Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[linux-3.10.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos_params.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "git-1.2.2"
171
172 #define DRV_NAME        "ipw2100"
173 #define DRV_VERSION     IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
176
177 static struct pm_qos_request_list ipw2100_pm_qos_req;
178
179 /* Debugging stuff */
180 #ifdef CONFIG_IPW2100_DEBUG
181 #define IPW2100_RX_DEBUG        /* Reception debugging */
182 #endif
183
184 MODULE_DESCRIPTION(DRV_DESCRIPTION);
185 MODULE_VERSION(DRV_VERSION);
186 MODULE_AUTHOR(DRV_COPYRIGHT);
187 MODULE_LICENSE("GPL");
188
189 static int debug = 0;
190 static int network_mode = 0;
191 static int channel = 0;
192 static int associate = 0;
193 static int disable = 0;
194 #ifdef CONFIG_PM
195 static struct ipw2100_fw ipw2100_firmware;
196 #endif
197
198 #include <linux/moduleparam.h>
199 module_param(debug, int, 0444);
200 module_param_named(mode, network_mode, int, 0444);
201 module_param(channel, int, 0444);
202 module_param(associate, int, 0444);
203 module_param(disable, int, 0444);
204
205 MODULE_PARM_DESC(debug, "debug level");
206 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
207 MODULE_PARM_DESC(channel, "channel");
208 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
209 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
210
211 static u32 ipw2100_debug_level = IPW_DL_NONE;
212
213 #ifdef CONFIG_IPW2100_DEBUG
214 #define IPW_DEBUG(level, message...) \
215 do { \
216         if (ipw2100_debug_level & (level)) { \
217                 printk(KERN_DEBUG "ipw2100: %c %s ", \
218                        in_interrupt() ? 'I' : 'U',  __func__); \
219                 printk(message); \
220         } \
221 } while (0)
222 #else
223 #define IPW_DEBUG(level, message...) do {} while (0)
224 #endif                          /* CONFIG_IPW2100_DEBUG */
225
226 #ifdef CONFIG_IPW2100_DEBUG
227 static const char *command_types[] = {
228         "undefined",
229         "unused",               /* HOST_ATTENTION */
230         "HOST_COMPLETE",
231         "unused",               /* SLEEP */
232         "unused",               /* HOST_POWER_DOWN */
233         "unused",
234         "SYSTEM_CONFIG",
235         "unused",               /* SET_IMR */
236         "SSID",
237         "MANDATORY_BSSID",
238         "AUTHENTICATION_TYPE",
239         "ADAPTER_ADDRESS",
240         "PORT_TYPE",
241         "INTERNATIONAL_MODE",
242         "CHANNEL",
243         "RTS_THRESHOLD",
244         "FRAG_THRESHOLD",
245         "POWER_MODE",
246         "TX_RATES",
247         "BASIC_TX_RATES",
248         "WEP_KEY_INFO",
249         "unused",
250         "unused",
251         "unused",
252         "unused",
253         "WEP_KEY_INDEX",
254         "WEP_FLAGS",
255         "ADD_MULTICAST",
256         "CLEAR_ALL_MULTICAST",
257         "BEACON_INTERVAL",
258         "ATIM_WINDOW",
259         "CLEAR_STATISTICS",
260         "undefined",
261         "undefined",
262         "undefined",
263         "undefined",
264         "TX_POWER_INDEX",
265         "undefined",
266         "undefined",
267         "undefined",
268         "undefined",
269         "undefined",
270         "undefined",
271         "BROADCAST_SCAN",
272         "CARD_DISABLE",
273         "PREFERRED_BSSID",
274         "SET_SCAN_OPTIONS",
275         "SCAN_DWELL_TIME",
276         "SWEEP_TABLE",
277         "AP_OR_STATION_TABLE",
278         "GROUP_ORDINALS",
279         "SHORT_RETRY_LIMIT",
280         "LONG_RETRY_LIMIT",
281         "unused",               /* SAVE_CALIBRATION */
282         "unused",               /* RESTORE_CALIBRATION */
283         "undefined",
284         "undefined",
285         "undefined",
286         "HOST_PRE_POWER_DOWN",
287         "unused",               /* HOST_INTERRUPT_COALESCING */
288         "undefined",
289         "CARD_DISABLE_PHY_OFF",
290         "MSDU_TX_RATES" "undefined",
291         "undefined",
292         "SET_STATION_STAT_BITS",
293         "CLEAR_STATIONS_STAT_BITS",
294         "LEAP_ROGUE_MODE",
295         "SET_SECURITY_INFORMATION",
296         "DISASSOCIATION_BSSID",
297         "SET_WPA_ASS_IE"
298 };
299 #endif
300
301 #define WEXT_USECHANNELS 1
302
303 static const long ipw2100_frequencies[] = {
304         2412, 2417, 2422, 2427,
305         2432, 2437, 2442, 2447,
306         2452, 2457, 2462, 2467,
307         2472, 2484
308 };
309
310 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
311
312 static const long ipw2100_rates_11b[] = {
313         1000000,
314         2000000,
315         5500000,
316         11000000
317 };
318
319 static struct ieee80211_rate ipw2100_bg_rates[] = {
320         { .bitrate = 10 },
321         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
322         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
323         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
324 };
325
326 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
327
328 /* Pre-decl until we get the code solid and then we can clean it up */
329 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
330 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
331 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
332
333 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
334 static void ipw2100_queues_free(struct ipw2100_priv *priv);
335 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
336
337 static int ipw2100_fw_download(struct ipw2100_priv *priv,
338                                struct ipw2100_fw *fw);
339 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
340                                 struct ipw2100_fw *fw);
341 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
342                                  size_t max);
343 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
344                                     size_t max);
345 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
346                                      struct ipw2100_fw *fw);
347 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
348                                   struct ipw2100_fw *fw);
349 static void ipw2100_wx_event_work(struct work_struct *work);
350 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
351 static struct iw_handler_def ipw2100_wx_handler_def;
352
353 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
354 {
355         *val = readl((void __iomem *)(dev->base_addr + reg));
356         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
357 }
358
359 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
360 {
361         writel(val, (void __iomem *)(dev->base_addr + reg));
362         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
363 }
364
365 static inline void read_register_word(struct net_device *dev, u32 reg,
366                                       u16 * val)
367 {
368         *val = readw((void __iomem *)(dev->base_addr + reg));
369         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
370 }
371
372 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
373 {
374         *val = readb((void __iomem *)(dev->base_addr + reg));
375         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380         writew(val, (void __iomem *)(dev->base_addr + reg));
381         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
382 }
383
384 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
385 {
386         writeb(val, (void __iomem *)(dev->base_addr + reg));
387         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
388 }
389
390 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
391 {
392         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
393                        addr & IPW_REG_INDIRECT_ADDR_MASK);
394         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
395 }
396
397 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
398 {
399         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
400                        addr & IPW_REG_INDIRECT_ADDR_MASK);
401         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
402 }
403
404 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
405 {
406         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
407                        addr & IPW_REG_INDIRECT_ADDR_MASK);
408         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
409 }
410
411 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
412 {
413         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
414                        addr & IPW_REG_INDIRECT_ADDR_MASK);
415         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
416 }
417
418 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
419 {
420         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
421                        addr & IPW_REG_INDIRECT_ADDR_MASK);
422         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
423 }
424
425 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
426 {
427         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428                        addr & IPW_REG_INDIRECT_ADDR_MASK);
429         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
430 }
431
432 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
433 {
434         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
435                        addr & IPW_REG_INDIRECT_ADDR_MASK);
436 }
437
438 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
439 {
440         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
441 }
442
443 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
444                                     const u8 * buf)
445 {
446         u32 aligned_addr;
447         u32 aligned_len;
448         u32 dif_len;
449         u32 i;
450
451         /* read first nibble byte by byte */
452         aligned_addr = addr & (~0x3);
453         dif_len = addr - aligned_addr;
454         if (dif_len) {
455                 /* Start reading at aligned_addr + dif_len */
456                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
457                                aligned_addr);
458                 for (i = dif_len; i < 4; i++, buf++)
459                         write_register_byte(dev,
460                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
461                                             *buf);
462
463                 len -= dif_len;
464                 aligned_addr += 4;
465         }
466
467         /* read DWs through autoincrement registers */
468         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
469         aligned_len = len & (~0x3);
470         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
471                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
472
473         /* copy the last nibble */
474         dif_len = len - aligned_len;
475         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
476         for (i = 0; i < dif_len; i++, buf++)
477                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
478                                     *buf);
479 }
480
481 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
482                                    u8 * buf)
483 {
484         u32 aligned_addr;
485         u32 aligned_len;
486         u32 dif_len;
487         u32 i;
488
489         /* read first nibble byte by byte */
490         aligned_addr = addr & (~0x3);
491         dif_len = addr - aligned_addr;
492         if (dif_len) {
493                 /* Start reading at aligned_addr + dif_len */
494                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
495                                aligned_addr);
496                 for (i = dif_len; i < 4; i++, buf++)
497                         read_register_byte(dev,
498                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
499                                            buf);
500
501                 len -= dif_len;
502                 aligned_addr += 4;
503         }
504
505         /* read DWs through autoincrement registers */
506         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
507         aligned_len = len & (~0x3);
508         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
509                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
510
511         /* copy the last nibble */
512         dif_len = len - aligned_len;
513         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
514         for (i = 0; i < dif_len; i++, buf++)
515                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
516 }
517
518 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
519 {
520         return (dev->base_addr &&
521                 (readl
522                  ((void __iomem *)(dev->base_addr +
523                                    IPW_REG_DOA_DEBUG_AREA_START))
524                  == IPW_DATA_DOA_DEBUG_VALUE));
525 }
526
527 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
528                                void *val, u32 * len)
529 {
530         struct ipw2100_ordinals *ordinals = &priv->ordinals;
531         u32 addr;
532         u32 field_info;
533         u16 field_len;
534         u16 field_count;
535         u32 total_length;
536
537         if (ordinals->table1_addr == 0) {
538                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
539                        "before they have been loaded.\n");
540                 return -EINVAL;
541         }
542
543         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
544                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
545                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
546
547                         printk(KERN_WARNING DRV_NAME
548                                ": ordinal buffer length too small, need %zd\n",
549                                IPW_ORD_TAB_1_ENTRY_SIZE);
550
551                         return -EINVAL;
552                 }
553
554                 read_nic_dword(priv->net_dev,
555                                ordinals->table1_addr + (ord << 2), &addr);
556                 read_nic_dword(priv->net_dev, addr, val);
557
558                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
559
560                 return 0;
561         }
562
563         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
564
565                 ord -= IPW_START_ORD_TAB_2;
566
567                 /* get the address of statistic */
568                 read_nic_dword(priv->net_dev,
569                                ordinals->table2_addr + (ord << 3), &addr);
570
571                 /* get the second DW of statistics ;
572                  * two 16-bit words - first is length, second is count */
573                 read_nic_dword(priv->net_dev,
574                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
575                                &field_info);
576
577                 /* get each entry length */
578                 field_len = *((u16 *) & field_info);
579
580                 /* get number of entries */
581                 field_count = *(((u16 *) & field_info) + 1);
582
583                 /* abort if no enough memory */
584                 total_length = field_len * field_count;
585                 if (total_length > *len) {
586                         *len = total_length;
587                         return -EINVAL;
588                 }
589
590                 *len = total_length;
591                 if (!total_length)
592                         return 0;
593
594                 /* read the ordinal data from the SRAM */
595                 read_nic_memory(priv->net_dev, addr, total_length, val);
596
597                 return 0;
598         }
599
600         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
601                "in table 2\n", ord);
602
603         return -EINVAL;
604 }
605
606 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
607                                u32 * len)
608 {
609         struct ipw2100_ordinals *ordinals = &priv->ordinals;
610         u32 addr;
611
612         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
613                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
614                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
615                         IPW_DEBUG_INFO("wrong size\n");
616                         return -EINVAL;
617                 }
618
619                 read_nic_dword(priv->net_dev,
620                                ordinals->table1_addr + (ord << 2), &addr);
621
622                 write_nic_dword(priv->net_dev, addr, *val);
623
624                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
625
626                 return 0;
627         }
628
629         IPW_DEBUG_INFO("wrong table\n");
630         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
631                 return -EINVAL;
632
633         return -EINVAL;
634 }
635
636 static char *snprint_line(char *buf, size_t count,
637                           const u8 * data, u32 len, u32 ofs)
638 {
639         int out, i, j, l;
640         char c;
641
642         out = snprintf(buf, count, "%08X", ofs);
643
644         for (l = 0, i = 0; i < 2; i++) {
645                 out += snprintf(buf + out, count - out, " ");
646                 for (j = 0; j < 8 && l < len; j++, l++)
647                         out += snprintf(buf + out, count - out, "%02X ",
648                                         data[(i * 8 + j)]);
649                 for (; j < 8; j++)
650                         out += snprintf(buf + out, count - out, "   ");
651         }
652
653         out += snprintf(buf + out, count - out, " ");
654         for (l = 0, i = 0; i < 2; i++) {
655                 out += snprintf(buf + out, count - out, " ");
656                 for (j = 0; j < 8 && l < len; j++, l++) {
657                         c = data[(i * 8 + j)];
658                         if (!isascii(c) || !isprint(c))
659                                 c = '.';
660
661                         out += snprintf(buf + out, count - out, "%c", c);
662                 }
663
664                 for (; j < 8; j++)
665                         out += snprintf(buf + out, count - out, " ");
666         }
667
668         return buf;
669 }
670
671 static void printk_buf(int level, const u8 * data, u32 len)
672 {
673         char line[81];
674         u32 ofs = 0;
675         if (!(ipw2100_debug_level & level))
676                 return;
677
678         while (len) {
679                 printk(KERN_DEBUG "%s\n",
680                        snprint_line(line, sizeof(line), &data[ofs],
681                                     min(len, 16U), ofs));
682                 ofs += 16;
683                 len -= min(len, 16U);
684         }
685 }
686
687 #define MAX_RESET_BACKOFF 10
688
689 static void schedule_reset(struct ipw2100_priv *priv)
690 {
691         unsigned long now = get_seconds();
692
693         /* If we haven't received a reset request within the backoff period,
694          * then we can reset the backoff interval so this reset occurs
695          * immediately */
696         if (priv->reset_backoff &&
697             (now - priv->last_reset > priv->reset_backoff))
698                 priv->reset_backoff = 0;
699
700         priv->last_reset = get_seconds();
701
702         if (!(priv->status & STATUS_RESET_PENDING)) {
703                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
704                                priv->net_dev->name, priv->reset_backoff);
705                 netif_carrier_off(priv->net_dev);
706                 netif_stop_queue(priv->net_dev);
707                 priv->status |= STATUS_RESET_PENDING;
708                 if (priv->reset_backoff)
709                         queue_delayed_work(priv->workqueue, &priv->reset_work,
710                                            priv->reset_backoff * HZ);
711                 else
712                         queue_delayed_work(priv->workqueue, &priv->reset_work,
713                                            0);
714
715                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
716                         priv->reset_backoff++;
717
718                 wake_up_interruptible(&priv->wait_command_queue);
719         } else
720                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
721                                priv->net_dev->name);
722
723 }
724
725 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
726 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
727                                    struct host_command *cmd)
728 {
729         struct list_head *element;
730         struct ipw2100_tx_packet *packet;
731         unsigned long flags;
732         int err = 0;
733
734         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
735                      command_types[cmd->host_command], cmd->host_command,
736                      cmd->host_command_length);
737         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
738                    cmd->host_command_length);
739
740         spin_lock_irqsave(&priv->low_lock, flags);
741
742         if (priv->fatal_error) {
743                 IPW_DEBUG_INFO
744                     ("Attempt to send command while hardware in fatal error condition.\n");
745                 err = -EIO;
746                 goto fail_unlock;
747         }
748
749         if (!(priv->status & STATUS_RUNNING)) {
750                 IPW_DEBUG_INFO
751                     ("Attempt to send command while hardware is not running.\n");
752                 err = -EIO;
753                 goto fail_unlock;
754         }
755
756         if (priv->status & STATUS_CMD_ACTIVE) {
757                 IPW_DEBUG_INFO
758                     ("Attempt to send command while another command is pending.\n");
759                 err = -EBUSY;
760                 goto fail_unlock;
761         }
762
763         if (list_empty(&priv->msg_free_list)) {
764                 IPW_DEBUG_INFO("no available msg buffers\n");
765                 goto fail_unlock;
766         }
767
768         priv->status |= STATUS_CMD_ACTIVE;
769         priv->messages_sent++;
770
771         element = priv->msg_free_list.next;
772
773         packet = list_entry(element, struct ipw2100_tx_packet, list);
774         packet->jiffy_start = jiffies;
775
776         /* initialize the firmware command packet */
777         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
778         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
779         packet->info.c_struct.cmd->host_command_len_reg =
780             cmd->host_command_length;
781         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
782
783         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
784                cmd->host_command_parameters,
785                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
786
787         list_del(element);
788         DEC_STAT(&priv->msg_free_stat);
789
790         list_add_tail(element, &priv->msg_pend_list);
791         INC_STAT(&priv->msg_pend_stat);
792
793         ipw2100_tx_send_commands(priv);
794         ipw2100_tx_send_data(priv);
795
796         spin_unlock_irqrestore(&priv->low_lock, flags);
797
798         /*
799          * We must wait for this command to complete before another
800          * command can be sent...  but if we wait more than 3 seconds
801          * then there is a problem.
802          */
803
804         err =
805             wait_event_interruptible_timeout(priv->wait_command_queue,
806                                              !(priv->
807                                                status & STATUS_CMD_ACTIVE),
808                                              HOST_COMPLETE_TIMEOUT);
809
810         if (err == 0) {
811                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
812                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
813                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
814                 priv->status &= ~STATUS_CMD_ACTIVE;
815                 schedule_reset(priv);
816                 return -EIO;
817         }
818
819         if (priv->fatal_error) {
820                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
821                        priv->net_dev->name);
822                 return -EIO;
823         }
824
825         /* !!!!! HACK TEST !!!!!
826          * When lots of debug trace statements are enabled, the driver
827          * doesn't seem to have as many firmware restart cycles...
828          *
829          * As a test, we're sticking in a 1/100s delay here */
830         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
831
832         return 0;
833
834       fail_unlock:
835         spin_unlock_irqrestore(&priv->low_lock, flags);
836
837         return err;
838 }
839
840 /*
841  * Verify the values and data access of the hardware
842  * No locks needed or used.  No functions called.
843  */
844 static int ipw2100_verify(struct ipw2100_priv *priv)
845 {
846         u32 data1, data2;
847         u32 address;
848
849         u32 val1 = 0x76543210;
850         u32 val2 = 0xFEDCBA98;
851
852         /* Domain 0 check - all values should be DOA_DEBUG */
853         for (address = IPW_REG_DOA_DEBUG_AREA_START;
854              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
855                 read_register(priv->net_dev, address, &data1);
856                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
857                         return -EIO;
858         }
859
860         /* Domain 1 check - use arbitrary read/write compare  */
861         for (address = 0; address < 5; address++) {
862                 /* The memory area is not used now */
863                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
864                                val1);
865                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
866                                val2);
867                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
868                               &data1);
869                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
870                               &data2);
871                 if (val1 == data1 && val2 == data2)
872                         return 0;
873         }
874
875         return -EIO;
876 }
877
878 /*
879  *
880  * Loop until the CARD_DISABLED bit is the same value as the
881  * supplied parameter
882  *
883  * TODO: See if it would be more efficient to do a wait/wake
884  *       cycle and have the completion event trigger the wakeup
885  *
886  */
887 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
888 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
889 {
890         int i;
891         u32 card_state;
892         u32 len = sizeof(card_state);
893         int err;
894
895         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
896                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
897                                           &card_state, &len);
898                 if (err) {
899                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
900                                        "failed.\n");
901                         return 0;
902                 }
903
904                 /* We'll break out if either the HW state says it is
905                  * in the state we want, or if HOST_COMPLETE command
906                  * finishes */
907                 if ((card_state == state) ||
908                     ((priv->status & STATUS_ENABLED) ?
909                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
910                         if (state == IPW_HW_STATE_ENABLED)
911                                 priv->status |= STATUS_ENABLED;
912                         else
913                                 priv->status &= ~STATUS_ENABLED;
914
915                         return 0;
916                 }
917
918                 udelay(50);
919         }
920
921         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
922                        state ? "DISABLED" : "ENABLED");
923         return -EIO;
924 }
925
926 /*********************************************************************
927     Procedure   :   sw_reset_and_clock
928     Purpose     :   Asserts s/w reset, asserts clock initialization
929                     and waits for clock stabilization
930  ********************************************************************/
931 static int sw_reset_and_clock(struct ipw2100_priv *priv)
932 {
933         int i;
934         u32 r;
935
936         // assert s/w reset
937         write_register(priv->net_dev, IPW_REG_RESET_REG,
938                        IPW_AUX_HOST_RESET_REG_SW_RESET);
939
940         // wait for clock stabilization
941         for (i = 0; i < 1000; i++) {
942                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
943
944                 // check clock ready bit
945                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
946                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
947                         break;
948         }
949
950         if (i == 1000)
951                 return -EIO;    // TODO: better error value
952
953         /* set "initialization complete" bit to move adapter to
954          * D0 state */
955         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
956                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
957
958         /* wait for clock stabilization */
959         for (i = 0; i < 10000; i++) {
960                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
961
962                 /* check clock ready bit */
963                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
964                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
965                         break;
966         }
967
968         if (i == 10000)
969                 return -EIO;    /* TODO: better error value */
970
971         /* set D0 standby bit */
972         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
973         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
974                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
975
976         return 0;
977 }
978
979 /*********************************************************************
980     Procedure   :   ipw2100_download_firmware
981     Purpose     :   Initiaze adapter after power on.
982                     The sequence is:
983                     1. assert s/w reset first!
984                     2. awake clocks & wait for clock stabilization
985                     3. hold ARC (don't ask me why...)
986                     4. load Dino ucode and reset/clock init again
987                     5. zero-out shared mem
988                     6. download f/w
989  *******************************************************************/
990 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
991 {
992         u32 address;
993         int err;
994
995 #ifndef CONFIG_PM
996         /* Fetch the firmware and microcode */
997         struct ipw2100_fw ipw2100_firmware;
998 #endif
999
1000         if (priv->fatal_error) {
1001                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1002                                 "fatal error %d.  Interface must be brought down.\n",
1003                                 priv->net_dev->name, priv->fatal_error);
1004                 return -EINVAL;
1005         }
1006 #ifdef CONFIG_PM
1007         if (!ipw2100_firmware.version) {
1008                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1009                 if (err) {
1010                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1011                                         priv->net_dev->name, err);
1012                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
1013                         goto fail;
1014                 }
1015         }
1016 #else
1017         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1018         if (err) {
1019                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1020                                 priv->net_dev->name, err);
1021                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1022                 goto fail;
1023         }
1024 #endif
1025         priv->firmware_version = ipw2100_firmware.version;
1026
1027         /* s/w reset and clock stabilization */
1028         err = sw_reset_and_clock(priv);
1029         if (err) {
1030                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1031                                 priv->net_dev->name, err);
1032                 goto fail;
1033         }
1034
1035         err = ipw2100_verify(priv);
1036         if (err) {
1037                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1038                                 priv->net_dev->name, err);
1039                 goto fail;
1040         }
1041
1042         /* Hold ARC */
1043         write_nic_dword(priv->net_dev,
1044                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1045
1046         /* allow ARC to run */
1047         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1048
1049         /* load microcode */
1050         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1051         if (err) {
1052                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1053                        priv->net_dev->name, err);
1054                 goto fail;
1055         }
1056
1057         /* release ARC */
1058         write_nic_dword(priv->net_dev,
1059                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1060
1061         /* s/w reset and clock stabilization (again!!!) */
1062         err = sw_reset_and_clock(priv);
1063         if (err) {
1064                 printk(KERN_ERR DRV_NAME
1065                        ": %s: sw_reset_and_clock failed: %d\n",
1066                        priv->net_dev->name, err);
1067                 goto fail;
1068         }
1069
1070         /* load f/w */
1071         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1072         if (err) {
1073                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1074                                 priv->net_dev->name, err);
1075                 goto fail;
1076         }
1077 #ifndef CONFIG_PM
1078         /*
1079          * When the .resume method of the driver is called, the other
1080          * part of the system, i.e. the ide driver could still stay in
1081          * the suspend stage. This prevents us from loading the firmware
1082          * from the disk.  --YZ
1083          */
1084
1085         /* free any storage allocated for firmware image */
1086         ipw2100_release_firmware(priv, &ipw2100_firmware);
1087 #endif
1088
1089         /* zero out Domain 1 area indirectly (Si requirement) */
1090         for (address = IPW_HOST_FW_SHARED_AREA0;
1091              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1092                 write_nic_dword(priv->net_dev, address, 0);
1093         for (address = IPW_HOST_FW_SHARED_AREA1;
1094              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1095                 write_nic_dword(priv->net_dev, address, 0);
1096         for (address = IPW_HOST_FW_SHARED_AREA2;
1097              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1098                 write_nic_dword(priv->net_dev, address, 0);
1099         for (address = IPW_HOST_FW_SHARED_AREA3;
1100              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1101                 write_nic_dword(priv->net_dev, address, 0);
1102         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1103              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1104                 write_nic_dword(priv->net_dev, address, 0);
1105
1106         return 0;
1107
1108       fail:
1109         ipw2100_release_firmware(priv, &ipw2100_firmware);
1110         return err;
1111 }
1112
1113 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1114 {
1115         if (priv->status & STATUS_INT_ENABLED)
1116                 return;
1117         priv->status |= STATUS_INT_ENABLED;
1118         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1119 }
1120
1121 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1122 {
1123         if (!(priv->status & STATUS_INT_ENABLED))
1124                 return;
1125         priv->status &= ~STATUS_INT_ENABLED;
1126         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1127 }
1128
1129 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1130 {
1131         struct ipw2100_ordinals *ord = &priv->ordinals;
1132
1133         IPW_DEBUG_INFO("enter\n");
1134
1135         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1136                       &ord->table1_addr);
1137
1138         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1139                       &ord->table2_addr);
1140
1141         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1142         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1143
1144         ord->table2_size &= 0x0000FFFF;
1145
1146         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1147         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1148         IPW_DEBUG_INFO("exit\n");
1149 }
1150
1151 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1152 {
1153         u32 reg = 0;
1154         /*
1155          * Set GPIO 3 writable by FW; GPIO 1 writable
1156          * by driver and enable clock
1157          */
1158         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1159                IPW_BIT_GPIO_LED_OFF);
1160         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1161 }
1162
1163 static int rf_kill_active(struct ipw2100_priv *priv)
1164 {
1165 #define MAX_RF_KILL_CHECKS 5
1166 #define RF_KILL_CHECK_DELAY 40
1167
1168         unsigned short value = 0;
1169         u32 reg = 0;
1170         int i;
1171
1172         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1173                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1174                 priv->status &= ~STATUS_RF_KILL_HW;
1175                 return 0;
1176         }
1177
1178         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1179                 udelay(RF_KILL_CHECK_DELAY);
1180                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1181                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1182         }
1183
1184         if (value == 0) {
1185                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1186                 priv->status |= STATUS_RF_KILL_HW;
1187         } else {
1188                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1189                 priv->status &= ~STATUS_RF_KILL_HW;
1190         }
1191
1192         return (value == 0);
1193 }
1194
1195 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1196 {
1197         u32 addr, len;
1198         u32 val;
1199
1200         /*
1201          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1202          */
1203         len = sizeof(addr);
1204         if (ipw2100_get_ordinal
1205             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1206                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1207                                __LINE__);
1208                 return -EIO;
1209         }
1210
1211         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1212
1213         /*
1214          * EEPROM version is the byte at offset 0xfd in firmware
1215          * We read 4 bytes, then shift out the byte we actually want */
1216         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1217         priv->eeprom_version = (val >> 24) & 0xFF;
1218         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1219
1220         /*
1221          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1222          *
1223          *  notice that the EEPROM bit is reverse polarity, i.e.
1224          *     bit = 0  signifies HW RF kill switch is supported
1225          *     bit = 1  signifies HW RF kill switch is NOT supported
1226          */
1227         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1228         if (!((val >> 24) & 0x01))
1229                 priv->hw_features |= HW_FEATURE_RFKILL;
1230
1231         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1232                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1233
1234         return 0;
1235 }
1236
1237 /*
1238  * Start firmware execution after power on and intialization
1239  * The sequence is:
1240  *  1. Release ARC
1241  *  2. Wait for f/w initialization completes;
1242  */
1243 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1244 {
1245         int i;
1246         u32 inta, inta_mask, gpio;
1247
1248         IPW_DEBUG_INFO("enter\n");
1249
1250         if (priv->status & STATUS_RUNNING)
1251                 return 0;
1252
1253         /*
1254          * Initialize the hw - drive adapter to DO state by setting
1255          * init_done bit. Wait for clk_ready bit and Download
1256          * fw & dino ucode
1257          */
1258         if (ipw2100_download_firmware(priv)) {
1259                 printk(KERN_ERR DRV_NAME
1260                        ": %s: Failed to power on the adapter.\n",
1261                        priv->net_dev->name);
1262                 return -EIO;
1263         }
1264
1265         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1266          * in the firmware RBD and TBD ring queue */
1267         ipw2100_queues_initialize(priv);
1268
1269         ipw2100_hw_set_gpio(priv);
1270
1271         /* TODO -- Look at disabling interrupts here to make sure none
1272          * get fired during FW initialization */
1273
1274         /* Release ARC - clear reset bit */
1275         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1276
1277         /* wait for f/w intialization complete */
1278         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1279         i = 5000;
1280         do {
1281                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1282                 /* Todo... wait for sync command ... */
1283
1284                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1285
1286                 /* check "init done" bit */
1287                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1288                         /* reset "init done" bit */
1289                         write_register(priv->net_dev, IPW_REG_INTA,
1290                                        IPW2100_INTA_FW_INIT_DONE);
1291                         break;
1292                 }
1293
1294                 /* check error conditions : we check these after the firmware
1295                  * check so that if there is an error, the interrupt handler
1296                  * will see it and the adapter will be reset */
1297                 if (inta &
1298                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1299                         /* clear error conditions */
1300                         write_register(priv->net_dev, IPW_REG_INTA,
1301                                        IPW2100_INTA_FATAL_ERROR |
1302                                        IPW2100_INTA_PARITY_ERROR);
1303                 }
1304         } while (--i);
1305
1306         /* Clear out any pending INTAs since we aren't supposed to have
1307          * interrupts enabled at this point... */
1308         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1309         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1310         inta &= IPW_INTERRUPT_MASK;
1311         /* Clear out any pending interrupts */
1312         if (inta & inta_mask)
1313                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1314
1315         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1316                      i ? "SUCCESS" : "FAILED");
1317
1318         if (!i) {
1319                 printk(KERN_WARNING DRV_NAME
1320                        ": %s: Firmware did not initialize.\n",
1321                        priv->net_dev->name);
1322                 return -EIO;
1323         }
1324
1325         /* allow firmware to write to GPIO1 & GPIO3 */
1326         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1327
1328         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1329
1330         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1331
1332         /* Ready to receive commands */
1333         priv->status |= STATUS_RUNNING;
1334
1335         /* The adapter has been reset; we are not associated */
1336         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1337
1338         IPW_DEBUG_INFO("exit\n");
1339
1340         return 0;
1341 }
1342
1343 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1344 {
1345         if (!priv->fatal_error)
1346                 return;
1347
1348         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1349         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1350         priv->fatal_error = 0;
1351 }
1352
1353 /* NOTE: Our interrupt is disabled when this method is called */
1354 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1355 {
1356         u32 reg;
1357         int i;
1358
1359         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1360
1361         ipw2100_hw_set_gpio(priv);
1362
1363         /* Step 1. Stop Master Assert */
1364         write_register(priv->net_dev, IPW_REG_RESET_REG,
1365                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1366
1367         /* Step 2. Wait for stop Master Assert
1368          *         (not more than 50us, otherwise ret error */
1369         i = 5;
1370         do {
1371                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1372                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1373
1374                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1375                         break;
1376         } while (--i);
1377
1378         priv->status &= ~STATUS_RESET_PENDING;
1379
1380         if (!i) {
1381                 IPW_DEBUG_INFO
1382                     ("exit - waited too long for master assert stop\n");
1383                 return -EIO;
1384         }
1385
1386         write_register(priv->net_dev, IPW_REG_RESET_REG,
1387                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1388
1389         /* Reset any fatal_error conditions */
1390         ipw2100_reset_fatalerror(priv);
1391
1392         /* At this point, the adapter is now stopped and disabled */
1393         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1394                           STATUS_ASSOCIATED | STATUS_ENABLED);
1395
1396         return 0;
1397 }
1398
1399 /*
1400  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1401  *
1402  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1403  *
1404  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1405  * if STATUS_ASSN_LOST is sent.
1406  */
1407 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1408 {
1409
1410 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1411
1412         struct host_command cmd = {
1413                 .host_command = CARD_DISABLE_PHY_OFF,
1414                 .host_command_sequence = 0,
1415                 .host_command_length = 0,
1416         };
1417         int err, i;
1418         u32 val1, val2;
1419
1420         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1421
1422         /* Turn off the radio */
1423         err = ipw2100_hw_send_command(priv, &cmd);
1424         if (err)
1425                 return err;
1426
1427         for (i = 0; i < 2500; i++) {
1428                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1429                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1430
1431                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1432                     (val2 & IPW2100_COMMAND_PHY_OFF))
1433                         return 0;
1434
1435                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1436         }
1437
1438         return -EIO;
1439 }
1440
1441 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1442 {
1443         struct host_command cmd = {
1444                 .host_command = HOST_COMPLETE,
1445                 .host_command_sequence = 0,
1446                 .host_command_length = 0
1447         };
1448         int err = 0;
1449
1450         IPW_DEBUG_HC("HOST_COMPLETE\n");
1451
1452         if (priv->status & STATUS_ENABLED)
1453                 return 0;
1454
1455         mutex_lock(&priv->adapter_mutex);
1456
1457         if (rf_kill_active(priv)) {
1458                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1459                 goto fail_up;
1460         }
1461
1462         err = ipw2100_hw_send_command(priv, &cmd);
1463         if (err) {
1464                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1465                 goto fail_up;
1466         }
1467
1468         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1469         if (err) {
1470                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1471                                priv->net_dev->name);
1472                 goto fail_up;
1473         }
1474
1475         if (priv->stop_hang_check) {
1476                 priv->stop_hang_check = 0;
1477                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1478         }
1479
1480       fail_up:
1481         mutex_unlock(&priv->adapter_mutex);
1482         return err;
1483 }
1484
1485 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1486 {
1487 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1488
1489         struct host_command cmd = {
1490                 .host_command = HOST_PRE_POWER_DOWN,
1491                 .host_command_sequence = 0,
1492                 .host_command_length = 0,
1493         };
1494         int err, i;
1495         u32 reg;
1496
1497         if (!(priv->status & STATUS_RUNNING))
1498                 return 0;
1499
1500         priv->status |= STATUS_STOPPING;
1501
1502         /* We can only shut down the card if the firmware is operational.  So,
1503          * if we haven't reset since a fatal_error, then we can not send the
1504          * shutdown commands. */
1505         if (!priv->fatal_error) {
1506                 /* First, make sure the adapter is enabled so that the PHY_OFF
1507                  * command can shut it down */
1508                 ipw2100_enable_adapter(priv);
1509
1510                 err = ipw2100_hw_phy_off(priv);
1511                 if (err)
1512                         printk(KERN_WARNING DRV_NAME
1513                                ": Error disabling radio %d\n", err);
1514
1515                 /*
1516                  * If in D0-standby mode going directly to D3 may cause a
1517                  * PCI bus violation.  Therefore we must change out of the D0
1518                  * state.
1519                  *
1520                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1521                  * hardware from going into standby mode and will transition
1522                  * out of D0-standby if it is already in that state.
1523                  *
1524                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1525                  * driver upon completion.  Once received, the driver can
1526                  * proceed to the D3 state.
1527                  *
1528                  * Prepare for power down command to fw.  This command would
1529                  * take HW out of D0-standby and prepare it for D3 state.
1530                  *
1531                  * Currently FW does not support event notification for this
1532                  * event. Therefore, skip waiting for it.  Just wait a fixed
1533                  * 100ms
1534                  */
1535                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1536
1537                 err = ipw2100_hw_send_command(priv, &cmd);
1538                 if (err)
1539                         printk(KERN_WARNING DRV_NAME ": "
1540                                "%s: Power down command failed: Error %d\n",
1541                                priv->net_dev->name, err);
1542                 else
1543                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1544         }
1545
1546         priv->status &= ~STATUS_ENABLED;
1547
1548         /*
1549          * Set GPIO 3 writable by FW; GPIO 1 writable
1550          * by driver and enable clock
1551          */
1552         ipw2100_hw_set_gpio(priv);
1553
1554         /*
1555          * Power down adapter.  Sequence:
1556          * 1. Stop master assert (RESET_REG[9]=1)
1557          * 2. Wait for stop master (RESET_REG[8]==1)
1558          * 3. S/w reset assert (RESET_REG[7] = 1)
1559          */
1560
1561         /* Stop master assert */
1562         write_register(priv->net_dev, IPW_REG_RESET_REG,
1563                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1564
1565         /* wait stop master not more than 50 usec.
1566          * Otherwise return error. */
1567         for (i = 5; i > 0; i--) {
1568                 udelay(10);
1569
1570                 /* Check master stop bit */
1571                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1572
1573                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1574                         break;
1575         }
1576
1577         if (i == 0)
1578                 printk(KERN_WARNING DRV_NAME
1579                        ": %s: Could now power down adapter.\n",
1580                        priv->net_dev->name);
1581
1582         /* assert s/w reset */
1583         write_register(priv->net_dev, IPW_REG_RESET_REG,
1584                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1585
1586         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1587
1588         return 0;
1589 }
1590
1591 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1592 {
1593         struct host_command cmd = {
1594                 .host_command = CARD_DISABLE,
1595                 .host_command_sequence = 0,
1596                 .host_command_length = 0
1597         };
1598         int err = 0;
1599
1600         IPW_DEBUG_HC("CARD_DISABLE\n");
1601
1602         if (!(priv->status & STATUS_ENABLED))
1603                 return 0;
1604
1605         /* Make sure we clear the associated state */
1606         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1607
1608         if (!priv->stop_hang_check) {
1609                 priv->stop_hang_check = 1;
1610                 cancel_delayed_work(&priv->hang_check);
1611         }
1612
1613         mutex_lock(&priv->adapter_mutex);
1614
1615         err = ipw2100_hw_send_command(priv, &cmd);
1616         if (err) {
1617                 printk(KERN_WARNING DRV_NAME
1618                        ": exit - failed to send CARD_DISABLE command\n");
1619                 goto fail_up;
1620         }
1621
1622         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1623         if (err) {
1624                 printk(KERN_WARNING DRV_NAME
1625                        ": exit - card failed to change to DISABLED\n");
1626                 goto fail_up;
1627         }
1628
1629         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1630
1631       fail_up:
1632         mutex_unlock(&priv->adapter_mutex);
1633         return err;
1634 }
1635
1636 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1637 {
1638         struct host_command cmd = {
1639                 .host_command = SET_SCAN_OPTIONS,
1640                 .host_command_sequence = 0,
1641                 .host_command_length = 8
1642         };
1643         int err;
1644
1645         IPW_DEBUG_INFO("enter\n");
1646
1647         IPW_DEBUG_SCAN("setting scan options\n");
1648
1649         cmd.host_command_parameters[0] = 0;
1650
1651         if (!(priv->config & CFG_ASSOCIATE))
1652                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1653         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1654                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1655         if (priv->config & CFG_PASSIVE_SCAN)
1656                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1657
1658         cmd.host_command_parameters[1] = priv->channel_mask;
1659
1660         err = ipw2100_hw_send_command(priv, &cmd);
1661
1662         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1663                      cmd.host_command_parameters[0]);
1664
1665         return err;
1666 }
1667
1668 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1669 {
1670         struct host_command cmd = {
1671                 .host_command = BROADCAST_SCAN,
1672                 .host_command_sequence = 0,
1673                 .host_command_length = 4
1674         };
1675         int err;
1676
1677         IPW_DEBUG_HC("START_SCAN\n");
1678
1679         cmd.host_command_parameters[0] = 0;
1680
1681         /* No scanning if in monitor mode */
1682         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1683                 return 1;
1684
1685         if (priv->status & STATUS_SCANNING) {
1686                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1687                 return 0;
1688         }
1689
1690         IPW_DEBUG_INFO("enter\n");
1691
1692         /* Not clearing here; doing so makes iwlist always return nothing...
1693          *
1694          * We should modify the table logic to use aging tables vs. clearing
1695          * the table on each scan start.
1696          */
1697         IPW_DEBUG_SCAN("starting scan\n");
1698
1699         priv->status |= STATUS_SCANNING;
1700         err = ipw2100_hw_send_command(priv, &cmd);
1701         if (err)
1702                 priv->status &= ~STATUS_SCANNING;
1703
1704         IPW_DEBUG_INFO("exit\n");
1705
1706         return err;
1707 }
1708
1709 static const struct libipw_geo ipw_geos[] = {
1710         {                       /* Restricted */
1711          "---",
1712          .bg_channels = 14,
1713          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1714                 {2427, 4}, {2432, 5}, {2437, 6},
1715                 {2442, 7}, {2447, 8}, {2452, 9},
1716                 {2457, 10}, {2462, 11}, {2467, 12},
1717                 {2472, 13}, {2484, 14}},
1718          },
1719 };
1720
1721 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1722 {
1723         unsigned long flags;
1724         int rc = 0;
1725         u32 lock;
1726         u32 ord_len = sizeof(lock);
1727
1728         /* Age scan list entries found before suspend */
1729         if (priv->suspend_time) {
1730                 libipw_networks_age(priv->ieee, priv->suspend_time);
1731                 priv->suspend_time = 0;
1732         }
1733
1734         /* Quiet if manually disabled. */
1735         if (priv->status & STATUS_RF_KILL_SW) {
1736                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1737                                "switch\n", priv->net_dev->name);
1738                 return 0;
1739         }
1740
1741         /* the ipw2100 hardware really doesn't want power management delays
1742          * longer than 175usec
1743          */
1744         pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1745
1746         /* If the interrupt is enabled, turn it off... */
1747         spin_lock_irqsave(&priv->low_lock, flags);
1748         ipw2100_disable_interrupts(priv);
1749
1750         /* Reset any fatal_error conditions */
1751         ipw2100_reset_fatalerror(priv);
1752         spin_unlock_irqrestore(&priv->low_lock, flags);
1753
1754         if (priv->status & STATUS_POWERED ||
1755             (priv->status & STATUS_RESET_PENDING)) {
1756                 /* Power cycle the card ... */
1757                 if (ipw2100_power_cycle_adapter(priv)) {
1758                         printk(KERN_WARNING DRV_NAME
1759                                ": %s: Could not cycle adapter.\n",
1760                                priv->net_dev->name);
1761                         rc = 1;
1762                         goto exit;
1763                 }
1764         } else
1765                 priv->status |= STATUS_POWERED;
1766
1767         /* Load the firmware, start the clocks, etc. */
1768         if (ipw2100_start_adapter(priv)) {
1769                 printk(KERN_ERR DRV_NAME
1770                        ": %s: Failed to start the firmware.\n",
1771                        priv->net_dev->name);
1772                 rc = 1;
1773                 goto exit;
1774         }
1775
1776         ipw2100_initialize_ordinals(priv);
1777
1778         /* Determine capabilities of this particular HW configuration */
1779         if (ipw2100_get_hw_features(priv)) {
1780                 printk(KERN_ERR DRV_NAME
1781                        ": %s: Failed to determine HW features.\n",
1782                        priv->net_dev->name);
1783                 rc = 1;
1784                 goto exit;
1785         }
1786
1787         /* Initialize the geo */
1788         if (libipw_set_geo(priv->ieee, &ipw_geos[0])) {
1789                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1790                 return 0;
1791         }
1792         priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1793
1794         lock = LOCK_NONE;
1795         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1796                 printk(KERN_ERR DRV_NAME
1797                        ": %s: Failed to clear ordinal lock.\n",
1798                        priv->net_dev->name);
1799                 rc = 1;
1800                 goto exit;
1801         }
1802
1803         priv->status &= ~STATUS_SCANNING;
1804
1805         if (rf_kill_active(priv)) {
1806                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807                        priv->net_dev->name);
1808
1809                 if (priv->stop_rf_kill) {
1810                         priv->stop_rf_kill = 0;
1811                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1812                                            round_jiffies_relative(HZ));
1813                 }
1814
1815                 deferred = 1;
1816         }
1817
1818         /* Turn on the interrupt so that commands can be processed */
1819         ipw2100_enable_interrupts(priv);
1820
1821         /* Send all of the commands that must be sent prior to
1822          * HOST_COMPLETE */
1823         if (ipw2100_adapter_setup(priv)) {
1824                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1825                        priv->net_dev->name);
1826                 rc = 1;
1827                 goto exit;
1828         }
1829
1830         if (!deferred) {
1831                 /* Enable the adapter - sends HOST_COMPLETE */
1832                 if (ipw2100_enable_adapter(priv)) {
1833                         printk(KERN_ERR DRV_NAME ": "
1834                                "%s: failed in call to enable adapter.\n",
1835                                priv->net_dev->name);
1836                         ipw2100_hw_stop_adapter(priv);
1837                         rc = 1;
1838                         goto exit;
1839                 }
1840
1841                 /* Start a scan . . . */
1842                 ipw2100_set_scan_options(priv);
1843                 ipw2100_start_scan(priv);
1844         }
1845
1846       exit:
1847         return rc;
1848 }
1849
1850 static void ipw2100_down(struct ipw2100_priv *priv)
1851 {
1852         unsigned long flags;
1853         union iwreq_data wrqu = {
1854                 .ap_addr = {
1855                             .sa_family = ARPHRD_ETHER}
1856         };
1857         int associated = priv->status & STATUS_ASSOCIATED;
1858
1859         /* Kill the RF switch timer */
1860         if (!priv->stop_rf_kill) {
1861                 priv->stop_rf_kill = 1;
1862                 cancel_delayed_work(&priv->rf_kill);
1863         }
1864
1865         /* Kill the firmware hang check timer */
1866         if (!priv->stop_hang_check) {
1867                 priv->stop_hang_check = 1;
1868                 cancel_delayed_work(&priv->hang_check);
1869         }
1870
1871         /* Kill any pending resets */
1872         if (priv->status & STATUS_RESET_PENDING)
1873                 cancel_delayed_work(&priv->reset_work);
1874
1875         /* Make sure the interrupt is on so that FW commands will be
1876          * processed correctly */
1877         spin_lock_irqsave(&priv->low_lock, flags);
1878         ipw2100_enable_interrupts(priv);
1879         spin_unlock_irqrestore(&priv->low_lock, flags);
1880
1881         if (ipw2100_hw_stop_adapter(priv))
1882                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883                        priv->net_dev->name);
1884
1885         /* Do not disable the interrupt until _after_ we disable
1886          * the adaptor.  Otherwise the CARD_DISABLE command will never
1887          * be ack'd by the firmware */
1888         spin_lock_irqsave(&priv->low_lock, flags);
1889         ipw2100_disable_interrupts(priv);
1890         spin_unlock_irqrestore(&priv->low_lock, flags);
1891
1892         pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1893
1894         /* We have to signal any supplicant if we are disassociating */
1895         if (associated)
1896                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1897
1898         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899         netif_carrier_off(priv->net_dev);
1900         netif_stop_queue(priv->net_dev);
1901 }
1902
1903 /* Called by register_netdev() */
1904 static int ipw2100_net_init(struct net_device *dev)
1905 {
1906         struct ipw2100_priv *priv = libipw_priv(dev);
1907         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1908         struct wireless_dev *wdev = &priv->ieee->wdev;
1909         int ret;
1910         int i;
1911
1912         ret = ipw2100_up(priv, 1);
1913         if (ret)
1914                 return ret;
1915
1916         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1917
1918         /* fill-out priv->ieee->bg_band */
1919         if (geo->bg_channels) {
1920                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1921
1922                 bg_band->band = IEEE80211_BAND_2GHZ;
1923                 bg_band->n_channels = geo->bg_channels;
1924                 bg_band->channels = kcalloc(geo->bg_channels,
1925                                             sizeof(struct ieee80211_channel),
1926                                             GFP_KERNEL);
1927                 if (!bg_band->channels) {
1928                         ipw2100_down(priv);
1929                         return -ENOMEM;
1930                 }
1931                 /* translate geo->bg to bg_band.channels */
1932                 for (i = 0; i < geo->bg_channels; i++) {
1933                         bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1934                         bg_band->channels[i].center_freq = geo->bg[i].freq;
1935                         bg_band->channels[i].hw_value = geo->bg[i].channel;
1936                         bg_band->channels[i].max_power = geo->bg[i].max_power;
1937                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1938                                 bg_band->channels[i].flags |=
1939                                         IEEE80211_CHAN_PASSIVE_SCAN;
1940                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1941                                 bg_band->channels[i].flags |=
1942                                         IEEE80211_CHAN_NO_IBSS;
1943                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1944                                 bg_band->channels[i].flags |=
1945                                         IEEE80211_CHAN_RADAR;
1946                         /* No equivalent for LIBIPW_CH_80211H_RULES,
1947                            LIBIPW_CH_UNIFORM_SPREADING, or
1948                            LIBIPW_CH_B_ONLY... */
1949                 }
1950                 /* point at bitrate info */
1951                 bg_band->bitrates = ipw2100_bg_rates;
1952                 bg_band->n_bitrates = RATE_COUNT;
1953
1954                 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1955         }
1956
1957         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1958         if (wiphy_register(wdev->wiphy)) {
1959                 ipw2100_down(priv);
1960                 return -EIO;
1961         }
1962         return 0;
1963 }
1964
1965 static void ipw2100_reset_adapter(struct work_struct *work)
1966 {
1967         struct ipw2100_priv *priv =
1968                 container_of(work, struct ipw2100_priv, reset_work.work);
1969         unsigned long flags;
1970         union iwreq_data wrqu = {
1971                 .ap_addr = {
1972                             .sa_family = ARPHRD_ETHER}
1973         };
1974         int associated = priv->status & STATUS_ASSOCIATED;
1975
1976         spin_lock_irqsave(&priv->low_lock, flags);
1977         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1978         priv->resets++;
1979         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1980         priv->status |= STATUS_SECURITY_UPDATED;
1981
1982         /* Force a power cycle even if interface hasn't been opened
1983          * yet */
1984         cancel_delayed_work(&priv->reset_work);
1985         priv->status |= STATUS_RESET_PENDING;
1986         spin_unlock_irqrestore(&priv->low_lock, flags);
1987
1988         mutex_lock(&priv->action_mutex);
1989         /* stop timed checks so that they don't interfere with reset */
1990         priv->stop_hang_check = 1;
1991         cancel_delayed_work(&priv->hang_check);
1992
1993         /* We have to signal any supplicant if we are disassociating */
1994         if (associated)
1995                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1996
1997         ipw2100_up(priv, 0);
1998         mutex_unlock(&priv->action_mutex);
1999
2000 }
2001
2002 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
2003 {
2004
2005 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2006         int ret;
2007         unsigned int len, essid_len;
2008         char essid[IW_ESSID_MAX_SIZE];
2009         u32 txrate;
2010         u32 chan;
2011         char *txratename;
2012         u8 bssid[ETH_ALEN];
2013         DECLARE_SSID_BUF(ssid);
2014
2015         /*
2016          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2017          *      an actual MAC of the AP. Seems like FW sets this
2018          *      address too late. Read it later and expose through
2019          *      /proc or schedule a later task to query and update
2020          */
2021
2022         essid_len = IW_ESSID_MAX_SIZE;
2023         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2024                                   essid, &essid_len);
2025         if (ret) {
2026                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2027                                __LINE__);
2028                 return;
2029         }
2030
2031         len = sizeof(u32);
2032         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2033         if (ret) {
2034                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2035                                __LINE__);
2036                 return;
2037         }
2038
2039         len = sizeof(u32);
2040         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2041         if (ret) {
2042                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2043                                __LINE__);
2044                 return;
2045         }
2046         len = ETH_ALEN;
2047         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
2048         if (ret) {
2049                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2050                                __LINE__);
2051                 return;
2052         }
2053         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2054
2055         switch (txrate) {
2056         case TX_RATE_1_MBIT:
2057                 txratename = "1Mbps";
2058                 break;
2059         case TX_RATE_2_MBIT:
2060                 txratename = "2Mbsp";
2061                 break;
2062         case TX_RATE_5_5_MBIT:
2063                 txratename = "5.5Mbps";
2064                 break;
2065         case TX_RATE_11_MBIT:
2066                 txratename = "11Mbps";
2067                 break;
2068         default:
2069                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2070                 txratename = "unknown rate";
2071                 break;
2072         }
2073
2074         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2075                        priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2076                        txratename, chan, bssid);
2077
2078         /* now we copy read ssid into dev */
2079         if (!(priv->config & CFG_STATIC_ESSID)) {
2080                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2081                 memcpy(priv->essid, essid, priv->essid_len);
2082         }
2083         priv->channel = chan;
2084         memcpy(priv->bssid, bssid, ETH_ALEN);
2085
2086         priv->status |= STATUS_ASSOCIATING;
2087         priv->connect_start = get_seconds();
2088
2089         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
2090 }
2091
2092 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2093                              int length, int batch_mode)
2094 {
2095         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2096         struct host_command cmd = {
2097                 .host_command = SSID,
2098                 .host_command_sequence = 0,
2099                 .host_command_length = ssid_len
2100         };
2101         int err;
2102         DECLARE_SSID_BUF(ssid);
2103
2104         IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2105
2106         if (ssid_len)
2107                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2108
2109         if (!batch_mode) {
2110                 err = ipw2100_disable_adapter(priv);
2111                 if (err)
2112                         return err;
2113         }
2114
2115         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2116          * disable auto association -- so we cheat by setting a bogus SSID */
2117         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2118                 int i;
2119                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2120                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2121                         bogus[i] = 0x18 + i;
2122                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2123         }
2124
2125         /* NOTE:  We always send the SSID command even if the provided ESSID is
2126          * the same as what we currently think is set. */
2127
2128         err = ipw2100_hw_send_command(priv, &cmd);
2129         if (!err) {
2130                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2131                 memcpy(priv->essid, essid, ssid_len);
2132                 priv->essid_len = ssid_len;
2133         }
2134
2135         if (!batch_mode) {
2136                 if (ipw2100_enable_adapter(priv))
2137                         err = -EIO;
2138         }
2139
2140         return err;
2141 }
2142
2143 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2144 {
2145         DECLARE_SSID_BUF(ssid);
2146
2147         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2148                   "disassociated: '%s' %pM\n",
2149                   print_ssid(ssid, priv->essid, priv->essid_len),
2150                   priv->bssid);
2151
2152         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2153
2154         if (priv->status & STATUS_STOPPING) {
2155                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2156                 return;
2157         }
2158
2159         memset(priv->bssid, 0, ETH_ALEN);
2160         memset(priv->ieee->bssid, 0, ETH_ALEN);
2161
2162         netif_carrier_off(priv->net_dev);
2163         netif_stop_queue(priv->net_dev);
2164
2165         if (!(priv->status & STATUS_RUNNING))
2166                 return;
2167
2168         if (priv->status & STATUS_SECURITY_UPDATED)
2169                 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2170
2171         queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2172 }
2173
2174 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2175 {
2176         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2177                        priv->net_dev->name);
2178
2179         /* RF_KILL is now enabled (else we wouldn't be here) */
2180         wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2181         priv->status |= STATUS_RF_KILL_HW;
2182
2183         /* Make sure the RF Kill check timer is running */
2184         priv->stop_rf_kill = 0;
2185         cancel_delayed_work(&priv->rf_kill);
2186         queue_delayed_work(priv->workqueue, &priv->rf_kill,
2187                            round_jiffies_relative(HZ));
2188 }
2189
2190 static void send_scan_event(void *data)
2191 {
2192         struct ipw2100_priv *priv = data;
2193         union iwreq_data wrqu;
2194
2195         wrqu.data.length = 0;
2196         wrqu.data.flags = 0;
2197         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2198 }
2199
2200 static void ipw2100_scan_event_later(struct work_struct *work)
2201 {
2202         send_scan_event(container_of(work, struct ipw2100_priv,
2203                                         scan_event_later.work));
2204 }
2205
2206 static void ipw2100_scan_event_now(struct work_struct *work)
2207 {
2208         send_scan_event(container_of(work, struct ipw2100_priv,
2209                                         scan_event_now));
2210 }
2211
2212 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2213 {
2214         IPW_DEBUG_SCAN("scan complete\n");
2215         /* Age the scan results... */
2216         priv->ieee->scans++;
2217         priv->status &= ~STATUS_SCANNING;
2218
2219         /* Only userspace-requested scan completion events go out immediately */
2220         if (!priv->user_requested_scan) {
2221                 if (!delayed_work_pending(&priv->scan_event_later))
2222                         queue_delayed_work(priv->workqueue,
2223                                         &priv->scan_event_later,
2224                                         round_jiffies_relative(msecs_to_jiffies(4000)));
2225         } else {
2226                 priv->user_requested_scan = 0;
2227                 cancel_delayed_work(&priv->scan_event_later);
2228                 queue_work(priv->workqueue, &priv->scan_event_now);
2229         }
2230 }
2231
2232 #ifdef CONFIG_IPW2100_DEBUG
2233 #define IPW2100_HANDLER(v, f) { v, f, # v }
2234 struct ipw2100_status_indicator {
2235         int status;
2236         void (*cb) (struct ipw2100_priv * priv, u32 status);
2237         char *name;
2238 };
2239 #else
2240 #define IPW2100_HANDLER(v, f) { v, f }
2241 struct ipw2100_status_indicator {
2242         int status;
2243         void (*cb) (struct ipw2100_priv * priv, u32 status);
2244 };
2245 #endif                          /* CONFIG_IPW2100_DEBUG */
2246
2247 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2248 {
2249         IPW_DEBUG_SCAN("Scanning...\n");
2250         priv->status |= STATUS_SCANNING;
2251 }
2252
2253 static const struct ipw2100_status_indicator status_handlers[] = {
2254         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2255         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2256         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2257         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2258         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2259         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2260         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2261         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2262         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2263         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2264         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2265         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2266         IPW2100_HANDLER(-1, NULL)
2267 };
2268
2269 static void isr_status_change(struct ipw2100_priv *priv, int status)
2270 {
2271         int i;
2272
2273         if (status == IPW_STATE_SCANNING &&
2274             priv->status & STATUS_ASSOCIATED &&
2275             !(priv->status & STATUS_SCANNING)) {
2276                 IPW_DEBUG_INFO("Scan detected while associated, with "
2277                                "no scan request.  Restarting firmware.\n");
2278
2279                 /* Wake up any sleeping jobs */
2280                 schedule_reset(priv);
2281         }
2282
2283         for (i = 0; status_handlers[i].status != -1; i++) {
2284                 if (status == status_handlers[i].status) {
2285                         IPW_DEBUG_NOTIF("Status change: %s\n",
2286                                         status_handlers[i].name);
2287                         if (status_handlers[i].cb)
2288                                 status_handlers[i].cb(priv, status);
2289                         priv->wstats.status = status;
2290                         return;
2291                 }
2292         }
2293
2294         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2295 }
2296
2297 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2298                                     struct ipw2100_cmd_header *cmd)
2299 {
2300 #ifdef CONFIG_IPW2100_DEBUG
2301         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2302                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2303                              command_types[cmd->host_command_reg],
2304                              cmd->host_command_reg);
2305         }
2306 #endif
2307         if (cmd->host_command_reg == HOST_COMPLETE)
2308                 priv->status |= STATUS_ENABLED;
2309
2310         if (cmd->host_command_reg == CARD_DISABLE)
2311                 priv->status &= ~STATUS_ENABLED;
2312
2313         priv->status &= ~STATUS_CMD_ACTIVE;
2314
2315         wake_up_interruptible(&priv->wait_command_queue);
2316 }
2317
2318 #ifdef CONFIG_IPW2100_DEBUG
2319 static const char *frame_types[] = {
2320         "COMMAND_STATUS_VAL",
2321         "STATUS_CHANGE_VAL",
2322         "P80211_DATA_VAL",
2323         "P8023_DATA_VAL",
2324         "HOST_NOTIFICATION_VAL"
2325 };
2326 #endif
2327
2328 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2329                                     struct ipw2100_rx_packet *packet)
2330 {
2331         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2332         if (!packet->skb)
2333                 return -ENOMEM;
2334
2335         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2336         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2337                                           sizeof(struct ipw2100_rx),
2338                                           PCI_DMA_FROMDEVICE);
2339         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2340          *       dma_addr */
2341
2342         return 0;
2343 }
2344
2345 #define SEARCH_ERROR   0xffffffff
2346 #define SEARCH_FAIL    0xfffffffe
2347 #define SEARCH_SUCCESS 0xfffffff0
2348 #define SEARCH_DISCARD 0
2349 #define SEARCH_SNAPSHOT 1
2350
2351 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2352 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2353 {
2354         int i;
2355         if (!priv->snapshot[0])
2356                 return;
2357         for (i = 0; i < 0x30; i++)
2358                 kfree(priv->snapshot[i]);
2359         priv->snapshot[0] = NULL;
2360 }
2361
2362 #ifdef IPW2100_DEBUG_C3
2363 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2364 {
2365         int i;
2366         if (priv->snapshot[0])
2367                 return 1;
2368         for (i = 0; i < 0x30; i++) {
2369                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2370                 if (!priv->snapshot[i]) {
2371                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2372                                        "buffer %d\n", priv->net_dev->name, i);
2373                         while (i > 0)
2374                                 kfree(priv->snapshot[--i]);
2375                         priv->snapshot[0] = NULL;
2376                         return 0;
2377                 }
2378         }
2379
2380         return 1;
2381 }
2382
2383 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2384                                     size_t len, int mode)
2385 {
2386         u32 i, j;
2387         u32 tmp;
2388         u8 *s, *d;
2389         u32 ret;
2390
2391         s = in_buf;
2392         if (mode == SEARCH_SNAPSHOT) {
2393                 if (!ipw2100_snapshot_alloc(priv))
2394                         mode = SEARCH_DISCARD;
2395         }
2396
2397         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2398                 read_nic_dword(priv->net_dev, i, &tmp);
2399                 if (mode == SEARCH_SNAPSHOT)
2400                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2401                 if (ret == SEARCH_FAIL) {
2402                         d = (u8 *) & tmp;
2403                         for (j = 0; j < 4; j++) {
2404                                 if (*s != *d) {
2405                                         s = in_buf;
2406                                         continue;
2407                                 }
2408
2409                                 s++;
2410                                 d++;
2411
2412                                 if ((s - in_buf) == len)
2413                                         ret = (i + j) - len + 1;
2414                         }
2415                 } else if (mode == SEARCH_DISCARD)
2416                         return ret;
2417         }
2418
2419         return ret;
2420 }
2421 #endif
2422
2423 /*
2424  *
2425  * 0) Disconnect the SKB from the firmware (just unmap)
2426  * 1) Pack the ETH header into the SKB
2427  * 2) Pass the SKB to the network stack
2428  *
2429  * When packet is provided by the firmware, it contains the following:
2430  *
2431  * .  libipw_hdr
2432  * .  libipw_snap_hdr
2433  *
2434  * The size of the constructed ethernet
2435  *
2436  */
2437 #ifdef IPW2100_RX_DEBUG
2438 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2439 #endif
2440
2441 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2442 {
2443 #ifdef IPW2100_DEBUG_C3
2444         struct ipw2100_status *status = &priv->status_queue.drv[i];
2445         u32 match, reg;
2446         int j;
2447 #endif
2448
2449         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2450                        i * sizeof(struct ipw2100_status));
2451
2452 #ifdef IPW2100_DEBUG_C3
2453         /* Halt the firmware so we can get a good image */
2454         write_register(priv->net_dev, IPW_REG_RESET_REG,
2455                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2456         j = 5;
2457         do {
2458                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2459                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2460
2461                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2462                         break;
2463         } while (j--);
2464
2465         match = ipw2100_match_buf(priv, (u8 *) status,
2466                                   sizeof(struct ipw2100_status),
2467                                   SEARCH_SNAPSHOT);
2468         if (match < SEARCH_SUCCESS)
2469                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2470                                "offset 0x%06X, length %d:\n",
2471                                priv->net_dev->name, match,
2472                                sizeof(struct ipw2100_status));
2473         else
2474                 IPW_DEBUG_INFO("%s: No DMA status match in "
2475                                "Firmware.\n", priv->net_dev->name);
2476
2477         printk_buf((u8 *) priv->status_queue.drv,
2478                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2479 #endif
2480
2481         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2482         priv->net_dev->stats.rx_errors++;
2483         schedule_reset(priv);
2484 }
2485
2486 static void isr_rx(struct ipw2100_priv *priv, int i,
2487                           struct libipw_rx_stats *stats)
2488 {
2489         struct net_device *dev = priv->net_dev;
2490         struct ipw2100_status *status = &priv->status_queue.drv[i];
2491         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2492
2493         IPW_DEBUG_RX("Handler...\n");
2494
2495         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2496                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2497                                "  Dropping.\n",
2498                                dev->name,
2499                                status->frame_size, skb_tailroom(packet->skb));
2500                 dev->stats.rx_errors++;
2501                 return;
2502         }
2503
2504         if (unlikely(!netif_running(dev))) {
2505                 dev->stats.rx_errors++;
2506                 priv->wstats.discard.misc++;
2507                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2508                 return;
2509         }
2510
2511         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2512                      !(priv->status & STATUS_ASSOCIATED))) {
2513                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2514                 priv->wstats.discard.misc++;
2515                 return;
2516         }
2517
2518         pci_unmap_single(priv->pci_dev,
2519                          packet->dma_addr,
2520                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2521
2522         skb_put(packet->skb, status->frame_size);
2523
2524 #ifdef IPW2100_RX_DEBUG
2525         /* Make a copy of the frame so we can dump it to the logs if
2526          * libipw_rx fails */
2527         skb_copy_from_linear_data(packet->skb, packet_data,
2528                                   min_t(u32, status->frame_size,
2529                                              IPW_RX_NIC_BUFFER_LENGTH));
2530 #endif
2531
2532         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2533 #ifdef IPW2100_RX_DEBUG
2534                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2535                                dev->name);
2536                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2537 #endif
2538                 dev->stats.rx_errors++;
2539
2540                 /* libipw_rx failed, so it didn't free the SKB */
2541                 dev_kfree_skb_any(packet->skb);
2542                 packet->skb = NULL;
2543         }
2544
2545         /* We need to allocate a new SKB and attach it to the RDB. */
2546         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2547                 printk(KERN_WARNING DRV_NAME ": "
2548                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2549                        "adapter.\n", dev->name);
2550                 /* TODO: schedule adapter shutdown */
2551                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2552         }
2553
2554         /* Update the RDB entry */
2555         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2556 }
2557
2558 #ifdef CONFIG_IPW2100_MONITOR
2559
2560 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2561                    struct libipw_rx_stats *stats)
2562 {
2563         struct net_device *dev = priv->net_dev;
2564         struct ipw2100_status *status = &priv->status_queue.drv[i];
2565         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2566
2567         /* Magic struct that slots into the radiotap header -- no reason
2568          * to build this manually element by element, we can write it much
2569          * more efficiently than we can parse it. ORDER MATTERS HERE */
2570         struct ipw_rt_hdr {
2571                 struct ieee80211_radiotap_header rt_hdr;
2572                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2573         } *ipw_rt;
2574
2575         IPW_DEBUG_RX("Handler...\n");
2576
2577         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2578                                 sizeof(struct ipw_rt_hdr))) {
2579                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2580                                "  Dropping.\n",
2581                                dev->name,
2582                                status->frame_size,
2583                                skb_tailroom(packet->skb));
2584                 dev->stats.rx_errors++;
2585                 return;
2586         }
2587
2588         if (unlikely(!netif_running(dev))) {
2589                 dev->stats.rx_errors++;
2590                 priv->wstats.discard.misc++;
2591                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2592                 return;
2593         }
2594
2595         if (unlikely(priv->config & CFG_CRC_CHECK &&
2596                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2597                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2598                 dev->stats.rx_errors++;
2599                 return;
2600         }
2601
2602         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2603                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2604         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2605                 packet->skb->data, status->frame_size);
2606
2607         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2608
2609         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2610         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2611         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2612
2613         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2614
2615         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2616
2617         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2618
2619         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2620                 dev->stats.rx_errors++;
2621
2622                 /* libipw_rx failed, so it didn't free the SKB */
2623                 dev_kfree_skb_any(packet->skb);
2624                 packet->skb = NULL;
2625         }
2626
2627         /* We need to allocate a new SKB and attach it to the RDB. */
2628         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2629                 IPW_DEBUG_WARNING(
2630                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2631                         "adapter.\n", dev->name);
2632                 /* TODO: schedule adapter shutdown */
2633                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2634         }
2635
2636         /* Update the RDB entry */
2637         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2638 }
2639
2640 #endif
2641
2642 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2643 {
2644         struct ipw2100_status *status = &priv->status_queue.drv[i];
2645         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2646         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2647
2648         switch (frame_type) {
2649         case COMMAND_STATUS_VAL:
2650                 return (status->frame_size != sizeof(u->rx_data.command));
2651         case STATUS_CHANGE_VAL:
2652                 return (status->frame_size != sizeof(u->rx_data.status));
2653         case HOST_NOTIFICATION_VAL:
2654                 return (status->frame_size < sizeof(u->rx_data.notification));
2655         case P80211_DATA_VAL:
2656         case P8023_DATA_VAL:
2657 #ifdef CONFIG_IPW2100_MONITOR
2658                 return 0;
2659 #else
2660                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2661                 case IEEE80211_FTYPE_MGMT:
2662                 case IEEE80211_FTYPE_CTL:
2663                         return 0;
2664                 case IEEE80211_FTYPE_DATA:
2665                         return (status->frame_size >
2666                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2667                 }
2668 #endif
2669         }
2670
2671         return 1;
2672 }
2673
2674 /*
2675  * ipw2100 interrupts are disabled at this point, and the ISR
2676  * is the only code that calls this method.  So, we do not need
2677  * to play with any locks.
2678  *
2679  * RX Queue works as follows:
2680  *
2681  * Read index - firmware places packet in entry identified by the
2682  *              Read index and advances Read index.  In this manner,
2683  *              Read index will always point to the next packet to
2684  *              be filled--but not yet valid.
2685  *
2686  * Write index - driver fills this entry with an unused RBD entry.
2687  *               This entry has not filled by the firmware yet.
2688  *
2689  * In between the W and R indexes are the RBDs that have been received
2690  * but not yet processed.
2691  *
2692  * The process of handling packets will start at WRITE + 1 and advance
2693  * until it reaches the READ index.
2694  *
2695  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2696  *
2697  */
2698 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2699 {
2700         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2701         struct ipw2100_status_queue *sq = &priv->status_queue;
2702         struct ipw2100_rx_packet *packet;
2703         u16 frame_type;
2704         u32 r, w, i, s;
2705         struct ipw2100_rx *u;
2706         struct libipw_rx_stats stats = {
2707                 .mac_time = jiffies,
2708         };
2709
2710         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2711         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2712
2713         if (r >= rxq->entries) {
2714                 IPW_DEBUG_RX("exit - bad read index\n");
2715                 return;
2716         }
2717
2718         i = (rxq->next + 1) % rxq->entries;
2719         s = i;
2720         while (i != r) {
2721                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2722                    r, rxq->next, i); */
2723
2724                 packet = &priv->rx_buffers[i];
2725
2726                 /* Sync the DMA for the RX buffer so CPU is sure to get
2727                  * the correct values */
2728                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2729                                             sizeof(struct ipw2100_rx),
2730                                             PCI_DMA_FROMDEVICE);
2731
2732                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2733                         ipw2100_corruption_detected(priv, i);
2734                         goto increment;
2735                 }
2736
2737                 u = packet->rxp;
2738                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2739                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2740                 stats.len = sq->drv[i].frame_size;
2741
2742                 stats.mask = 0;
2743                 if (stats.rssi != 0)
2744                         stats.mask |= LIBIPW_STATMASK_RSSI;
2745                 stats.freq = LIBIPW_24GHZ_BAND;
2746
2747                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2748                              priv->net_dev->name, frame_types[frame_type],
2749                              stats.len);
2750
2751                 switch (frame_type) {
2752                 case COMMAND_STATUS_VAL:
2753                         /* Reset Rx watchdog */
2754                         isr_rx_complete_command(priv, &u->rx_data.command);
2755                         break;
2756
2757                 case STATUS_CHANGE_VAL:
2758                         isr_status_change(priv, u->rx_data.status);
2759                         break;
2760
2761                 case P80211_DATA_VAL:
2762                 case P8023_DATA_VAL:
2763 #ifdef CONFIG_IPW2100_MONITOR
2764                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2765                                 isr_rx_monitor(priv, i, &stats);
2766                                 break;
2767                         }
2768 #endif
2769                         if (stats.len < sizeof(struct libipw_hdr_3addr))
2770                                 break;
2771                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2772                         case IEEE80211_FTYPE_MGMT:
2773                                 libipw_rx_mgt(priv->ieee,
2774                                                  &u->rx_data.header, &stats);
2775                                 break;
2776
2777                         case IEEE80211_FTYPE_CTL:
2778                                 break;
2779
2780                         case IEEE80211_FTYPE_DATA:
2781                                 isr_rx(priv, i, &stats);
2782                                 break;
2783
2784                         }
2785                         break;
2786                 }
2787
2788               increment:
2789                 /* clear status field associated with this RBD */
2790                 rxq->drv[i].status.info.field = 0;
2791
2792                 i = (i + 1) % rxq->entries;
2793         }
2794
2795         if (i != s) {
2796                 /* backtrack one entry, wrapping to end if at 0 */
2797                 rxq->next = (i ? i : rxq->entries) - 1;
2798
2799                 write_register(priv->net_dev,
2800                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2801         }
2802 }
2803
2804 /*
2805  * __ipw2100_tx_process
2806  *
2807  * This routine will determine whether the next packet on
2808  * the fw_pend_list has been processed by the firmware yet.
2809  *
2810  * If not, then it does nothing and returns.
2811  *
2812  * If so, then it removes the item from the fw_pend_list, frees
2813  * any associated storage, and places the item back on the
2814  * free list of its source (either msg_free_list or tx_free_list)
2815  *
2816  * TX Queue works as follows:
2817  *
2818  * Read index - points to the next TBD that the firmware will
2819  *              process.  The firmware will read the data, and once
2820  *              done processing, it will advance the Read index.
2821  *
2822  * Write index - driver fills this entry with an constructed TBD
2823  *               entry.  The Write index is not advanced until the
2824  *               packet has been configured.
2825  *
2826  * In between the W and R indexes are the TBDs that have NOT been
2827  * processed.  Lagging behind the R index are packets that have
2828  * been processed but have not been freed by the driver.
2829  *
2830  * In order to free old storage, an internal index will be maintained
2831  * that points to the next packet to be freed.  When all used
2832  * packets have been freed, the oldest index will be the same as the
2833  * firmware's read index.
2834  *
2835  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2836  *
2837  * Because the TBD structure can not contain arbitrary data, the
2838  * driver must keep an internal queue of cached allocations such that
2839  * it can put that data back into the tx_free_list and msg_free_list
2840  * for use by future command and data packets.
2841  *
2842  */
2843 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2844 {
2845         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2846         struct ipw2100_bd *tbd;
2847         struct list_head *element;
2848         struct ipw2100_tx_packet *packet;
2849         int descriptors_used;
2850         int e, i;
2851         u32 r, w, frag_num = 0;
2852
2853         if (list_empty(&priv->fw_pend_list))
2854                 return 0;
2855
2856         element = priv->fw_pend_list.next;
2857
2858         packet = list_entry(element, struct ipw2100_tx_packet, list);
2859         tbd = &txq->drv[packet->index];
2860
2861         /* Determine how many TBD entries must be finished... */
2862         switch (packet->type) {
2863         case COMMAND:
2864                 /* COMMAND uses only one slot; don't advance */
2865                 descriptors_used = 1;
2866                 e = txq->oldest;
2867                 break;
2868
2869         case DATA:
2870                 /* DATA uses two slots; advance and loop position. */
2871                 descriptors_used = tbd->num_fragments;
2872                 frag_num = tbd->num_fragments - 1;
2873                 e = txq->oldest + frag_num;
2874                 e %= txq->entries;
2875                 break;
2876
2877         default:
2878                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2879                        priv->net_dev->name);
2880                 return 0;
2881         }
2882
2883         /* if the last TBD is not done by NIC yet, then packet is
2884          * not ready to be released.
2885          *
2886          */
2887         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2888                       &r);
2889         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2890                       &w);
2891         if (w != txq->next)
2892                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2893                        priv->net_dev->name);
2894
2895         /*
2896          * txq->next is the index of the last packet written txq->oldest is
2897          * the index of the r is the index of the next packet to be read by
2898          * firmware
2899          */
2900
2901         /*
2902          * Quick graphic to help you visualize the following
2903          * if / else statement
2904          *
2905          * ===>|                     s---->|===============
2906          *                               e>|
2907          * | a | b | c | d | e | f | g | h | i | j | k | l
2908          *       r---->|
2909          *               w
2910          *
2911          * w - updated by driver
2912          * r - updated by firmware
2913          * s - start of oldest BD entry (txq->oldest)
2914          * e - end of oldest BD entry
2915          *
2916          */
2917         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2918                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2919                 return 0;
2920         }
2921
2922         list_del(element);
2923         DEC_STAT(&priv->fw_pend_stat);
2924
2925 #ifdef CONFIG_IPW2100_DEBUG
2926         {
2927                 i = txq->oldest;
2928                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2929                              &txq->drv[i],
2930                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2931                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2932
2933                 if (packet->type == DATA) {
2934                         i = (i + 1) % txq->entries;
2935
2936                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2937                                      &txq->drv[i],
2938                                      (u32) (txq->nic + i *
2939                                             sizeof(struct ipw2100_bd)),
2940                                      (u32) txq->drv[i].host_addr,
2941                                      txq->drv[i].buf_length);
2942                 }
2943         }
2944 #endif
2945
2946         switch (packet->type) {
2947         case DATA:
2948                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2949                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2950                                "Expecting DATA TBD but pulled "
2951                                "something else: ids %d=%d.\n",
2952                                priv->net_dev->name, txq->oldest, packet->index);
2953
2954                 /* DATA packet; we have to unmap and free the SKB */
2955                 for (i = 0; i < frag_num; i++) {
2956                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2957
2958                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2959                                      (packet->index + 1 + i) % txq->entries,
2960                                      tbd->host_addr, tbd->buf_length);
2961
2962                         pci_unmap_single(priv->pci_dev,
2963                                          tbd->host_addr,
2964                                          tbd->buf_length, PCI_DMA_TODEVICE);
2965                 }
2966
2967                 libipw_txb_free(packet->info.d_struct.txb);
2968                 packet->info.d_struct.txb = NULL;
2969
2970                 list_add_tail(element, &priv->tx_free_list);
2971                 INC_STAT(&priv->tx_free_stat);
2972
2973                 /* We have a free slot in the Tx queue, so wake up the
2974                  * transmit layer if it is stopped. */
2975                 if (priv->status & STATUS_ASSOCIATED)
2976                         netif_wake_queue(priv->net_dev);
2977
2978                 /* A packet was processed by the hardware, so update the
2979                  * watchdog */
2980                 priv->net_dev->trans_start = jiffies;
2981
2982                 break;
2983
2984         case COMMAND:
2985                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2986                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2987                                "Expecting COMMAND TBD but pulled "
2988                                "something else: ids %d=%d.\n",
2989                                priv->net_dev->name, txq->oldest, packet->index);
2990
2991 #ifdef CONFIG_IPW2100_DEBUG
2992                 if (packet->info.c_struct.cmd->host_command_reg <
2993                     ARRAY_SIZE(command_types))
2994                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2995                                      command_types[packet->info.c_struct.cmd->
2996                                                    host_command_reg],
2997                                      packet->info.c_struct.cmd->
2998                                      host_command_reg,
2999                                      packet->info.c_struct.cmd->cmd_status_reg);
3000 #endif
3001
3002                 list_add_tail(element, &priv->msg_free_list);
3003                 INC_STAT(&priv->msg_free_stat);
3004                 break;
3005         }
3006
3007         /* advance oldest used TBD pointer to start of next entry */
3008         txq->oldest = (e + 1) % txq->entries;
3009         /* increase available TBDs number */
3010         txq->available += descriptors_used;
3011         SET_STAT(&priv->txq_stat, txq->available);
3012
3013         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
3014                      jiffies - packet->jiffy_start);
3015
3016         return (!list_empty(&priv->fw_pend_list));
3017 }
3018
3019 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3020 {
3021         int i = 0;
3022
3023         while (__ipw2100_tx_process(priv) && i < 200)
3024                 i++;
3025
3026         if (i == 200) {
3027                 printk(KERN_WARNING DRV_NAME ": "
3028                        "%s: Driver is running slow (%d iters).\n",
3029                        priv->net_dev->name, i);
3030         }
3031 }
3032
3033 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3034 {
3035         struct list_head *element;
3036         struct ipw2100_tx_packet *packet;
3037         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3038         struct ipw2100_bd *tbd;
3039         int next = txq->next;
3040
3041         while (!list_empty(&priv->msg_pend_list)) {
3042                 /* if there isn't enough space in TBD queue, then
3043                  * don't stuff a new one in.
3044                  * NOTE: 3 are needed as a command will take one,
3045                  *       and there is a minimum of 2 that must be
3046                  *       maintained between the r and w indexes
3047                  */
3048                 if (txq->available <= 3) {
3049                         IPW_DEBUG_TX("no room in tx_queue\n");
3050                         break;
3051                 }
3052
3053                 element = priv->msg_pend_list.next;
3054                 list_del(element);
3055                 DEC_STAT(&priv->msg_pend_stat);
3056
3057                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3058
3059                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3060                              &txq->drv[txq->next],
3061                              (u32) (txq->nic + txq->next *
3062                                       sizeof(struct ipw2100_bd)));
3063
3064                 packet->index = txq->next;
3065
3066                 tbd = &txq->drv[txq->next];
3067
3068                 /* initialize TBD */
3069                 tbd->host_addr = packet->info.c_struct.cmd_phys;
3070                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3071                 /* not marking number of fragments causes problems
3072                  * with f/w debug version */
3073                 tbd->num_fragments = 1;
3074                 tbd->status.info.field =
3075                     IPW_BD_STATUS_TX_FRAME_COMMAND |
3076                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3077
3078                 /* update TBD queue counters */
3079                 txq->next++;
3080                 txq->next %= txq->entries;
3081                 txq->available--;
3082                 DEC_STAT(&priv->txq_stat);
3083
3084                 list_add_tail(element, &priv->fw_pend_list);
3085                 INC_STAT(&priv->fw_pend_stat);
3086         }
3087
3088         if (txq->next != next) {
3089                 /* kick off the DMA by notifying firmware the
3090                  * write index has moved; make sure TBD stores are sync'd */
3091                 wmb();
3092                 write_register(priv->net_dev,
3093                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3094                                txq->next);
3095         }
3096 }
3097
3098 /*
3099  * ipw2100_tx_send_data
3100  *
3101  */
3102 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3103 {
3104         struct list_head *element;
3105         struct ipw2100_tx_packet *packet;
3106         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3107         struct ipw2100_bd *tbd;
3108         int next = txq->next;
3109         int i = 0;
3110         struct ipw2100_data_header *ipw_hdr;
3111         struct libipw_hdr_3addr *hdr;
3112
3113         while (!list_empty(&priv->tx_pend_list)) {
3114                 /* if there isn't enough space in TBD queue, then
3115                  * don't stuff a new one in.
3116                  * NOTE: 4 are needed as a data will take two,
3117                  *       and there is a minimum of 2 that must be
3118                  *       maintained between the r and w indexes
3119                  */
3120                 element = priv->tx_pend_list.next;
3121                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3122
3123                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3124                              IPW_MAX_BDS)) {
3125                         /* TODO: Support merging buffers if more than
3126                          * IPW_MAX_BDS are used */
3127                         IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3128                                        "Increase fragmentation level.\n",
3129                                        priv->net_dev->name);
3130                 }
3131
3132                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3133                         IPW_DEBUG_TX("no room in tx_queue\n");
3134                         break;
3135                 }
3136
3137                 list_del(element);
3138                 DEC_STAT(&priv->tx_pend_stat);
3139
3140                 tbd = &txq->drv[txq->next];
3141
3142                 packet->index = txq->next;
3143
3144                 ipw_hdr = packet->info.d_struct.data;
3145                 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3146                     fragments[0]->data;
3147
3148                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3149                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3150                            Addr3 = DA */
3151                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3152                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3153                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3154                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3155                            Addr3 = BSSID */
3156                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3157                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3158                 }
3159
3160                 ipw_hdr->host_command_reg = SEND;
3161                 ipw_hdr->host_command_reg1 = 0;
3162
3163                 /* For now we only support host based encryption */
3164                 ipw_hdr->needs_encryption = 0;
3165                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3166                 if (packet->info.d_struct.txb->nr_frags > 1)
3167                         ipw_hdr->fragment_size =
3168                             packet->info.d_struct.txb->frag_size -
3169                             LIBIPW_3ADDR_LEN;
3170                 else
3171                         ipw_hdr->fragment_size = 0;
3172
3173                 tbd->host_addr = packet->info.d_struct.data_phys;
3174                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3175                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3176                 tbd->status.info.field =
3177                     IPW_BD_STATUS_TX_FRAME_802_3 |
3178                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3179                 txq->next++;
3180                 txq->next %= txq->entries;
3181
3182                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3183                              packet->index, tbd->host_addr, tbd->buf_length);
3184 #ifdef CONFIG_IPW2100_DEBUG
3185                 if (packet->info.d_struct.txb->nr_frags > 1)
3186                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3187                                        packet->info.d_struct.txb->nr_frags);
3188 #endif
3189
3190                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3191                         tbd = &txq->drv[txq->next];
3192                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3193                                 tbd->status.info.field =
3194                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3195                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3196                         else
3197                                 tbd->status.info.field =
3198                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3199                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3200
3201                         tbd->buf_length = packet->info.d_struct.txb->
3202                             fragments[i]->len - LIBIPW_3ADDR_LEN;
3203
3204                         tbd->host_addr = pci_map_single(priv->pci_dev,
3205                                                         packet->info.d_struct.
3206                                                         txb->fragments[i]->
3207                                                         data +
3208                                                         LIBIPW_3ADDR_LEN,
3209                                                         tbd->buf_length,
3210                                                         PCI_DMA_TODEVICE);
3211
3212                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3213                                      txq->next, tbd->host_addr,
3214                                      tbd->buf_length);
3215
3216                         pci_dma_sync_single_for_device(priv->pci_dev,
3217                                                        tbd->host_addr,
3218                                                        tbd->buf_length,
3219                                                        PCI_DMA_TODEVICE);
3220
3221                         txq->next++;
3222                         txq->next %= txq->entries;
3223                 }
3224
3225                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3226                 SET_STAT(&priv->txq_stat, txq->available);
3227
3228                 list_add_tail(element, &priv->fw_pend_list);
3229                 INC_STAT(&priv->fw_pend_stat);
3230         }
3231
3232         if (txq->next != next) {
3233                 /* kick off the DMA by notifying firmware the
3234                  * write index has moved; make sure TBD stores are sync'd */
3235                 write_register(priv->net_dev,
3236                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3237                                txq->next);
3238         }
3239 }
3240
3241 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3242 {
3243         struct net_device *dev = priv->net_dev;
3244         unsigned long flags;
3245         u32 inta, tmp;
3246
3247         spin_lock_irqsave(&priv->low_lock, flags);
3248         ipw2100_disable_interrupts(priv);
3249
3250         read_register(dev, IPW_REG_INTA, &inta);
3251
3252         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3253                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3254
3255         priv->in_isr++;
3256         priv->interrupts++;
3257
3258         /* We do not loop and keep polling for more interrupts as this
3259          * is frowned upon and doesn't play nicely with other potentially
3260          * chained IRQs */
3261         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3262                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3263
3264         if (inta & IPW2100_INTA_FATAL_ERROR) {
3265                 printk(KERN_WARNING DRV_NAME
3266                        ": Fatal interrupt. Scheduling firmware restart.\n");
3267                 priv->inta_other++;
3268                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3269
3270                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3271                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3272                                priv->net_dev->name, priv->fatal_error);
3273
3274                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3275                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3276                                priv->net_dev->name, tmp);
3277
3278                 /* Wake up any sleeping jobs */
3279                 schedule_reset(priv);
3280         }
3281
3282         if (inta & IPW2100_INTA_PARITY_ERROR) {
3283                 printk(KERN_ERR DRV_NAME
3284                        ": ***** PARITY ERROR INTERRUPT !!!!\n");
3285                 priv->inta_other++;
3286                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3287         }
3288
3289         if (inta & IPW2100_INTA_RX_TRANSFER) {
3290                 IPW_DEBUG_ISR("RX interrupt\n");
3291
3292                 priv->rx_interrupts++;
3293
3294                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3295
3296                 __ipw2100_rx_process(priv);
3297                 __ipw2100_tx_complete(priv);
3298         }
3299
3300         if (inta & IPW2100_INTA_TX_TRANSFER) {
3301                 IPW_DEBUG_ISR("TX interrupt\n");
3302
3303                 priv->tx_interrupts++;
3304
3305                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3306
3307                 __ipw2100_tx_complete(priv);
3308                 ipw2100_tx_send_commands(priv);
3309                 ipw2100_tx_send_data(priv);
3310         }
3311
3312         if (inta & IPW2100_INTA_TX_COMPLETE) {
3313                 IPW_DEBUG_ISR("TX complete\n");
3314                 priv->inta_other++;
3315                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3316
3317                 __ipw2100_tx_complete(priv);
3318         }
3319
3320         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3321                 /* ipw2100_handle_event(dev); */
3322                 priv->inta_other++;
3323                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3324         }
3325
3326         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3327                 IPW_DEBUG_ISR("FW init done interrupt\n");
3328                 priv->inta_other++;
3329
3330                 read_register(dev, IPW_REG_INTA, &tmp);
3331                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3332                            IPW2100_INTA_PARITY_ERROR)) {
3333                         write_register(dev, IPW_REG_INTA,
3334                                        IPW2100_INTA_FATAL_ERROR |
3335                                        IPW2100_INTA_PARITY_ERROR);
3336                 }
3337
3338                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3339         }
3340
3341         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3342                 IPW_DEBUG_ISR("Status change interrupt\n");
3343                 priv->inta_other++;
3344                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3345         }
3346
3347         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3348                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3349                 priv->inta_other++;
3350                 write_register(dev, IPW_REG_INTA,
3351                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3352         }
3353
3354         priv->in_isr--;
3355         ipw2100_enable_interrupts(priv);
3356
3357         spin_unlock_irqrestore(&priv->low_lock, flags);
3358
3359         IPW_DEBUG_ISR("exit\n");
3360 }
3361
3362 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3363 {
3364         struct ipw2100_priv *priv = data;
3365         u32 inta, inta_mask;
3366
3367         if (!data)
3368                 return IRQ_NONE;
3369
3370         spin_lock(&priv->low_lock);
3371
3372         /* We check to see if we should be ignoring interrupts before
3373          * we touch the hardware.  During ucode load if we try and handle
3374          * an interrupt we can cause keyboard problems as well as cause
3375          * the ucode to fail to initialize */
3376         if (!(priv->status & STATUS_INT_ENABLED)) {
3377                 /* Shared IRQ */
3378                 goto none;
3379         }
3380
3381         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3382         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3383
3384         if (inta == 0xFFFFFFFF) {
3385                 /* Hardware disappeared */
3386                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3387                 goto none;
3388         }
3389
3390         inta &= IPW_INTERRUPT_MASK;
3391
3392         if (!(inta & inta_mask)) {
3393                 /* Shared interrupt */
3394                 goto none;
3395         }
3396
3397         /* We disable the hardware interrupt here just to prevent unneeded
3398          * calls to be made.  We disable this again within the actual
3399          * work tasklet, so if another part of the code re-enables the
3400          * interrupt, that is fine */
3401         ipw2100_disable_interrupts(priv);
3402
3403         tasklet_schedule(&priv->irq_tasklet);
3404         spin_unlock(&priv->low_lock);
3405
3406         return IRQ_HANDLED;
3407       none:
3408         spin_unlock(&priv->low_lock);
3409         return IRQ_NONE;
3410 }
3411
3412 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3413                               struct net_device *dev, int pri)
3414 {
3415         struct ipw2100_priv *priv = libipw_priv(dev);
3416         struct list_head *element;
3417         struct ipw2100_tx_packet *packet;
3418         unsigned long flags;
3419
3420         spin_lock_irqsave(&priv->low_lock, flags);
3421
3422         if (!(priv->status & STATUS_ASSOCIATED)) {
3423                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3424                 priv->net_dev->stats.tx_carrier_errors++;
3425                 netif_stop_queue(dev);
3426                 goto fail_unlock;
3427         }
3428
3429         if (list_empty(&priv->tx_free_list))
3430                 goto fail_unlock;
3431
3432         element = priv->tx_free_list.next;
3433         packet = list_entry(element, struct ipw2100_tx_packet, list);
3434
3435         packet->info.d_struct.txb = txb;
3436
3437         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3438         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3439
3440         packet->jiffy_start = jiffies;
3441
3442         list_del(element);
3443         DEC_STAT(&priv->tx_free_stat);
3444
3445         list_add_tail(element, &priv->tx_pend_list);
3446         INC_STAT(&priv->tx_pend_stat);
3447
3448         ipw2100_tx_send_data(priv);
3449
3450         spin_unlock_irqrestore(&priv->low_lock, flags);
3451         return NETDEV_TX_OK;
3452
3453 fail_unlock:
3454         netif_stop_queue(dev);
3455         spin_unlock_irqrestore(&priv->low_lock, flags);
3456         return NETDEV_TX_BUSY;
3457 }
3458
3459 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3460 {
3461         int i, j, err = -EINVAL;
3462         void *v;
3463         dma_addr_t p;
3464
3465         priv->msg_buffers =
3466             kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3467                     GFP_KERNEL);
3468         if (!priv->msg_buffers) {
3469                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3470                        "buffers.\n", priv->net_dev->name);
3471                 return -ENOMEM;
3472         }
3473
3474         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3475                 v = pci_alloc_consistent(priv->pci_dev,
3476                                          sizeof(struct ipw2100_cmd_header), &p);
3477                 if (!v) {
3478                         printk(KERN_ERR DRV_NAME ": "
3479                                "%s: PCI alloc failed for msg "
3480                                "buffers.\n", priv->net_dev->name);
3481                         err = -ENOMEM;
3482                         break;
3483                 }
3484
3485                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3486
3487                 priv->msg_buffers[i].type = COMMAND;
3488                 priv->msg_buffers[i].info.c_struct.cmd =
3489                     (struct ipw2100_cmd_header *)v;
3490                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3491         }
3492
3493         if (i == IPW_COMMAND_POOL_SIZE)
3494                 return 0;
3495
3496         for (j = 0; j < i; j++) {
3497                 pci_free_consistent(priv->pci_dev,
3498                                     sizeof(struct ipw2100_cmd_header),
3499                                     priv->msg_buffers[j].info.c_struct.cmd,
3500                                     priv->msg_buffers[j].info.c_struct.
3501                                     cmd_phys);
3502         }
3503
3504         kfree(priv->msg_buffers);
3505         priv->msg_buffers = NULL;
3506
3507         return err;
3508 }
3509
3510 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3511 {
3512         int i;
3513
3514         INIT_LIST_HEAD(&priv->msg_free_list);
3515         INIT_LIST_HEAD(&priv->msg_pend_list);
3516
3517         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3518                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3519         SET_STAT(&priv->msg_free_stat, i);
3520
3521         return 0;
3522 }
3523
3524 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3525 {
3526         int i;
3527
3528         if (!priv->msg_buffers)
3529                 return;
3530
3531         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3532                 pci_free_consistent(priv->pci_dev,
3533                                     sizeof(struct ipw2100_cmd_header),
3534                                     priv->msg_buffers[i].info.c_struct.cmd,
3535                                     priv->msg_buffers[i].info.c_struct.
3536                                     cmd_phys);
3537         }
3538
3539         kfree(priv->msg_buffers);
3540         priv->msg_buffers = NULL;
3541 }
3542
3543 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3544                         char *buf)
3545 {
3546         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3547         char *out = buf;
3548         int i, j;
3549         u32 val;
3550
3551         for (i = 0; i < 16; i++) {
3552                 out += sprintf(out, "[%08X] ", i * 16);
3553                 for (j = 0; j < 16; j += 4) {
3554                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3555                         out += sprintf(out, "%08X ", val);
3556                 }
3557                 out += sprintf(out, "\n");
3558         }
3559
3560         return out - buf;
3561 }
3562
3563 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3564
3565 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3566                         char *buf)
3567 {
3568         struct ipw2100_priv *p = dev_get_drvdata(d);
3569         return sprintf(buf, "0x%08x\n", (int)p->config);
3570 }
3571
3572 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3573
3574 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3575                            char *buf)
3576 {
3577         struct ipw2100_priv *p = dev_get_drvdata(d);
3578         return sprintf(buf, "0x%08x\n", (int)p->status);
3579 }
3580
3581 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3582
3583 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3584                                char *buf)
3585 {
3586         struct ipw2100_priv *p = dev_get_drvdata(d);
3587         return sprintf(buf, "0x%08x\n", (int)p->capability);
3588 }
3589
3590 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3591
3592 #define IPW2100_REG(x) { IPW_ ##x, #x }
3593 static const struct {
3594         u32 addr;
3595         const char *name;
3596 } hw_data[] = {
3597 IPW2100_REG(REG_GP_CNTRL),
3598             IPW2100_REG(REG_GPIO),
3599             IPW2100_REG(REG_INTA),
3600             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3601 #define IPW2100_NIC(x, s) { x, #x, s }
3602 static const struct {
3603         u32 addr;
3604         const char *name;
3605         size_t size;
3606 } nic_data[] = {
3607 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3608             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3609 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3610 static const struct {
3611         u8 index;
3612         const char *name;
3613         const char *desc;
3614 } ord_data[] = {
3615 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3616             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3617                                 "successful Host Tx's (MSDU)"),
3618             IPW2100_ORD(STAT_TX_DIR_DATA,
3619                                 "successful Directed Tx's (MSDU)"),
3620             IPW2100_ORD(STAT_TX_DIR_DATA1,
3621                                 "successful Directed Tx's (MSDU) @ 1MB"),
3622             IPW2100_ORD(STAT_TX_DIR_DATA2,
3623                                 "successful Directed Tx's (MSDU) @ 2MB"),
3624             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3625                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3626             IPW2100_ORD(STAT_TX_DIR_DATA11,
3627                                 "successful Directed Tx's (MSDU) @ 11MB"),
3628             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3629                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3630             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3631                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3632             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3633                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3634             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3635                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3636             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3637             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3638             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3639             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3640             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3641             IPW2100_ORD(STAT_TX_ASSN_RESP,
3642                                 "successful Association response Tx's"),
3643             IPW2100_ORD(STAT_TX_REASSN,
3644                                 "successful Reassociation Tx's"),
3645             IPW2100_ORD(STAT_TX_REASSN_RESP,
3646                                 "successful Reassociation response Tx's"),
3647             IPW2100_ORD(STAT_TX_PROBE,
3648                                 "probes successfully transmitted"),
3649             IPW2100_ORD(STAT_TX_PROBE_RESP,
3650                                 "probe responses successfully transmitted"),
3651             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3652             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3653             IPW2100_ORD(STAT_TX_DISASSN,
3654                                 "successful Disassociation TX"),
3655             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3656             IPW2100_ORD(STAT_TX_DEAUTH,
3657                                 "successful Deauthentication TX"),
3658             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3659                                 "Total successful Tx data bytes"),
3660             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3661             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3662             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3663             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3664             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3665             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3666             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3667                                 "times max tries in a hop failed"),
3668             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3669                                 "times disassociation failed"),
3670             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3671             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3672             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3673             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3674             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3675             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3676             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3677                                 "directed packets at 5.5MB"),
3678             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3679             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3680             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3681                                 "nondirected packets at 1MB"),
3682             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3683                                 "nondirected packets at 2MB"),
3684             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3685                                 "nondirected packets at 5.5MB"),
3686             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3687                                 "nondirected packets at 11MB"),
3688             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3689             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3690                                                                     "Rx CTS"),
3691             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3692             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3693             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3694             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3695             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3696             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3697             IPW2100_ORD(STAT_RX_REASSN_RESP,
3698                                 "Reassociation response Rx's"),
3699             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3700             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3701             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3702             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3703             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3704             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3705             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3706             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3707                                 "Total rx data bytes received"),
3708             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3709             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3710             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3711             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3712             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3713             IPW2100_ORD(STAT_RX_DUPLICATE1,
3714                                 "duplicate rx packets at 1MB"),
3715             IPW2100_ORD(STAT_RX_DUPLICATE2,
3716                                 "duplicate rx packets at 2MB"),
3717             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3718                                 "duplicate rx packets at 5.5MB"),
3719             IPW2100_ORD(STAT_RX_DUPLICATE11,
3720                                 "duplicate rx packets at 11MB"),
3721             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3722             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3723             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3724             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3725             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3726                                 "rx frames with invalid protocol"),
3727             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3728             IPW2100_ORD(STAT_RX_NO_BUFFER,
3729                                 "rx frames rejected due to no buffer"),
3730             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3731                                 "rx frames dropped due to missing fragment"),
3732             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3733                                 "rx frames dropped due to non-sequential fragment"),
3734             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3735                                 "rx frames dropped due to unmatched 1st frame"),
3736             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3737                                 "rx frames dropped due to uncompleted frame"),
3738             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3739                                 "ICV errors during decryption"),
3740             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3741             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3742             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3743                                 "poll response timeouts"),
3744             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3745                                 "timeouts waiting for last {broad,multi}cast pkt"),
3746             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3747             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3748             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3749             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3750             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3751                                 "current calculation of % missed beacons"),
3752             IPW2100_ORD(STAT_PERCENT_RETRIES,
3753                                 "current calculation of % missed tx retries"),
3754             IPW2100_ORD(ASSOCIATED_AP_PTR,
3755                                 "0 if not associated, else pointer to AP table entry"),
3756             IPW2100_ORD(AVAILABLE_AP_CNT,
3757                                 "AP's decsribed in the AP table"),
3758             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3759             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3760             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3761             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3762                                 "failures due to response fail"),
3763             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3764             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3765             IPW2100_ORD(STAT_ROAM_INHIBIT,
3766                                 "times roaming was inhibited due to activity"),
3767             IPW2100_ORD(RSSI_AT_ASSN,
3768                                 "RSSI of associated AP at time of association"),
3769             IPW2100_ORD(STAT_ASSN_CAUSE1,
3770                                 "reassociation: no probe response or TX on hop"),
3771             IPW2100_ORD(STAT_ASSN_CAUSE2,
3772                                 "reassociation: poor tx/rx quality"),
3773             IPW2100_ORD(STAT_ASSN_CAUSE3,
3774                                 "reassociation: tx/rx quality (excessive AP load"),
3775             IPW2100_ORD(STAT_ASSN_CAUSE4,
3776                                 "reassociation: AP RSSI level"),
3777             IPW2100_ORD(STAT_ASSN_CAUSE5,
3778                                 "reassociations due to load leveling"),
3779             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3780             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3781                                 "times authentication response failed"),
3782             IPW2100_ORD(STATION_TABLE_CNT,
3783                                 "entries in association table"),
3784             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3785             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3786             IPW2100_ORD(COUNTRY_CODE,
3787                                 "IEEE country code as recv'd from beacon"),
3788             IPW2100_ORD(COUNTRY_CHANNELS,
3789                                 "channels suported by country"),
3790             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3791             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3792             IPW2100_ORD(ANTENNA_DIVERSITY,
3793                                 "TRUE if antenna diversity is disabled"),
3794             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3795             IPW2100_ORD(OUR_FREQ,
3796                                 "current radio freq lower digits - channel ID"),
3797             IPW2100_ORD(RTC_TIME, "current RTC time"),
3798             IPW2100_ORD(PORT_TYPE, "operating mode"),
3799             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3800             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3801             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3802             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3803             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3804             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3805             IPW2100_ORD(CAPABILITIES,
3806                                 "Management frame capability field"),
3807             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3808             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3809             IPW2100_ORD(RTS_THRESHOLD,
3810                                 "Min packet length for RTS handshaking"),
3811             IPW2100_ORD(INT_MODE, "International mode"),
3812             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3813                                 "protocol frag threshold"),
3814             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3815                                 "EEPROM offset in SRAM"),
3816             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3817                                 "EEPROM size in SRAM"),
3818             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3819             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3820                                 "EEPROM IBSS 11b channel set"),
3821             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3822             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3823             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3824             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3825             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3826
3827 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3828                               char *buf)
3829 {
3830         int i;
3831         struct ipw2100_priv *priv = dev_get_drvdata(d);
3832         struct net_device *dev = priv->net_dev;
3833         char *out = buf;
3834         u32 val = 0;
3835
3836         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3837
3838         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3839                 read_register(dev, hw_data[i].addr, &val);
3840                 out += sprintf(out, "%30s [%08X] : %08X\n",
3841                                hw_data[i].name, hw_data[i].addr, val);
3842         }
3843
3844         return out - buf;
3845 }
3846
3847 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3848
3849 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3850                              char *buf)
3851 {
3852         struct ipw2100_priv *priv = dev_get_drvdata(d);
3853         struct net_device *dev = priv->net_dev;
3854         char *out = buf;
3855         int i;
3856
3857         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3858
3859         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3860                 u8 tmp8;
3861                 u16 tmp16;
3862                 u32 tmp32;
3863
3864                 switch (nic_data[i].size) {
3865                 case 1:
3866                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3867                         out += sprintf(out, "%30s [%08X] : %02X\n",
3868                                        nic_data[i].name, nic_data[i].addr,
3869                                        tmp8);
3870                         break;
3871                 case 2:
3872                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3873                         out += sprintf(out, "%30s [%08X] : %04X\n",
3874                                        nic_data[i].name, nic_data[i].addr,
3875                                        tmp16);
3876                         break;
3877                 case 4:
3878                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3879                         out += sprintf(out, "%30s [%08X] : %08X\n",
3880                                        nic_data[i].name, nic_data[i].addr,
3881                                        tmp32);
3882                         break;
3883                 }
3884         }
3885         return out - buf;
3886 }
3887
3888 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3889
3890 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3891                            char *buf)
3892 {
3893         struct ipw2100_priv *priv = dev_get_drvdata(d);
3894         struct net_device *dev = priv->net_dev;
3895         static unsigned long loop = 0;
3896         int len = 0;
3897         u32 buffer[4];
3898         int i;
3899         char line[81];
3900
3901         if (loop >= 0x30000)
3902                 loop = 0;
3903
3904         /* sysfs provides us PAGE_SIZE buffer */
3905         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3906
3907                 if (priv->snapshot[0])
3908                         for (i = 0; i < 4; i++)
3909                                 buffer[i] =
3910                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3911                 else
3912                         for (i = 0; i < 4; i++)
3913                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3914
3915                 if (priv->dump_raw)
3916                         len += sprintf(buf + len,
3917                                        "%c%c%c%c"
3918                                        "%c%c%c%c"
3919                                        "%c%c%c%c"
3920                                        "%c%c%c%c",
3921                                        ((u8 *) buffer)[0x0],
3922                                        ((u8 *) buffer)[0x1],
3923                                        ((u8 *) buffer)[0x2],
3924                                        ((u8 *) buffer)[0x3],
3925                                        ((u8 *) buffer)[0x4],
3926                                        ((u8 *) buffer)[0x5],
3927                                        ((u8 *) buffer)[0x6],
3928                                        ((u8 *) buffer)[0x7],
3929                                        ((u8 *) buffer)[0x8],
3930                                        ((u8 *) buffer)[0x9],
3931                                        ((u8 *) buffer)[0xa],
3932                                        ((u8 *) buffer)[0xb],
3933                                        ((u8 *) buffer)[0xc],
3934                                        ((u8 *) buffer)[0xd],
3935                                        ((u8 *) buffer)[0xe],
3936                                        ((u8 *) buffer)[0xf]);
3937                 else
3938                         len += sprintf(buf + len, "%s\n",
3939                                        snprint_line(line, sizeof(line),
3940                                                     (u8 *) buffer, 16, loop));
3941                 loop += 16;
3942         }
3943
3944         return len;
3945 }
3946
3947 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3948                             const char *buf, size_t count)
3949 {
3950         struct ipw2100_priv *priv = dev_get_drvdata(d);
3951         struct net_device *dev = priv->net_dev;
3952         const char *p = buf;
3953
3954         (void)dev;              /* kill unused-var warning for debug-only code */
3955
3956         if (count < 1)
3957                 return count;
3958
3959         if (p[0] == '1' ||
3960             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3961                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3962                                dev->name);
3963                 priv->dump_raw = 1;
3964
3965         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3966                                    tolower(p[1]) == 'f')) {
3967                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3968                                dev->name);
3969                 priv->dump_raw = 0;
3970
3971         } else if (tolower(p[0]) == 'r') {
3972                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3973                 ipw2100_snapshot_free(priv);
3974
3975         } else
3976                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3977                                "reset = clear memory snapshot\n", dev->name);
3978
3979         return count;
3980 }
3981
3982 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3983
3984 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3985                              char *buf)
3986 {
3987         struct ipw2100_priv *priv = dev_get_drvdata(d);
3988         u32 val = 0;
3989         int len = 0;
3990         u32 val_len;
3991         static int loop = 0;
3992
3993         if (priv->status & STATUS_RF_KILL_MASK)
3994                 return 0;
3995
3996         if (loop >= ARRAY_SIZE(ord_data))
3997                 loop = 0;
3998
3999         /* sysfs provides us PAGE_SIZE buffer */
4000         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
4001                 val_len = sizeof(u32);
4002
4003                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
4004                                         &val_len))
4005                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
4006                                        ord_data[loop].index,
4007                                        ord_data[loop].desc);
4008                 else
4009                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
4010                                        ord_data[loop].index, val,
4011                                        ord_data[loop].desc);
4012                 loop++;
4013         }
4014
4015         return len;
4016 }
4017
4018 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
4019
4020 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
4021                           char *buf)
4022 {
4023         struct ipw2100_priv *priv = dev_get_drvdata(d);
4024         char *out = buf;
4025
4026         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4027                        priv->interrupts, priv->tx_interrupts,
4028                        priv->rx_interrupts, priv->inta_other);
4029         out += sprintf(out, "firmware resets: %d\n", priv->resets);
4030         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4031 #ifdef CONFIG_IPW2100_DEBUG
4032         out += sprintf(out, "packet mismatch image: %s\n",
4033                        priv->snapshot[0] ? "YES" : "NO");
4034 #endif
4035
4036         return out - buf;
4037 }
4038
4039 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4040
4041 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4042 {
4043         int err;
4044
4045         if (mode == priv->ieee->iw_mode)
4046                 return 0;
4047
4048         err = ipw2100_disable_adapter(priv);
4049         if (err) {
4050                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4051                        priv->net_dev->name, err);
4052                 return err;
4053         }
4054
4055         switch (mode) {
4056         case IW_MODE_INFRA:
4057                 priv->net_dev->type = ARPHRD_ETHER;
4058                 break;
4059         case IW_MODE_ADHOC:
4060                 priv->net_dev->type = ARPHRD_ETHER;
4061                 break;
4062 #ifdef CONFIG_IPW2100_MONITOR
4063         case IW_MODE_MONITOR:
4064                 priv->last_mode = priv->ieee->iw_mode;
4065                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4066                 break;
4067 #endif                          /* CONFIG_IPW2100_MONITOR */
4068         }
4069
4070         priv->ieee->iw_mode = mode;
4071
4072 #ifdef CONFIG_PM
4073         /* Indicate ipw2100_download_firmware download firmware
4074          * from disk instead of memory. */
4075         ipw2100_firmware.version = 0;
4076 #endif
4077
4078         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
4079         priv->reset_backoff = 0;
4080         schedule_reset(priv);
4081
4082         return 0;
4083 }
4084
4085 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4086                               char *buf)
4087 {
4088         struct ipw2100_priv *priv = dev_get_drvdata(d);
4089         int len = 0;
4090
4091 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4092
4093         if (priv->status & STATUS_ASSOCIATED)
4094                 len += sprintf(buf + len, "connected: %lu\n",
4095                                get_seconds() - priv->connect_start);
4096         else
4097                 len += sprintf(buf + len, "not connected\n");
4098
4099         DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4100         DUMP_VAR(status, "08lx");
4101         DUMP_VAR(config, "08lx");
4102         DUMP_VAR(capability, "08lx");
4103
4104         len +=
4105             sprintf(buf + len, "last_rtc: %lu\n",
4106                     (unsigned long)priv->last_rtc);
4107
4108         DUMP_VAR(fatal_error, "d");
4109         DUMP_VAR(stop_hang_check, "d");
4110         DUMP_VAR(stop_rf_kill, "d");
4111         DUMP_VAR(messages_sent, "d");
4112
4113         DUMP_VAR(tx_pend_stat.value, "d");
4114         DUMP_VAR(tx_pend_stat.hi, "d");
4115
4116         DUMP_VAR(tx_free_stat.value, "d");
4117         DUMP_VAR(tx_free_stat.lo, "d");
4118
4119         DUMP_VAR(msg_free_stat.value, "d");
4120         DUMP_VAR(msg_free_stat.lo, "d");
4121
4122         DUMP_VAR(msg_pend_stat.value, "d");
4123         DUMP_VAR(msg_pend_stat.hi, "d");
4124
4125         DUMP_VAR(fw_pend_stat.value, "d");
4126         DUMP_VAR(fw_pend_stat.hi, "d");
4127
4128         DUMP_VAR(txq_stat.value, "d");
4129         DUMP_VAR(txq_stat.lo, "d");
4130
4131         DUMP_VAR(ieee->scans, "d");
4132         DUMP_VAR(reset_backoff, "d");
4133
4134         return len;
4135 }
4136
4137 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4138
4139 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4140                             char *buf)
4141 {
4142         struct ipw2100_priv *priv = dev_get_drvdata(d);
4143         char essid[IW_ESSID_MAX_SIZE + 1];
4144         u8 bssid[ETH_ALEN];
4145         u32 chan = 0;
4146         char *out = buf;
4147         unsigned int length;
4148         int ret;
4149
4150         if (priv->status & STATUS_RF_KILL_MASK)
4151                 return 0;
4152
4153         memset(essid, 0, sizeof(essid));
4154         memset(bssid, 0, sizeof(bssid));
4155
4156         length = IW_ESSID_MAX_SIZE;
4157         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4158         if (ret)
4159                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4160                                __LINE__);
4161
4162         length = sizeof(bssid);
4163         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4164                                   bssid, &length);
4165         if (ret)
4166                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4167                                __LINE__);
4168
4169         length = sizeof(u32);
4170         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4171         if (ret)
4172                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4173                                __LINE__);
4174
4175         out += sprintf(out, "ESSID: %s\n", essid);
4176         out += sprintf(out, "BSSID:   %pM\n", bssid);
4177         out += sprintf(out, "Channel: %d\n", chan);
4178
4179         return out - buf;
4180 }
4181
4182 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4183
4184 #ifdef CONFIG_IPW2100_DEBUG
4185 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4186 {
4187         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4188 }
4189
4190 static ssize_t store_debug_level(struct device_driver *d,
4191                                  const char *buf, size_t count)
4192 {
4193         char *p = (char *)buf;
4194         u32 val;
4195
4196         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4197                 p++;
4198                 if (p[0] == 'x' || p[0] == 'X')
4199                         p++;
4200                 val = simple_strtoul(p, &p, 16);
4201         } else
4202                 val = simple_strtoul(p, &p, 10);
4203         if (p == buf)
4204                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4205         else
4206                 ipw2100_debug_level = val;
4207
4208         return strnlen(buf, count);
4209 }
4210
4211 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4212                    store_debug_level);
4213 #endif                          /* CONFIG_IPW2100_DEBUG */
4214
4215 static ssize_t show_fatal_error(struct device *d,
4216                                 struct device_attribute *attr, char *buf)
4217 {
4218         struct ipw2100_priv *priv = dev_get_drvdata(d);
4219         char *out = buf;
4220         int i;
4221
4222         if (priv->fatal_error)
4223                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4224         else
4225                 out += sprintf(out, "0\n");
4226
4227         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4228                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4229                                         IPW2100_ERROR_QUEUE])
4230                         continue;
4231
4232                 out += sprintf(out, "%d. 0x%08X\n", i,
4233                                priv->fatal_errors[(priv->fatal_index - i) %
4234                                                   IPW2100_ERROR_QUEUE]);
4235         }
4236
4237         return out - buf;
4238 }
4239
4240 static ssize_t store_fatal_error(struct device *d,
4241                                  struct device_attribute *attr, const char *buf,
4242                                  size_t count)
4243 {
4244         struct ipw2100_priv *priv = dev_get_drvdata(d);
4245         schedule_reset(priv);
4246         return count;
4247 }
4248
4249 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4250                    store_fatal_error);
4251
4252 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4253                              char *buf)
4254 {
4255         struct ipw2100_priv *priv = dev_get_drvdata(d);
4256         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4257 }
4258
4259 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4260                               const char *buf, size_t count)
4261 {
4262         struct ipw2100_priv *priv = dev_get_drvdata(d);
4263         struct net_device *dev = priv->net_dev;
4264         char buffer[] = "00000000";
4265         unsigned long len =
4266             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4267         unsigned long val;
4268         char *p = buffer;
4269
4270         (void)dev;              /* kill unused-var warning for debug-only code */
4271
4272         IPW_DEBUG_INFO("enter\n");
4273
4274         strncpy(buffer, buf, len);
4275         buffer[len] = 0;
4276
4277         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4278                 p++;
4279                 if (p[0] == 'x' || p[0] == 'X')
4280                         p++;
4281                 val = simple_strtoul(p, &p, 16);
4282         } else
4283                 val = simple_strtoul(p, &p, 10);
4284         if (p == buffer) {
4285                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4286         } else {
4287                 priv->ieee->scan_age = val;
4288                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4289         }
4290
4291         IPW_DEBUG_INFO("exit\n");
4292         return len;
4293 }
4294
4295 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4296
4297 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4298                             char *buf)
4299 {
4300         /* 0 - RF kill not enabled
4301            1 - SW based RF kill active (sysfs)
4302            2 - HW based RF kill active
4303            3 - Both HW and SW baed RF kill active */
4304         struct ipw2100_priv *priv = dev_get_drvdata(d);
4305         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4306             (rf_kill_active(priv) ? 0x2 : 0x0);
4307         return sprintf(buf, "%i\n", val);
4308 }
4309
4310 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4311 {
4312         if ((disable_radio ? 1 : 0) ==
4313             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4314                 return 0;
4315
4316         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4317                           disable_radio ? "OFF" : "ON");
4318
4319         mutex_lock(&priv->action_mutex);
4320
4321         if (disable_radio) {
4322                 priv->status |= STATUS_RF_KILL_SW;
4323                 ipw2100_down(priv);
4324         } else {
4325                 priv->status &= ~STATUS_RF_KILL_SW;
4326                 if (rf_kill_active(priv)) {
4327                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4328                                           "disabled by HW switch\n");
4329                         /* Make sure the RF_KILL check timer is running */
4330                         priv->stop_rf_kill = 0;
4331                         cancel_delayed_work(&priv->rf_kill);
4332                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
4333                                            round_jiffies_relative(HZ));
4334                 } else
4335                         schedule_reset(priv);
4336         }
4337
4338         mutex_unlock(&priv->action_mutex);
4339         return 1;
4340 }
4341
4342 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4343                              const char *buf, size_t count)
4344 {
4345         struct ipw2100_priv *priv = dev_get_drvdata(d);
4346         ipw_radio_kill_sw(priv, buf[0] == '1');
4347         return count;
4348 }
4349
4350 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4351
4352 static struct attribute *ipw2100_sysfs_entries[] = {
4353         &dev_attr_hardware.attr,
4354         &dev_attr_registers.attr,
4355         &dev_attr_ordinals.attr,
4356         &dev_attr_pci.attr,
4357         &dev_attr_stats.attr,
4358         &dev_attr_internals.attr,
4359         &dev_attr_bssinfo.attr,
4360         &dev_attr_memory.attr,
4361         &dev_attr_scan_age.attr,
4362         &dev_attr_fatal_error.attr,
4363         &dev_attr_rf_kill.attr,
4364         &dev_attr_cfg.attr,
4365         &dev_attr_status.attr,
4366         &dev_attr_capability.attr,
4367         NULL,
4368 };
4369
4370 static struct attribute_group ipw2100_attribute_group = {
4371         .attrs = ipw2100_sysfs_entries,
4372 };
4373
4374 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4375 {
4376         struct ipw2100_status_queue *q = &priv->status_queue;
4377
4378         IPW_DEBUG_INFO("enter\n");
4379
4380         q->size = entries * sizeof(struct ipw2100_status);
4381         q->drv =
4382             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4383                                                           q->size, &q->nic);
4384         if (!q->drv) {
4385                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4386                 return -ENOMEM;
4387         }
4388
4389         memset(q->drv, 0, q->size);
4390
4391         IPW_DEBUG_INFO("exit\n");
4392
4393         return 0;
4394 }
4395
4396 static void status_queue_free(struct ipw2100_priv *priv)
4397 {
4398         IPW_DEBUG_INFO("enter\n");
4399
4400         if (priv->status_queue.drv) {
4401                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4402                                     priv->status_queue.drv,
4403                                     priv->status_queue.nic);
4404                 priv->status_queue.drv = NULL;
4405         }
4406
4407         IPW_DEBUG_INFO("exit\n");
4408 }
4409
4410 static int bd_queue_allocate(struct ipw2100_priv *priv,
4411                              struct ipw2100_bd_queue *q, int entries)
4412 {
4413         IPW_DEBUG_INFO("enter\n");
4414
4415         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4416
4417         q->entries = entries;
4418         q->size = entries * sizeof(struct ipw2100_bd);
4419         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4420         if (!q->drv) {
4421                 IPW_DEBUG_INFO
4422                     ("can't allocate shared memory for buffer descriptors\n");
4423                 return -ENOMEM;
4424         }
4425         memset(q->drv, 0, q->size);
4426
4427         IPW_DEBUG_INFO("exit\n");
4428
4429         return 0;
4430 }
4431
4432 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4433 {
4434         IPW_DEBUG_INFO("enter\n");
4435
4436         if (!q)
4437                 return;
4438
4439         if (q->drv) {
4440                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4441                 q->drv = NULL;
4442         }
4443
4444         IPW_DEBUG_INFO("exit\n");
4445 }
4446
4447 static void bd_queue_initialize(struct ipw2100_priv *priv,
4448                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4449                                 u32 r, u32 w)
4450 {
4451         IPW_DEBUG_INFO("enter\n");
4452
4453         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4454                        (u32) q->nic);
4455
4456         write_register(priv->net_dev, base, q->nic);
4457         write_register(priv->net_dev, size, q->entries);
4458         write_register(priv->net_dev, r, q->oldest);
4459         write_register(priv->net_dev, w, q->next);
4460
4461         IPW_DEBUG_INFO("exit\n");
4462 }
4463
4464 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4465 {
4466         if (priv->workqueue) {
4467                 priv->stop_rf_kill = 1;
4468                 priv->stop_hang_check = 1;
4469                 cancel_delayed_work(&priv->reset_work);
4470                 cancel_delayed_work(&priv->security_work);
4471                 cancel_delayed_work(&priv->wx_event_work);
4472                 cancel_delayed_work(&priv->hang_check);
4473                 cancel_delayed_work(&priv->rf_kill);
4474                 cancel_delayed_work(&priv->scan_event_later);
4475                 destroy_workqueue(priv->workqueue);
4476                 priv->workqueue = NULL;
4477         }
4478 }
4479
4480 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4481 {
4482         int i, j, err = -EINVAL;
4483         void *v;
4484         dma_addr_t p;
4485
4486         IPW_DEBUG_INFO("enter\n");
4487
4488         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4489         if (err) {
4490                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4491                                 priv->net_dev->name);
4492                 return err;
4493         }
4494
4495         priv->tx_buffers =
4496             kmalloc(TX_PENDED_QUEUE_LENGTH * sizeof(struct ipw2100_tx_packet),
4497                     GFP_ATOMIC);
4498         if (!priv->tx_buffers) {
4499                 printk(KERN_ERR DRV_NAME
4500                        ": %s: alloc failed form tx buffers.\n",
4501                        priv->net_dev->name);
4502                 bd_queue_free(priv, &priv->tx_queue);
4503                 return -ENOMEM;
4504         }
4505
4506         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4507                 v = pci_alloc_consistent(priv->pci_dev,
4508                                          sizeof(struct ipw2100_data_header),
4509                                          &p);
4510                 if (!v) {
4511                         printk(KERN_ERR DRV_NAME
4512                                ": %s: PCI alloc failed for tx " "buffers.\n",
4513                                priv->net_dev->name);
4514                         err = -ENOMEM;
4515                         break;
4516                 }
4517
4518                 priv->tx_buffers[i].type = DATA;
4519                 priv->tx_buffers[i].info.d_struct.data =
4520                     (struct ipw2100_data_header *)v;
4521                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4522                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4523         }
4524
4525         if (i == TX_PENDED_QUEUE_LENGTH)
4526                 return 0;
4527
4528         for (j = 0; j < i; j++) {
4529                 pci_free_consistent(priv->pci_dev,
4530                                     sizeof(struct ipw2100_data_header),
4531                                     priv->tx_buffers[j].info.d_struct.data,
4532                                     priv->tx_buffers[j].info.d_struct.
4533                                     data_phys);
4534         }
4535
4536         kfree(priv->tx_buffers);
4537         priv->tx_buffers = NULL;
4538
4539         return err;
4540 }
4541
4542 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4543 {
4544         int i;
4545
4546         IPW_DEBUG_INFO("enter\n");
4547
4548         /*
4549          * reinitialize packet info lists
4550          */
4551         INIT_LIST_HEAD(&priv->fw_pend_list);
4552         INIT_STAT(&priv->fw_pend_stat);
4553
4554         /*
4555          * reinitialize lists
4556          */
4557         INIT_LIST_HEAD(&priv->tx_pend_list);
4558         INIT_LIST_HEAD(&priv->tx_free_list);
4559         INIT_STAT(&priv->tx_pend_stat);
4560         INIT_STAT(&priv->tx_free_stat);
4561
4562         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4563                 /* We simply drop any SKBs that have been queued for
4564                  * transmit */
4565                 if (priv->tx_buffers[i].info.d_struct.txb) {
4566                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4567                                            txb);
4568                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4569                 }
4570
4571                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4572         }
4573
4574         SET_STAT(&priv->tx_free_stat, i);
4575
4576         priv->tx_queue.oldest = 0;
4577         priv->tx_queue.available = priv->tx_queue.entries;
4578         priv->tx_queue.next = 0;
4579         INIT_STAT(&priv->txq_stat);
4580         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4581
4582         bd_queue_initialize(priv, &priv->tx_queue,
4583                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4584                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4585                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4586                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4587
4588         IPW_DEBUG_INFO("exit\n");
4589
4590 }
4591
4592 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4593 {
4594         int i;
4595
4596         IPW_DEBUG_INFO("enter\n");
4597
4598         bd_queue_free(priv, &priv->tx_queue);
4599
4600         if (!priv->tx_buffers)
4601                 return;
4602
4603         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4604                 if (priv->tx_buffers[i].info.d_struct.txb) {
4605                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4606                                            txb);
4607                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4608                 }
4609                 if (priv->tx_buffers[i].info.d_struct.data)
4610                         pci_free_consistent(priv->pci_dev,
4611                                             sizeof(struct ipw2100_data_header),
4612                                             priv->tx_buffers[i].info.d_struct.
4613                                             data,
4614                                             priv->tx_buffers[i].info.d_struct.
4615                                             data_phys);
4616         }
4617
4618         kfree(priv->tx_buffers);
4619         priv->tx_buffers = NULL;
4620
4621         IPW_DEBUG_INFO("exit\n");
4622 }
4623
4624 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4625 {
4626         int i, j, err = -EINVAL;
4627
4628         IPW_DEBUG_INFO("enter\n");
4629
4630         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4631         if (err) {
4632                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4633                 return err;
4634         }
4635
4636         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4637         if (err) {
4638                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4639                 bd_queue_free(priv, &priv->rx_queue);
4640                 return err;
4641         }
4642
4643         /*
4644          * allocate packets
4645          */
4646         priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4647                                    sizeof(struct ipw2100_rx_packet),
4648                                    GFP_KERNEL);
4649         if (!priv->rx_buffers) {
4650                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4651
4652                 bd_queue_free(priv, &priv->rx_queue);
4653
4654                 status_queue_free(priv);
4655
4656                 return -ENOMEM;
4657         }
4658
4659         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4660                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4661
4662                 err = ipw2100_alloc_skb(priv, packet);
4663                 if (unlikely(err)) {
4664                         err = -ENOMEM;
4665                         break;
4666                 }
4667
4668                 /* The BD holds the cache aligned address */
4669                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4670                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4671                 priv->status_queue.drv[i].status_fields = 0;
4672         }
4673
4674         if (i == RX_QUEUE_LENGTH)
4675                 return 0;
4676
4677         for (j = 0; j < i; j++) {
4678                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4679                                  sizeof(struct ipw2100_rx_packet),
4680                                  PCI_DMA_FROMDEVICE);
4681                 dev_kfree_skb(priv->rx_buffers[j].skb);
4682         }
4683
4684         kfree(priv->rx_buffers);
4685         priv->rx_buffers = NULL;
4686
4687         bd_queue_free(priv, &priv->rx_queue);
4688
4689         status_queue_free(priv);
4690
4691         return err;
4692 }
4693
4694 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4695 {
4696         IPW_DEBUG_INFO("enter\n");
4697
4698         priv->rx_queue.oldest = 0;
4699         priv->rx_queue.available = priv->rx_queue.entries - 1;
4700         priv->rx_queue.next = priv->rx_queue.entries - 1;
4701
4702         INIT_STAT(&priv->rxq_stat);
4703         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4704
4705         bd_queue_initialize(priv, &priv->rx_queue,
4706                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4707                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4708                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4709                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4710
4711         /* set up the status queue */
4712         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4713                        priv->status_queue.nic);
4714
4715         IPW_DEBUG_INFO("exit\n");
4716 }
4717
4718 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4719 {
4720         int i;
4721
4722         IPW_DEBUG_INFO("enter\n");
4723
4724         bd_queue_free(priv, &priv->rx_queue);
4725         status_queue_free(priv);
4726
4727         if (!priv->rx_buffers)
4728                 return;
4729
4730         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4731                 if (priv->rx_buffers[i].rxp) {
4732                         pci_unmap_single(priv->pci_dev,
4733                                          priv->rx_buffers[i].dma_addr,
4734                                          sizeof(struct ipw2100_rx),
4735                                          PCI_DMA_FROMDEVICE);
4736                         dev_kfree_skb(priv->rx_buffers[i].skb);
4737                 }
4738         }
4739
4740         kfree(priv->rx_buffers);
4741         priv->rx_buffers = NULL;
4742
4743         IPW_DEBUG_INFO("exit\n");
4744 }
4745
4746 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4747 {
4748         u32 length = ETH_ALEN;
4749         u8 addr[ETH_ALEN];
4750
4751         int err;
4752
4753         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4754         if (err) {
4755                 IPW_DEBUG_INFO("MAC address read failed\n");
4756                 return -EIO;
4757         }
4758
4759         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4760         IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4761
4762         return 0;
4763 }
4764
4765 /********************************************************************
4766  *
4767  * Firmware Commands
4768  *
4769  ********************************************************************/
4770
4771 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4772 {
4773         struct host_command cmd = {
4774                 .host_command = ADAPTER_ADDRESS,
4775                 .host_command_sequence = 0,
4776                 .host_command_length = ETH_ALEN
4777         };
4778         int err;
4779
4780         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4781
4782         IPW_DEBUG_INFO("enter\n");
4783
4784         if (priv->config & CFG_CUSTOM_MAC) {
4785                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4786                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4787         } else
4788                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4789                        ETH_ALEN);
4790
4791         err = ipw2100_hw_send_command(priv, &cmd);
4792
4793         IPW_DEBUG_INFO("exit\n");
4794         return err;
4795 }
4796
4797 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4798                                  int batch_mode)
4799 {
4800         struct host_command cmd = {
4801                 .host_command = PORT_TYPE,
4802                 .host_command_sequence = 0,
4803                 .host_command_length = sizeof(u32)
4804         };
4805         int err;
4806
4807         switch (port_type) {
4808         case IW_MODE_INFRA:
4809                 cmd.host_command_parameters[0] = IPW_BSS;
4810                 break;
4811         case IW_MODE_ADHOC:
4812                 cmd.host_command_parameters[0] = IPW_IBSS;
4813                 break;
4814         }
4815
4816         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4817                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4818
4819         if (!batch_mode) {
4820                 err = ipw2100_disable_adapter(priv);
4821                 if (err) {
4822                         printk(KERN_ERR DRV_NAME
4823                                ": %s: Could not disable adapter %d\n",
4824                                priv->net_dev->name, err);
4825                         return err;
4826                 }
4827         }
4828
4829         /* send cmd to firmware */
4830         err = ipw2100_hw_send_command(priv, &cmd);
4831
4832         if (!batch_mode)
4833                 ipw2100_enable_adapter(priv);
4834
4835         return err;
4836 }
4837
4838 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4839                                int batch_mode)
4840 {
4841         struct host_command cmd = {
4842                 .host_command = CHANNEL,
4843                 .host_command_sequence = 0,
4844                 .host_command_length = sizeof(u32)
4845         };
4846         int err;
4847
4848         cmd.host_command_parameters[0] = channel;
4849
4850         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4851
4852         /* If BSS then we don't support channel selection */
4853         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4854                 return 0;
4855
4856         if ((channel != 0) &&
4857             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4858                 return -EINVAL;
4859
4860         if (!batch_mode) {
4861                 err = ipw2100_disable_adapter(priv);
4862                 if (err)
4863                         return err;
4864         }
4865
4866         err = ipw2100_hw_send_command(priv, &cmd);
4867         if (err) {
4868                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4869                 return err;
4870         }
4871
4872         if (channel)
4873                 priv->config |= CFG_STATIC_CHANNEL;
4874         else
4875                 priv->config &= ~CFG_STATIC_CHANNEL;
4876
4877         priv->channel = channel;
4878
4879         if (!batch_mode) {
4880                 err = ipw2100_enable_adapter(priv);
4881                 if (err)
4882                         return err;
4883         }
4884
4885         return 0;
4886 }
4887
4888 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4889 {
4890         struct host_command cmd = {
4891                 .host_command = SYSTEM_CONFIG,
4892                 .host_command_sequence = 0,
4893                 .host_command_length = 12,
4894         };
4895         u32 ibss_mask, len = sizeof(u32);
4896         int err;
4897
4898         /* Set system configuration */
4899
4900         if (!batch_mode) {
4901                 err = ipw2100_disable_adapter(priv);
4902                 if (err)
4903                         return err;
4904         }
4905
4906         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4907                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4908
4909         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4910             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4911
4912         if (!(priv->config & CFG_LONG_PREAMBLE))
4913                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4914
4915         err = ipw2100_get_ordinal(priv,
4916                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4917                                   &ibss_mask, &len);
4918         if (err)
4919                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4920
4921         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4922         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4923
4924         /* 11b only */
4925         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4926
4927         err = ipw2100_hw_send_command(priv, &cmd);
4928         if (err)
4929                 return err;
4930
4931 /* If IPv6 is configured in the kernel then we don't want to filter out all
4932  * of the multicast packets as IPv6 needs some. */
4933 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4934         cmd.host_command = ADD_MULTICAST;
4935         cmd.host_command_sequence = 0;
4936         cmd.host_command_length = 0;
4937
4938         ipw2100_hw_send_command(priv, &cmd);
4939 #endif
4940         if (!batch_mode) {
4941                 err = ipw2100_enable_adapter(priv);
4942                 if (err)
4943                         return err;
4944         }
4945
4946         return 0;
4947 }
4948
4949 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4950                                 int batch_mode)
4951 {
4952         struct host_command cmd = {
4953                 .host_command = BASIC_TX_RATES,
4954                 .host_command_sequence = 0,
4955                 .host_command_length = 4
4956         };
4957         int err;
4958
4959         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4960
4961         if (!batch_mode) {
4962                 err = ipw2100_disable_adapter(priv);
4963                 if (err)
4964                         return err;
4965         }
4966
4967         /* Set BASIC TX Rate first */
4968         ipw2100_hw_send_command(priv, &cmd);
4969
4970         /* Set TX Rate */
4971         cmd.host_command = TX_RATES;
4972         ipw2100_hw_send_command(priv, &cmd);
4973
4974         /* Set MSDU TX Rate */
4975         cmd.host_command = MSDU_TX_RATES;
4976         ipw2100_hw_send_command(priv, &cmd);
4977
4978         if (!batch_mode) {
4979                 err = ipw2100_enable_adapter(priv);
4980                 if (err)
4981                         return err;
4982         }
4983
4984         priv->tx_rates = rate;
4985
4986         return 0;
4987 }
4988
4989 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4990 {
4991         struct host_command cmd = {
4992                 .host_command = POWER_MODE,
4993                 .host_command_sequence = 0,
4994                 .host_command_length = 4
4995         };
4996         int err;
4997
4998         cmd.host_command_parameters[0] = power_level;
4999
5000         err = ipw2100_hw_send_command(priv, &cmd);
5001         if (err)
5002                 return err;
5003
5004         if (power_level == IPW_POWER_MODE_CAM)
5005                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
5006         else
5007                 priv->power_mode = IPW_POWER_ENABLED | power_level;
5008
5009 #ifdef IPW2100_TX_POWER
5010         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
5011                 /* Set beacon interval */
5012                 cmd.host_command = TX_POWER_INDEX;
5013                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
5014
5015                 err = ipw2100_hw_send_command(priv, &cmd);
5016                 if (err)
5017                         return err;
5018         }
5019 #endif
5020
5021         return 0;
5022 }
5023
5024 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
5025 {
5026         struct host_command cmd = {
5027                 .host_command = RTS_THRESHOLD,
5028                 .host_command_sequence = 0,
5029                 .host_command_length = 4
5030         };
5031         int err;
5032
5033         if (threshold & RTS_DISABLED)
5034                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
5035         else
5036                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
5037
5038         err = ipw2100_hw_send_command(priv, &cmd);
5039         if (err)
5040                 return err;
5041
5042         priv->rts_threshold = threshold;
5043
5044         return 0;
5045 }
5046
5047 #if 0
5048 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
5049                                         u32 threshold, int batch_mode)
5050 {
5051         struct host_command cmd = {
5052                 .host_command = FRAG_THRESHOLD,
5053                 .host_command_sequence = 0,
5054                 .host_command_length = 4,
5055                 .host_command_parameters[0] = 0,
5056         };
5057         int err;
5058
5059         if (!batch_mode) {
5060                 err = ipw2100_disable_adapter(priv);
5061                 if (err)
5062                         return err;
5063         }
5064
5065         if (threshold == 0)
5066                 threshold = DEFAULT_FRAG_THRESHOLD;
5067         else {
5068                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5069                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5070         }
5071
5072         cmd.host_command_parameters[0] = threshold;
5073
5074         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5075
5076         err = ipw2100_hw_send_command(priv, &cmd);
5077
5078         if (!batch_mode)
5079                 ipw2100_enable_adapter(priv);
5080
5081         if (!err)
5082                 priv->frag_threshold = threshold;
5083
5084         return err;
5085 }
5086 #endif
5087
5088 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5089 {
5090         struct host_command cmd = {
5091                 .host_command = SHORT_RETRY_LIMIT,
5092                 .host_command_sequence = 0,
5093                 .host_command_length = 4
5094         };
5095         int err;
5096
5097         cmd.host_command_parameters[0] = retry;
5098
5099         err = ipw2100_hw_send_command(priv, &cmd);
5100         if (err)
5101                 return err;
5102
5103         priv->short_retry_limit = retry;
5104
5105         return 0;
5106 }
5107
5108 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5109 {
5110         struct host_command cmd = {
5111                 .host_command = LONG_RETRY_LIMIT,
5112                 .host_command_sequence = 0,
5113                 .host_command_length = 4
5114         };
5115         int err;
5116
5117         cmd.host_command_parameters[0] = retry;
5118
5119         err = ipw2100_hw_send_command(priv, &cmd);
5120         if (err)
5121                 return err;
5122
5123         priv->long_retry_limit = retry;
5124
5125         return 0;
5126 }
5127
5128 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5129                                        int batch_mode)
5130 {
5131         struct host_command cmd = {
5132                 .host_command = MANDATORY_BSSID,
5133                 .host_command_sequence = 0,
5134                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5135         };
5136         int err;
5137
5138 #ifdef CONFIG_IPW2100_DEBUG
5139         if (bssid != NULL)
5140                 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5141         else
5142                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5143 #endif
5144         /* if BSSID is empty then we disable mandatory bssid mode */
5145         if (bssid != NULL)
5146                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5147
5148         if (!batch_mode) {
5149                 err = ipw2100_disable_adapter(priv);
5150                 if (err)
5151                         return err;
5152         }
5153
5154         err = ipw2100_hw_send_command(priv, &cmd);
5155
5156         if (!batch_mode)
5157                 ipw2100_enable_adapter(priv);
5158
5159         return err;
5160 }
5161
5162 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5163 {
5164         struct host_command cmd = {
5165                 .host_command = DISASSOCIATION_BSSID,
5166                 .host_command_sequence = 0,
5167                 .host_command_length = ETH_ALEN
5168         };
5169         int err;
5170         int len;
5171
5172         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5173
5174         len = ETH_ALEN;
5175         /* The Firmware currently ignores the BSSID and just disassociates from
5176          * the currently associated AP -- but in the off chance that a future
5177          * firmware does use the BSSID provided here, we go ahead and try and
5178          * set it to the currently associated AP's BSSID */
5179         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5180
5181         err = ipw2100_hw_send_command(priv, &cmd);
5182
5183         return err;
5184 }
5185
5186 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5187                               struct ipw2100_wpa_assoc_frame *, int)
5188     __attribute__ ((unused));
5189
5190 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5191                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5192                               int batch_mode)
5193 {
5194         struct host_command cmd = {
5195                 .host_command = SET_WPA_IE,
5196                 .host_command_sequence = 0,
5197                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5198         };
5199         int err;
5200
5201         IPW_DEBUG_HC("SET_WPA_IE\n");
5202
5203         if (!batch_mode) {
5204                 err = ipw2100_disable_adapter(priv);
5205                 if (err)
5206                         return err;
5207         }
5208
5209         memcpy(cmd.host_command_parameters, wpa_frame,
5210                sizeof(struct ipw2100_wpa_assoc_frame));
5211
5212         err = ipw2100_hw_send_command(priv, &cmd);
5213
5214         if (!batch_mode) {
5215                 if (ipw2100_enable_adapter(priv))
5216                         err = -EIO;
5217         }
5218
5219         return err;
5220 }
5221
5222 struct security_info_params {
5223         u32 allowed_ciphers;
5224         u16 version;
5225         u8 auth_mode;
5226         u8 replay_counters_number;
5227         u8 unicast_using_group;
5228 } __packed;
5229
5230 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5231                                             int auth_mode,
5232                                             int security_level,
5233                                             int unicast_using_group,
5234                                             int batch_mode)
5235 {
5236         struct host_command cmd = {
5237                 .host_command = SET_SECURITY_INFORMATION,
5238                 .host_command_sequence = 0,
5239                 .host_command_length = sizeof(struct security_info_params)
5240         };
5241         struct security_info_params *security =
5242             (struct security_info_params *)&cmd.host_command_parameters;
5243         int err;
5244         memset(security, 0, sizeof(*security));
5245
5246         /* If shared key AP authentication is turned on, then we need to
5247          * configure the firmware to try and use it.
5248          *
5249          * Actual data encryption/decryption is handled by the host. */
5250         security->auth_mode = auth_mode;
5251         security->unicast_using_group = unicast_using_group;
5252
5253         switch (security_level) {
5254         default:
5255         case SEC_LEVEL_0:
5256                 security->allowed_ciphers = IPW_NONE_CIPHER;
5257                 break;
5258         case SEC_LEVEL_1:
5259                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5260                     IPW_WEP104_CIPHER;
5261                 break;
5262         case SEC_LEVEL_2:
5263                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5264                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5265                 break;
5266         case SEC_LEVEL_2_CKIP:
5267                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5268                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5269                 break;
5270         case SEC_LEVEL_3:
5271                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5272                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5273                 break;
5274         }
5275
5276         IPW_DEBUG_HC
5277             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5278              security->auth_mode, security->allowed_ciphers, security_level);
5279
5280         security->replay_counters_number = 0;
5281
5282         if (!batch_mode) {
5283                 err = ipw2100_disable_adapter(priv);
5284                 if (err)
5285                         return err;
5286         }
5287
5288         err = ipw2100_hw_send_command(priv, &cmd);
5289
5290         if (!batch_mode)
5291                 ipw2100_enable_adapter(priv);
5292
5293         return err;
5294 }
5295
5296 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5297 {
5298         struct host_command cmd = {
5299                 .host_command = TX_POWER_INDEX,
5300                 .host_command_sequence = 0,
5301                 .host_command_length = 4
5302         };
5303         int err = 0;
5304         u32 tmp = tx_power;
5305
5306         if (tx_power != IPW_TX_POWER_DEFAULT)
5307                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5308                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5309
5310         cmd.host_command_parameters[0] = tmp;
5311
5312         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5313                 err = ipw2100_hw_send_command(priv, &cmd);
5314         if (!err)
5315                 priv->tx_power = tx_power;
5316
5317         return 0;
5318 }
5319
5320 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5321                                             u32 interval, int batch_mode)
5322 {
5323         struct host_command cmd = {
5324                 .host_command = BEACON_INTERVAL,
5325                 .host_command_sequence = 0,
5326                 .host_command_length = 4
5327         };
5328         int err;
5329
5330         cmd.host_command_parameters[0] = interval;
5331
5332         IPW_DEBUG_INFO("enter\n");
5333
5334         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5335                 if (!batch_mode) {
5336                         err = ipw2100_disable_adapter(priv);
5337                         if (err)
5338                                 return err;
5339                 }
5340
5341                 ipw2100_hw_send_command(priv, &cmd);
5342
5343                 if (!batch_mode) {
5344                         err = ipw2100_enable_adapter(priv);
5345                         if (err)
5346                                 return err;
5347                 }
5348         }
5349
5350         IPW_DEBUG_INFO("exit\n");
5351
5352         return 0;
5353 }
5354
5355 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5356 {
5357         ipw2100_tx_initialize(priv);
5358         ipw2100_rx_initialize(priv);
5359         ipw2100_msg_initialize(priv);
5360 }
5361
5362 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5363 {
5364         ipw2100_tx_free(priv);
5365         ipw2100_rx_free(priv);
5366         ipw2100_msg_free(priv);
5367 }
5368
5369 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5370 {
5371         if (ipw2100_tx_allocate(priv) ||
5372             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5373                 goto fail;
5374
5375         return 0;
5376
5377       fail:
5378         ipw2100_tx_free(priv);
5379         ipw2100_rx_free(priv);
5380         ipw2100_msg_free(priv);
5381         return -ENOMEM;
5382 }
5383
5384 #define IPW_PRIVACY_CAPABLE 0x0008
5385
5386 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5387                                  int batch_mode)
5388 {
5389         struct host_command cmd = {
5390                 .host_command = WEP_FLAGS,
5391                 .host_command_sequence = 0,
5392                 .host_command_length = 4
5393         };
5394         int err;
5395
5396         cmd.host_command_parameters[0] = flags;
5397
5398         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5399
5400         if (!batch_mode) {
5401                 err = ipw2100_disable_adapter(priv);
5402                 if (err) {
5403                         printk(KERN_ERR DRV_NAME
5404                                ": %s: Could not disable adapter %d\n",
5405                                priv->net_dev->name, err);
5406                         return err;
5407                 }
5408         }
5409
5410         /* send cmd to firmware */
5411         err = ipw2100_hw_send_command(priv, &cmd);
5412
5413         if (!batch_mode)
5414                 ipw2100_enable_adapter(priv);
5415
5416         return err;
5417 }
5418
5419 struct ipw2100_wep_key {
5420         u8 idx;
5421         u8 len;
5422         u8 key[13];
5423 };
5424
5425 /* Macros to ease up priting WEP keys */
5426 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5427 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5428 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5429 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5430
5431 /**
5432  * Set a the wep key
5433  *
5434  * @priv: struct to work on
5435  * @idx: index of the key we want to set
5436  * @key: ptr to the key data to set
5437  * @len: length of the buffer at @key
5438  * @batch_mode: FIXME perform the operation in batch mode, not
5439  *              disabling the device.
5440  *
5441  * @returns 0 if OK, < 0 errno code on error.
5442  *
5443  * Fill out a command structure with the new wep key, length an
5444  * index and send it down the wire.
5445  */
5446 static int ipw2100_set_key(struct ipw2100_priv *priv,
5447                            int idx, char *key, int len, int batch_mode)
5448 {
5449         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5450         struct host_command cmd = {
5451                 .host_command = WEP_KEY_INFO,
5452                 .host_command_sequence = 0,
5453                 .host_command_length = sizeof(struct ipw2100_wep_key),
5454         };
5455         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5456         int err;
5457
5458         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5459                      idx, keylen, len);
5460
5461         /* NOTE: We don't check cached values in case the firmware was reset
5462          * or some other problem is occurring.  If the user is setting the key,
5463          * then we push the change */
5464
5465         wep_key->idx = idx;
5466         wep_key->len = keylen;
5467
5468         if (keylen) {
5469                 memcpy(wep_key->key, key, len);
5470                 memset(wep_key->key + len, 0, keylen - len);
5471         }
5472
5473         /* Will be optimized out on debug not being configured in */
5474         if (keylen == 0)
5475                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5476                               priv->net_dev->name, wep_key->idx);
5477         else if (keylen == 5)
5478                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5479                               priv->net_dev->name, wep_key->idx, wep_key->len,
5480                               WEP_STR_64(wep_key->key));
5481         else
5482                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5483                               "\n",
5484                               priv->net_dev->name, wep_key->idx, wep_key->len,
5485                               WEP_STR_128(wep_key->key));
5486
5487         if (!batch_mode) {
5488                 err = ipw2100_disable_adapter(priv);
5489                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5490                 if (err) {
5491                         printk(KERN_ERR DRV_NAME
5492                                ": %s: Could not disable adapter %d\n",
5493                                priv->net_dev->name, err);
5494                         return err;
5495                 }
5496         }
5497
5498         /* send cmd to firmware */
5499         err = ipw2100_hw_send_command(priv, &cmd);
5500
5501         if (!batch_mode) {
5502                 int err2 = ipw2100_enable_adapter(priv);
5503                 if (err == 0)
5504                         err = err2;
5505         }
5506         return err;
5507 }
5508
5509 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5510                                  int idx, int batch_mode)
5511 {
5512         struct host_command cmd = {
5513                 .host_command = WEP_KEY_INDEX,
5514                 .host_command_sequence = 0,
5515                 .host_command_length = 4,
5516                 .host_command_parameters = {idx},
5517         };
5518         int err;
5519
5520         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5521
5522         if (idx < 0 || idx > 3)
5523                 return -EINVAL;
5524
5525         if (!batch_mode) {
5526                 err = ipw2100_disable_adapter(priv);
5527                 if (err) {
5528                         printk(KERN_ERR DRV_NAME
5529                                ": %s: Could not disable adapter %d\n",
5530                                priv->net_dev->name, err);
5531                         return err;
5532                 }
5533         }
5534
5535         /* send cmd to firmware */
5536         err = ipw2100_hw_send_command(priv, &cmd);
5537
5538         if (!batch_mode)
5539                 ipw2100_enable_adapter(priv);
5540
5541         return err;
5542 }
5543
5544 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5545 {
5546         int i, err, auth_mode, sec_level, use_group;
5547
5548         if (!(priv->status & STATUS_RUNNING))
5549                 return 0;
5550
5551         if (!batch_mode) {
5552                 err = ipw2100_disable_adapter(priv);
5553                 if (err)
5554                         return err;
5555         }
5556
5557         if (!priv->ieee->sec.enabled) {
5558                 err =
5559                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5560                                                      SEC_LEVEL_0, 0, 1);
5561         } else {
5562                 auth_mode = IPW_AUTH_OPEN;
5563                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5564                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5565                                 auth_mode = IPW_AUTH_SHARED;
5566                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5567                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5568                 }
5569
5570                 sec_level = SEC_LEVEL_0;
5571                 if (priv->ieee->sec.flags & SEC_LEVEL)
5572                         sec_level = priv->ieee->sec.level;
5573
5574                 use_group = 0;
5575                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5576                         use_group = priv->ieee->sec.unicast_uses_group;
5577
5578                 err =
5579                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5580                                                      use_group, 1);
5581         }
5582
5583         if (err)
5584                 goto exit;
5585
5586         if (priv->ieee->sec.enabled) {
5587                 for (i = 0; i < 4; i++) {
5588                         if (!(priv->ieee->sec.flags & (1 << i))) {
5589                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5590                                 priv->ieee->sec.key_sizes[i] = 0;
5591                         } else {
5592                                 err = ipw2100_set_key(priv, i,
5593                                                       priv->ieee->sec.keys[i],
5594                                                       priv->ieee->sec.
5595                                                       key_sizes[i], 1);
5596                                 if (err)
5597                                         goto exit;
5598                         }
5599                 }
5600
5601                 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5602         }
5603
5604         /* Always enable privacy so the Host can filter WEP packets if
5605          * encrypted data is sent up */
5606         err =
5607             ipw2100_set_wep_flags(priv,
5608                                   priv->ieee->sec.
5609                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5610         if (err)
5611                 goto exit;
5612
5613         priv->status &= ~STATUS_SECURITY_UPDATED;
5614
5615       exit:
5616         if (!batch_mode)
5617                 ipw2100_enable_adapter(priv);
5618
5619         return err;
5620 }
5621
5622 static void ipw2100_security_work(struct work_struct *work)
5623 {
5624         struct ipw2100_priv *priv =
5625                 container_of(work, struct ipw2100_priv, security_work.work);
5626
5627         /* If we happen to have reconnected before we get a chance to
5628          * process this, then update the security settings--which causes
5629          * a disassociation to occur */
5630         if (!(priv->status & STATUS_ASSOCIATED) &&
5631             priv->status & STATUS_SECURITY_UPDATED)
5632                 ipw2100_configure_security(priv, 0);
5633 }
5634
5635 static void shim__set_security(struct net_device *dev,
5636                                struct libipw_security *sec)
5637 {
5638         struct ipw2100_priv *priv = libipw_priv(dev);
5639         int i, force_update = 0;
5640
5641         mutex_lock(&priv->action_mutex);
5642         if (!(priv->status & STATUS_INITIALIZED))
5643                 goto done;
5644
5645         for (i = 0; i < 4; i++) {
5646                 if (sec->flags & (1 << i)) {
5647                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5648                         if (sec->key_sizes[i] == 0)
5649                                 priv->ieee->sec.flags &= ~(1 << i);
5650                         else
5651                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5652                                        sec->key_sizes[i]);
5653                         if (sec->level == SEC_LEVEL_1) {
5654                                 priv->ieee->sec.flags |= (1 << i);
5655                                 priv->status |= STATUS_SECURITY_UPDATED;
5656                         } else
5657                                 priv->ieee->sec.flags &= ~(1 << i);
5658                 }
5659         }
5660
5661         if ((sec->flags & SEC_ACTIVE_KEY) &&
5662             priv->ieee->sec.active_key != sec->active_key) {
5663                 if (sec->active_key <= 3) {
5664                         priv->ieee->sec.active_key = sec->active_key;
5665                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5666                 } else
5667                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5668
5669                 priv->status |= STATUS_SECURITY_UPDATED;
5670         }
5671
5672         if ((sec->flags & SEC_AUTH_MODE) &&
5673             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5674                 priv->ieee->sec.auth_mode = sec->auth_mode;
5675                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5676                 priv->status |= STATUS_SECURITY_UPDATED;
5677         }
5678
5679         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5680                 priv->ieee->sec.flags |= SEC_ENABLED;
5681                 priv->ieee->sec.enabled = sec->enabled;
5682                 priv->status |= STATUS_SECURITY_UPDATED;
5683                 force_update = 1;
5684         }
5685
5686         if (sec->flags & SEC_ENCRYPT)
5687                 priv->ieee->sec.encrypt = sec->encrypt;
5688
5689         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5690                 priv->ieee->sec.level = sec->level;
5691                 priv->ieee->sec.flags |= SEC_LEVEL;
5692                 priv->status |= STATUS_SECURITY_UPDATED;
5693         }
5694
5695         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5696                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5697                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5698                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5699                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5700                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5701                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5702                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5703                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5704                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5705
5706 /* As a temporary work around to enable WPA until we figure out why
5707  * wpa_supplicant toggles the security capability of the driver, which
5708  * forces a disassocation with force_update...
5709  *
5710  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5711         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5712                 ipw2100_configure_security(priv, 0);
5713       done:
5714         mutex_unlock(&priv->action_mutex);
5715 }
5716
5717 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5718 {
5719         int err;
5720         int batch_mode = 1;
5721         u8 *bssid;
5722
5723         IPW_DEBUG_INFO("enter\n");
5724
5725         err = ipw2100_disable_adapter(priv);
5726         if (err)
5727                 return err;
5728 #ifdef CONFIG_IPW2100_MONITOR
5729         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5730                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5731                 if (err)
5732                         return err;
5733
5734                 IPW_DEBUG_INFO("exit\n");
5735
5736                 return 0;
5737         }
5738 #endif                          /* CONFIG_IPW2100_MONITOR */
5739
5740         err = ipw2100_read_mac_address(priv);
5741         if (err)
5742                 return -EIO;
5743
5744         err = ipw2100_set_mac_address(priv, batch_mode);
5745         if (err)
5746                 return err;
5747
5748         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5749         if (err)
5750                 return err;
5751
5752         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5753                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5754                 if (err)
5755                         return err;
5756         }
5757
5758         err = ipw2100_system_config(priv, batch_mode);
5759         if (err)
5760                 return err;
5761
5762         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5763         if (err)
5764                 return err;
5765
5766         /* Default to power mode OFF */
5767         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5768         if (err)
5769                 return err;
5770
5771         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5772         if (err)
5773                 return err;
5774
5775         if (priv->config & CFG_STATIC_BSSID)
5776                 bssid = priv->bssid;
5777         else
5778                 bssid = NULL;
5779         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5780         if (err)
5781                 return err;
5782
5783         if (priv->config & CFG_STATIC_ESSID)
5784                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5785                                         batch_mode);
5786         else
5787                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5788         if (err)
5789                 return err;
5790
5791         err = ipw2100_configure_security(priv, batch_mode);
5792         if (err)
5793                 return err;
5794
5795         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5796                 err =
5797                     ipw2100_set_ibss_beacon_interval(priv,
5798                                                      priv->beacon_interval,
5799                                                      batch_mode);
5800                 if (err)
5801                         return err;
5802
5803                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5804                 if (err)
5805                         return err;
5806         }
5807
5808         /*
5809            err = ipw2100_set_fragmentation_threshold(
5810            priv, priv->frag_threshold, batch_mode);
5811            if (err)
5812            return err;
5813          */
5814
5815         IPW_DEBUG_INFO("exit\n");
5816
5817         return 0;
5818 }
5819
5820 /*************************************************************************
5821  *
5822  * EXTERNALLY CALLED METHODS
5823  *
5824  *************************************************************************/
5825
5826 /* This method is called by the network layer -- not to be confused with
5827  * ipw2100_set_mac_address() declared above called by this driver (and this
5828  * method as well) to talk to the firmware */
5829 static int ipw2100_set_address(struct net_device *dev, void *p)
5830 {
5831         struct ipw2100_priv *priv = libipw_priv(dev);
5832         struct sockaddr *addr = p;
5833         int err = 0;
5834
5835         if (!is_valid_ether_addr(addr->sa_data))
5836                 return -EADDRNOTAVAIL;
5837
5838         mutex_lock(&priv->action_mutex);
5839
5840         priv->config |= CFG_CUSTOM_MAC;
5841         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5842
5843         err = ipw2100_set_mac_address(priv, 0);
5844         if (err)
5845                 goto done;
5846
5847         priv->reset_backoff = 0;
5848         mutex_unlock(&priv->action_mutex);
5849         ipw2100_reset_adapter(&priv->reset_work.work);
5850         return 0;
5851
5852       done:
5853         mutex_unlock(&priv->action_mutex);
5854         return err;
5855 }
5856
5857 static int ipw2100_open(struct net_device *dev)
5858 {
5859         struct ipw2100_priv *priv = libipw_priv(dev);
5860         unsigned long flags;
5861         IPW_DEBUG_INFO("dev->open\n");
5862
5863         spin_lock_irqsave(&priv->low_lock, flags);
5864         if (priv->status & STATUS_ASSOCIATED) {
5865                 netif_carrier_on(dev);
5866                 netif_start_queue(dev);
5867         }
5868         spin_unlock_irqrestore(&priv->low_lock, flags);
5869
5870         return 0;
5871 }
5872
5873 static int ipw2100_close(struct net_device *dev)
5874 {
5875         struct ipw2100_priv *priv = libipw_priv(dev);
5876         unsigned long flags;
5877         struct list_head *element;
5878         struct ipw2100_tx_packet *packet;
5879
5880         IPW_DEBUG_INFO("enter\n");
5881
5882         spin_lock_irqsave(&priv->low_lock, flags);
5883
5884         if (priv->status & STATUS_ASSOCIATED)
5885                 netif_carrier_off(dev);
5886         netif_stop_queue(dev);
5887
5888         /* Flush the TX queue ... */
5889         while (!list_empty(&priv->tx_pend_list)) {
5890                 element = priv->tx_pend_list.next;
5891                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5892
5893                 list_del(element);
5894                 DEC_STAT(&priv->tx_pend_stat);
5895
5896                 libipw_txb_free(packet->info.d_struct.txb);
5897                 packet->info.d_struct.txb = NULL;
5898
5899                 list_add_tail(element, &priv->tx_free_list);
5900                 INC_STAT(&priv->tx_free_stat);
5901         }
5902         spin_unlock_irqrestore(&priv->low_lock, flags);
5903
5904         IPW_DEBUG_INFO("exit\n");
5905
5906         return 0;
5907 }
5908
5909 /*
5910  * TODO:  Fix this function... its just wrong
5911  */
5912 static void ipw2100_tx_timeout(struct net_device *dev)
5913 {
5914         struct ipw2100_priv *priv = libipw_priv(dev);
5915
5916         dev->stats.tx_errors++;
5917
5918 #ifdef CONFIG_IPW2100_MONITOR
5919         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5920                 return;
5921 #endif
5922
5923         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5924                        dev->name);
5925         schedule_reset(priv);
5926 }
5927
5928 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5929 {
5930         /* This is called when wpa_supplicant loads and closes the driver
5931          * interface. */
5932         priv->ieee->wpa_enabled = value;
5933         return 0;
5934 }
5935
5936 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5937 {
5938
5939         struct libipw_device *ieee = priv->ieee;
5940         struct libipw_security sec = {
5941                 .flags = SEC_AUTH_MODE,
5942         };
5943         int ret = 0;
5944
5945         if (value & IW_AUTH_ALG_SHARED_KEY) {
5946                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5947                 ieee->open_wep = 0;
5948         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5949                 sec.auth_mode = WLAN_AUTH_OPEN;
5950                 ieee->open_wep = 1;
5951         } else if (value & IW_AUTH_ALG_LEAP) {
5952                 sec.auth_mode = WLAN_AUTH_LEAP;
5953                 ieee->open_wep = 1;
5954         } else
5955                 return -EINVAL;
5956
5957         if (ieee->set_security)
5958                 ieee->set_security(ieee->dev, &sec);
5959         else
5960                 ret = -EOPNOTSUPP;
5961
5962         return ret;
5963 }
5964
5965 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5966                                     char *wpa_ie, int wpa_ie_len)
5967 {
5968
5969         struct ipw2100_wpa_assoc_frame frame;
5970
5971         frame.fixed_ie_mask = 0;
5972
5973         /* copy WPA IE */
5974         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5975         frame.var_ie_len = wpa_ie_len;
5976
5977         /* make sure WPA is enabled */
5978         ipw2100_wpa_enable(priv, 1);
5979         ipw2100_set_wpa_ie(priv, &frame, 0);
5980 }
5981
5982 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5983                                     struct ethtool_drvinfo *info)
5984 {
5985         struct ipw2100_priv *priv = libipw_priv(dev);
5986         char fw_ver[64], ucode_ver[64];
5987
5988         strcpy(info->driver, DRV_NAME);
5989         strcpy(info->version, DRV_VERSION);
5990
5991         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5992         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5993
5994         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5995                  fw_ver, priv->eeprom_version, ucode_ver);
5996
5997         strcpy(info->bus_info, pci_name(priv->pci_dev));
5998 }
5999
6000 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
6001 {
6002         struct ipw2100_priv *priv = libipw_priv(dev);
6003         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
6004 }
6005
6006 static const struct ethtool_ops ipw2100_ethtool_ops = {
6007         .get_link = ipw2100_ethtool_get_link,
6008         .get_drvinfo = ipw_ethtool_get_drvinfo,
6009 };
6010
6011 static void ipw2100_hang_check(struct work_struct *work)
6012 {
6013         struct ipw2100_priv *priv =
6014                 container_of(work, struct ipw2100_priv, hang_check.work);
6015         unsigned long flags;
6016         u32 rtc = 0xa5a5a5a5;
6017         u32 len = sizeof(rtc);
6018         int restart = 0;
6019
6020         spin_lock_irqsave(&priv->low_lock, flags);
6021
6022         if (priv->fatal_error != 0) {
6023                 /* If fatal_error is set then we need to restart */
6024                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
6025                                priv->net_dev->name);
6026
6027                 restart = 1;
6028         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
6029                    (rtc == priv->last_rtc)) {
6030                 /* Check if firmware is hung */
6031                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6032                                priv->net_dev->name);
6033
6034                 restart = 1;
6035         }
6036
6037         if (restart) {
6038                 /* Kill timer */
6039                 priv->stop_hang_check = 1;
6040                 priv->hangs++;
6041
6042                 /* Restart the NIC */
6043                 schedule_reset(priv);
6044         }
6045
6046         priv->last_rtc = rtc;
6047
6048         if (!priv->stop_hang_check)
6049                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
6050
6051         spin_unlock_irqrestore(&priv->low_lock, flags);
6052 }
6053
6054 static void ipw2100_rf_kill(struct work_struct *work)
6055 {
6056         struct ipw2100_priv *priv =
6057                 container_of(work, struct ipw2100_priv, rf_kill.work);
6058         unsigned long flags;
6059
6060         spin_lock_irqsave(&priv->low_lock, flags);
6061
6062         if (rf_kill_active(priv)) {
6063                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6064                 if (!priv->stop_rf_kill)
606