE_SIZE))) {
1194                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1195                                         size);
1196                 printk(KERN_ERR "hardsect size: %d\n",
1197                                         bdev_hardsect_size(bdev));
1198
1199                 dump_stack();
1200                 return NULL;
1201         }
1202
1203         for (;;) {
1204                 struct buffer_head * bh;
1205
1206                 bh = __find_get_block(bdev, block, size);
1207                 if (bh)
1208                         return bh;
1209
1210                 if (!grow_buffers(bdev, block, size))
1211                         free_more_memory();
1212         }
1213 }
1214
1215 /*
1216  * The relationship between dirty buffers and dirty pages:
1217  *
1218  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1219  * the page is tagged dirty in its radix tree.
1220  *
1221  * At all times, the dirtiness of the buffers represents the dirtiness of
1222  * subsections of the page.  If the page has buffers, the page dirty bit is
1223  * merely a hint about the true dirty state.
1224  *
1225  * When a page is set dirty in its entirety, all its buffers are marked dirty
1226  * (if the page has buffers).
1227  *
1228  * When a buffer is marked dirty, its page is dirtied, but the page's other
1229  * buffers are not.
1230  *
1231  * Also.  When blockdev buffers are explicitly read with bread(), they
1232  * individually become uptodate.  But their backing page remains not
1233  * uptodate - even if all of its buffers are uptodate.  A subsequent
1234  * block_read_full_page() against that page will discover all the uptodate
1235  * buffers, will set the page uptodate and will perform no I/O.
1236  */
1237
1238 /**
1239  * mark_buffer_dirty - mark a buffer_head as needing writeout
1240  * @bh: the buffer_head to mark dirty
1241  *
1242  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1243  * backing page dirty, then tag the page as dirty in its address_space's radix
1244  * tree and then attach the address_space's inode to its superblock's dirty
1245  * inode list.
1246  *
1247  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1248  * mapping->tree_lock and the global inode_lock.
1249  */
1250 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1251 {
1252         if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1253                 __set_page_dirty_nobuffers(bh->b_page);
1254 }
1255
1256 /*
1257  * Decrement a buffer_head's reference count.  If all buffers against a page
1258  * have zero reference count, are clean and unlocked, and if the page is clean
1259  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1260  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1261  * a page but it ends up not being freed, and buffers may later be reattached).
1262  */
1263 void __brelse(struct buffer_head * buf)
1264 {
1265         if (atomic_read(&buf->b_count)) {
1266                 put_bh(buf);
1267                 return;
1268         }
1269         printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1270         WARN_ON(1);
1271 }
1272
1273 /*
1274  * bforget() is like brelse(), except it discards any
1275  * potentially dirty data.
1276  */
1277 void __bforget(struct buffer_head *bh)
1278 {
1279         clear_buffer_dirty(bh);
1280         if (!list_empty(&bh->b_assoc_buffers)) {
1281                 struct address_space *buffer_mapping = bh->b_page->mapping;
1282
1283                 spin_lock(&buffer_mapping->private_lock);
1284                 list_del_init(&bh->b_assoc_buffers);
1285                 spin_unlock(&buffer_mapping->private_lock);
1286         }
1287         __brelse(bh);
1288 }
1289
1290 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1291 {
1292         lock_buffer(bh);
1293         if (buffer_uptodate(bh)) {
1294                 unlock_buffer(bh);
1295                 return bh;
1296         } else {
1297                 get_bh(bh);
1298                 bh->b_end_io = end_buffer_read_sync;
1299                 submit_bh(READ, bh);
1300                 wait_on_buffer(bh);
1301                 if (buffer_uptodate(bh))
1302                         return bh;
1303         }
1304         brelse(bh);
1305         return NULL;
1306 }
1307
1308 /*
1309  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1310  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1311  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1312  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1313  * CPU's LRUs at the same time.
1314  *
1315  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1316  * sb_find_get_block().
1317  *
1318  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1319  * a local interrupt disable for that.
1320  */
1321
1322 #define BH_LRU_SIZE     8
1323
1324 struct bh_lru {
1325         struct buffer_head *bhs[BH_LRU_SIZE];
1326 };
1327
1328 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1329
1330 #ifdef CONFIG_SMP
1331 #define bh_lru_lock()   local_irq_disable()
1332 #define bh_lru_unlock() local_irq_enable()
1333 #else
1334 #define bh_lru_lock()   preempt_disable()
1335 #define bh_lru_unlock() preempt_enable()
1336 #endif
1337
1338 static inline void check_irqs_on(void)
1339 {
1340 #ifdef irqs_disabled
1341         BUG_ON(irqs_disabled());
1342 #endif
1343 }
1344
1345 /*
1346  * The LRU management algorithm is dopey-but-simple.  Sorry.
1347  */
1348 static void bh_lru_install(struct buffer_head *bh)
1349 {
1350         struct buffer_head *evictee = NULL;
1351         struct bh_lru *lru;
1352
1353         check_irqs_on();
1354         bh_lru_lock();
1355         lru = &__get_cpu_var(bh_lrus);
1356         if (lru->bhs[0] != bh) {
1357                 struct buffer_head *bhs[BH_LRU_SIZE];
1358                 int in;
1359                 int out = 0;
1360
1361                 get_bh(bh);
1362                 bhs[out++] = bh;
1363                 for (in = 0; in < BH_LRU_SIZE; in++) {
1364                         struct buffer_head *bh2 = lru->bhs[in];
1365
1366                         if (bh2 == bh) {
1367                                 __brelse(bh2);
1368                         } else {
1369                                 if (out >= BH_LRU_SIZE) {
1370                                         BUG_ON(evictee != NULL);
1371                                         evictee = bh2;
1372                                 } else {
1373                                         bhs[out++] = bh2;
1374                                 }
1375                         }
1376                 }
1377                 while (out < BH_LRU_SIZE)
1378                         bhs[out++] = NULL;
1379                 memcpy(lru->bhs, bhs, sizeof(bhs));
1380         }
1381         bh_lru_unlock();
1382
1383         if (evictee)
1384                 __brelse(evictee);
1385 }
1386
1387 /*
1388  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1389  */
1390 static struct buffer_head *
1391 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1392 {
1393         struct buffer_head *ret = NULL;
1394         struct bh_lru *lru;
1395         int i;
1396
1397         check_irqs_on();
1398         bh_lru_lock();
1399         lru = &__get_cpu_var(bh_lrus);
1400         for (i = 0; i < BH_LRU_SIZE; i++) {
1401                 struct buffer_head *bh = lru->bhs[i];
1402
1403                 if (bh && bh->b_bdev == bdev &&
1404                                 bh->b_blocknr == block && bh->b_size == size) {
1405                         if (i) {
1406                                 while (i) {
1407                                         lru->bhs[i] = lru->bhs[i - 1];
1408                                         i--;
1409                                 }
1410                                 lru->bhs[0] = bh;
1411                         }
1412                         get_bh(bh);
1413                         ret = bh;
1414                         break;
1415                 }
1416         }
1417         bh_lru_unlock();
1418         return ret;
1419 }
1420
1421 /*
1422  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1423  * it in the LRU and mark it as accessed.  If it is not present then return
1424  * NULL
1425  */
1426 struct buffer_head *
1427 __find_get_block(struct block_device *bdev, sector_t block, int size)
1428 {
1429         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1430
1431         if (bh == NULL) {
1432                 bh = __find_get_block_slow(bdev, block);
1433                 if (bh)
1434                         bh_lru_install(bh);
1435         }
1436         if (bh)
1437                 touch_buffer(bh);
1438         return bh;
1439 }
1440 EXPORT_SYMBOL(__find_get_block);
1441
1442 /*
1443  * __getblk will locate (and, if necessary, create) the buffer_head
1444  * which corresponds to the passed block_device, block and size. The
1445  * returned buffer has its reference count incremented.
1446  *
1447  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1448  * illegal block number, __getblk() will happily return a buffer_head
1449  * which represents the non-existent block.  Very weird.
1450  *
1451  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1452  * attempt is failing.  FIXME, perhaps?
1453  */
1454 struct buffer_head *
1455 __getblk(struct block_device *bdev, sector_t block, int size)
1456 {
1457         struct buffer_head *bh = __find_get_block(bdev, block, size);
1458
1459         might_sleep();
1460         if (bh == NULL)
1461                 bh = __getblk_slow(bdev, block, size);
1462         return bh;
1463 }
1464 EXPORT_SYMBOL(__getblk);
1465
1466 /*
1467  * Do async read-ahead on a buffer..
1468  */
1469 void __breadahead(struct block_device *bdev, sector_t block, int size)
1470 {
1471         struct buffer_head *bh = __getblk(bdev, block, size);
1472         if (likely(bh)) {
1473                 ll_rw_block(READA, 1, &bh);
1474                 brelse(bh);
1475         }
1476 }
1477 EXPORT_SYMBOL(__breadahead);
1478
1479 /**
1480  *  __bread() - reads a specified block and returns the bh
1481  *  @bdev: the block_device to read from
1482  *  @block: number of block
1483  *  @size: size (in bytes) to read
1484  * 
1485  *  Reads a specified block, and returns buffer head that contains it.
1486  *  It returns NULL if the block was unreadable.
1487  */
1488 struct buffer_head *
1489 __bread(struct block_device *bdev, sector_t block, int size)
1490 {
1491         struct buffer_head *bh = __getblk(bdev, block, size);
1492
1493         if (likely(bh) && !buffer_uptodate(bh))
1494                 bh = __bread_slow(bh);
1495         return bh;
1496 }
1497 EXPORT_SYMBOL(__bread);
1498
1499 /*
1500  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1501  * This doesn't race because it runs in each cpu either in irq
1502  * or with preempt disabled.
1503  */
1504 static void invalidate_bh_lru(void *arg)
1505 {
1506         struct bh_lru *b = &get_cpu_var(bh_lrus);
1507         int i;
1508
1509         for (i = 0; i < BH_LRU_SIZE; i++) {
1510                 brelse(b->bhs[i]);
1511                 b->bhs[i] = NULL;
1512         }
1513         put_cpu_var(bh_lrus);
1514 }
1515         
1516 static void invalidate_bh_lrus(void)
1517 {
1518         on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1519 }
1520
1521 void set_bh_page(struct buffer_head *bh,
1522                 struct page *page, unsigned long offset)
1523 {
1524         bh->b_page = page;
1525         BUG_ON(offset >= PAGE_SIZE);
1526         if (PageHighMem(page))
1527                 /*
1528                  * This catches illegal uses and preserves the offset:
1529                  */
1530                 bh->b_data = (char *)(0 + offset);
1531         else
1532                 bh->b_data = page_address(page) + offset;
1533 }
1534 EXPORT_SYMBOL(set_bh_page);
1535
1536 /*
1537  * Called when truncating a buffer on a page completely.
1538  */
1539 static void discard_buffer(struct buffer_head * bh)
1540 {
1541         lock_buffer(bh);
1542         clear_buffer_dirty(bh);
1543         bh->b_bdev = NULL;
1544         clear_buffer_mapped(bh);
1545         clear_buffer_req(bh);
1546         clear_buffer_new(bh);
1547         clear_buffer_delay(bh);
1548         unlock_buffer(bh);
1549 }
1550
1551 /**
1552  * try_to_release_page() - release old fs-specific metadata on a page
1553  *
1554  * @page: the page which the kernel is trying to free
1555  * @gfp_mask: memory allocation flags (and I/O mode)
1556  *
1557  * The address_space is to try to release any data against the page
1558  * (presumably at page->private).  If the release was successful, return `1'.
1559  * Otherwise return zero.
1560  *
1561  * The @gfp_mask argument specifies whether I/O may be performed to release
1562  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
1563  *
1564  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
1565  */
1566 int try_to_release_page(struct page *page, gfp_t gfp_mask)
1567 {
1568         struct address_space * const mapping = page->mapping;
1569
1570         BUG_ON(!PageLocked(page));
1571         if (PageWriteback(page))
1572                 return 0;
1573         
1574         if (mapping && mapping->a_ops->releasepage)
1575                 return mapping->a_ops->releasepage(page, gfp_mask);
1576         return try_to_free_buffers(page);
1577 }
1578 EXPORT_SYMBOL(try_to_release_page);
1579
1580 /**
1581  * block_invalidatepage - invalidate part of all of a buffer-backed page
1582  *
1583  * @page: the page which is affected
1584  * @offset: the index of the truncation point
1585  *
1586  * block_invalidatepage() is called when all or part of the page has become
1587  * invalidatedby a truncate operation.
1588  *
1589  * block_invalidatepage() does not have to release all buffers, but it must
1590  * ensure that no dirty buffer is left outside @offset and that no I/O
1591  * is underway against any of the blocks which are outside the truncation
1592  * point.  Because the caller is about to free (and possibly reuse) those
1593  * blocks on-disk.
1594  */
1595 void block_invalidatepage(struct page *page, unsigned long offset)
1596 {
1597         struct buffer_head *head, *bh, *next;
1598         unsigned int curr_off = 0;
1599
1600         BUG_ON(!PageLocked(page));
1601         if (!page_has_buffers(page))
1602                 goto out;
1603
1604         head = page_buffers(page);
1605         bh = head;
1606         do {
1607                 unsigned int next_off = curr_off + bh->b_size;
1608                 next = bh->b_this_page;
1609
1610                 /*
1611                  * is this block fully invalidated?
1612                  */
1613                 if (offset <= curr_off)
1614                         discard_buffer(bh);
1615                 curr_off = next_off;
1616                 bh = next;
1617         } while (bh != head);
1618
1619         /*
1620          * We release buffers only if the entire page is being invalidated.
1621          * The get_block cached value has been unconditionally invalidated,
1622          * so real IO is not possible anymore.
1623          */
1624         if (offset == 0)
1625                 try_to_release_page(page, 0);
1626 out:
1627         return;
1628 }
1629 EXPORT_SYMBOL(block_invalidatepage);
1630
1631 void do_invalidatepage(struct page *page, unsigned long offset)
1632 {
1633         void (*invalidatepage)(struct page *, unsigned long);
1634         invalidatepage = page->mapping->a_ops->invalidatepage ? :
1635                 block_invalidatepage;
1636         (*invalidatepage)(page, offset);
1637 }
1638
1639 /*
1640  * We attach and possibly dirty the buffers atomically wrt
1641  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1642  * is already excluded via the page lock.
1643  */
1644 void create_empty_buffers(struct page *page,
1645                         unsigned long blocksize, unsigned long b_state)
1646 {
1647         struct buffer_head *bh, *head, *tail;
1648
1649         head = alloc_page_buffers(page, blocksize, 1);
1650         bh = head;
1651         do {
1652                 bh->b_state |= b_state;
1653                 tail = bh;
1654                 bh = bh->b_this_page;
1655         } while (bh);
1656         tail->b_this_page = head;
1657
1658         spin_lock(&page->mapping->private_lock);
1659         if (PageUptodate(page) || PageDirty(page)) {
1660                 bh = head;
1661                 do {
1662                         if (PageDirty(page))
1663                                 set_buffer_dirty(bh);
1664                         if (PageUptodate(page))
1665                                 set_buffer_uptodate(bh);
1666                         bh = bh->b_this_page;
1667                 } while (bh != head);
1668         }
1669         attach_page_buffers(page, head);
1670         spin_unlock(&page->mapping->private_lock);
1671 }
1672 EXPORT_SYMBOL(create_empty_buffers);
1673
1674 /*
1675  * We are taking a block for data and we don't want any output from any
1676  * buffer-cache aliases starting from return from that function and
1677  * until the moment when something will explicitly mark the buffer
1678  * dirty (hopefully that will not happen until we will free that block ;-)
1679  * We don't even need to mark it not-uptodate - nobody can expect
1680  * anything from a newly allocated buffer anyway. We used to used
1681  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1682  * don't want to mark the alias unmapped, for example - it would confuse
1683  * anyone who might pick it with bread() afterwards...
1684  *
1685  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1686  * be writeout I/O going on against recently-freed buffers.  We don't
1687  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1688  * only if we really need to.  That happens here.
1689  */
1690 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1691 {
1692         struct buffer_head *old_bh;
1693
1694         might_sleep();
1695
1696         old_bh = __find_get_block_slow(bdev, block);
1697         if (old_bh) {
1698                 clear_buffer_dirty(old_bh);
1699                 wait_on_buffer(old_bh);
1700                 clear_buffer_req(old_bh);
1701                 __brelse(old_bh);
1702         }
1703 }
1704 EXPORT_SYMBOL(unmap_underlying_metadata);
1705
1706 /*
1707  * NOTE! All mapped/uptodate combinations are valid:
1708  *
1709  *      Mapped  Uptodate        Meaning
1710  *
1711  *      No      No              "unknown" - must do get_block()
1712  *      No      Yes             "hole" - zero-filled
1713  *      Yes     No              "allocated" - allocated on disk, not read in
1714  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1715  *
1716  * "Dirty" is valid only with the last case (mapped+uptodate).
1717  */
1718
1719 /*
1720  * While block_write_full_page is writing back the dirty buffers under
1721  * the page lock, whoever dirtied the buffers may decide to clean them
1722  * again at any time.  We handle that by only looking at the buffer
1723  * state inside lock_buffer().
1724  *
1725  * If block_write_full_page() is called for regular writeback
1726  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1727  * locked buffer.   This only can happen if someone has written the buffer
1728  * directly, with submit_bh().  At the address_space level PageWriteback
1729  * prevents this contention from occurring.
1730  */
1731 static int __block_write_full_page(struct inode *inode, struct page *page,
1732                         get_block_t *get_block, struct writeback_control *wbc)
1733 {
1734         int err;
1735         sector_t block;
1736         sector_t last_block;
1737         struct buffer_head *bh, *head;
1738         const unsigned blocksize = 1 << inode->i_blkbits;
1739         int nr_underway = 0;
1740
1741         BUG_ON(!PageLocked(page));
1742
1743         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1744
1745         if (!page_has_buffers(page)) {
1746                 create_empty_buffers(page, blocksize,
1747                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1748         }
1749
1750         /*
1751          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1752          * here, and the (potentially unmapped) buffers may become dirty at
1753          * any time.  If a buffer becomes dirty here after we've inspected it
1754          * then we just miss that fact, and the page stays dirty.
1755          *
1756          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1757          * handle that here by just cleaning them.
1758          */
1759
1760         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1761         head = page_buffers(page);
1762         bh = head;
1763
1764         /*
1765          * Get all the dirty buffers mapped to disk addresses and
1766          * handle any aliases from the underlying blockdev's mapping.
1767          */
1768         do {
1769                 if (block > last_block) {
1770                         /*
1771                          * mapped buffers outside i_size will occur, because
1772                          * this page can be outside i_size when there is a
1773                          * truncate in progress.
1774                          */
1775                         /*
1776                          * The buffer was zeroed by block_write_full_page()
1777                          */
1778                         clear_buffer_dirty(bh);
1779                         set_buffer_uptodate(bh);
1780                 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1781                         WARN_ON(bh->b_size != blocksize);
1782                         err = get_block(inode, block, bh, 1);
1783                         if (err)
1784                                 goto recover;
1785                         if (buffer_new(bh)) {
1786                                 /* blockdev mappings never come here */
1787                                 clear_buffer_new(bh);
1788                                 unmap_underlying_metadata(bh->b_bdev,
1789                                                         bh->b_blocknr);
1790                         }
1791                 }
1792                 bh = bh->b_this_page;
1793                 block++;
1794         } while (bh != head);
1795
1796         do {
1797                 if (!buffer_mapped(bh))
1798                         continue;
1799                 /*
1800                  * If it's a fully non-blocking write attempt and we cannot
1801                  * lock the buffer then redirty the page.  Note that this can
1802                  * potentially cause a busy-wait loop from pdflush and kswapd
1803                  * activity, but those code paths have their own higher-level
1804                  * throttling.
1805                  */
1806                 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1807                         lock_buffer(bh);
1808                 } else if (test_set_buffer_locked(bh)) {
1809                         redirty_page_for_writepage(wbc, page);
1810                         continue;
1811                 }
1812                 if (test_clear_buffer_dirty(bh)) {
1813                         mark_buffer_async_write(bh);
1814                 } else {
1815                         unlock_buffer(bh);
1816                 }
1817         } while ((bh = bh->b_this_page) != head);
1818
1819         /*
1820          * The page and its buffers are protected by PageWriteback(), so we can
1821          * drop the bh refcounts early.
1822          */
1823         BUG_ON(PageWriteback(page));
1824         set_page_writeback(page);
1825
1826         do {
1827                 struct buffer_head *next = bh->b_this_page;
1828                 if (buffer_async_write(bh)) {
1829                         submit_bh(WRITE, bh);
1830                         nr_underway++;
1831                 }
1832                 bh = next;
1833         } while (bh != head);
1834         unlock_page(page);
1835
1836         err = 0;
1837 done:
1838         if (nr_underway == 0) {
1839                 /*
1840                  * The page was marked dirty, but the buffers were
1841                  * clean.  Someone wrote them back by hand with
1842                  * ll_rw_block/submit_bh.  A rare case.
1843                  */
1844                 int uptodate = 1;
1845                 do {
1846                         if (!buffer_uptodate(bh)) {
1847                                 uptodate = 0;
1848                                 break;
1849                         }
1850                         bh = bh->b_this_page;
1851                 } while (bh != head);
1852                 if (uptodate)
1853                         SetPageUptodate(page);
1854                 end_page_writeback(page);
1855                 /*
1856                  * The page and buffer_heads can be released at any time from
1857                  * here on.
1858                  */
1859                 wbc->pages_skipped++;   /* We didn't write this page */
1860         }
1861         return err;
1862
1863 recover:
1864         /*
1865          * ENOSPC, or some other error.  We may already have added some
1866          * blocks to the file, so we need to write these out to avoid
1867          * exposing stale data.
1868          * The page is currently locked and not marked for writeback
1869          */
1870         bh = head;
1871         /* Recovery: lock and submit the mapped buffers */
1872         do {
1873                 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1874                         lock_buffer(bh);
1875                         mark_buffer_async_write(bh);
1876                 } else {
1877                         /*
1878                          * The buffer may have been set dirty during
1879                          * attachment to a dirty page.
1880                          */
1881                         clear_buffer_dirty(bh);
1882                 }
1883         } while ((bh = bh->b_this_page) != head);
1884         SetPageError(page);
1885         BUG_ON(PageWriteback(page));
1886         set_page_writeback(page);
1887         unlock_page(page);
1888         do {
1889                 struct buffer_head *next = bh->b_this_page;
1890                 if (buffer_async_write(bh)) {
1891                         clear_buffer_dirty(bh);
1892                         submit_bh(WRITE, bh);
1893                         nr_underway++;
1894                 }
1895                 bh = next;
1896         } while (bh != head);
1897         goto done;
1898 }
1899
1900 static int __block_prepare_write(struct inode *inode, struct page *page,
1901                 unsigned from, unsigned to, get_block_t *get_block)
1902 {
1903         unsigned block_start, block_end;
1904         sector_t block;
1905         int err = 0;
1906         unsigned blocksize, bbits;
1907         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1908
1909         BUG_ON(!PageLocked(page));
1910         BUG_ON(from > PAGE_CACHE_SIZE);
1911         BUG_ON(to > PAGE_CACHE_SIZE);
1912         BUG_ON(from > to);
1913
1914         blocksize = 1 << inode->i_blkbits;
1915         if (!page_has_buffers(page))
1916                 create_empty_buffers(page, blocksize, 0);
1917         head = page_buffers(page);
1918
1919         bbits = inode->i_blkbits;
1920         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1921
1922         for(bh = head, block_start = 0; bh != head || !block_start;
1923             block++, block_start=block_end, bh = bh->b_this_page) {
1924                 block_end = block_start + blocksize;
1925                 if (block_end <= from || block_start >= to) {
1926                         if (PageUptodate(page)) {
1927                                 if (!buffer_uptodate(bh))
1928                                         set_buffer_uptodate(bh);
1929                         }
1930                         continue;
1931                 }
1932                 if (buffer_new(bh))
1933                         clear_buffer_new(bh);
1934                 if (!buffer_mapped(bh)) {
1935                         WARN_ON(bh->b_size != blocksize);
1936                         err = get_block(inode, block, bh, 1);
1937                         if (err)
1938                                 break;
1939                         if (buffer_new(bh)) {
1940                                 unmap_underlying_metadata(bh->b_bdev,
1941                                                         bh->b_blocknr);
1942                                 if (PageUptodate(page)) {
1943                                         set_buffer_uptodate(bh);
1944                                         continue;
1945                                 }
1946                                 if (block_end > to || block_start < from) {
1947                                         void *kaddr;
1948
1949                                         kaddr = kmap_atomic(page, KM_USER0);
1950                                         if (block_end > to)
1951                                                 memset(kaddr+to, 0,
1952                                                         block_end-to);
1953                                         if (block_start < from)
1954                                                 memset(kaddr+block_start,
1955                                                         0, from-block_start);
1956                                         flush_dcache_page(page);
1957                                         kunmap_atomic(kaddr, KM_USER0);
1958                                 }
1959                                 continue;
1960                         }
1961                 }
1962                 if (PageUptodate(page)) {
1963                         if (!buffer_uptodate(bh))
1964                                 set_buffer_uptodate(bh);
1965                         continue; 
1966                 }
1967                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1968                      (block_start < from || block_end > to)) {
1969                         ll_rw_block(READ, 1, &bh);
1970                         *wait_bh++=bh;
1971                 }
1972         }
1973         /*
1974          * If we issued read requests - let them complete.
1975          */
1976         while(wait_bh > wait) {
1977                 wait_on_buffer(*--wait_bh);
1978                 if (!buffer_uptodate(*wait_bh))
1979                         err = -EIO;
1980         }
1981         if (!err) {
1982                 bh = head;
1983                 do {
1984                         if (buffer_new(bh))
1985                                 clear_buffer_new(bh);
1986                 } while ((bh = bh->b_this_page) != head);
1987                 return 0;
1988         }
1989         /* Error case: */
1990         /*
1991          * Zero out any newly allocated blocks to avoid exposing stale
1992          * data.  If BH_New is set, we know that the block was newly
1993          * allocated in the above loop.
1994          */
1995         bh = head;
1996         block_start = 0;
1997         do {
1998                 block_end = block_start+blocksize;
1999                 if (block_end <= from)
2000                         goto next_bh;
2001                 if (block_start >= to)
2002                         break;
2003                 if (buffer_new(bh)) {
2004                         void *kaddr;
2005
2006                         clear_buffer_new(bh);
2007                         kaddr = kmap_atomic(page, KM_USER0);
2008                         memset(kaddr+block_start, 0, bh->b_size);
2009                         kunmap_atomic(kaddr, KM_USER0);
2010                         set_buffer_uptodate(bh);
2011                         mark_buffer_dirty(bh);
2012                 }
2013 next_bh:
2014                 block_start = block_end;
2015                 bh = bh->b_this_page;
2016         } while (bh != head);
2017         return err;
2018 }
2019
2020 static int __block_commit_write(struct inode *inode, struct page *page,
2021                 unsigned from, unsigned to)
2022 {
2023         unsigned block_start, block_end;
2024         int partial = 0;
2025         unsigned blocksize;
2026         struct buffer_head *bh, *head;
2027
2028         blocksize = 1 << inode->i_blkbits;
2029
2030         for(bh = head = page_buffers(page), block_start = 0;
2031             bh != head || !block_start;
2032             block_start=block_end, bh = bh->b_this_page) {
2033                 block_end = block_start + blocksize;
2034                 if (block_end <= from || block_start >= to) {
2035                         if (!buffer_uptodate(bh))
2036                                 partial = 1;
2037                 } else {
2038                         set_buffer_uptodate(bh);
2039                         mark_buffer_dirty(bh);
2040                 }
2041         }
2042
2043         /*
2044          * If this is a partial write which happened to make all buffers
2045          * uptodate then we can optimize away a bogus readpage() for
2046          * the next read(). Here we 'discover' whether the page went
2047          * uptodate as a result of this (potentially partial) write.
2048          */
2049         if (!partial)
2050                 SetPageUptodate(page);
2051         return 0;
2052 }
2053
2054 /*
2055  * Generic "read page" function for block devices that have the normal
2056  * get_block functionality. This is most of the block device filesystems.
2057  * Reads the page asynchronously --- the unlock_buffer() and
2058  * set/clear_buffer_uptodate() functions propagate buffer state into the
2059  * page struct once IO has completed.
2060  */
2061 int block_read_full_page(struct page *page, get_block_t *get_block)
2062 {
2063         struct inode *inode = page->mapping->host;
2064         sector_t iblock, lblock;
2065         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2066         unsigned int blocksize;
2067         int nr, i;
2068         int fully_mapped = 1;
2069
2070         BUG_ON(!PageLocked(page));
2071         blocksize = 1 << inode->i_blkbits;
2072         if (!page_has_buffers(page))
2073                 create_empty_buffers(page, blocksize, 0);
2074         head = page_buffers(page);
2075
2076         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2077         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2078         bh = head;
2079         nr = 0;
2080         i = 0;
2081
2082         do {
2083                 if (buffer_uptodate(bh))
2084                         continue;
2085
2086                 if (!buffer_mapped(bh)) {
2087                         int err = 0;
2088
2089                         fully_mapped = 0;
2090                         if (iblock < lblock) {
2091                                 WARN_ON(bh->b_size != blocksize);
2092                                 err = get_block(inode, iblock, bh, 0);
2093                                 if (err)
2094                                         SetPageError(page);
2095                         }
2096                         if (!buffer_mapped(bh)) {
2097                                 void *kaddr = kmap_atomic(page, KM_USER0);
2098                                 memset(kaddr + i * blocksize, 0, blocksize);
2099                                 flush_dcache_page(page);
2100                                 kunmap_atomic(kaddr, KM_USER0);
2101                                 if (!err)
2102                                         set_buffer_uptodate(bh);
2103                                 continue;
2104                         }
2105                         /*
2106                          * get_block() might have updated the buffer
2107                          * synchronously
2108                          */
2109                         if (buffer_uptodate(bh))
2110                                 continue;
2111                 }
2112                 arr[nr++] = bh;
2113         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2114
2115         if (fully_mapped)
2116                 SetPageMappedToDisk(page);
2117
2118         if (!nr) {
2119                 /*
2120                  * All buffers are uptodate - we can set the page uptodate
2121                  * as well. But not if get_block() returned an error.
2122                  */
2123                 if (!PageError(page))
2124                         SetPageUptodate(page);
2125                 unlock_page(page);
2126                 return 0;
2127         }
2128
2129         /* Stage two: lock the buffers */
2130         for (i = 0; i < nr; i++) {
2131                 bh = arr[i];
2132                 lock_buffer(bh);
2133                 mark_buffer_async_read(bh);
2134         }
2135
2136         /*
2137          * Stage 3: start the IO.  Check for uptodateness
2138          * inside the buffer lock in case another process reading
2139          * the underlying blockdev brought it uptodate (the sct fix).
2140          */
2141         for (i = 0; i < nr; i++) {
2142                 bh = arr[i];
2143                 if (buffer_uptodate(bh))
2144                         end_buffer_async_read(bh, 1);
2145                 else
2146                         submit_bh(READ, bh);
2147         }
2148         return 0;
2149 }
2150
2151 /* utility function for filesystems that need to do work on expanding
2152  * truncates.  Uses prepare/commit_write to allow the filesystem to
2153  * deal with the hole.  
2154  */
2155 static int __generic_cont_expand(struct inode *inode, loff_t size,
2156                                  pgoff_t index, unsigned int offset)
2157 {
2158         struct address_space *mapping = inode->i_mapping;
2159         struct page *page;
2160         unsigned long limit;
2161         int err;
2162
2163         err = -EFBIG;
2164         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2165         if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2166                 send_sig(SIGXFSZ, current, 0);
2167                 goto out;
2168         }
2169         if (size > inode->i_sb->s_maxbytes)
2170                 goto out;
2171
2172         err = -ENOMEM;
2173         page = grab_cache_page(mapping, index);
2174         if (!page)
2175                 goto out;
2176         err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2177         if (err) {
2178                 /*
2179                  * ->prepare_write() may have instantiated a few blocks
2180                  * outside i_size.  Trim these off again.
2181                  */
2182                 unlock_page(page);
2183                 page_cache_release(page);
2184                 vmtruncate(inode, inode->i_size);
2185                 goto out;
2186         }
2187
2188         err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2189
2190         unlock_page(page);
2191         page_cache_release(page);
2192         if (err > 0)
2193                 err = 0;
2194 out:
2195         return err;
2196 }
2197
2198 int generic_cont_expand(struct inode *inode, loff_t size)
2199 {
2200         pgoff_t index;
2201         unsigned int offset;
2202
2203         offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2204
2205         /* ugh.  in prepare/commit_write, if from==to==start of block, we
2206         ** skip the prepare.  make sure we never send an offset for the start
2207         ** of a block
2208         */
2209         if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2210                 /* caller must handle this extra byte. */
2211                 offset++;
2212         }
2213         index = size >> PAGE_CACHE_SHIFT;
2214
2215         return __generic_cont_expand(inode, size, index, offset);
2216 }
2217
2218 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2219 {
2220         loff_t pos = size - 1;
2221         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2222         unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2223
2224         /* prepare/commit_write can handle even if from==to==start of block. */
2225         return __generic_cont_expand(inode, size, index, offset);
2226 }
2227
2228 /*
2229  * For moronic filesystems that do not allow holes in file.
2230  * We may have to extend the file.
2231  */
2232
2233 int cont_prepare_write(struct page *page, unsigned offset,
2234                 unsigned to, get_block_t *get_block, loff_t *bytes)
2235 {
2236         struct address_space *mapping = page->mapping;
2237         struct inode *inode = mapping->host;
2238         struct page *new_page;
2239         pgoff_t pgpos;
2240         long status;
2241         unsigned zerofrom;
2242         unsigned blocksize = 1 << inode->i_blkbits;
2243         void *kaddr;
2244
2245         while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2246                 status = -ENOMEM;
2247                 new_page = grab_cache_page(mapping, pgpos);
2248                 if (!new_page)
2249                         goto out;
2250                 /* we might sleep */
2251                 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2252                         unlock_page(new_page);
2253                         page_cache_release(new_page);
2254                         continue;
2255                 }
2256                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2257                 if (zerofrom & (blocksize-1)) {
2258                         *bytes |= (blocksize-1);
2259                         (*bytes)++;
2260                 }
2261                 status = __block_prepare_write(inode, new_page, zerofrom,
2262                                                 PAGE_CACHE_SIZE, get_block);
2263                 if (status)
2264                         goto out_unmap;
2265                 kaddr = kmap_atomic(new_page, KM_USER0);
2266                 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2267                 flush_dcache_page(new_page);
2268                 kunmap_atomic(kaddr, KM_USER0);
2269                 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2270                 unlock_page(new_page);
2271                 page_cache_release(new_page);
2272         }
2273
2274         if (page->index < pgpos) {
2275                 /* completely inside the area */
2276                 zerofrom = offset;
2277         } else {
2278                 /* page covers the boundary, find the boundary offset */
2279                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2280
2281                 /* if we will expand the thing last block will be filled */
2282                 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2283                         *bytes |= (blocksize-1);
2284                         (*bytes)++;
2285                 }
2286
2287                 /* starting below the boundary? Nothing to zero out */
2288                 if (offset <= zerofrom)
2289                         zerofrom = offset;
2290         }
2291         status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2292         if (status)
2293                 goto out1;
2294         if (zerofrom < offset) {
2295                 kaddr = kmap_atomic(page, KM_USER0);
2296                 memset(kaddr+zerofrom, 0, offset-zerofrom);
2297                 flush_dcache_page(page);
2298                 kunmap_atomic(kaddr, KM_USER0);
2299                 __block_commit_write(inode, page, zerofrom, offset);
2300         }
2301         return 0;
2302 out1:
2303         ClearPageUptodate(page);
2304         return status;
2305
2306 out_unmap:
2307         ClearPageUptodate(new_page);
2308         unlock_page(new_page);
2309         page_cache_release(new_page);
2310 out:
2311         return status;
2312 }
2313
2314 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2315                         get_block_t *get_block)
2316 {
2317         struct inode *inode = page->mapping->host;
2318         int err = __block_prepare_write(inode, page, from, to, get_block);
2319         if (err)
2320                 ClearPageUptodate(page);
2321         return err;
2322 }
2323
2324 int block_commit_write(struct page *page, unsigned from, unsigned to)
2325 {
2326         struct inode *inode = page->mapping->host;
2327         __block_commit_write(inode,page,from,to);
2328         return 0;
2329 }
2330
2331 int generic_commit_write(struct file *file, struct page *page,
2332                 unsigned from, unsigned to)
2333 {
2334         struct inode *inode = page->mapping->host;
2335         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2336         __block_commit_write(inode,page,from,to);
2337         /*
2338          * No need to use i_size_read() here, the i_size
2339          * cannot change under us because we hold i_mutex.
2340          */
2341         if (pos > inode->i_size) {
2342                 i_size_write(inode, pos);
2343                 mark_inode_dirty(inode);
2344         }
2345         return 0;
2346 }
2347
2348
2349 /*
2350  * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2351  * immediately, while under the page lock.  So it needs a special end_io
2352  * handler which does not touch the bh after unlocking it.
2353  *
2354  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2355  * a race there is benign: unlock_buffer() only use the bh's address for
2356  * hashing after unlocking the buffer, so it doesn't actually touch the bh
2357  * itself.
2358  */
2359 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2360 {
2361         if (uptodate) {
2362                 set_buffer_uptodate(bh);
2363         } else {
2364                 /* This happens, due to failed READA attempts. */
2365                 clear_buffer_uptodate(bh);
2366         }
2367         unlock_buffer(bh);
2368 }
2369
2370 /*
2371  * On entry, the page is fully not uptodate.
2372  * On exit the page is fully uptodate in the areas outside (from,to)
2373  */
2374 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2375                         get_block_t *get_block)
2376 {
2377         struct inode *inode = page->mapping->host;
2378         const unsigned blkbits = inode->i_blkbits;
2379         const unsigned blocksize = 1 << blkbits;
2380         struct buffer_head map_bh;
2381         struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2382         unsigned block_in_page;
2383         unsigned block_start;
2384         sector_t block_in_file;
2385         char *kaddr;
2386         int nr_reads = 0;
2387         int i;
2388         int ret = 0;
2389         int is_mapped_to_disk = 1;
2390         int dirtied_it = 0;
2391
2392         if (PageMappedToDisk(page))
2393                 return 0;
2394
2395         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2396         map_bh.b_page = page;
2397
2398         /*
2399          * We loop across all blocks in the page, whether or not they are
2400          * part of the affected region.  This is so we can discover if the
2401          * page is fully mapped-to-disk.
2402          */
2403         for (block_start = 0, block_in_page = 0;
2404                   block_start < PAGE_CACHE_SIZE;
2405                   block_in_page++, block_start += blocksize) {
2406                 unsigned block_end = block_start + blocksize;
2407                 int create;
2408
2409                 map_bh.b_state = 0;
2410                 create = 1;
2411                 if (block_start >= to)
2412                         create = 0;
2413                 map_bh.b_size = blocksize;
2414                 ret = get_block(inode, block_in_file + block_in_page,
2415                                         &map_bh, create);
2416                 if (ret)
2417                         goto failed;
2418                 if (!buffer_mapped(&map_bh))
2419                         is_mapped_to_disk = 0;
2420                 if (buffer_new(&map_bh))
2421                         unmap_underlying_metadata(map_bh.b_bdev,
2422                                                         map_bh.b_blocknr);
2423                 if (PageUptodate(page))
2424                         continue;
2425                 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2426                         kaddr = kmap_atomic(page, KM_USER0);
2427                         if (block_start < from) {
2428                                 memset(kaddr+block_start, 0, from-block_start);
2429                                 dirtied_it = 1;
2430                         }
2431                         if (block_end > to) {
2432                                 memset(kaddr + to, 0, block_end - to);
2433                                 dirtied_it = 1;
2434                         }
2435                         flush_dcache_page(page);
2436                         kunmap_atomic(kaddr, KM_USER0);
2437                         continue;
2438                 }
2439                 if (buffer_uptodate(&map_bh))
2440                         continue;       /* reiserfs does this */
2441                 if (block_start < from || block_end > to) {
2442                         struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2443
2444                         if (!bh) {
2445                                 ret = -ENOMEM;
2446                                 goto failed;
2447                         }
2448                         bh->b_state = map_bh.b_state;
2449                         atomic_set(&bh->b_count, 0);
2450                         bh->b_this_page = NULL;
2451                         bh->b_page = page;
2452                         bh->b_blocknr = map_bh.b_blocknr;
2453                         bh->b_size = blocksize;
2454                         bh->b_data = (char *)(long)block_start;
2455                         bh->b_bdev = map_bh.b_bdev;
2456                         bh->b_private = NULL;
2457                         read_bh[nr_reads++] = bh;
2458                 }
2459         }
2460
2461         if (nr_reads) {
2462                 struct buffer_head *bh;
2463
2464                 /*
2465                  * The page is locked, so these buffers are protected from
2466                  * any VM or truncate activity.  Hence we don't need to care
2467                  * for the buffer_head refcounts.
2468                  */
2469                 for (i = 0; i < nr_reads; i++) {
2470                         bh = read_bh[i];
2471                         lock_buffer(bh);
2472                         bh->b_end_io = end_buffer_read_nobh;
2473                         submit_bh(READ, bh);
2474                 }
2475                 for (i = 0; i < nr_reads; i++) {
2476                         bh = read_bh[i];
2477                         wait_on_buffer(bh);
2478                         if (!buffer_uptodate(bh))
2479                                 ret = -EIO;
2480                         free_buffer_head(bh);
2481                         read_bh[i] = NULL;
2482                 }
2483                 if (ret)
2484                         goto failed;
2485         }
2486
2487         if (is_mapped_to_disk)
2488                 SetPageMappedToDisk(page);
2489         SetPageUptodate(page);
2490
2491         /*
2492          * Setting the page dirty here isn't necessary for the prepare_write
2493          * function - commit_write will do that.  But if/when this function is
2494          * used within the pagefault handler to ensure that all mmapped pages
2495          * have backing space in the filesystem, we will need to dirty the page
2496          * if its contents were altered.
2497          */
2498         if (dirtied_it)
2499                 set_page_dirty(page);
2500
2501         return 0;
2502
2503 failed:
2504         for (i = 0; i < nr_reads; i++) {
2505                 if (read_bh[i])
2506                         free_buffer_head(read_bh[i]);
2507         }
2508
2509         /*
2510          * Error recovery is pretty slack.  Clear the page and mark it dirty
2511          * so we'll later zero out any blocks which _were_ allocated.
2512          */
2513         kaddr = kmap_atomic(page, KM_USER0);
2514         memset(kaddr, 0, PAGE_CACHE_SIZE);
2515         kunmap_atomic(kaddr, KM_USER0);
2516         SetPageUptodate(page);
2517         set_page_dirty(page);
2518         return ret;
2519 }
2520 EXPORT_SYMBOL(nobh_prepare_write);
2521
2522 int nobh_commit_write(struct file *file, struct page *page,
2523                 unsigned from, unsigned to)
2524 {
2525         struct inode *inode = page->mapping->host;
2526         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2527
2528         set_page_dirty(page);
2529         if (pos > inode->i_size) {
2530                 i_size_write(inode, pos);
2531                 mark_inode_dirty(inode);
2532         }
2533         return 0;
2534 }
2535 EXPORT_SYMBOL(nobh_commit_write);
2536
2537 /*
2538  * nobh_writepage() - based on block_full_write_page() except
2539  * that it tries to operate without attaching bufferheads to
2540  * the page.
2541  */
2542 int nobh_writepage(struct page *page, get_block_t *get_block,
2543                         struct writeback_control *wbc)
2544 {
2545         struct inode * const inode = page->mapping->host;
2546         loff_t i_size = i_size_read(inode);
2547         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2548         unsigned offset;
2549         void *kaddr;
2550         int ret;
2551
2552         /* Is the page fully inside i_size? */
2553         if (page->index < end_index)
2554                 goto out;
2555
2556         /* Is the page fully outside i_size? (truncate in progress) */
2557         offset = i_size & (PAGE_CACHE_SIZE-1);
2558         if (page->index >= end_index+1 || !offset) {
2559                 /*
2560                  * The page may have dirty, unmapped buffers.  For example,
2561                  * they may have been added in ext3_writepage().  Make them
2562                  * freeable here, so the page does not leak.
2563                  */
2564 #if 0
2565                 /* Not really sure about this  - do we need this ? */
2566                 if (page->mapping->a_ops->invalidatepage)
2567                         page->mapping->a_ops->invalidatepage(page, offset);
2568 #endif
2569                 unlock_page(page);
2570                 return 0; /* don't care */
2571         }
2572
2573         /*
2574          * The page straddles i_size.  It must be zeroed out on each and every
2575          * writepage invocation because it may be mmapped.  "A file is mapped
2576          * in multiples of the page size.  For a file that is not a multiple of
2577          * the  page size, the remaining memory is zeroed when mapped, and
2578          * writes to that region are not written out to the file."
2579          */
2580         kaddr = kmap_atomic(page, KM_USER0);
2581         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2582         flush_dcache_page(page);
2583         kunmap_atomic(kaddr, KM_USER0);
2584 out:
2585         ret = mpage_writepage(page, get_block, wbc);
2586         if (ret == -EAGAIN)
2587                 ret = __block_write_full_page(inode, page, get_block, wbc);
2588         return ret;
2589 }
2590 EXPORT_SYMBOL(nobh_writepage);
2591
2592 /*
2593  * This function assumes that ->prepare_write() uses nobh_prepare_write().
2594  */
2595 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2596 {
2597         struct inode *inode = mapping->host;
2598         unsigned blocksize = 1 << inode->i_blkbits;
2599         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2600         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2601         unsigned to;
2602         struct page *page;
2603         struct address_space_operations *a_ops = mapping->a_ops;
2604         char *kaddr;
2605         int ret = 0;
2606
2607         if ((offset & (blocksize - 1)) == 0)
2608                 goto out;
2609
2610         ret = -ENOMEM;
2611         page = grab_cache_page(mapping, index);
2612         if (!page)
2613                 goto out;
2614
2615         to = (offset + blocksize) & ~(blocksize - 1);
2616         ret = a_ops->prepare_write(NULL, page, offset, to);
2617         if (ret == 0) {
2618                 kaddr = kmap_atomic(page, KM_USER0);
2619                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2620                 flush_dcache_page(page);
2621                 kunmap_atomic(kaddr, KM_USER0);
2622                 set_page_dirty(page);
2623         }
2624         unlock_page(page);
2625         page_cache_release(page);
2626 out:
2627         return ret;
2628 }
2629 EXPORT_SYMBOL(nobh_truncate_page);
2630
2631 int block_truncate_page(struct address_space *mapping,
2632                         loff_t from, get_block_t *get_block)
2633 {
2634         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2635         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2636         unsigned blocksize;
2637         sector_t iblock;
2638         unsigned length, pos;
2639         struct inode *inode = mapping->host;
2640         struct page *page;
2641         struct buffer_head *bh;
2642         void *kaddr;
2643         int err;
2644
2645         blocksize = 1 << inode->i_blkbits;
2646         length = offset & (blocksize - 1);
2647
2648         /* Block boundary? Nothing to do */
2649         if (!length)
2650                 return 0;
2651
2652         length = blocksize - length;
2653         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2654         
2655         page = grab_cache_page(mapping, index);
2656         err = -ENOMEM;
2657         if (!page)
2658                 goto out;
2659
2660         if (!page_has_buffers(page))
2661                 create_empty_buffers(page, blocksize, 0);
2662
2663         /* Find the buffer that contains "offset" */
2664         bh = page_buffers(page);
2665         pos = blocksize;
2666         while (offset >= pos) {
2667                 bh = bh->b_this_page;
2668                 iblock++;
2669                 pos += blocksize;
2670         }
2671
2672         err = 0;
2673         if (!buffer_mapped(bh)) {
2674                 WARN_ON(bh->b_size != blocksize);
2675                 err = get_block(inode, iblock, bh, 0);
2676                 if (err)
2677                         goto unlock;
2678                 /* unmapped? It's a hole - nothing to do */
2679                 if (!buffer_mapped(bh))
2680                         goto unlock;
2681         }
2682
2683         /* Ok, it's mapped. Make sure it's up-to-date */
2684         if (PageUptodate(page))
2685                 set_buffer_uptodate(bh);
2686
2687         if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2688                 err = -EIO;
2689                 ll_rw_block(READ, 1, &bh);
2690                 wait_on_buffer(bh);
2691                 /* Uhhuh. Read error. Complain and punt. */
2692                 if (!buffer_uptodate(bh))
2693                         goto unlock;
2694         }
2695
2696         kaddr = kmap_atomic(page, KM_USER0);
2697         memset(kaddr + offset, 0, length);
2698         flush_dcache_page(page);
2699         kunmap_atomic(kaddr, KM_USER0);
2700
2701         mark_buffer_dirty(bh);
2702         err = 0;
2703
2704 unlock:
2705         unlock_page(page);
2706         page_cache_release(page);
2707 out:
2708         return err;
2709 }
2710
2711 /*
2712  * The generic ->writepage function for buffer-backed address_spaces
2713  */
2714 int block_write_full_page(struct page *page, get_block_t *get_block,
2715                         struct writeback_control *wbc)
2716 {
2717         struct inode * const inode = page->mapping->host;
2718         loff_t i_size = i_size_read(inode);
2719         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2720         unsigned offset;
2721         void *kaddr;
2722
2723         /* Is the page fully inside i_size? */
2724         if (page->index < end_index)
2725                 return __block_write_full_page(inode, page, get_block, wbc);
2726
2727         /* Is the page fully outside i_size? (truncate in progress) */
2728         offset = i_size & (PAGE_CACHE_SIZE-1);
2729         if (page->index >= end_index+1 || !offset) {
2730                 /*
2731                  * The page may have dirty, unmapped buffers.  For example,
2732                  * they may have been added in ext3_writepage().  Make them
2733                  * freeable here, so the page does not leak.
2734                  */
2735                 do_invalidatepage(page, 0);
2736                 unlock_page(page);
2737                 return 0; /* don't care */
2738         }
2739
2740         /*
2741          * The page straddles i_size.  It must be zeroed out on each and every
2742          * writepage invokation because it may be mmapped.  "A file is mapped
2743          * in multiples of the page size.  For a file that is not a multiple of
2744          * the  page size, the remaining memory is zeroed when mapped, and
2745          * writes to that region are not written out to the file."
2746          */
2747         kaddr = kmap_atomic(page, KM_USER0);
2748         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2749         flush_dcache_page(page);
2750         kunmap_atomic(kaddr, KM_USER0);
2751         return __block_write_full_page(inode, page, get_block, wbc);
2752 }
2753
2754 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2755                             get_block_t *get_block)
2756 {
2757         struct buffer_head tmp;
2758         struct inode *inode = mapping->host;
2759         tmp.b_state = 0;
2760         tmp.b_blocknr = 0;
2761         tmp.b_size = 1 << inode->i_blkbits;
2762         get_block(inode, block, &tmp, 0);
2763         return tmp.b_blocknr;
2764 }
2765
2766 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2767 {
2768         struct buffer_head *bh = bio->bi_private;
2769
2770         if (bio->bi_size)
2771                 return 1;
2772
2773         if (err == -EOPNOTSUPP) {
2774                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2775                 set_bit(BH_Eopnotsupp, &bh->b_state);
2776         }
2777
2778         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2779         bio_put(bio);
2780         return 0;
2781 }
2782
2783 int submit_bh(int rw, struct buffer_head * bh)
2784 {
2785         struct bio *bio;
2786         int ret = 0;
2787
2788         BUG_ON(!buffer_locked(bh));
2789         BUG_ON(!buffer_mapped(bh));
2790         BUG_ON(!bh->b_end_io);
2791
2792         if (buffer_ordered(bh) && (rw == WRITE))
2793                 rw = WRITE_BARRIER;
2794
2795         /*
2796          * Only clear out a write error when rewriting, should this
2797          * include WRITE_SYNC as well?
2798          */
2799         if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2800                 clear_buffer_write_io_error(bh);
2801
2802         /*
2803          * from here on down, it's all bio -- do the initial mapping,
2804          * submit_bio -> generic_make_request may further map this bio around
2805          */
2806         bio = bio_alloc(GFP_NOIO, 1);
2807
2808         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2809         bio->bi_bdev = bh->b_bdev;
2810         bio->bi_io_vec[0].bv_page = bh->b_page;
2811         bio->bi_io_vec[0].bv_len = bh->b_size;
2812         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2813
2814         bio->bi_vcnt = 1;
2815         bio->bi_idx = 0;
2816         bio->bi_size = bh->b_size;
2817
2818         bio->bi_end_io = end_bio_bh_io_sync;
2819         bio->bi_private = bh;
2820
2821         bio_get(bio);
2822         submit_bio(rw, bio);
2823
2824         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2825                 ret = -EOPNOTSUPP;
2826
2827         bio_put(bio);
2828         return ret;
2829 }
2830
2831 /**
2832  * ll_rw_block: low-level access to block devices (DEPRECATED)
2833  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2834  * @nr: number of &struct buffer_heads in the array
2835  * @bhs: array of pointers to &struct buffer_head
2836  *
2837  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2838  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2839  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2840  * are sent to disk. The fourth %READA option is described in the documentation
2841  * for generic_make_request() which ll_rw_block() calls.
2842  *
2843  * This function drops any buffer that it cannot get a lock on (with the
2844  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2845  * clean when doing a write request, and any buffer that appears to be
2846  * up-to-date when doing read request.  Further it marks as clean buffers that
2847  * are processed for writing (the buffer cache won't assume that they are
2848  * actually clean until the buffer gets unlocked).
2849  *
2850  * ll_rw_block sets b_end_io to simple completion handler that marks
2851  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2852  * any waiters. 
2853  *
2854  * All of the buffers must be for the same device, and must also be a
2855  * multiple of the current approved size for the device.
2856  */
2857 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2858 {
2859         int i;
2860
2861         for (i = 0; i < nr; i++) {
2862                 struct buffer_head *bh = bhs[i];
2863
2864                 if (rw == SWRITE)
2865                         lock_buffer(bh);
2866                 else if (test_set_buffer_locked(bh))
2867                         continue;
2868
2869                 if (rw == WRITE || rw == SWRITE) {
2870                         if (test_clear_buffer_dirty(bh)) {
2871                                 bh->b_end_io = end_buffer_write_sync;
2872                                 get_bh(bh);
2873                                 submit_bh(WRITE, bh);
2874                                 continue;
2875                         }
2876                 } else {
2877                         if (!buffer_uptodate(bh)) {
2878                                 bh->b_end_io = end_buffer_read_sync;
2879                                 get_bh(bh);
2880                                 submit_bh(rw, bh);
2881                                 continue;
2882                         }
2883                 }
2884                 unlock_buffer(bh);
2885         }
2886 }
2887
2888 /*
2889  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2890  * and then start new I/O and then wait upon it.  The caller must have a ref on
2891  * the buffer_head.
2892  */
2893 int sync_dirty_buffer(struct buffer_head *bh)
2894 {
2895         int ret = 0;
2896
2897         WARN_ON(atomic_read(&bh->b_count) < 1);
2898         lock_buffer(bh);
2899         if (test_clear_buffer_dirty(bh)) {
2900                 get_bh(bh);
2901                 bh->b_end_io = end_buffer_write_sync;
2902                 ret = submit_bh(WRITE, bh);
2903                 wait_on_buffer(bh);
2904                 if (buffer_eopnotsupp(bh)) {
2905                         clear_buffer_eopnotsupp(bh);
2906                         ret = -EOPNOTSUPP;
2907                 }
2908                 if (!ret && !buffer_uptodate(bh))
2909                         ret = -EIO;
2910         } else {
2911                 unlock_buffer(bh);
2912         }
2913         return ret;
2914 }
2915
2916 /*
2917  * try_to_free_buffers() checks if all the buffers on this particular page
2918  * are unused, and releases them if so.
2919  *
2920  * Exclusion against try_to_free_buffers may be obtained by either
2921  * locking the page or by holding its mapping's private_lock.
2922  *
2923  * If the page is dirty but all the buffers are clean then we need to
2924  * be sure to mark the page clean as well.  This is because the page
2925  * may be against a block device, and a later reattachment of buffers
2926  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2927  * filesystem data on the same device.
2928  *
2929  * The same applies to regular filesystem pages: if all the buffers are
2930  * clean then we set the page clean and proceed.  To do that, we require
2931  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2932  * private_lock.
2933  *
2934  * try_to_free_buffers() is non-blocking.
2935  */
2936 static inline int buffer_busy(struct buffer_head *bh)
2937 {
2938         return atomic_read(&bh->b_count) |
2939                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2940 }
2941
2942 static int
2943 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2944 {
2945         struct buffer_head *head = page_buffers(page);
2946         struct buffer_head *bh;
2947
2948         bh = head;
2949         do {
2950                 if (buffer_write_io_error(bh) && page->mapping)
2951                         set_bit(AS_EIO, &page->mapping->flags);
2952                 if (buffer_busy(bh))
2953                         goto failed;
2954                 bh = bh->b_this_page;
2955         } while (bh != head);
2956
2957         do {
2958                 struct buffer_head *next = bh->b_this_page;
2959
2960                 if (!list_empty(&bh->b_assoc_buffers))
2961                         __remove_assoc_queue(bh);
2962                 bh = next;
2963         } while (bh != head);
2964         *buffers_to_free = head;
2965         __clear_page_buffers(page);
2966         return 1;
2967 failed:
2968         return 0;
2969 }
2970
2971 int try_to_free_buffers(struct page *page)
2972 {
2973         struct address_space * const mapping = page->mapping;
2974         struct buffer_head *buffers_to_free = NULL;
2975         int ret = 0;
2976
2977         BUG_ON(!PageLocked(page));
2978         if (PageWriteback(page))
2979                 return 0;
2980
2981         if (mapping == NULL) {          /* can this still happen? */
2982                 ret = drop_buffers(page, &buffers_to_free);
2983                 goto out;
2984         }
2985
2986         spin_lock(&mapping->private_lock);
2987         ret = drop_buffers(page, &buffers_to_free);
2988         if (ret) {
2989                 /*
2990                  * If the filesystem writes its buffers by hand (eg ext3)
2991                  * then we can have clean buffers against a dirty page.  We
2992                  * clean the page here; otherwise later reattachment of buffers
2993                  * could encounter a non-uptodate page, which is unresolvable.
2994                  * This only applies in the rare case where try_to_free_buffers
2995                  * succeeds but the page is not freed.
2996                  */
2997                 clear_page_dirty(page);
2998         }
2999         spin_unlock(&mapping->private_lock);
3000 out:
3001         if (buffers_to_free) {
3002                 struct buffer_head *bh = buffers_to_free;
3003
3004                 do {
3005                         struct buffer_head *next = bh->b_this_page;
3006                         free_buffer_head(bh);
3007                         bh = next;
3008                 } while (bh != buffers_to_free);
3009         }
3010         return ret;
3011 }
3012 EXPORT_SYMBOL(try_to_free_buffers);
3013
3014 void block_sync_page(struct page *page)
3015 {
3016         struct address_space *mapping;
3017
3018         smp_mb();
3019         mapping = page_mapping(page);
3020         if (mapping)
3021                 blk_run_backing_dev(mapping->backing_dev_info, page);
3022 }
3023
3024 /*
3025  * There are no bdflush tunables left.  But distributions are
3026  * still running obsolete flush daemons, so we terminate them here.
3027  *
3028  * Use of bdflush() is deprecated and will be removed in a future kernel.
3029  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3030  */
3031 asmlinkage long sys_bdflush(int func, long data)
3032 {
3033         static int msg_count;
3034
3035         if (!capable(CAP_SYS_ADMIN))
3036                 return -EPERM;
3037
3038         if (msg_count < 5) {
3039                 msg_count++;
3040                 printk(KERN_INFO
3041                         "warning: process `%s' used the obsolete bdflush"
3042                         " system call\n", current->comm);
3043                 printk(KERN_INFO "Fix your initscripts?\n");
3044         }
3045
3046         if (func == 1)
3047                 do_exit(0);
3048         return 0;
3049 }
3050
3051 /*
3052  * Buffer-head allocation
3053  */
3054 static kmem_cache_t *bh_cachep;
3055
3056 /*
3057  * Once the number of bh's in the machine exceeds this level, we start
3058  * stripping them in writeback.
3059  */
3060 static int max_buffer_heads;
3061
3062 int buffer_heads_over_limit;
3063
3064 struct bh_accounting {
3065         int nr;                 /* Number of live bh's */
3066         int ratelimit;          /* Limit cacheline bouncing */
3067 };
3068
3069 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3070
3071 static void recalc_bh_state(void)
3072 {
3073         int i;
3074         int tot = 0;
3075
3076         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3077                 return;
3078         __get_cpu_var(bh_accounting).ratelimit = 0;
3079         for_each_online_cpu(i)
3080                 tot += per_cpu(bh_accounting, i).nr;
3081         buffer_heads_over_limit = (tot > max_buffer_heads);
3082 }
3083         
3084 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3085 {
3086         struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3087         if (ret) {
3088                 get_cpu_var(bh_accounting).nr++;
3089                 recalc_bh_state();
3090                 put_cpu_var(bh_accounting);
3091         }
3092         return ret;
3093 }
3094 EXPORT_SYMBOL(alloc_buffer_head);
3095
3096 void free_buffer_head(struct buffer_head *bh)
3097 {
3098         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3099         kmem_cache_free(bh_cachep, bh);
3100         get_cpu_var(bh_accounting).nr--;
3101         recalc_bh_state();
3102         put_cpu_var(bh_accounting);
3103 }
3104 EXPORT_SYMBOL(free_buffer_head);
3105
3106 static void
3107 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
3108 {
3109         if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
3110                             SLAB_CTOR_CONSTRUCTOR) {
3111                 struct buffer_head * bh = (struct buffer_head *)data;
3112
3113                 memset(bh, 0, sizeof(*bh));
3114                 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3115         }
3116 }
3117
3118 #ifdef CONFIG_HOTPLUG_CPU
3119 static void buffer_exit_cpu(int cpu)
3120 {
3121         int i;
3122         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3123
3124         for (i = 0; i < BH_LRU_SIZE; i++) {
3125                 brelse(b->bhs[i]);
3126                 b->bhs[i] = NULL;
3127         }
3128         get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3129         per_cpu(bh_accounting, cpu).nr = 0;
3130         put_cpu_var(bh_accounting);
3131 }
3132
3133 static int buffer_cpu_notify(struct notifier_block *self,
3134                               unsigned long action, void *hcpu)
3135 {
3136         if (action == CPU_DEAD)
3137                 buffer_exit_cpu((unsigned long)hcpu);
3138         return NOTIFY_OK;
3139 }
3140 #endif /* CONFIG_HOTPLUG_CPU */
3141
3142 void __init buffer_init(void)
3143 {
3144         int nrpages;
3145
3146         bh_cachep = kmem_cache_create("buffer_head",
3147                                         sizeof(struct buffer_head), 0,
3148                                         (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3149                                         SLAB_MEM_SPREAD),
3150                                         init_buffer_head,
3151                                         NULL);
3152
3153         /*
3154          * Limit the bh occupancy to 10% of ZONE_NORMAL
3155          */
3156         nrpages = (nr_free_buffer_pages() * 10) / 100;
3157         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3158         hotcpu_notifier(buffer_cpu_notify, 0);
3159 }
3160
3161 EXPORT_SYMBOL(__bforget);
3162 EXPORT_SYMBOL(__brelse);
3163 EXPORT_SYMBOL(__wait_on_buffer);
3164 EXPORT_SYMBOL(block_commit_write);
3165 EXPORT_SYMBOL(block_prepare_write);
3166 EXPORT_SYMBOL(block_read_full_page);
3167 EXPORT_SYMBOL(block_sync_page);
3168 EXPORT_SYMBOL(block_truncate_page);
3169 EXPORT_SYMBOL(block_write_full_page);
3170 EXPORT_SYMBOL(cont_prepare_write);
3171 EXPORT_SYMBOL(end_buffer_async_write);
3172 EXPORT_SYMBOL(end_buffer_read_sync);
3173 EXPORT_SYMBOL(end_buffer_write_sync);
3174 EXPORT_SYMBOL(file_fsync);
3175 EXPORT_SYMBOL(fsync_bdev);
3176 EXPORT_SYMBOL(generic_block_bmap);
3177 EXPORT_SYMBOL(generic_commit_write);
3178 EXPORT_SYMBOL(generic_cont_expand);
3179 EXPORT_SYMBOL(generic_cont_expand_simple);
3180 EXPORT_SYMBOL(init_buffer);
3181 EXPORT_SYMBOL(invalidate_bdev);
3182 EXPORT_SYMBOL(ll_rw_block);
3183 EXPORT_SYMBOL(mark_buffer_dirty);
3184 EXPORT_SYMBOL(submit_bh);
3185 EXPORT_SYMBOL(sync_dirty_buffer);
3186 EXPORT_SYMBOL(unlock_buffer);