ipw2x00: remove ipw2100_rates_11b[]
[linux-3.10.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "git-1.2.2"
171
172 #define DRV_NAME        "ipw2100"
173 #define DRV_VERSION     IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
176
177 static struct pm_qos_request ipw2100_pm_qos_req;
178
179 /* Debugging stuff */
180 #ifdef CONFIG_IPW2100_DEBUG
181 #define IPW2100_RX_DEBUG        /* Reception debugging */
182 #endif
183
184 MODULE_DESCRIPTION(DRV_DESCRIPTION);
185 MODULE_VERSION(DRV_VERSION);
186 MODULE_AUTHOR(DRV_COPYRIGHT);
187 MODULE_LICENSE("GPL");
188
189 static int debug = 0;
190 static int network_mode = 0;
191 static int channel = 0;
192 static int associate = 0;
193 static int disable = 0;
194 #ifdef CONFIG_PM
195 static struct ipw2100_fw ipw2100_firmware;
196 #endif
197
198 #include <linux/moduleparam.h>
199 module_param(debug, int, 0444);
200 module_param_named(mode, network_mode, int, 0444);
201 module_param(channel, int, 0444);
202 module_param(associate, int, 0444);
203 module_param(disable, int, 0444);
204
205 MODULE_PARM_DESC(debug, "debug level");
206 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
207 MODULE_PARM_DESC(channel, "channel");
208 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
209 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
210
211 static u32 ipw2100_debug_level = IPW_DL_NONE;
212
213 #ifdef CONFIG_IPW2100_DEBUG
214 #define IPW_DEBUG(level, message...) \
215 do { \
216         if (ipw2100_debug_level & (level)) { \
217                 printk(KERN_DEBUG "ipw2100: %c %s ", \
218                        in_interrupt() ? 'I' : 'U',  __func__); \
219                 printk(message); \
220         } \
221 } while (0)
222 #else
223 #define IPW_DEBUG(level, message...) do {} while (0)
224 #endif                          /* CONFIG_IPW2100_DEBUG */
225
226 #ifdef CONFIG_IPW2100_DEBUG
227 static const char *command_types[] = {
228         "undefined",
229         "unused",               /* HOST_ATTENTION */
230         "HOST_COMPLETE",
231         "unused",               /* SLEEP */
232         "unused",               /* HOST_POWER_DOWN */
233         "unused",
234         "SYSTEM_CONFIG",
235         "unused",               /* SET_IMR */
236         "SSID",
237         "MANDATORY_BSSID",
238         "AUTHENTICATION_TYPE",
239         "ADAPTER_ADDRESS",
240         "PORT_TYPE",
241         "INTERNATIONAL_MODE",
242         "CHANNEL",
243         "RTS_THRESHOLD",
244         "FRAG_THRESHOLD",
245         "POWER_MODE",
246         "TX_RATES",
247         "BASIC_TX_RATES",
248         "WEP_KEY_INFO",
249         "unused",
250         "unused",
251         "unused",
252         "unused",
253         "WEP_KEY_INDEX",
254         "WEP_FLAGS",
255         "ADD_MULTICAST",
256         "CLEAR_ALL_MULTICAST",
257         "BEACON_INTERVAL",
258         "ATIM_WINDOW",
259         "CLEAR_STATISTICS",
260         "undefined",
261         "undefined",
262         "undefined",
263         "undefined",
264         "TX_POWER_INDEX",
265         "undefined",
266         "undefined",
267         "undefined",
268         "undefined",
269         "undefined",
270         "undefined",
271         "BROADCAST_SCAN",
272         "CARD_DISABLE",
273         "PREFERRED_BSSID",
274         "SET_SCAN_OPTIONS",
275         "SCAN_DWELL_TIME",
276         "SWEEP_TABLE",
277         "AP_OR_STATION_TABLE",
278         "GROUP_ORDINALS",
279         "SHORT_RETRY_LIMIT",
280         "LONG_RETRY_LIMIT",
281         "unused",               /* SAVE_CALIBRATION */
282         "unused",               /* RESTORE_CALIBRATION */
283         "undefined",
284         "undefined",
285         "undefined",
286         "HOST_PRE_POWER_DOWN",
287         "unused",               /* HOST_INTERRUPT_COALESCING */
288         "undefined",
289         "CARD_DISABLE_PHY_OFF",
290         "MSDU_TX_RATES",
291         "undefined",
292         "SET_STATION_STAT_BITS",
293         "CLEAR_STATIONS_STAT_BITS",
294         "LEAP_ROGUE_MODE",
295         "SET_SECURITY_INFORMATION",
296         "DISASSOCIATION_BSSID",
297         "SET_WPA_ASS_IE"
298 };
299 #endif
300
301 #define WEXT_USECHANNELS 1
302
303 static const long ipw2100_frequencies[] = {
304         2412, 2417, 2422, 2427,
305         2432, 2437, 2442, 2447,
306         2452, 2457, 2462, 2467,
307         2472, 2484
308 };
309
310 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
311
312 static struct ieee80211_rate ipw2100_bg_rates[] = {
313         { .bitrate = 10 },
314         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
317 };
318
319 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
320
321 /* Pre-decl until we get the code solid and then we can clean it up */
322 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
323 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
324 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
325
326 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
327 static void ipw2100_queues_free(struct ipw2100_priv *priv);
328 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
329
330 static int ipw2100_fw_download(struct ipw2100_priv *priv,
331                                struct ipw2100_fw *fw);
332 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
333                                 struct ipw2100_fw *fw);
334 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
335                                  size_t max);
336 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
337                                     size_t max);
338 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
339                                      struct ipw2100_fw *fw);
340 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
341                                   struct ipw2100_fw *fw);
342 static void ipw2100_wx_event_work(struct work_struct *work);
343 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
344 static struct iw_handler_def ipw2100_wx_handler_def;
345
346 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
347 {
348         *val = readl((void __iomem *)(dev->base_addr + reg));
349         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
350 }
351
352 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
353 {
354         writel(val, (void __iomem *)(dev->base_addr + reg));
355         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
356 }
357
358 static inline void read_register_word(struct net_device *dev, u32 reg,
359                                       u16 * val)
360 {
361         *val = readw((void __iomem *)(dev->base_addr + reg));
362         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
363 }
364
365 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
366 {
367         *val = readb((void __iomem *)(dev->base_addr + reg));
368         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
369 }
370
371 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
372 {
373         writew(val, (void __iomem *)(dev->base_addr + reg));
374         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
375 }
376
377 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
378 {
379         writeb(val, (void __iomem *)(dev->base_addr + reg));
380         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
381 }
382
383 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
384 {
385         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
386                        addr & IPW_REG_INDIRECT_ADDR_MASK);
387         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
388 }
389
390 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
391 {
392         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
393                        addr & IPW_REG_INDIRECT_ADDR_MASK);
394         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
395 }
396
397 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
398 {
399         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
400                        addr & IPW_REG_INDIRECT_ADDR_MASK);
401         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
402 }
403
404 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
405 {
406         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
407                        addr & IPW_REG_INDIRECT_ADDR_MASK);
408         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
409 }
410
411 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
412 {
413         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
414                        addr & IPW_REG_INDIRECT_ADDR_MASK);
415         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
416 }
417
418 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
419 {
420         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
421                        addr & IPW_REG_INDIRECT_ADDR_MASK);
422         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
423 }
424
425 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
426 {
427         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
428                        addr & IPW_REG_INDIRECT_ADDR_MASK);
429 }
430
431 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
432 {
433         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
434 }
435
436 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
437                                     const u8 * buf)
438 {
439         u32 aligned_addr;
440         u32 aligned_len;
441         u32 dif_len;
442         u32 i;
443
444         /* read first nibble byte by byte */
445         aligned_addr = addr & (~0x3);
446         dif_len = addr - aligned_addr;
447         if (dif_len) {
448                 /* Start reading at aligned_addr + dif_len */
449                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
450                                aligned_addr);
451                 for (i = dif_len; i < 4; i++, buf++)
452                         write_register_byte(dev,
453                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
454                                             *buf);
455
456                 len -= dif_len;
457                 aligned_addr += 4;
458         }
459
460         /* read DWs through autoincrement registers */
461         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
462         aligned_len = len & (~0x3);
463         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
464                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
465
466         /* copy the last nibble */
467         dif_len = len - aligned_len;
468         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
469         for (i = 0; i < dif_len; i++, buf++)
470                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
471                                     *buf);
472 }
473
474 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
475                                    u8 * buf)
476 {
477         u32 aligned_addr;
478         u32 aligned_len;
479         u32 dif_len;
480         u32 i;
481
482         /* read first nibble byte by byte */
483         aligned_addr = addr & (~0x3);
484         dif_len = addr - aligned_addr;
485         if (dif_len) {
486                 /* Start reading at aligned_addr + dif_len */
487                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
488                                aligned_addr);
489                 for (i = dif_len; i < 4; i++, buf++)
490                         read_register_byte(dev,
491                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
492                                            buf);
493
494                 len -= dif_len;
495                 aligned_addr += 4;
496         }
497
498         /* read DWs through autoincrement registers */
499         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
500         aligned_len = len & (~0x3);
501         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
502                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
503
504         /* copy the last nibble */
505         dif_len = len - aligned_len;
506         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
507         for (i = 0; i < dif_len; i++, buf++)
508                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
509 }
510
511 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
512 {
513         return (dev->base_addr &&
514                 (readl
515                  ((void __iomem *)(dev->base_addr +
516                                    IPW_REG_DOA_DEBUG_AREA_START))
517                  == IPW_DATA_DOA_DEBUG_VALUE));
518 }
519
520 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
521                                void *val, u32 * len)
522 {
523         struct ipw2100_ordinals *ordinals = &priv->ordinals;
524         u32 addr;
525         u32 field_info;
526         u16 field_len;
527         u16 field_count;
528         u32 total_length;
529
530         if (ordinals->table1_addr == 0) {
531                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
532                        "before they have been loaded.\n");
533                 return -EINVAL;
534         }
535
536         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
537                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
538                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
539
540                         printk(KERN_WARNING DRV_NAME
541                                ": ordinal buffer length too small, need %zd\n",
542                                IPW_ORD_TAB_1_ENTRY_SIZE);
543
544                         return -EINVAL;
545                 }
546
547                 read_nic_dword(priv->net_dev,
548                                ordinals->table1_addr + (ord << 2), &addr);
549                 read_nic_dword(priv->net_dev, addr, val);
550
551                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
552
553                 return 0;
554         }
555
556         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
557
558                 ord -= IPW_START_ORD_TAB_2;
559
560                 /* get the address of statistic */
561                 read_nic_dword(priv->net_dev,
562                                ordinals->table2_addr + (ord << 3), &addr);
563
564                 /* get the second DW of statistics ;
565                  * two 16-bit words - first is length, second is count */
566                 read_nic_dword(priv->net_dev,
567                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
568                                &field_info);
569
570                 /* get each entry length */
571                 field_len = *((u16 *) & field_info);
572
573                 /* get number of entries */
574                 field_count = *(((u16 *) & field_info) + 1);
575
576                 /* abort if no enough memory */
577                 total_length = field_len * field_count;
578                 if (total_length > *len) {
579                         *len = total_length;
580                         return -EINVAL;
581                 }
582
583                 *len = total_length;
584                 if (!total_length)
585                         return 0;
586
587                 /* read the ordinal data from the SRAM */
588                 read_nic_memory(priv->net_dev, addr, total_length, val);
589
590                 return 0;
591         }
592
593         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
594                "in table 2\n", ord);
595
596         return -EINVAL;
597 }
598
599 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
600                                u32 * len)
601 {
602         struct ipw2100_ordinals *ordinals = &priv->ordinals;
603         u32 addr;
604
605         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
606                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
607                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
608                         IPW_DEBUG_INFO("wrong size\n");
609                         return -EINVAL;
610                 }
611
612                 read_nic_dword(priv->net_dev,
613                                ordinals->table1_addr + (ord << 2), &addr);
614
615                 write_nic_dword(priv->net_dev, addr, *val);
616
617                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
618
619                 return 0;
620         }
621
622         IPW_DEBUG_INFO("wrong table\n");
623         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
624                 return -EINVAL;
625
626         return -EINVAL;
627 }
628
629 static char *snprint_line(char *buf, size_t count,
630                           const u8 * data, u32 len, u32 ofs)
631 {
632         int out, i, j, l;
633         char c;
634
635         out = snprintf(buf, count, "%08X", ofs);
636
637         for (l = 0, i = 0; i < 2; i++) {
638                 out += snprintf(buf + out, count - out, " ");
639                 for (j = 0; j < 8 && l < len; j++, l++)
640                         out += snprintf(buf + out, count - out, "%02X ",
641                                         data[(i * 8 + j)]);
642                 for (; j < 8; j++)
643                         out += snprintf(buf + out, count - out, "   ");
644         }
645
646         out += snprintf(buf + out, count - out, " ");
647         for (l = 0, i = 0; i < 2; i++) {
648                 out += snprintf(buf + out, count - out, " ");
649                 for (j = 0; j < 8 && l < len; j++, l++) {
650                         c = data[(i * 8 + j)];
651                         if (!isascii(c) || !isprint(c))
652                                 c = '.';
653
654                         out += snprintf(buf + out, count - out, "%c", c);
655                 }
656
657                 for (; j < 8; j++)
658                         out += snprintf(buf + out, count - out, " ");
659         }
660
661         return buf;
662 }
663
664 static void printk_buf(int level, const u8 * data, u32 len)
665 {
666         char line[81];
667         u32 ofs = 0;
668         if (!(ipw2100_debug_level & level))
669                 return;
670
671         while (len) {
672                 printk(KERN_DEBUG "%s\n",
673                        snprint_line(line, sizeof(line), &data[ofs],
674                                     min(len, 16U), ofs));
675                 ofs += 16;
676                 len -= min(len, 16U);
677         }
678 }
679
680 #define MAX_RESET_BACKOFF 10
681
682 static void schedule_reset(struct ipw2100_priv *priv)
683 {
684         unsigned long now = get_seconds();
685
686         /* If we haven't received a reset request within the backoff period,
687          * then we can reset the backoff interval so this reset occurs
688          * immediately */
689         if (priv->reset_backoff &&
690             (now - priv->last_reset > priv->reset_backoff))
691                 priv->reset_backoff = 0;
692
693         priv->last_reset = get_seconds();
694
695         if (!(priv->status & STATUS_RESET_PENDING)) {
696                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
697                                priv->net_dev->name, priv->reset_backoff);
698                 netif_carrier_off(priv->net_dev);
699                 netif_stop_queue(priv->net_dev);
700                 priv->status |= STATUS_RESET_PENDING;
701                 if (priv->reset_backoff)
702                         schedule_delayed_work(&priv->reset_work,
703                                               priv->reset_backoff * HZ);
704                 else
705                         schedule_delayed_work(&priv->reset_work, 0);
706
707                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
708                         priv->reset_backoff++;
709
710                 wake_up_interruptible(&priv->wait_command_queue);
711         } else
712                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
713                                priv->net_dev->name);
714
715 }
716
717 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
718 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
719                                    struct host_command *cmd)
720 {
721         struct list_head *element;
722         struct ipw2100_tx_packet *packet;
723         unsigned long flags;
724         int err = 0;
725
726         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
727                      command_types[cmd->host_command], cmd->host_command,
728                      cmd->host_command_length);
729         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
730                    cmd->host_command_length);
731
732         spin_lock_irqsave(&priv->low_lock, flags);
733
734         if (priv->fatal_error) {
735                 IPW_DEBUG_INFO
736                     ("Attempt to send command while hardware in fatal error condition.\n");
737                 err = -EIO;
738                 goto fail_unlock;
739         }
740
741         if (!(priv->status & STATUS_RUNNING)) {
742                 IPW_DEBUG_INFO
743                     ("Attempt to send command while hardware is not running.\n");
744                 err = -EIO;
745                 goto fail_unlock;
746         }
747
748         if (priv->status & STATUS_CMD_ACTIVE) {
749                 IPW_DEBUG_INFO
750                     ("Attempt to send command while another command is pending.\n");
751                 err = -EBUSY;
752                 goto fail_unlock;
753         }
754
755         if (list_empty(&priv->msg_free_list)) {
756                 IPW_DEBUG_INFO("no available msg buffers\n");
757                 goto fail_unlock;
758         }
759
760         priv->status |= STATUS_CMD_ACTIVE;
761         priv->messages_sent++;
762
763         element = priv->msg_free_list.next;
764
765         packet = list_entry(element, struct ipw2100_tx_packet, list);
766         packet->jiffy_start = jiffies;
767
768         /* initialize the firmware command packet */
769         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
770         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
771         packet->info.c_struct.cmd->host_command_len_reg =
772             cmd->host_command_length;
773         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
774
775         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
776                cmd->host_command_parameters,
777                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
778
779         list_del(element);
780         DEC_STAT(&priv->msg_free_stat);
781
782         list_add_tail(element, &priv->msg_pend_list);
783         INC_STAT(&priv->msg_pend_stat);
784
785         ipw2100_tx_send_commands(priv);
786         ipw2100_tx_send_data(priv);
787
788         spin_unlock_irqrestore(&priv->low_lock, flags);
789
790         /*
791          * We must wait for this command to complete before another
792          * command can be sent...  but if we wait more than 3 seconds
793          * then there is a problem.
794          */
795
796         err =
797             wait_event_interruptible_timeout(priv->wait_command_queue,
798                                              !(priv->
799                                                status & STATUS_CMD_ACTIVE),
800                                              HOST_COMPLETE_TIMEOUT);
801
802         if (err == 0) {
803                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
804                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
805                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
806                 priv->status &= ~STATUS_CMD_ACTIVE;
807                 schedule_reset(priv);
808                 return -EIO;
809         }
810
811         if (priv->fatal_error) {
812                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
813                        priv->net_dev->name);
814                 return -EIO;
815         }
816
817         /* !!!!! HACK TEST !!!!!
818          * When lots of debug trace statements are enabled, the driver
819          * doesn't seem to have as many firmware restart cycles...
820          *
821          * As a test, we're sticking in a 1/100s delay here */
822         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
823
824         return 0;
825
826       fail_unlock:
827         spin_unlock_irqrestore(&priv->low_lock, flags);
828
829         return err;
830 }
831
832 /*
833  * Verify the values and data access of the hardware
834  * No locks needed or used.  No functions called.
835  */
836 static int ipw2100_verify(struct ipw2100_priv *priv)
837 {
838         u32 data1, data2;
839         u32 address;
840
841         u32 val1 = 0x76543210;
842         u32 val2 = 0xFEDCBA98;
843
844         /* Domain 0 check - all values should be DOA_DEBUG */
845         for (address = IPW_REG_DOA_DEBUG_AREA_START;
846              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
847                 read_register(priv->net_dev, address, &data1);
848                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
849                         return -EIO;
850         }
851
852         /* Domain 1 check - use arbitrary read/write compare  */
853         for (address = 0; address < 5; address++) {
854                 /* The memory area is not used now */
855                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
856                                val1);
857                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
858                                val2);
859                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
860                               &data1);
861                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
862                               &data2);
863                 if (val1 == data1 && val2 == data2)
864                         return 0;
865         }
866
867         return -EIO;
868 }
869
870 /*
871  *
872  * Loop until the CARD_DISABLED bit is the same value as the
873  * supplied parameter
874  *
875  * TODO: See if it would be more efficient to do a wait/wake
876  *       cycle and have the completion event trigger the wakeup
877  *
878  */
879 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
880 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
881 {
882         int i;
883         u32 card_state;
884         u32 len = sizeof(card_state);
885         int err;
886
887         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
888                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
889                                           &card_state, &len);
890                 if (err) {
891                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
892                                        "failed.\n");
893                         return 0;
894                 }
895
896                 /* We'll break out if either the HW state says it is
897                  * in the state we want, or if HOST_COMPLETE command
898                  * finishes */
899                 if ((card_state == state) ||
900                     ((priv->status & STATUS_ENABLED) ?
901                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
902                         if (state == IPW_HW_STATE_ENABLED)
903                                 priv->status |= STATUS_ENABLED;
904                         else
905                                 priv->status &= ~STATUS_ENABLED;
906
907                         return 0;
908                 }
909
910                 udelay(50);
911         }
912
913         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
914                        state ? "DISABLED" : "ENABLED");
915         return -EIO;
916 }
917
918 /*********************************************************************
919     Procedure   :   sw_reset_and_clock
920     Purpose     :   Asserts s/w reset, asserts clock initialization
921                     and waits for clock stabilization
922  ********************************************************************/
923 static int sw_reset_and_clock(struct ipw2100_priv *priv)
924 {
925         int i;
926         u32 r;
927
928         // assert s/w reset
929         write_register(priv->net_dev, IPW_REG_RESET_REG,
930                        IPW_AUX_HOST_RESET_REG_SW_RESET);
931
932         // wait for clock stabilization
933         for (i = 0; i < 1000; i++) {
934                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
935
936                 // check clock ready bit
937                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
938                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
939                         break;
940         }
941
942         if (i == 1000)
943                 return -EIO;    // TODO: better error value
944
945         /* set "initialization complete" bit to move adapter to
946          * D0 state */
947         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
948                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
949
950         /* wait for clock stabilization */
951         for (i = 0; i < 10000; i++) {
952                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
953
954                 /* check clock ready bit */
955                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
956                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
957                         break;
958         }
959
960         if (i == 10000)
961                 return -EIO;    /* TODO: better error value */
962
963         /* set D0 standby bit */
964         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
965         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
966                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
967
968         return 0;
969 }
970
971 /*********************************************************************
972     Procedure   :   ipw2100_download_firmware
973     Purpose     :   Initiaze adapter after power on.
974                     The sequence is:
975                     1. assert s/w reset first!
976                     2. awake clocks & wait for clock stabilization
977                     3. hold ARC (don't ask me why...)
978                     4. load Dino ucode and reset/clock init again
979                     5. zero-out shared mem
980                     6. download f/w
981  *******************************************************************/
982 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
983 {
984         u32 address;
985         int err;
986
987 #ifndef CONFIG_PM
988         /* Fetch the firmware and microcode */
989         struct ipw2100_fw ipw2100_firmware;
990 #endif
991
992         if (priv->fatal_error) {
993                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
994                                 "fatal error %d.  Interface must be brought down.\n",
995                                 priv->net_dev->name, priv->fatal_error);
996                 return -EINVAL;
997         }
998 #ifdef CONFIG_PM
999         if (!ipw2100_firmware.version) {
1000                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1001                 if (err) {
1002                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1003                                         priv->net_dev->name, err);
1004                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
1005                         goto fail;
1006                 }
1007         }
1008 #else
1009         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1010         if (err) {
1011                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1012                                 priv->net_dev->name, err);
1013                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1014                 goto fail;
1015         }
1016 #endif
1017         priv->firmware_version = ipw2100_firmware.version;
1018
1019         /* s/w reset and clock stabilization */
1020         err = sw_reset_and_clock(priv);
1021         if (err) {
1022                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1023                                 priv->net_dev->name, err);
1024                 goto fail;
1025         }
1026
1027         err = ipw2100_verify(priv);
1028         if (err) {
1029                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1030                                 priv->net_dev->name, err);
1031                 goto fail;
1032         }
1033
1034         /* Hold ARC */
1035         write_nic_dword(priv->net_dev,
1036                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1037
1038         /* allow ARC to run */
1039         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1040
1041         /* load microcode */
1042         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1043         if (err) {
1044                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1045                        priv->net_dev->name, err);
1046                 goto fail;
1047         }
1048
1049         /* release ARC */
1050         write_nic_dword(priv->net_dev,
1051                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1052
1053         /* s/w reset and clock stabilization (again!!!) */
1054         err = sw_reset_and_clock(priv);
1055         if (err) {
1056                 printk(KERN_ERR DRV_NAME
1057                        ": %s: sw_reset_and_clock failed: %d\n",
1058                        priv->net_dev->name, err);
1059                 goto fail;
1060         }
1061
1062         /* load f/w */
1063         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1064         if (err) {
1065                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1066                                 priv->net_dev->name, err);
1067                 goto fail;
1068         }
1069 #ifndef CONFIG_PM
1070         /*
1071          * When the .resume method of the driver is called, the other
1072          * part of the system, i.e. the ide driver could still stay in
1073          * the suspend stage. This prevents us from loading the firmware
1074          * from the disk.  --YZ
1075          */
1076
1077         /* free any storage allocated for firmware image */
1078         ipw2100_release_firmware(priv, &ipw2100_firmware);
1079 #endif
1080
1081         /* zero out Domain 1 area indirectly (Si requirement) */
1082         for (address = IPW_HOST_FW_SHARED_AREA0;
1083              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1084                 write_nic_dword(priv->net_dev, address, 0);
1085         for (address = IPW_HOST_FW_SHARED_AREA1;
1086              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1087                 write_nic_dword(priv->net_dev, address, 0);
1088         for (address = IPW_HOST_FW_SHARED_AREA2;
1089              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1090                 write_nic_dword(priv->net_dev, address, 0);
1091         for (address = IPW_HOST_FW_SHARED_AREA3;
1092              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1093                 write_nic_dword(priv->net_dev, address, 0);
1094         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1095              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1096                 write_nic_dword(priv->net_dev, address, 0);
1097
1098         return 0;
1099
1100       fail:
1101         ipw2100_release_firmware(priv, &ipw2100_firmware);
1102         return err;
1103 }
1104
1105 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1106 {
1107         if (priv->status & STATUS_INT_ENABLED)
1108                 return;
1109         priv->status |= STATUS_INT_ENABLED;
1110         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1111 }
1112
1113 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1114 {
1115         if (!(priv->status & STATUS_INT_ENABLED))
1116                 return;
1117         priv->status &= ~STATUS_INT_ENABLED;
1118         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1119 }
1120
1121 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1122 {
1123         struct ipw2100_ordinals *ord = &priv->ordinals;
1124
1125         IPW_DEBUG_INFO("enter\n");
1126
1127         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1128                       &ord->table1_addr);
1129
1130         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1131                       &ord->table2_addr);
1132
1133         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1134         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1135
1136         ord->table2_size &= 0x0000FFFF;
1137
1138         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1139         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1140         IPW_DEBUG_INFO("exit\n");
1141 }
1142
1143 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1144 {
1145         u32 reg = 0;
1146         /*
1147          * Set GPIO 3 writable by FW; GPIO 1 writable
1148          * by driver and enable clock
1149          */
1150         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1151                IPW_BIT_GPIO_LED_OFF);
1152         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1153 }
1154
1155 static int rf_kill_active(struct ipw2100_priv *priv)
1156 {
1157 #define MAX_RF_KILL_CHECKS 5
1158 #define RF_KILL_CHECK_DELAY 40
1159
1160         unsigned short value = 0;
1161         u32 reg = 0;
1162         int i;
1163
1164         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1165                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1166                 priv->status &= ~STATUS_RF_KILL_HW;
1167                 return 0;
1168         }
1169
1170         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1171                 udelay(RF_KILL_CHECK_DELAY);
1172                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1173                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1174         }
1175
1176         if (value == 0) {
1177                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1178                 priv->status |= STATUS_RF_KILL_HW;
1179         } else {
1180                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1181                 priv->status &= ~STATUS_RF_KILL_HW;
1182         }
1183
1184         return (value == 0);
1185 }
1186
1187 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1188 {
1189         u32 addr, len;
1190         u32 val;
1191
1192         /*
1193          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1194          */
1195         len = sizeof(addr);
1196         if (ipw2100_get_ordinal
1197             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1198                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1199                                __LINE__);
1200                 return -EIO;
1201         }
1202
1203         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1204
1205         /*
1206          * EEPROM version is the byte at offset 0xfd in firmware
1207          * We read 4 bytes, then shift out the byte we actually want */
1208         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1209         priv->eeprom_version = (val >> 24) & 0xFF;
1210         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1211
1212         /*
1213          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1214          *
1215          *  notice that the EEPROM bit is reverse polarity, i.e.
1216          *     bit = 0  signifies HW RF kill switch is supported
1217          *     bit = 1  signifies HW RF kill switch is NOT supported
1218          */
1219         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1220         if (!((val >> 24) & 0x01))
1221                 priv->hw_features |= HW_FEATURE_RFKILL;
1222
1223         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1224                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1225
1226         return 0;
1227 }
1228
1229 /*
1230  * Start firmware execution after power on and intialization
1231  * The sequence is:
1232  *  1. Release ARC
1233  *  2. Wait for f/w initialization completes;
1234  */
1235 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1236 {
1237         int i;
1238         u32 inta, inta_mask, gpio;
1239
1240         IPW_DEBUG_INFO("enter\n");
1241
1242         if (priv->status & STATUS_RUNNING)
1243                 return 0;
1244
1245         /*
1246          * Initialize the hw - drive adapter to DO state by setting
1247          * init_done bit. Wait for clk_ready bit and Download
1248          * fw & dino ucode
1249          */
1250         if (ipw2100_download_firmware(priv)) {
1251                 printk(KERN_ERR DRV_NAME
1252                        ": %s: Failed to power on the adapter.\n",
1253                        priv->net_dev->name);
1254                 return -EIO;
1255         }
1256
1257         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1258          * in the firmware RBD and TBD ring queue */
1259         ipw2100_queues_initialize(priv);
1260
1261         ipw2100_hw_set_gpio(priv);
1262
1263         /* TODO -- Look at disabling interrupts here to make sure none
1264          * get fired during FW initialization */
1265
1266         /* Release ARC - clear reset bit */
1267         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1268
1269         /* wait for f/w intialization complete */
1270         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1271         i = 5000;
1272         do {
1273                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1274                 /* Todo... wait for sync command ... */
1275
1276                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1277
1278                 /* check "init done" bit */
1279                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1280                         /* reset "init done" bit */
1281                         write_register(priv->net_dev, IPW_REG_INTA,
1282                                        IPW2100_INTA_FW_INIT_DONE);
1283                         break;
1284                 }
1285
1286                 /* check error conditions : we check these after the firmware
1287                  * check so that if there is an error, the interrupt handler
1288                  * will see it and the adapter will be reset */
1289                 if (inta &
1290                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1291                         /* clear error conditions */
1292                         write_register(priv->net_dev, IPW_REG_INTA,
1293                                        IPW2100_INTA_FATAL_ERROR |
1294                                        IPW2100_INTA_PARITY_ERROR);
1295                 }
1296         } while (--i);
1297
1298         /* Clear out any pending INTAs since we aren't supposed to have
1299          * interrupts enabled at this point... */
1300         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1301         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1302         inta &= IPW_INTERRUPT_MASK;
1303         /* Clear out any pending interrupts */
1304         if (inta & inta_mask)
1305                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1306
1307         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1308                      i ? "SUCCESS" : "FAILED");
1309
1310         if (!i) {
1311                 printk(KERN_WARNING DRV_NAME
1312                        ": %s: Firmware did not initialize.\n",
1313                        priv->net_dev->name);
1314                 return -EIO;
1315         }
1316
1317         /* allow firmware to write to GPIO1 & GPIO3 */
1318         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1319
1320         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1321
1322         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1323
1324         /* Ready to receive commands */
1325         priv->status |= STATUS_RUNNING;
1326
1327         /* The adapter has been reset; we are not associated */
1328         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1329
1330         IPW_DEBUG_INFO("exit\n");
1331
1332         return 0;
1333 }
1334
1335 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1336 {
1337         if (!priv->fatal_error)
1338                 return;
1339
1340         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1341         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1342         priv->fatal_error = 0;
1343 }
1344
1345 /* NOTE: Our interrupt is disabled when this method is called */
1346 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1347 {
1348         u32 reg;
1349         int i;
1350
1351         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1352
1353         ipw2100_hw_set_gpio(priv);
1354
1355         /* Step 1. Stop Master Assert */
1356         write_register(priv->net_dev, IPW_REG_RESET_REG,
1357                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1358
1359         /* Step 2. Wait for stop Master Assert
1360          *         (not more than 50us, otherwise ret error */
1361         i = 5;
1362         do {
1363                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1364                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1365
1366                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1367                         break;
1368         } while (--i);
1369
1370         priv->status &= ~STATUS_RESET_PENDING;
1371
1372         if (!i) {
1373                 IPW_DEBUG_INFO
1374                     ("exit - waited too long for master assert stop\n");
1375                 return -EIO;
1376         }
1377
1378         write_register(priv->net_dev, IPW_REG_RESET_REG,
1379                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1380
1381         /* Reset any fatal_error conditions */
1382         ipw2100_reset_fatalerror(priv);
1383
1384         /* At this point, the adapter is now stopped and disabled */
1385         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1386                           STATUS_ASSOCIATED | STATUS_ENABLED);
1387
1388         return 0;
1389 }
1390
1391 /*
1392  * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1393  *
1394  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1395  *
1396  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1397  * if STATUS_ASSN_LOST is sent.
1398  */
1399 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1400 {
1401
1402 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1403
1404         struct host_command cmd = {
1405                 .host_command = CARD_DISABLE_PHY_OFF,
1406                 .host_command_sequence = 0,
1407                 .host_command_length = 0,
1408         };
1409         int err, i;
1410         u32 val1, val2;
1411
1412         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1413
1414         /* Turn off the radio */
1415         err = ipw2100_hw_send_command(priv, &cmd);
1416         if (err)
1417                 return err;
1418
1419         for (i = 0; i < 2500; i++) {
1420                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1421                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1422
1423                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1424                     (val2 & IPW2100_COMMAND_PHY_OFF))
1425                         return 0;
1426
1427                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1428         }
1429
1430         return -EIO;
1431 }
1432
1433 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1434 {
1435         struct host_command cmd = {
1436                 .host_command = HOST_COMPLETE,
1437                 .host_command_sequence = 0,
1438                 .host_command_length = 0
1439         };
1440         int err = 0;
1441
1442         IPW_DEBUG_HC("HOST_COMPLETE\n");
1443
1444         if (priv->status & STATUS_ENABLED)
1445                 return 0;
1446
1447         mutex_lock(&priv->adapter_mutex);
1448
1449         if (rf_kill_active(priv)) {
1450                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1451                 goto fail_up;
1452         }
1453
1454         err = ipw2100_hw_send_command(priv, &cmd);
1455         if (err) {
1456                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1457                 goto fail_up;
1458         }
1459
1460         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1461         if (err) {
1462                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1463                                priv->net_dev->name);
1464                 goto fail_up;
1465         }
1466
1467         if (priv->stop_hang_check) {
1468                 priv->stop_hang_check = 0;
1469                 schedule_delayed_work(&priv->hang_check, HZ / 2);
1470         }
1471
1472       fail_up:
1473         mutex_unlock(&priv->adapter_mutex);
1474         return err;
1475 }
1476
1477 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1478 {
1479 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1480
1481         struct host_command cmd = {
1482                 .host_command = HOST_PRE_POWER_DOWN,
1483                 .host_command_sequence = 0,
1484                 .host_command_length = 0,
1485         };
1486         int err, i;
1487         u32 reg;
1488
1489         if (!(priv->status & STATUS_RUNNING))
1490                 return 0;
1491
1492         priv->status |= STATUS_STOPPING;
1493
1494         /* We can only shut down the card if the firmware is operational.  So,
1495          * if we haven't reset since a fatal_error, then we can not send the
1496          * shutdown commands. */
1497         if (!priv->fatal_error) {
1498                 /* First, make sure the adapter is enabled so that the PHY_OFF
1499                  * command can shut it down */
1500                 ipw2100_enable_adapter(priv);
1501
1502                 err = ipw2100_hw_phy_off(priv);
1503                 if (err)
1504                         printk(KERN_WARNING DRV_NAME
1505                                ": Error disabling radio %d\n", err);
1506
1507                 /*
1508                  * If in D0-standby mode going directly to D3 may cause a
1509                  * PCI bus violation.  Therefore we must change out of the D0
1510                  * state.
1511                  *
1512                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1513                  * hardware from going into standby mode and will transition
1514                  * out of D0-standby if it is already in that state.
1515                  *
1516                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1517                  * driver upon completion.  Once received, the driver can
1518                  * proceed to the D3 state.
1519                  *
1520                  * Prepare for power down command to fw.  This command would
1521                  * take HW out of D0-standby and prepare it for D3 state.
1522                  *
1523                  * Currently FW does not support event notification for this
1524                  * event. Therefore, skip waiting for it.  Just wait a fixed
1525                  * 100ms
1526                  */
1527                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1528
1529                 err = ipw2100_hw_send_command(priv, &cmd);
1530                 if (err)
1531                         printk(KERN_WARNING DRV_NAME ": "
1532                                "%s: Power down command failed: Error %d\n",
1533                                priv->net_dev->name, err);
1534                 else
1535                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1536         }
1537
1538         priv->status &= ~STATUS_ENABLED;
1539
1540         /*
1541          * Set GPIO 3 writable by FW; GPIO 1 writable
1542          * by driver and enable clock
1543          */
1544         ipw2100_hw_set_gpio(priv);
1545
1546         /*
1547          * Power down adapter.  Sequence:
1548          * 1. Stop master assert (RESET_REG[9]=1)
1549          * 2. Wait for stop master (RESET_REG[8]==1)
1550          * 3. S/w reset assert (RESET_REG[7] = 1)
1551          */
1552
1553         /* Stop master assert */
1554         write_register(priv->net_dev, IPW_REG_RESET_REG,
1555                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1556
1557         /* wait stop master not more than 50 usec.
1558          * Otherwise return error. */
1559         for (i = 5; i > 0; i--) {
1560                 udelay(10);
1561
1562                 /* Check master stop bit */
1563                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1564
1565                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1566                         break;
1567         }
1568
1569         if (i == 0)
1570                 printk(KERN_WARNING DRV_NAME
1571                        ": %s: Could now power down adapter.\n",
1572                        priv->net_dev->name);
1573
1574         /* assert s/w reset */
1575         write_register(priv->net_dev, IPW_REG_RESET_REG,
1576                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1577
1578         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1579
1580         return 0;
1581 }
1582
1583 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1584 {
1585         struct host_command cmd = {
1586                 .host_command = CARD_DISABLE,
1587                 .host_command_sequence = 0,
1588                 .host_command_length = 0
1589         };
1590         int err = 0;
1591
1592         IPW_DEBUG_HC("CARD_DISABLE\n");
1593
1594         if (!(priv->status & STATUS_ENABLED))
1595                 return 0;
1596
1597         /* Make sure we clear the associated state */
1598         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1599
1600         if (!priv->stop_hang_check) {
1601                 priv->stop_hang_check = 1;
1602                 cancel_delayed_work(&priv->hang_check);
1603         }
1604
1605         mutex_lock(&priv->adapter_mutex);
1606
1607         err = ipw2100_hw_send_command(priv, &cmd);
1608         if (err) {
1609                 printk(KERN_WARNING DRV_NAME
1610                        ": exit - failed to send CARD_DISABLE command\n");
1611                 goto fail_up;
1612         }
1613
1614         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1615         if (err) {
1616                 printk(KERN_WARNING DRV_NAME
1617                        ": exit - card failed to change to DISABLED\n");
1618                 goto fail_up;
1619         }
1620
1621         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1622
1623       fail_up:
1624         mutex_unlock(&priv->adapter_mutex);
1625         return err;
1626 }
1627
1628 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1629 {
1630         struct host_command cmd = {
1631                 .host_command = SET_SCAN_OPTIONS,
1632                 .host_command_sequence = 0,
1633                 .host_command_length = 8
1634         };
1635         int err;
1636
1637         IPW_DEBUG_INFO("enter\n");
1638
1639         IPW_DEBUG_SCAN("setting scan options\n");
1640
1641         cmd.host_command_parameters[0] = 0;
1642
1643         if (!(priv->config & CFG_ASSOCIATE))
1644                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1645         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1646                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1647         if (priv->config & CFG_PASSIVE_SCAN)
1648                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1649
1650         cmd.host_command_parameters[1] = priv->channel_mask;
1651
1652         err = ipw2100_hw_send_command(priv, &cmd);
1653
1654         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1655                      cmd.host_command_parameters[0]);
1656
1657         return err;
1658 }
1659
1660 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1661 {
1662         struct host_command cmd = {
1663                 .host_command = BROADCAST_SCAN,
1664                 .host_command_sequence = 0,
1665                 .host_command_length = 4
1666         };
1667         int err;
1668
1669         IPW_DEBUG_HC("START_SCAN\n");
1670
1671         cmd.host_command_parameters[0] = 0;
1672
1673         /* No scanning if in monitor mode */
1674         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1675                 return 1;
1676
1677         if (priv->status & STATUS_SCANNING) {
1678                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1679                 return 0;
1680         }
1681
1682         IPW_DEBUG_INFO("enter\n");
1683
1684         /* Not clearing here; doing so makes iwlist always return nothing...
1685          *
1686          * We should modify the table logic to use aging tables vs. clearing
1687          * the table on each scan start.
1688          */
1689         IPW_DEBUG_SCAN("starting scan\n");
1690
1691         priv->status |= STATUS_SCANNING;
1692         err = ipw2100_hw_send_command(priv, &cmd);
1693         if (err)
1694                 priv->status &= ~STATUS_SCANNING;
1695
1696         IPW_DEBUG_INFO("exit\n");
1697
1698         return err;
1699 }
1700
1701 static const struct libipw_geo ipw_geos[] = {
1702         {                       /* Restricted */
1703          "---",
1704          .bg_channels = 14,
1705          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1706                 {2427, 4}, {2432, 5}, {2437, 6},
1707                 {2442, 7}, {2447, 8}, {2452, 9},
1708                 {2457, 10}, {2462, 11}, {2467, 12},
1709                 {2472, 13}, {2484, 14}},
1710          },
1711 };
1712
1713 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1714 {
1715         unsigned long flags;
1716         int rc = 0;
1717         u32 lock;
1718         u32 ord_len = sizeof(lock);
1719
1720         /* Age scan list entries found before suspend */
1721         if (priv->suspend_time) {
1722                 libipw_networks_age(priv->ieee, priv->suspend_time);
1723                 priv->suspend_time = 0;
1724         }
1725
1726         /* Quiet if manually disabled. */
1727         if (priv->status & STATUS_RF_KILL_SW) {
1728                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1729                                "switch\n", priv->net_dev->name);
1730                 return 0;
1731         }
1732
1733         /* the ipw2100 hardware really doesn't want power management delays
1734          * longer than 175usec
1735          */
1736         pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1737
1738         /* If the interrupt is enabled, turn it off... */
1739         spin_lock_irqsave(&priv->low_lock, flags);
1740         ipw2100_disable_interrupts(priv);
1741
1742         /* Reset any fatal_error conditions */
1743         ipw2100_reset_fatalerror(priv);
1744         spin_unlock_irqrestore(&priv->low_lock, flags);
1745
1746         if (priv->status & STATUS_POWERED ||
1747             (priv->status & STATUS_RESET_PENDING)) {
1748                 /* Power cycle the card ... */
1749                 if (ipw2100_power_cycle_adapter(priv)) {
1750                         printk(KERN_WARNING DRV_NAME
1751                                ": %s: Could not cycle adapter.\n",
1752                                priv->net_dev->name);
1753                         rc = 1;
1754                         goto exit;
1755                 }
1756         } else
1757                 priv->status |= STATUS_POWERED;
1758
1759         /* Load the firmware, start the clocks, etc. */
1760         if (ipw2100_start_adapter(priv)) {
1761                 printk(KERN_ERR DRV_NAME
1762                        ": %s: Failed to start the firmware.\n",
1763                        priv->net_dev->name);
1764                 rc = 1;
1765                 goto exit;
1766         }
1767
1768         ipw2100_initialize_ordinals(priv);
1769
1770         /* Determine capabilities of this particular HW configuration */
1771         if (ipw2100_get_hw_features(priv)) {
1772                 printk(KERN_ERR DRV_NAME
1773                        ": %s: Failed to determine HW features.\n",
1774                        priv->net_dev->name);
1775                 rc = 1;
1776                 goto exit;
1777         }
1778
1779         /* Initialize the geo */
1780         if (libipw_set_geo(priv->ieee, &ipw_geos[0])) {
1781                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1782                 return 0;
1783         }
1784         priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1785
1786         lock = LOCK_NONE;
1787         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1788                 printk(KERN_ERR DRV_NAME
1789                        ": %s: Failed to clear ordinal lock.\n",
1790                        priv->net_dev->name);
1791                 rc = 1;
1792                 goto exit;
1793         }
1794
1795         priv->status &= ~STATUS_SCANNING;
1796
1797         if (rf_kill_active(priv)) {
1798                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1799                        priv->net_dev->name);
1800
1801                 if (priv->stop_rf_kill) {
1802                         priv->stop_rf_kill = 0;
1803                         schedule_delayed_work(&priv->rf_kill,
1804                                               round_jiffies_relative(HZ));
1805                 }
1806
1807                 deferred = 1;
1808         }
1809
1810         /* Turn on the interrupt so that commands can be processed */
1811         ipw2100_enable_interrupts(priv);
1812
1813         /* Send all of the commands that must be sent prior to
1814          * HOST_COMPLETE */
1815         if (ipw2100_adapter_setup(priv)) {
1816                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1817                        priv->net_dev->name);
1818                 rc = 1;
1819                 goto exit;
1820         }
1821
1822         if (!deferred) {
1823                 /* Enable the adapter - sends HOST_COMPLETE */
1824                 if (ipw2100_enable_adapter(priv)) {
1825                         printk(KERN_ERR DRV_NAME ": "
1826                                "%s: failed in call to enable adapter.\n",
1827                                priv->net_dev->name);
1828                         ipw2100_hw_stop_adapter(priv);
1829                         rc = 1;
1830                         goto exit;
1831                 }
1832
1833                 /* Start a scan . . . */
1834                 ipw2100_set_scan_options(priv);
1835                 ipw2100_start_scan(priv);
1836         }
1837
1838       exit:
1839         return rc;
1840 }
1841
1842 static void ipw2100_down(struct ipw2100_priv *priv)
1843 {
1844         unsigned long flags;
1845         union iwreq_data wrqu = {
1846                 .ap_addr = {
1847                             .sa_family = ARPHRD_ETHER}
1848         };
1849         int associated = priv->status & STATUS_ASSOCIATED;
1850
1851         /* Kill the RF switch timer */
1852         if (!priv->stop_rf_kill) {
1853                 priv->stop_rf_kill = 1;
1854                 cancel_delayed_work(&priv->rf_kill);
1855         }
1856
1857         /* Kill the firmware hang check timer */
1858         if (!priv->stop_hang_check) {
1859                 priv->stop_hang_check = 1;
1860                 cancel_delayed_work(&priv->hang_check);
1861         }
1862
1863         /* Kill any pending resets */
1864         if (priv->status & STATUS_RESET_PENDING)
1865                 cancel_delayed_work(&priv->reset_work);
1866
1867         /* Make sure the interrupt is on so that FW commands will be
1868          * processed correctly */
1869         spin_lock_irqsave(&priv->low_lock, flags);
1870         ipw2100_enable_interrupts(priv);
1871         spin_unlock_irqrestore(&priv->low_lock, flags);
1872
1873         if (ipw2100_hw_stop_adapter(priv))
1874                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1875                        priv->net_dev->name);
1876
1877         /* Do not disable the interrupt until _after_ we disable
1878          * the adaptor.  Otherwise the CARD_DISABLE command will never
1879          * be ack'd by the firmware */
1880         spin_lock_irqsave(&priv->low_lock, flags);
1881         ipw2100_disable_interrupts(priv);
1882         spin_unlock_irqrestore(&priv->low_lock, flags);
1883
1884         pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1885
1886         /* We have to signal any supplicant if we are disassociating */
1887         if (associated)
1888                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1889
1890         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1891         netif_carrier_off(priv->net_dev);
1892         netif_stop_queue(priv->net_dev);
1893 }
1894
1895 /* Called by register_netdev() */
1896 static int ipw2100_net_init(struct net_device *dev)
1897 {
1898         struct ipw2100_priv *priv = libipw_priv(dev);
1899
1900         return ipw2100_up(priv, 1);
1901 }
1902
1903 static int ipw2100_wdev_init(struct net_device *dev)
1904 {
1905         struct ipw2100_priv *priv = libipw_priv(dev);
1906         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1907         struct wireless_dev *wdev = &priv->ieee->wdev;
1908         int i;
1909
1910         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1911
1912         /* fill-out priv->ieee->bg_band */
1913         if (geo->bg_channels) {
1914                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1915
1916                 bg_band->band = IEEE80211_BAND_2GHZ;
1917                 bg_band->n_channels = geo->bg_channels;
1918                 bg_band->channels = kcalloc(geo->bg_channels,
1919                                             sizeof(struct ieee80211_channel),
1920                                             GFP_KERNEL);
1921                 if (!bg_band->channels) {
1922                         ipw2100_down(priv);
1923                         return -ENOMEM;
1924                 }
1925                 /* translate geo->bg to bg_band.channels */
1926                 for (i = 0; i < geo->bg_channels; i++) {
1927                         bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1928                         bg_band->channels[i].center_freq = geo->bg[i].freq;
1929                         bg_band->channels[i].hw_value = geo->bg[i].channel;
1930                         bg_band->channels[i].max_power = geo->bg[i].max_power;
1931                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1932                                 bg_band->channels[i].flags |=
1933                                         IEEE80211_CHAN_PASSIVE_SCAN;
1934                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1935                                 bg_band->channels[i].flags |=
1936                                         IEEE80211_CHAN_NO_IBSS;
1937                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1938                                 bg_band->channels[i].flags |=
1939                                         IEEE80211_CHAN_RADAR;
1940                         /* No equivalent for LIBIPW_CH_80211H_RULES,
1941                            LIBIPW_CH_UNIFORM_SPREADING, or
1942                            LIBIPW_CH_B_ONLY... */
1943                 }
1944                 /* point at bitrate info */
1945                 bg_band->bitrates = ipw2100_bg_rates;
1946                 bg_band->n_bitrates = RATE_COUNT;
1947
1948                 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1949         }
1950
1951         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1952         if (wiphy_register(wdev->wiphy)) {
1953                 ipw2100_down(priv);
1954                 return -EIO;
1955         }
1956         return 0;
1957 }
1958
1959 static void ipw2100_reset_adapter(struct work_struct *work)
1960 {
1961         struct ipw2100_priv *priv =
1962                 container_of(work, struct ipw2100_priv, reset_work.work);
1963         unsigned long flags;
1964         union iwreq_data wrqu = {
1965                 .ap_addr = {
1966                             .sa_family = ARPHRD_ETHER}
1967         };
1968         int associated = priv->status & STATUS_ASSOCIATED;
1969
1970         spin_lock_irqsave(&priv->low_lock, flags);
1971         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1972         priv->resets++;
1973         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1974         priv->status |= STATUS_SECURITY_UPDATED;
1975
1976         /* Force a power cycle even if interface hasn't been opened
1977          * yet */
1978         cancel_delayed_work(&priv->reset_work);
1979         priv->status |= STATUS_RESET_PENDING;
1980         spin_unlock_irqrestore(&priv->low_lock, flags);
1981
1982         mutex_lock(&priv->action_mutex);
1983         /* stop timed checks so that they don't interfere with reset */
1984         priv->stop_hang_check = 1;
1985         cancel_delayed_work(&priv->hang_check);
1986
1987         /* We have to signal any supplicant if we are disassociating */
1988         if (associated)
1989                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1990
1991         ipw2100_up(priv, 0);
1992         mutex_unlock(&priv->action_mutex);
1993
1994 }
1995
1996 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1997 {
1998
1999 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2000         int ret;
2001         unsigned int len, essid_len;
2002         char essid[IW_ESSID_MAX_SIZE];
2003         u32 txrate;
2004         u32 chan;
2005         char *txratename;
2006         u8 bssid[ETH_ALEN];
2007         DECLARE_SSID_BUF(ssid);
2008
2009         /*
2010          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2011          *      an actual MAC of the AP. Seems like FW sets this
2012          *      address too late. Read it later and expose through
2013          *      /proc or schedule a later task to query and update
2014          */
2015
2016         essid_len = IW_ESSID_MAX_SIZE;
2017         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2018                                   essid, &essid_len);
2019         if (ret) {
2020                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2021                                __LINE__);
2022                 return;
2023         }
2024
2025         len = sizeof(u32);
2026         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2027         if (ret) {
2028                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2029                                __LINE__);
2030                 return;
2031         }
2032
2033         len = sizeof(u32);
2034         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2035         if (ret) {
2036                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2037                                __LINE__);
2038                 return;
2039         }
2040         len = ETH_ALEN;
2041         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
2042         if (ret) {
2043                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2044                                __LINE__);
2045                 return;
2046         }
2047         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2048
2049         switch (txrate) {
2050         case TX_RATE_1_MBIT:
2051                 txratename = "1Mbps";
2052                 break;
2053         case TX_RATE_2_MBIT:
2054                 txratename = "2Mbsp";
2055                 break;
2056         case TX_RATE_5_5_MBIT:
2057                 txratename = "5.5Mbps";
2058                 break;
2059         case TX_RATE_11_MBIT:
2060                 txratename = "11Mbps";
2061                 break;
2062         default:
2063                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2064                 txratename = "unknown rate";
2065                 break;
2066         }
2067
2068         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2069                        priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2070                        txratename, chan, bssid);
2071
2072         /* now we copy read ssid into dev */
2073         if (!(priv->config & CFG_STATIC_ESSID)) {
2074                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2075                 memcpy(priv->essid, essid, priv->essid_len);
2076         }
2077         priv->channel = chan;
2078         memcpy(priv->bssid, bssid, ETH_ALEN);
2079
2080         priv->status |= STATUS_ASSOCIATING;
2081         priv->connect_start = get_seconds();
2082
2083         schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2084 }
2085
2086 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2087                              int length, int batch_mode)
2088 {
2089         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2090         struct host_command cmd = {
2091                 .host_command = SSID,
2092                 .host_command_sequence = 0,
2093                 .host_command_length = ssid_len
2094         };
2095         int err;
2096         DECLARE_SSID_BUF(ssid);
2097
2098         IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2099
2100         if (ssid_len)
2101                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2102
2103         if (!batch_mode) {
2104                 err = ipw2100_disable_adapter(priv);
2105                 if (err)
2106                         return err;
2107         }
2108
2109         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2110          * disable auto association -- so we cheat by setting a bogus SSID */
2111         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2112                 int i;
2113                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2114                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2115                         bogus[i] = 0x18 + i;
2116                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2117         }
2118
2119         /* NOTE:  We always send the SSID command even if the provided ESSID is
2120          * the same as what we currently think is set. */
2121
2122         err = ipw2100_hw_send_command(priv, &cmd);
2123         if (!err) {
2124                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2125                 memcpy(priv->essid, essid, ssid_len);
2126                 priv->essid_len = ssid_len;
2127         }
2128
2129         if (!batch_mode) {
2130                 if (ipw2100_enable_adapter(priv))
2131                         err = -EIO;
2132         }
2133
2134         return err;
2135 }
2136
2137 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2138 {
2139         DECLARE_SSID_BUF(ssid);
2140
2141         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2142                   "disassociated: '%s' %pM\n",
2143                   print_ssid(ssid, priv->essid, priv->essid_len),
2144                   priv->bssid);
2145
2146         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2147
2148         if (priv->status & STATUS_STOPPING) {
2149                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2150                 return;
2151         }
2152
2153         memset(priv->bssid, 0, ETH_ALEN);
2154         memset(priv->ieee->bssid, 0, ETH_ALEN);
2155
2156         netif_carrier_off(priv->net_dev);
2157         netif_stop_queue(priv->net_dev);
2158
2159         if (!(priv->status & STATUS_RUNNING))
2160                 return;
2161
2162         if (priv->status & STATUS_SECURITY_UPDATED)
2163                 schedule_delayed_work(&priv->security_work, 0);
2164
2165         schedule_delayed_work(&priv->wx_event_work, 0);
2166 }
2167
2168 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2169 {
2170         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2171                        priv->net_dev->name);
2172
2173         /* RF_KILL is now enabled (else we wouldn't be here) */
2174         wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2175         priv->status |= STATUS_RF_KILL_HW;
2176
2177         /* Make sure the RF Kill check timer is running */
2178         priv->stop_rf_kill = 0;
2179         cancel_delayed_work(&priv->rf_kill);
2180         schedule_delayed_work(&priv->rf_kill, round_jiffies_relative(HZ));
2181 }
2182
2183 static void send_scan_event(void *data)
2184 {
2185         struct ipw2100_priv *priv = data;
2186         union iwreq_data wrqu;
2187
2188         wrqu.data.length = 0;
2189         wrqu.data.flags = 0;
2190         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2191 }
2192
2193 static void ipw2100_scan_event_later(struct work_struct *work)
2194 {
2195         send_scan_event(container_of(work, struct ipw2100_priv,
2196                                         scan_event_later.work));
2197 }
2198
2199 static void ipw2100_scan_event_now(struct work_struct *work)
2200 {
2201         send_scan_event(container_of(work, struct ipw2100_priv,
2202                                         scan_event_now));
2203 }
2204
2205 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2206 {
2207         IPW_DEBUG_SCAN("scan complete\n");
2208         /* Age the scan results... */
2209         priv->ieee->scans++;
2210         priv->status &= ~STATUS_SCANNING;
2211
2212         /* Only userspace-requested scan completion events go out immediately */
2213         if (!priv->user_requested_scan) {
2214                 if (!delayed_work_pending(&priv->scan_event_later))
2215                         schedule_delayed_work(&priv->scan_event_later,
2216                                               round_jiffies_relative(msecs_to_jiffies(4000)));
2217         } else {
2218                 priv->user_requested_scan = 0;
2219                 cancel_delayed_work(&priv->scan_event_later);
2220                 schedule_work(&priv->scan_event_now);
2221         }
2222 }
2223
2224 #ifdef CONFIG_IPW2100_DEBUG
2225 #define IPW2100_HANDLER(v, f) { v, f, # v }
2226 struct ipw2100_status_indicator {
2227         int status;
2228         void (*cb) (struct ipw2100_priv * priv, u32 status);
2229         char *name;
2230 };
2231 #else
2232 #define IPW2100_HANDLER(v, f) { v, f }
2233 struct ipw2100_status_indicator {
2234         int status;
2235         void (*cb) (struct ipw2100_priv * priv, u32 status);
2236 };
2237 #endif                          /* CONFIG_IPW2100_DEBUG */
2238
2239 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2240 {
2241         IPW_DEBUG_SCAN("Scanning...\n");
2242         priv->status |= STATUS_SCANNING;
2243 }
2244
2245 static const struct ipw2100_status_indicator status_handlers[] = {
2246         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2247         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2248         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2249         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2250         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2251         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2252         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2253         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2254         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2255         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2256         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2257         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2258         IPW2100_HANDLER(-1, NULL)
2259 };
2260
2261 static void isr_status_change(struct ipw2100_priv *priv, int status)
2262 {
2263         int i;
2264
2265         if (status == IPW_STATE_SCANNING &&
2266             priv->status & STATUS_ASSOCIATED &&
2267             !(priv->status & STATUS_SCANNING)) {
2268                 IPW_DEBUG_INFO("Scan detected while associated, with "
2269                                "no scan request.  Restarting firmware.\n");
2270
2271                 /* Wake up any sleeping jobs */
2272                 schedule_reset(priv);
2273         }
2274
2275         for (i = 0; status_handlers[i].status != -1; i++) {
2276                 if (status == status_handlers[i].status) {
2277                         IPW_DEBUG_NOTIF("Status change: %s\n",
2278                                         status_handlers[i].name);
2279                         if (status_handlers[i].cb)
2280                                 status_handlers[i].cb(priv, status);
2281                         priv->wstats.status = status;
2282                         return;
2283                 }
2284         }
2285
2286         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2287 }
2288
2289 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2290                                     struct ipw2100_cmd_header *cmd)
2291 {
2292 #ifdef CONFIG_IPW2100_DEBUG
2293         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2294                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2295                              command_types[cmd->host_command_reg],
2296                              cmd->host_command_reg);
2297         }
2298 #endif
2299         if (cmd->host_command_reg == HOST_COMPLETE)
2300                 priv->status |= STATUS_ENABLED;
2301
2302         if (cmd->host_command_reg == CARD_DISABLE)
2303                 priv->status &= ~STATUS_ENABLED;
2304
2305         priv->status &= ~STATUS_CMD_ACTIVE;
2306
2307         wake_up_interruptible(&priv->wait_command_queue);
2308 }
2309
2310 #ifdef CONFIG_IPW2100_DEBUG
2311 static const char *frame_types[] = {
2312         "COMMAND_STATUS_VAL",
2313         "STATUS_CHANGE_VAL",
2314         "P80211_DATA_VAL",
2315         "P8023_DATA_VAL",
2316         "HOST_NOTIFICATION_VAL"
2317 };
2318 #endif
2319
2320 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2321                                     struct ipw2100_rx_packet *packet)
2322 {
2323         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2324         if (!packet->skb)
2325                 return -ENOMEM;
2326
2327         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2328         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2329                                           sizeof(struct ipw2100_rx),
2330                                           PCI_DMA_FROMDEVICE);
2331         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2332          *       dma_addr */
2333
2334         return 0;
2335 }
2336
2337 #define SEARCH_ERROR   0xffffffff
2338 #define SEARCH_FAIL    0xfffffffe
2339 #define SEARCH_SUCCESS 0xfffffff0
2340 #define SEARCH_DISCARD 0
2341 #define SEARCH_SNAPSHOT 1
2342
2343 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2344 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2345 {
2346         int i;
2347         if (!priv->snapshot[0])
2348                 return;
2349         for (i = 0; i < 0x30; i++)
2350                 kfree(priv->snapshot[i]);
2351         priv->snapshot[0] = NULL;
2352 }
2353
2354 #ifdef IPW2100_DEBUG_C3
2355 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2356 {
2357         int i;
2358         if (priv->snapshot[0])
2359                 return 1;
2360         for (i = 0; i < 0x30; i++) {
2361                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2362                 if (!priv->snapshot[i]) {
2363                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2364                                        "buffer %d\n", priv->net_dev->name, i);
2365                         while (i > 0)
2366                                 kfree(priv->snapshot[--i]);
2367                         priv->snapshot[0] = NULL;
2368                         return 0;
2369                 }
2370         }
2371
2372         return 1;
2373 }
2374
2375 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2376                                     size_t len, int mode)
2377 {
2378         u32 i, j;
2379         u32 tmp;
2380         u8 *s, *d;
2381         u32 ret;
2382
2383         s = in_buf;
2384         if (mode == SEARCH_SNAPSHOT) {
2385                 if (!ipw2100_snapshot_alloc(priv))
2386                         mode = SEARCH_DISCARD;
2387         }
2388
2389         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2390                 read_nic_dword(priv->net_dev, i, &tmp);
2391                 if (mode == SEARCH_SNAPSHOT)
2392                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2393                 if (ret == SEARCH_FAIL) {
2394                         d = (u8 *) & tmp;
2395                         for (j = 0; j < 4; j++) {
2396                                 if (*s != *d) {
2397                                         s = in_buf;
2398                                         continue;
2399                                 }
2400
2401                                 s++;
2402                                 d++;
2403
2404                                 if ((s - in_buf) == len)
2405                                         ret = (i + j) - len + 1;
2406                         }
2407                 } else if (mode == SEARCH_DISCARD)
2408                         return ret;
2409         }
2410
2411         return ret;
2412 }
2413 #endif
2414
2415 /*
2416  *
2417  * 0) Disconnect the SKB from the firmware (just unmap)
2418  * 1) Pack the ETH header into the SKB
2419  * 2) Pass the SKB to the network stack
2420  *
2421  * When packet is provided by the firmware, it contains the following:
2422  *
2423  * .  libipw_hdr
2424  * .  libipw_snap_hdr
2425  *
2426  * The size of the constructed ethernet
2427  *
2428  */
2429 #ifdef IPW2100_RX_DEBUG
2430 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2431 #endif
2432
2433 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2434 {
2435 #ifdef IPW2100_DEBUG_C3
2436         struct ipw2100_status *status = &priv->status_queue.drv[i];
2437         u32 match, reg;
2438         int j;
2439 #endif
2440
2441         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2442                        i * sizeof(struct ipw2100_status));
2443
2444 #ifdef IPW2100_DEBUG_C3
2445         /* Halt the firmware so we can get a good image */
2446         write_register(priv->net_dev, IPW_REG_RESET_REG,
2447                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2448         j = 5;
2449         do {
2450                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2451                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2452
2453                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2454                         break;
2455         } while (j--);
2456
2457         match = ipw2100_match_buf(priv, (u8 *) status,
2458                                   sizeof(struct ipw2100_status),
2459                                   SEARCH_SNAPSHOT);
2460         if (match < SEARCH_SUCCESS)
2461                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2462                                "offset 0x%06X, length %d:\n",
2463                                priv->net_dev->name, match,
2464                                sizeof(struct ipw2100_status));
2465         else
2466                 IPW_DEBUG_INFO("%s: No DMA status match in "
2467                                "Firmware.\n", priv->net_dev->name);
2468
2469         printk_buf((u8 *) priv->status_queue.drv,
2470                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2471 #endif
2472
2473         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2474         priv->net_dev->stats.rx_errors++;
2475         schedule_reset(priv);
2476 }
2477
2478 static void isr_rx(struct ipw2100_priv *priv, int i,
2479                           struct libipw_rx_stats *stats)
2480 {
2481         struct net_device *dev = priv->net_dev;
2482         struct ipw2100_status *status = &priv->status_queue.drv[i];
2483         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2484
2485         IPW_DEBUG_RX("Handler...\n");
2486
2487         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2488                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2489                                "  Dropping.\n",
2490                                dev->name,
2491                                status->frame_size, skb_tailroom(packet->skb));
2492                 dev->stats.rx_errors++;
2493                 return;
2494         }
2495
2496         if (unlikely(!netif_running(dev))) {
2497                 dev->stats.rx_errors++;
2498                 priv->wstats.discard.misc++;
2499                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2500                 return;
2501         }
2502
2503         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2504                      !(priv->status & STATUS_ASSOCIATED))) {
2505                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2506                 priv->wstats.discard.misc++;
2507                 return;
2508         }
2509
2510         pci_unmap_single(priv->pci_dev,
2511                          packet->dma_addr,
2512                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2513
2514         skb_put(packet->skb, status->frame_size);
2515
2516 #ifdef IPW2100_RX_DEBUG
2517         /* Make a copy of the frame so we can dump it to the logs if
2518          * libipw_rx fails */
2519         skb_copy_from_linear_data(packet->skb, packet_data,
2520                                   min_t(u32, status->frame_size,
2521                                              IPW_RX_NIC_BUFFER_LENGTH));
2522 #endif
2523
2524         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2525 #ifdef IPW2100_RX_DEBUG
2526                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2527                                dev->name);
2528                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2529 #endif
2530                 dev->stats.rx_errors++;
2531
2532                 /* libipw_rx failed, so it didn't free the SKB */
2533                 dev_kfree_skb_any(packet->skb);
2534                 packet->skb = NULL;
2535         }
2536
2537         /* We need to allocate a new SKB and attach it to the RDB. */
2538         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2539                 printk(KERN_WARNING DRV_NAME ": "
2540                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2541                        "adapter.\n", dev->name);
2542                 /* TODO: schedule adapter shutdown */
2543                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2544         }
2545
2546         /* Update the RDB entry */
2547         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2548 }
2549
2550 #ifdef CONFIG_IPW2100_MONITOR
2551
2552 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2553                    struct libipw_rx_stats *stats)
2554 {
2555         struct net_device *dev = priv->net_dev;
2556         struct ipw2100_status *status = &priv->status_queue.drv[i];
2557         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2558
2559         /* Magic struct that slots into the radiotap header -- no reason
2560          * to build this manually element by element, we can write it much
2561          * more efficiently than we can parse it. ORDER MATTERS HERE */
2562         struct ipw_rt_hdr {
2563                 struct ieee80211_radiotap_header rt_hdr;
2564                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2565         } *ipw_rt;
2566
2567         IPW_DEBUG_RX("Handler...\n");
2568
2569         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2570                                 sizeof(struct ipw_rt_hdr))) {
2571                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2572                                "  Dropping.\n",
2573                                dev->name,
2574                                status->frame_size,
2575                                skb_tailroom(packet->skb));
2576                 dev->stats.rx_errors++;
2577                 return;
2578         }
2579
2580         if (unlikely(!netif_running(dev))) {
2581                 dev->stats.rx_errors++;
2582                 priv->wstats.discard.misc++;
2583                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2584                 return;
2585         }
2586
2587         if (unlikely(priv->config & CFG_CRC_CHECK &&
2588                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2589                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2590                 dev->stats.rx_errors++;
2591                 return;
2592         }
2593
2594         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2595                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2596         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2597                 packet->skb->data, status->frame_size);
2598
2599         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2600
2601         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2602         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2603         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2604
2605         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2606
2607         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2608
2609         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2610
2611         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2612                 dev->stats.rx_errors++;
2613
2614                 /* libipw_rx failed, so it didn't free the SKB */
2615                 dev_kfree_skb_any(packet->skb);
2616                 packet->skb = NULL;
2617         }
2618
2619         /* We need to allocate a new SKB and attach it to the RDB. */
2620         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2621                 IPW_DEBUG_WARNING(
2622                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2623                         "adapter.\n", dev->name);
2624                 /* TODO: schedule adapter shutdown */
2625                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2626         }
2627
2628         /* Update the RDB entry */
2629         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2630 }
2631
2632 #endif
2633
2634 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2635 {
2636         struct ipw2100_status *status = &priv->status_queue.drv[i];
2637         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2638         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2639
2640         switch (frame_type) {
2641         case COMMAND_STATUS_VAL:
2642                 return (status->frame_size != sizeof(u->rx_data.command));
2643         case STATUS_CHANGE_VAL:
2644                 return (status->frame_size != sizeof(u->rx_data.status));
2645         case HOST_NOTIFICATION_VAL:
2646                 return (status->frame_size < sizeof(u->rx_data.notification));
2647         case P80211_DATA_VAL:
2648         case P8023_DATA_VAL:
2649 #ifdef CONFIG_IPW2100_MONITOR
2650                 return 0;
2651 #else
2652                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2653                 case IEEE80211_FTYPE_MGMT:
2654                 case IEEE80211_FTYPE_CTL:
2655                         return 0;
2656                 case IEEE80211_FTYPE_DATA:
2657                         return (status->frame_size >
2658                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2659                 }
2660 #endif
2661         }
2662
2663         return 1;
2664 }
2665
2666 /*
2667  * ipw2100 interrupts are disabled at this point, and the ISR
2668  * is the only code that calls this method.  So, we do not need
2669  * to play with any locks.
2670  *
2671  * RX Queue works as follows:
2672  *
2673  * Read index - firmware places packet in entry identified by the
2674  *              Read index and advances Read index.  In this manner,
2675  *              Read index will always point to the next packet to
2676  *              be filled--but not yet valid.
2677  *
2678  * Write index - driver fills this entry with an unused RBD entry.
2679  *               This entry has not filled by the firmware yet.
2680  *
2681  * In between the W and R indexes are the RBDs that have been received
2682  * but not yet processed.
2683  *
2684  * The process of handling packets will start at WRITE + 1 and advance
2685  * until it reaches the READ index.
2686  *
2687  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2688  *
2689  */
2690 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2691 {
2692         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2693         struct ipw2100_status_queue *sq = &priv->status_queue;
2694         struct ipw2100_rx_packet *packet;
2695         u16 frame_type;
2696         u32 r, w, i, s;
2697         struct ipw2100_rx *u;
2698         struct libipw_rx_stats stats = {
2699                 .mac_time = jiffies,
2700         };
2701
2702         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2703         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2704
2705         if (r >= rxq->entries) {
2706                 IPW_DEBUG_RX("exit - bad read index\n");
2707                 return;
2708         }
2709
2710         i = (rxq->next + 1) % rxq->entries;
2711         s = i;
2712         while (i != r) {
2713                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2714                    r, rxq->next, i); */
2715
2716                 packet = &priv->rx_buffers[i];
2717
2718                 /* Sync the DMA for the RX buffer so CPU is sure to get
2719                  * the correct values */
2720                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2721                                             sizeof(struct ipw2100_rx),
2722                                             PCI_DMA_FROMDEVICE);
2723
2724                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2725                         ipw2100_corruption_detected(priv, i);
2726                         goto increment;
2727                 }
2728
2729                 u = packet->rxp;
2730                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2731                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2732                 stats.len = sq->drv[i].frame_size;
2733
2734                 stats.mask = 0;
2735                 if (stats.rssi != 0)
2736                         stats.mask |= LIBIPW_STATMASK_RSSI;
2737                 stats.freq = LIBIPW_24GHZ_BAND;
2738
2739                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2740                              priv->net_dev->name, frame_types[frame_type],
2741                              stats.len);
2742
2743                 switch (frame_type) {
2744                 case COMMAND_STATUS_VAL:
2745                         /* Reset Rx watchdog */
2746                         isr_rx_complete_command(priv, &u->rx_data.command);
2747                         break;
2748
2749                 case STATUS_CHANGE_VAL:
2750                         isr_status_change(priv, u->rx_data.status);
2751                         break;
2752
2753                 case P80211_DATA_VAL:
2754                 case P8023_DATA_VAL:
2755 #ifdef CONFIG_IPW2100_MONITOR
2756                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2757                                 isr_rx_monitor(priv, i, &stats);
2758                                 break;
2759                         }
2760 #endif
2761                         if (stats.len < sizeof(struct libipw_hdr_3addr))
2762                                 break;
2763                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2764                         case IEEE80211_FTYPE_MGMT:
2765                                 libipw_rx_mgt(priv->ieee,
2766                                                  &u->rx_data.header, &stats);
2767                                 break;
2768
2769                         case IEEE80211_FTYPE_CTL:
2770                                 break;
2771
2772                         case IEEE80211_FTYPE_DATA:
2773                                 isr_rx(priv, i, &stats);
2774                                 break;
2775
2776                         }
2777                         break;
2778                 }
2779
2780               increment:
2781                 /* clear status field associated with this RBD */
2782                 rxq->drv[i].status.info.field = 0;
2783
2784                 i = (i + 1) % rxq->entries;
2785         }
2786
2787         if (i != s) {
2788                 /* backtrack one entry, wrapping to end if at 0 */
2789                 rxq->next = (i ? i : rxq->entries) - 1;
2790
2791                 write_register(priv->net_dev,
2792                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2793         }
2794 }
2795
2796 /*
2797  * __ipw2100_tx_process
2798  *
2799  * This routine will determine whether the next packet on
2800  * the fw_pend_list has been processed by the firmware yet.
2801  *
2802  * If not, then it does nothing and returns.
2803  *
2804  * If so, then it removes the item from the fw_pend_list, frees
2805  * any associated storage, and places the item back on the
2806  * free list of its source (either msg_free_list or tx_free_list)
2807  *
2808  * TX Queue works as follows:
2809  *
2810  * Read index - points to the next TBD that the firmware will
2811  *              process.  The firmware will read the data, and once
2812  *              done processing, it will advance the Read index.
2813  *
2814  * Write index - driver fills this entry with an constructed TBD
2815  *               entry.  The Write index is not advanced until the
2816  *               packet has been configured.
2817  *
2818  * In between the W and R indexes are the TBDs that have NOT been
2819  * processed.  Lagging behind the R index are packets that have
2820  * been processed but have not been freed by the driver.
2821  *
2822  * In order to free old storage, an internal index will be maintained
2823  * that points to the next packet to be freed.  When all used
2824  * packets have been freed, the oldest index will be the same as the
2825  * firmware's read index.
2826  *
2827  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2828  *
2829  * Because the TBD structure can not contain arbitrary data, the
2830  * driver must keep an internal queue of cached allocations such that
2831  * it can put that data back into the tx_free_list and msg_free_list
2832  * for use by future command and data packets.
2833  *
2834  */
2835 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2836 {
2837         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2838         struct ipw2100_bd *tbd;
2839         struct list_head *element;
2840         struct ipw2100_tx_packet *packet;
2841         int descriptors_used;
2842         int e, i;
2843         u32 r, w, frag_num = 0;
2844
2845         if (list_empty(&priv->fw_pend_list))
2846                 return 0;
2847
2848         element = priv->fw_pend_list.next;
2849
2850         packet = list_entry(element, struct ipw2100_tx_packet, list);
2851         tbd = &txq->drv[packet->index];
2852
2853         /* Determine how many TBD entries must be finished... */
2854         switch (packet->type) {
2855         case COMMAND:
2856                 /* COMMAND uses only one slot; don't advance */
2857                 descriptors_used = 1;
2858                 e = txq->oldest;
2859                 break;
2860
2861         case DATA:
2862                 /* DATA uses two slots; advance and loop position. */
2863                 descriptors_used = tbd->num_fragments;
2864                 frag_num = tbd->num_fragments - 1;
2865                 e = txq->oldest + frag_num;
2866                 e %= txq->entries;
2867                 break;
2868
2869         default:
2870                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2871                        priv->net_dev->name);
2872                 return 0;
2873         }
2874
2875         /* if the last TBD is not done by NIC yet, then packet is
2876          * not ready to be released.
2877          *
2878          */
2879         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2880                       &r);
2881         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2882                       &w);
2883         if (w != txq->next)
2884                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2885                        priv->net_dev->name);
2886
2887         /*
2888          * txq->next is the index of the last packet written txq->oldest is
2889          * the index of the r is the index of the next packet to be read by
2890          * firmware
2891          */
2892
2893         /*
2894          * Quick graphic to help you visualize the following
2895          * if / else statement
2896          *
2897          * ===>|                     s---->|===============
2898          *                               e>|
2899          * | a | b | c | d | e | f | g | h | i | j | k | l
2900          *       r---->|
2901          *               w
2902          *
2903          * w - updated by driver
2904          * r - updated by firmware
2905          * s - start of oldest BD entry (txq->oldest)
2906          * e - end of oldest BD entry
2907          *
2908          */
2909         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2910                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2911                 return 0;
2912         }
2913
2914         list_del(element);
2915         DEC_STAT(&priv->fw_pend_stat);
2916
2917 #ifdef CONFIG_IPW2100_DEBUG
2918         {
2919                 i = txq->oldest;
2920                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2921                              &txq->drv[i],
2922                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2923                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2924
2925                 if (packet->type == DATA) {
2926                         i = (i + 1) % txq->entries;
2927
2928                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2929                                      &txq->drv[i],
2930                                      (u32) (txq->nic + i *
2931                                             sizeof(struct ipw2100_bd)),
2932                                      (u32) txq->drv[i].host_addr,
2933                                      txq->drv[i].buf_length);
2934                 }
2935         }
2936 #endif
2937
2938         switch (packet->type) {
2939         case DATA:
2940                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2941                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2942                                "Expecting DATA TBD but pulled "
2943                                "something else: ids %d=%d.\n",
2944                                priv->net_dev->name, txq->oldest, packet->index);
2945
2946                 /* DATA packet; we have to unmap and free the SKB */
2947                 for (i = 0; i < frag_num; i++) {
2948                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2949
2950                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2951                                      (packet->index + 1 + i) % txq->entries,
2952                                      tbd->host_addr, tbd->buf_length);
2953
2954                         pci_unmap_single(priv->pci_dev,
2955                                          tbd->host_addr,
2956                                          tbd->buf_length, PCI_DMA_TODEVICE);
2957                 }
2958
2959                 libipw_txb_free(packet->info.d_struct.txb);
2960                 packet->info.d_struct.txb = NULL;
2961
2962                 list_add_tail(element, &priv->tx_free_list);
2963                 INC_STAT(&priv->tx_free_stat);
2964
2965                 /* We have a free slot in the Tx queue, so wake up the
2966                  * transmit layer if it is stopped. */
2967                 if (priv->status & STATUS_ASSOCIATED)
2968                         netif_wake_queue(priv->net_dev);
2969
2970                 /* A packet was processed by the hardware, so update the
2971                  * watchdog */
2972                 priv->net_dev->trans_start = jiffies;
2973
2974                 break;
2975
2976         case COMMAND:
2977                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2978                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2979                                "Expecting COMMAND TBD but pulled "
2980                                "something else: ids %d=%d.\n",
2981                                priv->net_dev->name, txq->oldest, packet->index);
2982
2983 #ifdef CONFIG_IPW2100_DEBUG
2984                 if (packet->info.c_struct.cmd->host_command_reg <
2985                     ARRAY_SIZE(command_types))
2986                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2987                                      command_types[packet->info.c_struct.cmd->
2988                                                    host_command_reg],
2989                                      packet->info.c_struct.cmd->
2990                                      host_command_reg,
2991                                      packet->info.c_struct.cmd->cmd_status_reg);
2992 #endif
2993
2994                 list_add_tail(element, &priv->msg_free_list);
2995                 INC_STAT(&priv->msg_free_stat);
2996                 break;
2997         }
2998
2999         /* advance oldest used TBD pointer to start of next entry */
3000         txq->oldest = (e + 1) % txq->entries;
3001         /* increase available TBDs number */
3002         txq->available += descriptors_used;
3003         SET_STAT(&priv->txq_stat, txq->available);
3004
3005         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
3006                      jiffies - packet->jiffy_start);
3007
3008         return (!list_empty(&priv->fw_pend_list));
3009 }
3010
3011 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3012 {
3013         int i = 0;
3014
3015         while (__ipw2100_tx_process(priv) && i < 200)
3016                 i++;
3017
3018         if (i == 200) {
3019                 printk(KERN_WARNING DRV_NAME ": "
3020                        "%s: Driver is running slow (%d iters).\n",
3021                        priv->net_dev->name, i);
3022         }
3023 }
3024
3025 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3026 {
3027         struct list_head *element;
3028         struct ipw2100_tx_packet *packet;
3029         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3030         struct ipw2100_bd *tbd;
3031         int next = txq->next;
3032
3033         while (!list_empty(&priv->msg_pend_list)) {
3034                 /* if there isn't enough space in TBD queue, then
3035                  * don't stuff a new one in.
3036                  * NOTE: 3 are needed as a command will take one,
3037                  *       and there is a minimum of 2 that must be
3038                  *       maintained between the r and w indexes
3039                  */
3040                 if (txq->available <= 3) {
3041                         IPW_DEBUG_TX("no room in tx_queue\n");
3042                         break;
3043                 }
3044
3045                 element = priv->msg_pend_list.next;
3046                 list_del(element);
3047                 DEC_STAT(&priv->msg_pend_stat);
3048
3049                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3050
3051                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3052                              &txq->drv[txq->next],
3053                              (u32) (txq->nic + txq->next *
3054                                       sizeof(struct ipw2100_bd)));
3055
3056                 packet->index = txq->next;
3057
3058                 tbd = &txq->drv[txq->next];
3059
3060                 /* initialize TBD */
3061                 tbd->host_addr = packet->info.c_struct.cmd_phys;
3062                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3063                 /* not marking number of fragments causes problems
3064                  * with f/w debug version */
3065                 tbd->num_fragments = 1;
3066                 tbd->status.info.field =
3067                     IPW_BD_STATUS_TX_FRAME_COMMAND |
3068                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3069
3070                 /* update TBD queue counters */
3071                 txq->next++;
3072                 txq->next %= txq->entries;
3073                 txq->available--;
3074                 DEC_STAT(&priv->txq_stat);
3075
3076                 list_add_tail(element, &priv->fw_pend_list);
3077                 INC_STAT(&priv->fw_pend_stat);
3078         }
3079
3080         if (txq->next != next) {
3081                 /* kick off the DMA by notifying firmware the
3082                  * write index has moved; make sure TBD stores are sync'd */
3083                 wmb();
3084                 write_register(priv->net_dev,
3085                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3086                                txq->next);
3087         }
3088 }
3089
3090 /*
3091  * ipw2100_tx_send_data
3092  *
3093  */
3094 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3095 {
3096         struct list_head *element;
3097         struct ipw2100_tx_packet *packet;
3098         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3099         struct ipw2100_bd *tbd;
3100         int next = txq->next;
3101         int i = 0;
3102         struct ipw2100_data_header *ipw_hdr;
3103         struct libipw_hdr_3addr *hdr;
3104
3105         while (!list_empty(&priv->tx_pend_list)) {
3106                 /* if there isn't enough space in TBD queue, then
3107                  * don't stuff a new one in.
3108                  * NOTE: 4 are needed as a data will take two,
3109                  *       and there is a minimum of 2 that must be
3110                  *       maintained between the r and w indexes
3111                  */
3112                 element = priv->tx_pend_list.next;
3113                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3114
3115                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3116                              IPW_MAX_BDS)) {
3117                         /* TODO: Support merging buffers if more than
3118                          * IPW_MAX_BDS are used */
3119                         IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3120                                        "Increase fragmentation level.\n",
3121                                        priv->net_dev->name);
3122                 }
3123
3124                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3125                         IPW_DEBUG_TX("no room in tx_queue\n");
3126                         break;
3127                 }
3128
3129                 list_del(element);
3130                 DEC_STAT(&priv->tx_pend_stat);
3131
3132                 tbd = &txq->drv[txq->next];
3133
3134                 packet->index = txq->next;
3135
3136                 ipw_hdr = packet->info.d_struct.data;
3137                 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3138                     fragments[0]->data;
3139
3140                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3141                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3142                            Addr3 = DA */
3143                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3144                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3145                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3146                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3147                            Addr3 = BSSID */
3148                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3149                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3150                 }
3151
3152                 ipw_hdr->host_command_reg = SEND;
3153                 ipw_hdr->host_command_reg1 = 0;
3154
3155                 /* For now we only support host based encryption */
3156                 ipw_hdr->needs_encryption = 0;
3157                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3158                 if (packet->info.d_struct.txb->nr_frags > 1)
3159                         ipw_hdr->fragment_size =
3160                             packet->info.d_struct.txb->frag_size -
3161                             LIBIPW_3ADDR_LEN;
3162                 else
3163                         ipw_hdr->fragment_size = 0;
3164
3165                 tbd->host_addr = packet->info.d_struct.data_phys;
3166                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3167                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3168                 tbd->status.info.field =
3169                     IPW_BD_STATUS_TX_FRAME_802_3 |
3170                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3171                 txq->next++;
3172                 txq->next %= txq->entries;
3173
3174                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3175                              packet->index, tbd->host_addr, tbd->buf_length);
3176 #ifdef CONFIG_IPW2100_DEBUG
3177                 if (packet->info.d_struct.txb->nr_frags > 1)
3178                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3179                                        packet->info.d_struct.txb->nr_frags);
3180 #endif
3181
3182                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3183                         tbd = &txq->drv[txq->next];
3184                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3185                                 tbd->status.info.field =
3186                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3187                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3188                         else
3189                                 tbd->status.info.field =
3190                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3191                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3192
3193                         tbd->buf_length = packet->info.d_struct.txb->
3194                             fragments[i]->len - LIBIPW_3ADDR_LEN;
3195
3196                         tbd->host_addr = pci_map_single(priv->pci_dev,
3197                                                         packet->info.d_struct.
3198                                                         txb->fragments[i]->
3199                                                         data +
3200                                                         LIBIPW_3ADDR_LEN,
3201                                                         tbd->buf_length,
3202                                                         PCI_DMA_TODEVICE);
3203
3204                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3205                                      txq->next, tbd->host_addr,
3206                                      tbd->buf_length);
3207
3208                         pci_dma_sync_single_for_device(priv->pci_dev,
3209                                                        tbd->host_addr,
3210                                                        tbd->buf_length,
3211                                                        PCI_DMA_TODEVICE);
3212
3213                         txq->next++;
3214                         txq->next %= txq->entries;
3215                 }
3216
3217                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3218                 SET_STAT(&priv->txq_stat, txq->available);
3219
3220                 list_add_tail(element, &priv->fw_pend_list);
3221                 INC_STAT(&priv->fw_pend_stat);
3222         }
3223
3224         if (txq->next != next) {
3225                 /* kick off the DMA by notifying firmware the
3226                  * write index has moved; make sure TBD stores are sync'd */
3227                 write_register(priv->net_dev,
3228                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3229                                txq->next);
3230         }
3231 }
3232
3233 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3234 {
3235         struct net_device *dev = priv->net_dev;
3236         unsigned long flags;
3237         u32 inta, tmp;
3238
3239         spin_lock_irqsave(&priv->low_lock, flags);
3240         ipw2100_disable_interrupts(priv);
3241
3242         read_register(dev, IPW_REG_INTA, &inta);
3243
3244         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3245                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3246
3247         priv->in_isr++;
3248         priv->interrupts++;
3249
3250         /* We do not loop and keep polling for more interrupts as this
3251          * is frowned upon and doesn't play nicely with other potentially
3252          * chained IRQs */
3253         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3254                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3255
3256         if (inta & IPW2100_INTA_FATAL_ERROR) {
3257                 printk(KERN_WARNING DRV_NAME
3258                        ": Fatal interrupt. Scheduling firmware restart.\n");
3259                 priv->inta_other++;
3260                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3261
3262                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3263                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3264                                priv->net_dev->name, priv->fatal_error);
3265
3266                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3267                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3268                                priv->net_dev->name, tmp);
3269
3270                 /* Wake up any sleeping jobs */
3271                 schedule_reset(priv);
3272         }
3273
3274         if (inta & IPW2100_INTA_PARITY_ERROR) {
3275                 printk(KERN_ERR DRV_NAME
3276                        ": ***** PARITY ERROR INTERRUPT !!!!\n");
3277                 priv->inta_other++;
3278                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3279         }
3280
3281         if (inta & IPW2100_INTA_RX_TRANSFER) {
3282                 IPW_DEBUG_ISR("RX interrupt\n");
3283
3284                 priv->rx_interrupts++;
3285
3286                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3287
3288                 __ipw2100_rx_process(priv);
3289                 __ipw2100_tx_complete(priv);
3290         }
3291
3292         if (inta & IPW2100_INTA_TX_TRANSFER) {
3293                 IPW_DEBUG_ISR("TX interrupt\n");
3294
3295                 priv->tx_interrupts++;
3296
3297                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3298
3299                 __ipw2100_tx_complete(priv);
3300                 ipw2100_tx_send_commands(priv);
3301                 ipw2100_tx_send_data(priv);
3302         }
3303
3304         if (inta & IPW2100_INTA_TX_COMPLETE) {
3305                 IPW_DEBUG_ISR("TX complete\n");
3306                 priv->inta_other++;
3307                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3308
3309                 __ipw2100_tx_complete(priv);
3310         }
3311
3312         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3313                 /* ipw2100_handle_event(dev); */
3314                 priv->inta_other++;
3315                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3316         }
3317
3318         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3319                 IPW_DEBUG_ISR("FW init done interrupt\n");
3320                 priv->inta_other++;
3321
3322                 read_register(dev, IPW_REG_INTA, &tmp);
3323                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3324                            IPW2100_INTA_PARITY_ERROR)) {
3325                         write_register(dev, IPW_REG_INTA,
3326                                        IPW2100_INTA_FATAL_ERROR |
3327                                        IPW2100_INTA_PARITY_ERROR);
3328                 }
3329
3330                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3331         }
3332
3333         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3334                 IPW_DEBUG_ISR("Status change interrupt\n");
3335                 priv->inta_other++;
3336                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3337         }
3338
3339         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3340                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3341                 priv->inta_other++;
3342                 write_register(dev, IPW_REG_INTA,
3343                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3344         }
3345
3346         priv->in_isr--;
3347         ipw2100_enable_interrupts(priv);
3348
3349         spin_unlock_irqrestore(&priv->low_lock, flags);
3350
3351         IPW_DEBUG_ISR("exit\n");
3352 }
3353
3354 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3355 {
3356         struct ipw2100_priv *priv = data;
3357         u32 inta, inta_mask;
3358
3359         if (!data)
3360                 return IRQ_NONE;
3361
3362         spin_lock(&priv->low_lock);
3363
3364         /* We check to see if we should be ignoring interrupts before
3365          * we touch the hardware.  During ucode load if we try and handle
3366          * an interrupt we can cause keyboard problems as well as cause
3367          * the ucode to fail to initialize */
3368         if (!(priv->status & STATUS_INT_ENABLED)) {
3369                 /* Shared IRQ */
3370                 goto none;
3371         }
3372
3373         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3374         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3375
3376         if (inta == 0xFFFFFFFF) {
3377                 /* Hardware disappeared */
3378                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3379                 goto none;
3380         }
3381
3382         inta &= IPW_INTERRUPT_MASK;
3383
3384         if (!(inta & inta_mask)) {
3385                 /* Shared interrupt */
3386                 goto none;
3387         }
3388
3389         /* We disable the hardware interrupt here just to prevent unneeded
3390          * calls to be made.  We disable this again within the actual
3391          * work tasklet, so if another part of the code re-enables the
3392          * interrupt, that is fine */
3393         ipw2100_disable_interrupts(priv);
3394
3395         tasklet_schedule(&priv->irq_tasklet);
3396         spin_unlock(&priv->low_lock);
3397
3398         return IRQ_HANDLED;
3399       none:
3400         spin_unlock(&priv->low_lock);
3401         return IRQ_NONE;
3402 }
3403
3404 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3405                               struct net_device *dev, int pri)
3406 {
3407         struct ipw2100_priv *priv = libipw_priv(dev);
3408         struct list_head *element;
3409         struct ipw2100_tx_packet *packet;
3410         unsigned long flags;
3411
3412         spin_lock_irqsave(&priv->low_lock, flags);
3413
3414         if (!(priv->status & STATUS_ASSOCIATED)) {
3415                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3416                 priv->net_dev->stats.tx_carrier_errors++;
3417                 netif_stop_queue(dev);
3418                 goto fail_unlock;
3419         }
3420
3421         if (list_empty(&priv->tx_free_list))
3422                 goto fail_unlock;
3423
3424         element = priv->tx_free_list.next;
3425         packet = list_entry(element, struct ipw2100_tx_packet, list);
3426
3427         packet->info.d_struct.txb = txb;
3428
3429         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3430         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3431
3432         packet->jiffy_start = jiffies;
3433
3434         list_del(element);
3435         DEC_STAT(&priv->tx_free_stat);
3436
3437         list_add_tail(element, &priv->tx_pend_list);
3438         INC_STAT(&priv->tx_pend_stat);
3439
3440         ipw2100_tx_send_data(priv);
3441
3442         spin_unlock_irqrestore(&priv->low_lock, flags);
3443         return NETDEV_TX_OK;
3444
3445 fail_unlock:
3446         netif_stop_queue(dev);
3447         spin_unlock_irqrestore(&priv->low_lock, flags);
3448         return NETDEV_TX_BUSY;
3449 }
3450
3451 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3452 {
3453         int i, j, err = -EINVAL;
3454         void *v;
3455         dma_addr_t p;
3456
3457         priv->msg_buffers =
3458             kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3459                     GFP_KERNEL);
3460         if (!priv->msg_buffers) {
3461                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3462                        "buffers.\n", priv->net_dev->name);
3463                 return -ENOMEM;
3464         }
3465
3466         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3467                 v = pci_alloc_consistent(priv->pci_dev,
3468                                          sizeof(struct ipw2100_cmd_header), &p);
3469                 if (!v) {
3470                         printk(KERN_ERR DRV_NAME ": "
3471                                "%s: PCI alloc failed for msg "
3472                                "buffers.\n", priv->net_dev->name);
3473                         err = -ENOMEM;
3474                         break;
3475                 }
3476
3477                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3478
3479                 priv->msg_buffers[i].type = COMMAND;
3480                 priv->msg_buffers[i].info.c_struct.cmd =
3481                     (struct ipw2100_cmd_header *)v;
3482                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3483         }
3484
3485         if (i == IPW_COMMAND_POOL_SIZE)
3486                 return 0;
3487
3488         for (j = 0; j < i; j++) {
3489                 pci_free_consistent(priv->pci_dev,
3490                                     sizeof(struct ipw2100_cmd_header),
3491                                     priv->msg_buffers[j].info.c_struct.cmd,
3492                                     priv->msg_buffers[j].info.c_struct.
3493                                     cmd_phys);
3494         }
3495
3496         kfree(priv->msg_buffers);
3497         priv->msg_buffers = NULL;
3498
3499         return err;
3500 }
3501
3502 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3503 {
3504         int i;
3505
3506         INIT_LIST_HEAD(&priv->msg_free_list);
3507         INIT_LIST_HEAD(&priv->msg_pend_list);
3508
3509         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3510                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3511         SET_STAT(&priv->msg_free_stat, i);
3512
3513         return 0;
3514 }
3515
3516 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3517 {
3518         int i;
3519
3520         if (!priv->msg_buffers)
3521                 return;
3522
3523         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3524                 pci_free_consistent(priv->pci_dev,
3525                                     sizeof(struct ipw2100_cmd_header),
3526                                     priv->msg_buffers[i].info.c_struct.cmd,
3527                                     priv->msg_buffers[i].info.c_struct.
3528                                     cmd_phys);
3529         }
3530
3531         kfree(priv->msg_buffers);
3532         priv->msg_buffers = NULL;
3533 }
3534
3535 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3536                         char *buf)
3537 {
3538         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3539         char *out = buf;
3540         int i, j;
3541         u32 val;
3542
3543         for (i = 0; i < 16; i++) {
3544                 out += sprintf(out, "[%08X] ", i * 16);
3545                 for (j = 0; j < 16; j += 4) {
3546                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3547                         out += sprintf(out, "%08X ", val);
3548                 }
3549                 out += sprintf(out, "\n");
3550         }
3551
3552         return out - buf;
3553 }
3554
3555 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3556
3557 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3558                         char *buf)
3559 {
3560         struct ipw2100_priv *p = dev_get_drvdata(d);
3561         return sprintf(buf, "0x%08x\n", (int)p->config);
3562 }
3563
3564 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3565
3566 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3567                            char *buf)
3568 {
3569         struct ipw2100_priv *p = dev_get_drvdata(d);
3570         return sprintf(buf, "0x%08x\n", (int)p->status);
3571 }
3572
3573 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3574
3575 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3576                                char *buf)
3577 {
3578         struct ipw2100_priv *p = dev_get_drvdata(d);
3579         return sprintf(buf, "0x%08x\n", (int)p->capability);
3580 }
3581
3582 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3583
3584 #define IPW2100_REG(x) { IPW_ ##x, #x }
3585 static const struct {
3586         u32 addr;
3587         const char *name;
3588 } hw_data[] = {
3589 IPW2100_REG(REG_GP_CNTRL),
3590             IPW2100_REG(REG_GPIO),
3591             IPW2100_REG(REG_INTA),
3592             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3593 #define IPW2100_NIC(x, s) { x, #x, s }
3594 static const struct {
3595         u32 addr;
3596         const char *name;
3597         size_t size;
3598 } nic_data[] = {
3599 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3600             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3601 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3602 static const struct {
3603         u8 index;
3604         const char *name;
3605         const char *desc;
3606 } ord_data[] = {
3607 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3608             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3609                                 "successful Host Tx's (MSDU)"),
3610             IPW2100_ORD(STAT_TX_DIR_DATA,
3611                                 "successful Directed Tx's (MSDU)"),
3612             IPW2100_ORD(STAT_TX_DIR_DATA1,
3613                                 "successful Directed Tx's (MSDU) @ 1MB"),
3614             IPW2100_ORD(STAT_TX_DIR_DATA2,
3615                                 "successful Directed Tx's (MSDU) @ 2MB"),
3616             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3617                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3618             IPW2100_ORD(STAT_TX_DIR_DATA11,
3619                                 "successful Directed Tx's (MSDU) @ 11MB"),
3620             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3621                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3622             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3623                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3624             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3625                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3626             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3627                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3628             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3629             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3630             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3631             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3632             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3633             IPW2100_ORD(STAT_TX_ASSN_RESP,
3634                                 "successful Association response Tx's"),
3635             IPW2100_ORD(STAT_TX_REASSN,
3636                                 "successful Reassociation Tx's"),
3637             IPW2100_ORD(STAT_TX_REASSN_RESP,
3638                                 "successful Reassociation response Tx's"),
3639             IPW2100_ORD(STAT_TX_PROBE,
3640                                 "probes successfully transmitted"),
3641             IPW2100_ORD(STAT_TX_PROBE_RESP,
3642                                 "probe responses successfully transmitted"),
3643             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3644             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3645             IPW2100_ORD(STAT_TX_DISASSN,
3646                                 "successful Disassociation TX"),
3647             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3648             IPW2100_ORD(STAT_TX_DEAUTH,
3649                                 "successful Deauthentication TX"),
3650             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3651                                 "Total successful Tx data bytes"),
3652             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3653             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3654             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3655             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3656             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3657             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3658             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3659                                 "times max tries in a hop failed"),
3660             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3661                                 "times disassociation failed"),
3662             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3663             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3664             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3665             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3666             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3667             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3668             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3669                                 "directed packets at 5.5MB"),
3670             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3671             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3672             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3673                                 "nondirected packets at 1MB"),
3674             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3675                                 "nondirected packets at 2MB"),
3676             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3677                                 "nondirected packets at 5.5MB"),
3678             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3679                                 "nondirected packets at 11MB"),
3680             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3681             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3682                                                                     "Rx CTS"),
3683             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3684             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3685             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3686             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3687             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3688             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3689             IPW2100_ORD(STAT_RX_REASSN_RESP,
3690                                 "Reassociation response Rx's"),
3691             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3692             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3693             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3694             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3695             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3696             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3697             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3698             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3699                                 "Total rx data bytes received"),
3700             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3701             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3702             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3703             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3704             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3705             IPW2100_ORD(STAT_RX_DUPLICATE1,
3706                                 "duplicate rx packets at 1MB"),
3707             IPW2100_ORD(STAT_RX_DUPLICATE2,
3708                                 "duplicate rx packets at 2MB"),
3709             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3710                                 "duplicate rx packets at 5.5MB"),
3711             IPW2100_ORD(STAT_RX_DUPLICATE11,
3712                                 "duplicate rx packets at 11MB"),
3713             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3714             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3715             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3716             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3717             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3718                                 "rx frames with invalid protocol"),
3719             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3720             IPW2100_ORD(STAT_RX_NO_BUFFER,
3721                                 "rx frames rejected due to no buffer"),
3722             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3723                                 "rx frames dropped due to missing fragment"),
3724             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3725                                 "rx frames dropped due to non-sequential fragment"),
3726             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3727                                 "rx frames dropped due to unmatched 1st frame"),
3728             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3729                                 "rx frames dropped due to uncompleted frame"),
3730             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3731                                 "ICV errors during decryption"),
3732             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3733             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3734             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3735                                 "poll response timeouts"),
3736             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3737                                 "timeouts waiting for last {broad,multi}cast pkt"),
3738             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3739             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3740             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3741             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3742             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3743                                 "current calculation of % missed beacons"),
3744             IPW2100_ORD(STAT_PERCENT_RETRIES,
3745                                 "current calculation of % missed tx retries"),
3746             IPW2100_ORD(ASSOCIATED_AP_PTR,
3747                                 "0 if not associated, else pointer to AP table entry"),
3748             IPW2100_ORD(AVAILABLE_AP_CNT,
3749                                 "AP's decsribed in the AP table"),
3750             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3751             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3752             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3753             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3754                                 "failures due to response fail"),
3755             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3756             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3757             IPW2100_ORD(STAT_ROAM_INHIBIT,
3758                                 "times roaming was inhibited due to activity"),
3759             IPW2100_ORD(RSSI_AT_ASSN,
3760                                 "RSSI of associated AP at time of association"),
3761             IPW2100_ORD(STAT_ASSN_CAUSE1,
3762                                 "reassociation: no probe response or TX on hop"),
3763             IPW2100_ORD(STAT_ASSN_CAUSE2,
3764                                 "reassociation: poor tx/rx quality"),
3765             IPW2100_ORD(STAT_ASSN_CAUSE3,
3766                                 "reassociation: tx/rx quality (excessive AP load"),
3767             IPW2100_ORD(STAT_ASSN_CAUSE4,
3768                                 "reassociation: AP RSSI level"),
3769             IPW2100_ORD(STAT_ASSN_CAUSE5,
3770                                 "reassociations due to load leveling"),
3771             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3772             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3773                                 "times authentication response failed"),
3774             IPW2100_ORD(STATION_TABLE_CNT,
3775                                 "entries in association table"),
3776             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3777             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3778             IPW2100_ORD(COUNTRY_CODE,
3779                                 "IEEE country code as recv'd from beacon"),
3780             IPW2100_ORD(COUNTRY_CHANNELS,
3781                                 "channels suported by country"),
3782             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3783             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3784             IPW2100_ORD(ANTENNA_DIVERSITY,
3785                                 "TRUE if antenna diversity is disabled"),
3786             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3787             IPW2100_ORD(OUR_FREQ,
3788                                 "current radio freq lower digits - channel ID"),
3789             IPW2100_ORD(RTC_TIME, "current RTC time"),
3790             IPW2100_ORD(PORT_TYPE, "operating mode"),
3791             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3792             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3793             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3794             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3795             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3796             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3797             IPW2100_ORD(CAPABILITIES,
3798                                 "Management frame capability field"),
3799             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3800             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3801             IPW2100_ORD(RTS_THRESHOLD,
3802                                 "Min packet length for RTS handshaking"),
3803             IPW2100_ORD(INT_MODE, "International mode"),
3804             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3805                                 "protocol frag threshold"),
3806             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3807                                 "EEPROM offset in SRAM"),
3808             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3809                                 "EEPROM size in SRAM"),
3810             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3811             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3812                                 "EEPROM IBSS 11b channel set"),
3813             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3814             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3815             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3816             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3817             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3818
3819 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3820                               char *buf)
3821 {
3822         int i;
3823         struct ipw2100_priv *priv = dev_get_drvdata(d);
3824         struct net_device *dev = priv->net_dev;
3825         char *out = buf;
3826         u32 val = 0;
3827
3828         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3829
3830         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3831                 read_register(dev, hw_data[i].addr, &val);
3832                 out += sprintf(out, "%30s [%08X] : %08X\n",
3833                                hw_data[i].name, hw_data[i].addr, val);
3834         }
3835
3836         return out - buf;
3837 }
3838
3839 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3840
3841 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3842                              char *buf)
3843 {
3844         struct ipw2100_priv *priv = dev_get_drvdata(d);
3845         struct net_device *dev = priv->net_dev;
3846         char *out = buf;
3847         int i;
3848
3849         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3850
3851         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3852                 u8 tmp8;
3853                 u16 tmp16;
3854                 u32 tmp32;
3855
3856                 switch (nic_data[i].size) {
3857                 case 1:
3858                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3859                         out += sprintf(out, "%30s [%08X] : %02X\n",
3860                                        nic_data[i].name, nic_data[i].addr,
3861                                        tmp8);
3862                         break;
3863                 case 2:
3864                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3865                         out += sprintf(out, "%30s [%08X] : %04X\n",
3866                                        nic_data[i].name, nic_data[i].addr,
3867                                        tmp16);
3868                         break;
3869                 case 4:
3870                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3871                         out += sprintf(out, "%30s [%08X] : %08X\n",
3872                                        nic_data[i].name, nic_data[i].addr,
3873                                        tmp32);
3874                         break;
3875                 }
3876         }
3877         return out - buf;
3878 }
3879
3880 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3881
3882 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3883                            char *buf)
3884 {
3885         struct ipw2100_priv *priv = dev_get_drvdata(d);
3886         struct net_device *dev = priv->net_dev;
3887         static unsigned long loop = 0;
3888         int len = 0;
3889         u32 buffer[4];
3890         int i;
3891         char line[81];
3892
3893         if (loop >= 0x30000)
3894                 loop = 0;
3895
3896         /* sysfs provides us PAGE_SIZE buffer */
3897         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3898
3899                 if (priv->snapshot[0])
3900                         for (i = 0; i < 4; i++)
3901                                 buffer[i] =
3902                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3903                 else
3904                         for (i = 0; i < 4; i++)
3905                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3906
3907                 if (priv->dump_raw)
3908                         len += sprintf(buf + len,
3909                                        "%c%c%c%c"
3910                                        "%c%c%c%c"
3911                                        "%c%c%c%c"
3912                                        "%c%c%c%c",
3913                                        ((u8 *) buffer)[0x0],
3914                                        ((u8 *) buffer)[0x1],
3915                                        ((u8 *) buffer)[0x2],
3916                                        ((u8 *) buffer)[0x3],
3917                                        ((u8 *) buffer)[0x4],
3918                                        ((u8 *) buffer)[0x5],
3919                                        ((u8 *) buffer)[0x6],
3920                                        ((u8 *) buffer)[0x7],
3921                                        ((u8 *) buffer)[0x8],
3922                                        ((u8 *) buffer)[0x9],
3923                                        ((u8 *) buffer)[0xa],
3924                                        ((u8 *) buffer)[0xb],
3925                                        ((u8 *) buffer)[0xc],
3926                                        ((u8 *) buffer)[0xd],
3927                                        ((u8 *) buffer)[0xe],
3928                                        ((u8 *) buffer)[0xf]);
3929                 else
3930                         len += sprintf(buf + len, "%s\n",
3931                                        snprint_line(line, sizeof(line),
3932                                                     (u8 *) buffer, 16, loop));
3933                 loop += 16;
3934         }
3935
3936         return len;
3937 }
3938
3939 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3940                             const char *buf, size_t count)
3941 {
3942         struct ipw2100_priv *priv = dev_get_drvdata(d);
3943         struct net_device *dev = priv->net_dev;
3944         const char *p = buf;
3945
3946         (void)dev;              /* kill unused-var warning for debug-only code */
3947
3948         if (count < 1)
3949                 return count;
3950
3951         if (p[0] == '1' ||
3952             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3953                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3954                                dev->name);
3955                 priv->dump_raw = 1;
3956
3957         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3958                                    tolower(p[1]) == 'f')) {
3959                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3960                                dev->name);
3961                 priv->dump_raw = 0;
3962
3963         } else if (tolower(p[0]) == 'r') {
3964                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3965                 ipw2100_snapshot_free(priv);
3966
3967         } else
3968                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3969                                "reset = clear memory snapshot\n", dev->name);
3970
3971         return count;
3972 }
3973
3974 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3975
3976 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3977                              char *buf)
3978 {
3979         struct ipw2100_priv *priv = dev_get_drvdata(d);
3980         u32 val = 0;
3981         int len = 0;
3982         u32 val_len;
3983         static int loop = 0;
3984
3985         if (priv->status & STATUS_RF_KILL_MASK)
3986                 return 0;
3987
3988         if (loop >= ARRAY_SIZE(ord_data))
3989                 loop = 0;
3990
3991         /* sysfs provides us PAGE_SIZE buffer */
3992         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3993                 val_len = sizeof(u32);
3994
3995                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3996                                         &val_len))
3997                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3998                                        ord_data[loop].index,
3999                                        ord_data[loop].desc);
4000                 else
4001                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
4002                                        ord_data[loop].index, val,
4003                                        ord_data[loop].desc);
4004                 loop++;
4005         }
4006
4007         return len;
4008 }
4009
4010 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
4011
4012 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
4013                           char *buf)
4014 {
4015         struct ipw2100_priv *priv = dev_get_drvdata(d);
4016         char *out = buf;
4017
4018         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4019                        priv->interrupts, priv->tx_interrupts,
4020                        priv->rx_interrupts, priv->inta_other);
4021         out += sprintf(out, "firmware resets: %d\n", priv->resets);
4022         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4023 #ifdef CONFIG_IPW2100_DEBUG
4024         out += sprintf(out, "packet mismatch image: %s\n",
4025                        priv->snapshot[0] ? "YES" : "NO");
4026 #endif
4027
4028         return out - buf;
4029 }
4030
4031 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4032
4033 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4034 {
4035         int err;
4036
4037         if (mode == priv->ieee->iw_mode)
4038                 return 0;
4039
4040         err = ipw2100_disable_adapter(priv);
4041         if (err) {
4042                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4043                        priv->net_dev->name, err);
4044                 return err;
4045         }
4046
4047         switch (mode) {
4048         case IW_MODE_INFRA:
4049                 priv->net_dev->type = ARPHRD_ETHER;
4050                 break;
4051         case IW_MODE_ADHOC:
4052                 priv->net_dev->type = ARPHRD_ETHER;
4053                 break;
4054 #ifdef CONFIG_IPW2100_MONITOR
4055         case IW_MODE_MONITOR:
4056                 priv->last_mode = priv->ieee->iw_mode;
4057                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4058                 break;
4059 #endif                          /* CONFIG_IPW2100_MONITOR */
4060         }
4061
4062         priv->ieee->iw_mode = mode;
4063
4064 #ifdef CONFIG_PM
4065         /* Indicate ipw2100_download_firmware download firmware
4066          * from disk instead of memory. */
4067         ipw2100_firmware.version = 0;
4068 #endif
4069
4070         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
4071         priv->reset_backoff = 0;
4072         schedule_reset(priv);
4073
4074         return 0;
4075 }
4076
4077 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4078                               char *buf)
4079 {
4080         struct ipw2100_priv *priv = dev_get_drvdata(d);
4081         int len = 0;
4082
4083 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4084
4085         if (priv->status & STATUS_ASSOCIATED)
4086                 len += sprintf(buf + len, "connected: %lu\n",
4087                                get_seconds() - priv->connect_start);
4088         else
4089                 len += sprintf(buf + len, "not connected\n");
4090
4091         DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4092         DUMP_VAR(status, "08lx");
4093         DUMP_VAR(config, "08lx");
4094         DUMP_VAR(capability, "08lx");
4095
4096         len +=
4097             sprintf(buf + len, "last_rtc: %lu\n",
4098                     (unsigned long)priv->last_rtc);
4099
4100         DUMP_VAR(fatal_error, "d");
4101         DUMP_VAR(stop_hang_check, "d");
4102         DUMP_VAR(stop_rf_kill, "d");
4103         DUMP_VAR(messages_sent, "d");
4104
4105         DUMP_VAR(tx_pend_stat.value, "d");
4106         DUMP_VAR(tx_pend_stat.hi, "d");
4107
4108         DUMP_VAR(tx_free_stat.value, "d");
4109         DUMP_VAR(tx_free_stat.lo, "d");
4110
4111         DUMP_VAR(msg_free_stat.value, "d");
4112         DUMP_VAR(msg_free_stat.lo, "d");
4113
4114         DUMP_VAR(msg_pend_stat.value, "d");
4115         DUMP_VAR(msg_pend_stat.hi, "d");
4116
4117         DUMP_VAR(fw_pend_stat.value, "d");
4118         DUMP_VAR(fw_pend_stat.hi, "d");
4119
4120         DUMP_VAR(txq_stat.value, "d");
4121         DUMP_VAR(txq_stat.lo, "d");
4122
4123         DUMP_VAR(ieee->scans, "d");
4124         DUMP_VAR(reset_backoff, "d");
4125
4126         return len;
4127 }
4128
4129 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4130
4131 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4132                             char *buf)
4133 {
4134         struct ipw2100_priv *priv = dev_get_drvdata(d);
4135         char essid[IW_ESSID_MAX_SIZE + 1];
4136         u8 bssid[ETH_ALEN];
4137         u32 chan = 0;
4138         char *out = buf;
4139         unsigned int length;
4140         int ret;
4141
4142         if (priv->status & STATUS_RF_KILL_MASK)
4143                 return 0;
4144
4145         memset(essid, 0, sizeof(essid));
4146         memset(bssid, 0, sizeof(bssid));
4147
4148         length = IW_ESSID_MAX_SIZE;
4149         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4150         if (ret)
4151                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4152                                __LINE__);
4153
4154         length = sizeof(bssid);
4155         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4156                                   bssid, &length);
4157         if (ret)
4158                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4159                                __LINE__);
4160
4161         length = sizeof(u32);
4162         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4163         if (ret)
4164                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4165                                __LINE__);
4166
4167         out += sprintf(out, "ESSID: %s\n", essid);
4168         out += sprintf(out, "BSSID:   %pM\n", bssid);
4169         out += sprintf(out, "Channel: %d\n", chan);
4170
4171         return out - buf;
4172 }
4173
4174 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4175
4176 #ifdef CONFIG_IPW2100_DEBUG
4177 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4178 {
4179         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4180 }
4181
4182 static ssize_t store_debug_level(struct device_driver *d,
4183                                  const char *buf, size_t count)
4184 {
4185         char *p = (char *)buf;
4186         u32 val;
4187
4188         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4189                 p++;
4190                 if (p[0] == 'x' || p[0] == 'X')
4191                         p++;
4192                 val = simple_strtoul(p, &p, 16);
4193         } else
4194                 val = simple_strtoul(p, &p, 10);
4195         if (p == buf)
4196                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4197         else
4198                 ipw2100_debug_level = val;
4199
4200         return strnlen(buf, count);
4201 }
4202
4203 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4204                    store_debug_level);
4205 #endif                          /* CONFIG_IPW2100_DEBUG */
4206
4207 static ssize_t show_fatal_error(struct device *d,
4208                                 struct device_attribute *attr, char *buf)
4209 {
4210         struct ipw2100_priv *priv = dev_get_drvdata(d);
4211         char *out = buf;
4212         int i;
4213
4214         if (priv->fatal_error)
4215                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4216         else
4217                 out += sprintf(out, "0\n");
4218
4219         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4220                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4221                                         IPW2100_ERROR_QUEUE])
4222                         continue;
4223
4224                 out += sprintf(out, "%d. 0x%08X\n", i,
4225                                priv->fatal_errors[(priv->fatal_index - i) %
4226                                                   IPW2100_ERROR_QUEUE]);
4227         }
4228
4229         return out - buf;
4230 }
4231
4232 static ssize_t store_fatal_error(struct device *d,
4233                                  struct device_attribute *attr, const char *buf,
4234                                  size_t count)
4235 {
4236         struct ipw2100_priv *priv = dev_get_drvdata(d);
4237         schedule_reset(priv);
4238         return count;
4239 }
4240
4241 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4242                    store_fatal_error);
4243
4244 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4245                              char *buf)
4246 {
4247         struct ipw2100_priv *priv = dev_get_drvdata(d);
4248         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4249 }
4250
4251 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4252                               const char *buf, size_t count)
4253 {
4254         struct ipw2100_priv *priv = dev_get_drvdata(d);
4255         struct net_device *dev = priv->net_dev;
4256         char buffer[] = "00000000";
4257         unsigned long len =
4258             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4259         unsigned long val;
4260         char *p = buffer;
4261
4262         (void)dev;              /* kill unused-var warning for debug-only code */
4263
4264         IPW_DEBUG_INFO("enter\n");
4265
4266         strncpy(buffer, buf, len);
4267         buffer[len] = 0;
4268
4269         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4270                 p++;
4271                 if (p[0] == 'x' || p[0] == 'X')
4272                         p++;
4273                 val = simple_strtoul(p, &p, 16);
4274         } else
4275                 val = simple_strtoul(p, &p, 10);
4276         if (p == buffer) {
4277                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4278         } else {
4279                 priv->ieee->scan_age = val;
4280                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4281         }
4282
4283         IPW_DEBUG_INFO("exit\n");
4284         return len;
4285 }
4286
4287 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4288
4289 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4290                             char *buf)
4291 {
4292         /* 0 - RF kill not enabled
4293            1 - SW based RF kill active (sysfs)
4294            2 - HW based RF kill active
4295            3 - Both HW and SW baed RF kill active */
4296         struct ipw2100_priv *priv = dev_get_drvdata(d);
4297         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4298             (rf_kill_active(priv) ? 0x2 : 0x0);
4299         return sprintf(buf, "%i\n", val);
4300 }
4301
4302 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4303 {
4304         if ((disable_radio ? 1 : 0) ==
4305             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4306                 return 0;
4307
4308         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4309                           disable_radio ? "OFF" : "ON");
4310
4311         mutex_lock(&priv->action_mutex);
4312
4313         if (disable_radio) {
4314                 priv->status |= STATUS_RF_KILL_SW;
4315                 ipw2100_down(priv);
4316         } else {
4317                 priv->status &= ~STATUS_RF_KILL_SW;
4318                 if (rf_kill_active(priv)) {
4319                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4320                                           "disabled by HW switch\n");
4321                         /* Make sure the RF_KILL check timer is running */
4322                         priv->stop_rf_kill = 0;
4323                         cancel_delayed_work(&priv->rf_kill);
4324                         schedule_delayed_work(&priv->rf_kill,
4325                                               round_jiffies_relative(HZ));
4326                 } else
4327                         schedule_reset(priv);
4328         }
4329
4330         mutex_unlock(&priv->action_mutex);
4331         return 1;
4332 }
4333
4334 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4335                              const char *buf, size_t count)
4336 {
4337         struct ipw2100_priv *priv = dev_get_drvdata(d);
4338         ipw_radio_kill_sw(priv, buf[0] == '1');
4339         return count;
4340 }
4341
4342 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4343
4344 static struct attribute *ipw2100_sysfs_entries[] = {
4345         &dev_attr_hardware.attr,
4346         &dev_attr_registers.attr,
4347         &dev_attr_ordinals.attr,
4348         &dev_attr_pci.attr,
4349         &dev_attr_stats.attr,
4350         &dev_attr_internals.attr,
4351         &dev_attr_bssinfo.attr,
4352         &dev_attr_memory.attr,
4353         &dev_attr_scan_age.attr,
4354         &dev_attr_fatal_error.attr,
4355         &dev_attr_rf_kill.attr,
4356         &dev_attr_cfg.attr,
4357         &dev_attr_status.attr,
4358         &dev_attr_capability.attr,
4359         NULL,
4360 };
4361
4362 static struct attribute_group ipw2100_attribute_group = {
4363         .attrs = ipw2100_sysfs_entries,
4364 };
4365
4366 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4367 {
4368         struct ipw2100_status_queue *q = &priv->status_queue;
4369
4370         IPW_DEBUG_INFO("enter\n");
4371
4372         q->size = entries * sizeof(struct ipw2100_status);
4373         q->drv =
4374             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4375                                                           q->size, &q->nic);
4376         if (!q->drv) {
4377                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4378                 return -ENOMEM;
4379         }
4380
4381         memset(q->drv, 0, q->size);
4382
4383         IPW_DEBUG_INFO("exit\n");
4384
4385         return 0;
4386 }
4387
4388 static void status_queue_free(struct ipw2100_priv *priv)
4389 {
4390         IPW_DEBUG_INFO("enter\n");
4391
4392         if (priv->status_queue.drv) {
4393                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4394                                     priv->status_queue.drv,
4395                                     priv->status_queue.nic);
4396                 priv->status_queue.drv = NULL;
4397         }
4398
4399         IPW_DEBUG_INFO("exit\n");
4400 }
4401
4402 static int bd_queue_allocate(struct ipw2100_priv *priv,
4403                              struct ipw2100_bd_queue *q, int entries)
4404 {
4405         IPW_DEBUG_INFO("enter\n");
4406
4407         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4408
4409         q->entries = entries;
4410         q->size = entries * sizeof(struct ipw2100_bd);
4411         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4412         if (!q->drv) {
4413                 IPW_DEBUG_INFO
4414                     ("can't allocate shared memory for buffer descriptors\n");
4415                 return -ENOMEM;
4416         }
4417         memset(q->drv, 0, q->size);
4418
4419         IPW_DEBUG_INFO("exit\n");
4420
4421         return 0;
4422 }
4423
4424 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4425 {
4426         IPW_DEBUG_INFO("enter\n");
4427
4428         if (!q)
4429                 return;
4430
4431         if (q->drv) {
4432                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4433                 q->drv = NULL;
4434         }
4435
4436         IPW_DEBUG_INFO("exit\n");
4437 }
4438
4439 static void bd_queue_initialize(struct ipw2100_priv *priv,
4440                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4441                                 u32 r, u32 w)
4442 {
4443         IPW_DEBUG_INFO("enter\n");
4444
4445         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4446                        (u32) q->nic);
4447
4448         write_register(priv->net_dev, base, q->nic);
4449         write_register(priv->net_dev, size, q->entries);
4450         write_register(priv->net_dev, r, q->oldest);
4451         write_register(priv->net_dev, w, q->next);
4452
4453         IPW_DEBUG_INFO("exit\n");
4454 }
4455
4456 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4457 {
4458         priv->stop_rf_kill = 1;
4459         priv->stop_hang_check = 1;
4460         cancel_delayed_work_sync(&priv->reset_work);
4461         cancel_delayed_work_sync(&priv->security_work);
4462         cancel_delayed_work_sync(&priv->wx_event_work);
4463         cancel_delayed_work_sync(&priv->hang_check);
4464         cancel_delayed_work_sync(&priv->rf_kill);
4465         cancel_work_sync(&priv->scan_event_now);
4466         cancel_delayed_work_sync(&priv->scan_event_later);
4467 }
4468
4469 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4470 {
4471         int i, j, err = -EINVAL;
4472         void *v;
4473         dma_addr_t p;
4474
4475         IPW_DEBUG_INFO("enter\n");
4476
4477         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4478         if (err) {
4479                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4480                                 priv->net_dev->name);
4481                 return err;
4482         }
4483
4484         priv->tx_buffers =
4485             kmalloc(TX_PENDED_QUEUE_LENGTH * sizeof(struct ipw2100_tx_packet),
4486                     GFP_ATOMIC);
4487         if (!priv->tx_buffers) {
4488                 printk(KERN_ERR DRV_NAME
4489                        ": %s: alloc failed form tx buffers.\n",
4490                        priv->net_dev->name);
4491                 bd_queue_free(priv, &priv->tx_queue);
4492                 return -ENOMEM;
4493         }
4494
4495         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4496                 v = pci_alloc_consistent(priv->pci_dev,
4497                                          sizeof(struct ipw2100_data_header),
4498                                          &p);
4499                 if (!v) {
4500                         printk(KERN_ERR DRV_NAME
4501                                ": %s: PCI alloc failed for tx " "buffers.\n",
4502                                priv->net_dev->name);
4503                         err = -ENOMEM;
4504                         break;
4505                 }
4506
4507                 priv->tx_buffers[i].type = DATA;
4508                 priv->tx_buffers[i].info.d_struct.data =
4509                     (struct ipw2100_data_header *)v;
4510                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4511                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4512         }
4513
4514         if (i == TX_PENDED_QUEUE_LENGTH)
4515                 return 0;
4516
4517         for (j = 0; j < i; j++) {
4518                 pci_free_consistent(priv->pci_dev,
4519                                     sizeof(struct ipw2100_data_header),
4520                                     priv->tx_buffers[j].info.d_struct.data,
4521                                     priv->tx_buffers[j].info.d_struct.
4522                                     data_phys);
4523         }
4524
4525         kfree(priv->tx_buffers);
4526         priv->tx_buffers = NULL;
4527
4528         return err;
4529 }
4530
4531 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4532 {
4533         int i;
4534
4535         IPW_DEBUG_INFO("enter\n");
4536
4537         /*
4538          * reinitialize packet info lists
4539          */
4540         INIT_LIST_HEAD(&priv->fw_pend_list);
4541         INIT_STAT(&priv->fw_pend_stat);
4542
4543         /*
4544          * reinitialize lists
4545          */
4546         INIT_LIST_HEAD(&priv->tx_pend_list);
4547         INIT_LIST_HEAD(&priv->tx_free_list);
4548         INIT_STAT(&priv->tx_pend_stat);
4549         INIT_STAT(&priv->tx_free_stat);
4550
4551         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4552                 /* We simply drop any SKBs that have been queued for
4553                  * transmit */
4554                 if (priv->tx_buffers[i].info.d_struct.txb) {
4555                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4556                                            txb);
4557                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4558                 }
4559
4560                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4561         }
4562
4563         SET_STAT(&priv->tx_free_stat, i);
4564
4565         priv->tx_queue.oldest = 0;
4566         priv->tx_queue.available = priv->tx_queue.entries;
4567         priv->tx_queue.next = 0;
4568         INIT_STAT(&priv->txq_stat);
4569         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4570
4571         bd_queue_initialize(priv, &priv->tx_queue,
4572                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4573                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4574                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4575                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4576
4577         IPW_DEBUG_INFO("exit\n");
4578
4579 }
4580
4581 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4582 {
4583         int i;
4584
4585         IPW_DEBUG_INFO("enter\n");
4586
4587         bd_queue_free(priv, &priv->tx_queue);
4588
4589         if (!priv->tx_buffers)
4590                 return;
4591
4592         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4593                 if (priv->tx_buffers[i].info.d_struct.txb) {
4594                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4595                                            txb);
4596                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4597                 }
4598                 if (priv->tx_buffers[i].info.d_struct.data)
4599                         pci_free_consistent(priv->pci_dev,
4600                                             sizeof(struct ipw2100_data_header),
4601                                             priv->tx_buffers[i].info.d_struct.
4602                                             data,
4603                                             priv->tx_buffers[i].info.d_struct.
4604                                             data_phys);
4605         }
4606
4607         kfree(priv->tx_buffers);
4608         priv->tx_buffers = NULL;
4609
4610         IPW_DEBUG_INFO("exit\n");
4611 }
4612
4613 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4614 {
4615         int i, j, err = -EINVAL;
4616
4617         IPW_DEBUG_INFO("enter\n");
4618
4619         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4620         if (err) {
4621                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4622                 return err;
4623         }
4624
4625         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4626         if (err) {
4627                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4628                 bd_queue_free(priv, &priv->rx_queue);
4629                 return err;
4630         }
4631
4632         /*
4633          * allocate packets
4634          */
4635         priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4636                                    sizeof(struct ipw2100_rx_packet),
4637                                    GFP_KERNEL);
4638         if (!priv->rx_buffers) {
4639                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4640
4641                 bd_queue_free(priv, &priv->rx_queue);
4642
4643                 status_queue_free(priv);
4644
4645                 return -ENOMEM;
4646         }
4647
4648         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4649                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4650
4651                 err = ipw2100_alloc_skb(priv, packet);
4652                 if (unlikely(err)) {
4653                         err = -ENOMEM;
4654                         break;
4655                 }
4656
4657                 /* The BD holds the cache aligned address */
4658                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4659                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4660                 priv->status_queue.drv[i].status_fields = 0;
4661         }
4662
4663         if (i == RX_QUEUE_LENGTH)
4664                 return 0;
4665
4666         for (j = 0; j < i; j++) {
4667                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4668                                  sizeof(struct ipw2100_rx_packet),
4669                                  PCI_DMA_FROMDEVICE);
4670                 dev_kfree_skb(priv->rx_buffers[j].skb);
4671         }
4672
4673         kfree(priv->rx_buffers);
4674         priv->rx_buffers = NULL;
4675
4676         bd_queue_free(priv, &priv->rx_queue);
4677
4678         status_queue_free(priv);
4679
4680         return err;
4681 }
4682
4683 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4684 {
4685         IPW_DEBUG_INFO("enter\n");
4686
4687         priv->rx_queue.oldest = 0;
4688         priv->rx_queue.available = priv->rx_queue.entries - 1;
4689         priv->rx_queue.next = priv->rx_queue.entries - 1;
4690
4691         INIT_STAT(&priv->rxq_stat);
4692         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4693
4694         bd_queue_initialize(priv, &priv->rx_queue,
4695                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4696                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4697                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4698                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4699
4700         /* set up the status queue */
4701         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4702                        priv->status_queue.nic);
4703
4704         IPW_DEBUG_INFO("exit\n");
4705 }
4706
4707 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4708 {
4709         int i;
4710
4711         IPW_DEBUG_INFO("enter\n");
4712
4713         bd_queue_free(priv, &priv->rx_queue);
4714         status_queue_free(priv);
4715
4716         if (!priv->rx_buffers)
4717                 return;
4718
4719         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4720                 if (priv->rx_buffers[i].rxp) {
4721                         pci_unmap_single(priv->pci_dev,
4722                                          priv->rx_buffers[i].dma_addr,
4723                                          sizeof(struct ipw2100_rx),
4724                                          PCI_DMA_FROMDEVICE);
4725                         dev_kfree_skb(priv->rx_buffers[i].skb);
4726                 }
4727         }
4728
4729         kfree(priv->rx_buffers);
4730         priv->rx_buffers = NULL;
4731
4732         IPW_DEBUG_INFO("exit\n");
4733 }
4734
4735 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4736 {
4737         u32 length = ETH_ALEN;
4738         u8 addr[ETH_ALEN];
4739
4740         int err;
4741
4742         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4743         if (err) {
4744                 IPW_DEBUG_INFO("MAC address read failed\n");
4745                 return -EIO;
4746         }
4747
4748         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4749         IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4750
4751         return 0;
4752 }
4753
4754 /********************************************************************
4755  *
4756  * Firmware Commands
4757  *
4758  ********************************************************************/
4759
4760 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4761 {
4762         struct host_command cmd = {
4763                 .host_command = ADAPTER_ADDRESS,
4764                 .host_command_sequence = 0,
4765                 .host_command_length = ETH_ALEN
4766         };
4767         int err;
4768
4769         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4770
4771         IPW_DEBUG_INFO("enter\n");
4772
4773         if (priv->config & CFG_CUSTOM_MAC) {
4774                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4775                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4776         } else
4777                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4778                        ETH_ALEN);
4779
4780         err = ipw2100_hw_send_command(priv, &cmd);
4781
4782         IPW_DEBUG_INFO("exit\n");
4783         return err;
4784 }
4785
4786 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4787                                  int batch_mode)
4788 {
4789         struct host_command cmd = {
4790                 .host_command = PORT_TYPE,
4791                 .host_command_sequence = 0,
4792                 .host_command_length = sizeof(u32)
4793         };
4794         int err;
4795
4796         switch (port_type) {
4797         case IW_MODE_INFRA:
4798                 cmd.host_command_parameters[0] = IPW_BSS;
4799                 break;
4800         case IW_MODE_ADHOC:
4801                 cmd.host_command_parameters[0] = IPW_IBSS;
4802                 break;
4803         }
4804
4805         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4806                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4807
4808         if (!batch_mode) {
4809                 err = ipw2100_disable_adapter(priv);
4810                 if (err) {
4811                         printk(KERN_ERR DRV_NAME
4812                                ": %s: Could not disable adapter %d\n",
4813                                priv->net_dev->name, err);
4814                         return err;
4815                 }
4816         }
4817
4818         /* send cmd to firmware */
4819         err = ipw2100_hw_send_command(priv, &cmd);
4820
4821         if (!batch_mode)
4822                 ipw2100_enable_adapter(priv);
4823
4824         return err;
4825 }
4826
4827 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4828                                int batch_mode)
4829 {
4830         struct host_command cmd = {
4831                 .host_command = CHANNEL,
4832                 .host_command_sequence = 0,
4833                 .host_command_length = sizeof(u32)
4834         };
4835         int err;
4836
4837         cmd.host_command_parameters[0] = channel;
4838
4839         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4840
4841         /* If BSS then we don't support channel selection */
4842         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4843                 return 0;
4844
4845         if ((channel != 0) &&
4846             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4847                 return -EINVAL;
4848
4849         if (!batch_mode) {
4850                 err = ipw2100_disable_adapter(priv);
4851                 if (err)
4852                         return err;
4853         }
4854
4855         err = ipw2100_hw_send_command(priv, &cmd);
4856         if (err) {
4857                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4858                 return err;
4859         }
4860
4861         if (channel)
4862                 priv->config |= CFG_STATIC_CHANNEL;
4863         else
4864                 priv->config &= ~CFG_STATIC_CHANNEL;
4865
4866         priv->channel = channel;
4867
4868         if (!batch_mode) {
4869                 err = ipw2100_enable_adapter(priv);
4870                 if (err)
4871                         return err;
4872         }
4873
4874         return 0;
4875 }
4876
4877 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4878 {
4879         struct host_command cmd = {
4880                 .host_command = SYSTEM_CONFIG,
4881                 .host_command_sequence = 0,
4882                 .host_command_length = 12,
4883         };
4884         u32 ibss_mask, len = sizeof(u32);
4885         int err;
4886
4887         /* Set system configuration */
4888
4889         if (!batch_mode) {
4890                 err = ipw2100_disable_adapter(priv);
4891                 if (err)
4892                         return err;
4893         }
4894
4895         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4896                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4897
4898         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4899             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4900
4901         if (!(priv->config & CFG_LONG_PREAMBLE))
4902                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4903
4904         err = ipw2100_get_ordinal(priv,
4905                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4906                                   &ibss_mask, &len);
4907         if (err)
4908                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4909
4910         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4911         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4912
4913         /* 11b only */
4914         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4915
4916         err = ipw2100_hw_send_command(priv, &cmd);
4917         if (err)
4918                 return err;
4919
4920 /* If IPv6 is configured in the kernel then we don't want to filter out all
4921  * of the multicast packets as IPv6 needs some. */
4922 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4923         cmd.host_command = ADD_MULTICAST;
4924         cmd.host_command_sequence = 0;
4925         cmd.host_command_length = 0;
4926
4927         ipw2100_hw_send_command(priv, &cmd);
4928 #endif
4929         if (!batch_mode) {
4930                 err = ipw2100_enable_adapter(priv);
4931                 if (err)
4932                         return err;
4933         }
4934
4935         return 0;
4936 }
4937
4938 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4939                                 int batch_mode)
4940 {
4941         struct host_command cmd = {
4942                 .host_command = BASIC_TX_RATES,
4943                 .host_command_sequence = 0,
4944                 .host_command_length = 4
4945         };
4946         int err;
4947
4948         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4949
4950         if (!batch_mode) {
4951                 err = ipw2100_disable_adapter(priv);
4952                 if (err)
4953                         return err;
4954         }
4955
4956         /* Set BASIC TX Rate first */
4957         ipw2100_hw_send_command(priv, &cmd);
4958
4959         /* Set TX Rate */
4960         cmd.host_command = TX_RATES;
4961         ipw2100_hw_send_command(priv, &cmd);
4962
4963         /* Set MSDU TX Rate */
4964         cmd.host_command = MSDU_TX_RATES;
4965         ipw2100_hw_send_command(priv, &cmd);
4966
4967         if (!batch_mode) {
4968                 err = ipw2100_enable_adapter(priv);
4969                 if (err)
4970                         return err;
4971         }
4972
4973         priv->tx_rates = rate;
4974
4975         return 0;
4976 }
4977
4978 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4979 {
4980         struct host_command cmd = {
4981                 .host_command = POWER_MODE,
4982                 .host_command_sequence = 0,
4983                 .host_command_length = 4
4984         };
4985         int err;
4986
4987         cmd.host_command_parameters[0] = power_level;
4988
4989         err = ipw2100_hw_send_command(priv, &cmd);
4990         if (err)
4991                 return err;
4992
4993         if (power_level == IPW_POWER_MODE_CAM)
4994                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4995         else
4996                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4997
4998 #ifdef IPW2100_TX_POWER
4999         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
5000                 /* Set beacon interval */
5001                 cmd.host_command = TX_POWER_INDEX;
5002                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
5003
5004                 err = ipw2100_hw_send_command(priv, &cmd);
5005                 if (err)
5006                         return err;
5007         }
5008 #endif
5009
5010         return 0;
5011 }
5012
5013 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
5014 {
5015         struct host_command cmd = {
5016                 .host_command = RTS_THRESHOLD,
5017                 .host_command_sequence = 0,
5018                 .host_command_length = 4
5019         };
5020         int err;
5021
5022         if (threshold & RTS_DISABLED)
5023                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
5024         else
5025                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
5026
5027         err = ipw2100_hw_send_command(priv, &cmd);
5028         if (err)
5029                 return err;
5030
5031         priv->rts_threshold = threshold;
5032
5033         return 0;
5034 }
5035
5036 #if 0
5037 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
5038                                         u32 threshold, int batch_mode)
5039 {
5040         struct host_command cmd = {
5041                 .host_command = FRAG_THRESHOLD,
5042                 .host_command_sequence = 0,
5043                 .host_command_length = 4,
5044                 .host_command_parameters[0] = 0,
5045         };
5046         int err;
5047
5048         if (!batch_mode) {
5049                 err = ipw2100_disable_adapter(priv);
5050                 if (err)
5051                         return err;
5052         }
5053
5054         if (threshold == 0)
5055                 threshold = DEFAULT_FRAG_THRESHOLD;
5056         else {
5057                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5058                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5059         }
5060
5061         cmd.host_command_parameters[0] = threshold;
5062
5063         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5064
5065         err = ipw2100_hw_send_command(priv, &cmd);
5066
5067         if (!batch_mode)
5068                 ipw2100_enable_adapter(priv);
5069
5070         if (!err)
5071                 priv->frag_threshold = threshold;
5072
5073         return err;
5074 }
5075 #endif
5076
5077 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5078 {
5079         struct host_command cmd = {
5080                 .host_command = SHORT_RETRY_LIMIT,
5081                 .host_command_sequence = 0,
5082                 .host_command_length = 4
5083         };
5084         int err;
5085
5086         cmd.host_command_parameters[0] = retry;
5087
5088         err = ipw2100_hw_send_command(priv, &cmd);
5089         if (err)
5090                 return err;
5091
5092         priv->short_retry_limit = retry;
5093
5094         return 0;
5095 }
5096
5097 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5098 {
5099         struct host_command cmd = {
5100                 .host_command = LONG_RETRY_LIMIT,
5101                 .host_command_sequence = 0,
5102                 .host_command_length = 4
5103         };
5104         int err;
5105
5106         cmd.host_command_parameters[0] = retry;
5107
5108         err = ipw2100_hw_send_command(priv, &cmd);
5109         if (err)
5110                 return err;
5111
5112         priv->long_retry_limit = retry;
5113
5114         return 0;
5115 }
5116
5117 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5118                                        int batch_mode)
5119 {
5120         struct host_command cmd = {
5121                 .host_command = MANDATORY_BSSID,
5122                 .host_command_sequence = 0,
5123                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5124         };
5125         int err;
5126
5127 #ifdef CONFIG_IPW2100_DEBUG
5128         if (bssid != NULL)
5129                 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5130         else
5131                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5132 #endif
5133         /* if BSSID is empty then we disable mandatory bssid mode */
5134         if (bssid != NULL)
5135                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5136
5137         if (!batch_mode) {
5138                 err = ipw2100_disable_adapter(priv);
5139                 if (err)
5140                         return err;
5141         }
5142
5143         err = ipw2100_hw_send_command(priv, &cmd);
5144
5145         if (!batch_mode)
5146                 ipw2100_enable_adapter(priv);
5147
5148         return err;
5149 }
5150
5151 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5152 {
5153         struct host_command cmd = {
5154                 .host_command = DISASSOCIATION_BSSID,
5155                 .host_command_sequence = 0,
5156                 .host_command_length = ETH_ALEN
5157         };
5158         int err;
5159         int len;
5160
5161         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5162
5163         len = ETH_ALEN;
5164         /* The Firmware currently ignores the BSSID and just disassociates from
5165          * the currently associated AP -- but in the off chance that a future
5166          * firmware does use the BSSID provided here, we go ahead and try and
5167          * set it to the currently associated AP's BSSID */
5168         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5169
5170         err = ipw2100_hw_send_command(priv, &cmd);
5171
5172         return err;
5173 }
5174
5175 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5176                               struct ipw2100_wpa_assoc_frame *, int)
5177     __attribute__ ((unused));
5178
5179 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5180                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5181                               int batch_mode)
5182 {
5183         struct host_command cmd = {
5184                 .host_command = SET_WPA_IE,
5185                 .host_command_sequence = 0,
5186                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5187         };
5188         int err;
5189
5190         IPW_DEBUG_HC("SET_WPA_IE\n");
5191
5192         if (!batch_mode) {
5193                 err = ipw2100_disable_adapter(priv);
5194                 if (err)
5195                         return err;
5196         }
5197
5198         memcpy(cmd.host_command_parameters, wpa_frame,
5199                sizeof(struct ipw2100_wpa_assoc_frame));
5200
5201         err = ipw2100_hw_send_command(priv, &cmd);
5202
5203         if (!batch_mode) {
5204                 if (ipw2100_enable_adapter(priv))
5205                         err = -EIO;
5206         }
5207
5208         return err;
5209 }
5210
5211 struct security_info_params {
5212         u32 allowed_ciphers;
5213         u16 version;
5214         u8 auth_mode;
5215         u8 replay_counters_number;
5216         u8 unicast_using_group;
5217 } __packed;
5218
5219 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5220                                             int auth_mode,
5221                                             int security_level,
5222                                             int unicast_using_group,
5223                                             int batch_mode)
5224 {
5225         struct host_command cmd = {
5226                 .host_command = SET_SECURITY_INFORMATION,
5227                 .host_command_sequence = 0,
5228                 .host_command_length = sizeof(struct security_info_params)
5229         };
5230         struct security_info_params *security =
5231             (struct security_info_params *)&cmd.host_command_parameters;
5232         int err;
5233         memset(security, 0, sizeof(*security));
5234
5235         /* If shared key AP authentication is turned on, then we need to
5236          * configure the firmware to try and use it.
5237          *
5238          * Actual data encryption/decryption is handled by the host. */
5239         security->auth_mode = auth_mode;
5240         security->unicast_using_group = unicast_using_group;
5241
5242         switch (security_level) {
5243         default:
5244         case SEC_LEVEL_0:
5245                 security->allowed_ciphers = IPW_NONE_CIPHER;
5246                 break;
5247         case SEC_LEVEL_1:
5248                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5249                     IPW_WEP104_CIPHER;
5250                 break;
5251         case SEC_LEVEL_2:
5252                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5253                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5254                 break;
5255         case SEC_LEVEL_2_CKIP:
5256                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5257                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5258                 break;
5259         case SEC_LEVEL_3:
5260                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5261                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5262                 break;
5263         }
5264
5265         IPW_DEBUG_HC
5266             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5267              security->auth_mode, security->allowed_ciphers, security_level);
5268
5269         security->replay_counters_number = 0;
5270
5271         if (!batch_mode) {
5272                 err = ipw2100_disable_adapter(priv);
5273                 if (err)
5274                         return err;
5275         }
5276
5277         err = ipw2100_hw_send_command(priv, &cmd);
5278
5279         if (!batch_mode)
5280                 ipw2100_enable_adapter(priv);
5281
5282         return err;
5283 }
5284
5285 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5286 {
5287         struct host_command cmd = {
5288                 .host_command = TX_POWER_INDEX,
5289                 .host_command_sequence = 0,
5290                 .host_command_length = 4
5291         };
5292         int err = 0;
5293         u32 tmp = tx_power;
5294
5295         if (tx_power != IPW_TX_POWER_DEFAULT)
5296                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5297                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5298
5299         cmd.host_command_parameters[0] = tmp;
5300
5301         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5302                 err = ipw2100_hw_send_command(priv, &cmd);
5303         if (!err)
5304                 priv->tx_power = tx_power;
5305
5306         return 0;
5307 }
5308
5309 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5310                                             u32 interval, int batch_mode)
5311 {
5312         struct host_command cmd = {
5313                 .host_command = BEACON_INTERVAL,
5314                 .host_command_sequence = 0,
5315                 .host_command_length = 4
5316         };
5317         int err;
5318
5319         cmd.host_command_parameters[0] = interval;
5320
5321         IPW_DEBUG_INFO("enter\n");
5322
5323         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5324                 if (!batch_mode) {
5325                         err = ipw2100_disable_adapter(priv);
5326                         if (err)
5327                                 return err;
5328                 }
5329
5330                 ipw2100_hw_send_command(priv, &cmd);
5331
5332                 if (!batch_mode) {
5333                         err = ipw2100_enable_adapter(priv);
5334                         if (err)
5335                                 return err;
5336                 }
5337         }
5338
5339         IPW_DEBUG_INFO("exit\n");
5340
5341         return 0;
5342 }
5343
5344 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5345 {
5346         ipw2100_tx_initialize(priv);
5347         ipw2100_rx_initialize(priv);
5348         ipw2100_msg_initialize(priv);
5349 }
5350
5351 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5352 {
5353         ipw2100_tx_free(priv);
5354         ipw2100_rx_free(priv);
5355         ipw2100_msg_free(priv);
5356 }
5357
5358 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5359 {
5360         if (ipw2100_tx_allocate(priv) ||
5361             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5362                 goto fail;
5363
5364         return 0;
5365
5366       fail:
5367         ipw2100_tx_free(priv);
5368         ipw2100_rx_free(priv);
5369         ipw2100_msg_free(priv);
5370         return -ENOMEM;
5371 }
5372
5373 #define IPW_PRIVACY_CAPABLE 0x0008
5374
5375 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5376                                  int batch_mode)
5377 {
5378         struct host_command cmd = {
5379                 .host_command = WEP_FLAGS,
5380                 .host_command_sequence = 0,
5381                 .host_command_length = 4
5382         };
5383         int err;
5384
5385         cmd.host_command_parameters[0] = flags;
5386
5387         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5388
5389         if (!batch_mode) {
5390                 err = ipw2100_disable_adapter(priv);
5391                 if (err) {
5392                         printk(KERN_ERR DRV_NAME
5393                                ": %s: Could not disable adapter %d\n",
5394                                priv->net_dev->name, err);
5395                         return err;
5396                 }
5397         }
5398
5399         /* send cmd to firmware */
5400         err = ipw2100_hw_send_command(priv, &cmd);
5401
5402         if (!batch_mode)
5403                 ipw2100_enable_adapter(priv);
5404
5405         return err;
5406 }
5407
5408 struct ipw2100_wep_key {
5409         u8 idx;
5410         u8 len;
5411         u8 key[13];
5412 };
5413
5414 /* Macros to ease up priting WEP keys */
5415 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5416 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5417 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5418 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5419
5420 /**
5421  * Set a the wep key
5422  *
5423  * @priv: struct to work on
5424  * @idx: index of the key we want to set
5425  * @key: ptr to the key data to set
5426  * @len: length of the buffer at @key
5427  * @batch_mode: FIXME perform the operation in batch mode, not
5428  *              disabling the device.
5429  *
5430  * @returns 0 if OK, < 0 errno code on error.
5431  *
5432  * Fill out a command structure with the new wep key, length an
5433  * index and send it down the wire.
5434  */
5435 static int ipw2100_set_key(struct ipw2100_priv *priv,
5436                            int idx, char *key, int len, int batch_mode)
5437 {
5438         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5439         struct host_command cmd = {
5440                 .host_command = WEP_KEY_INFO,
5441                 .host_command_sequence = 0,
5442                 .host_command_length = sizeof(struct ipw2100_wep_key),
5443         };
5444         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5445         int err;
5446
5447         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5448                      idx, keylen, len);
5449
5450         /* NOTE: We don't check cached values in case the firmware was reset
5451          * or some other problem is occurring.  If the user is setting the key,
5452          * then we push the change */
5453
5454         wep_key->idx = idx;
5455         wep_key->len = keylen;
5456
5457         if (keylen) {
5458                 memcpy(wep_key->key, key, len);
5459                 memset(wep_key->key + len, 0, keylen - len);
5460         }
5461
5462         /* Will be optimized out on debug not being configured in */
5463         if (keylen == 0)
5464                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5465                               priv->net_dev->name, wep_key->idx);
5466         else if (keylen == 5)
5467                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5468                               priv->net_dev->name, wep_key->idx, wep_key->len,
5469                               WEP_STR_64(wep_key->key));
5470         else
5471                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5472                               "\n",
5473                               priv->net_dev->name, wep_key->idx, wep_key->len,
5474                               WEP_STR_128(wep_key->key));
5475
5476         if (!batch_mode) {
5477                 err = ipw2100_disable_adapter(priv);
5478                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5479                 if (err) {
5480                         printk(KERN_ERR DRV_NAME
5481                                ": %s: Could not disable adapter %d\n",
5482                                priv->net_dev->name, err);
5483                         return err;
5484                 }
5485         }
5486
5487         /* send cmd to firmware */
5488         err = ipw2100_hw_send_command(priv, &cmd);
5489
5490         if (!batch_mode) {
5491                 int err2 = ipw2100_enable_adapter(priv);
5492                 if (err == 0)
5493                         err = err2;
5494         }
5495         return err;
5496 }
5497
5498 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5499                                  int idx, int batch_mode)
5500 {
5501         struct host_command cmd = {
5502                 .host_command = WEP_KEY_INDEX,
5503                 .host_command_sequence = 0,
5504                 .host_command_length = 4,
5505                 .host_command_parameters = {idx},
5506         };
5507         int err;
5508
5509         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5510
5511         if (idx < 0 || idx > 3)
5512                 return -EINVAL;
5513
5514         if (!batch_mode) {
5515                 err = ipw2100_disable_adapter(priv);
5516                 if (err) {
5517                         printk(KERN_ERR DRV_NAME
5518                                ": %s: Could not disable adapter %d\n",
5519                                priv->net_dev->name, err);
5520                         return err;
5521                 }
5522         }
5523
5524         /* send cmd to firmware */
5525         err = ipw2100_hw_send_command(priv, &cmd);
5526
5527         if (!batch_mode)
5528                 ipw2100_enable_adapter(priv);
5529
5530         return err;
5531 }
5532
5533 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5534 {
5535         int i, err, auth_mode, sec_level, use_group;
5536
5537         if (!(priv->status & STATUS_RUNNING))
5538                 return 0;
5539
5540         if (!batch_mode) {
5541                 err = ipw2100_disable_adapter(priv);
5542                 if (err)
5543                         return err;
5544         }
5545
5546         if (!priv->ieee->sec.enabled) {
5547                 err =
5548                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5549                                                      SEC_LEVEL_0, 0, 1);
5550         } else {
5551                 auth_mode = IPW_AUTH_OPEN;
5552                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5553                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5554                                 auth_mode = IPW_AUTH_SHARED;
5555                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5556                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5557                 }
5558
5559                 sec_level = SEC_LEVEL_0;
5560                 if (priv->ieee->sec.flags & SEC_LEVEL)
5561                         sec_level = priv->ieee->sec.level;
5562
5563                 use_group = 0;
5564                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5565                         use_group = priv->ieee->sec.unicast_uses_group;
5566
5567                 err =
5568                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5569                                                      use_group, 1);
5570         }
5571
5572         if (err)
5573                 goto exit;
5574
5575         if (priv->ieee->sec.enabled) {
5576                 for (i = 0; i < 4; i++) {
5577                         if (!(priv->ieee->sec.flags & (1 << i))) {
5578                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5579                                 priv->ieee->sec.key_sizes[i] = 0;
5580                         } else {
5581                                 err = ipw2100_set_key(priv, i,
5582                                                       priv->ieee->sec.keys[i],
5583                                                       priv->ieee->sec.
5584                                                       key_sizes[i], 1);
5585                                 if (err)
5586                                         goto exit;
5587                         }
5588                 }
5589
5590                 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5591         }
5592
5593         /* Always enable privacy so the Host can filter WEP packets if
5594          * encrypted data is sent up */
5595         err =
5596             ipw2100_set_wep_flags(priv,
5597                                   priv->ieee->sec.
5598                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5599         if (err)
5600                 goto exit;
5601
5602         priv->status &= ~STATUS_SECURITY_UPDATED;
5603
5604       exit:
5605         if (!batch_mode)
5606                 ipw2100_enable_adapter(priv);
5607
5608         return err;
5609 }
5610
5611 static void ipw2100_security_work(struct work_struct *work)
5612 {
5613         struct ipw2100_priv *priv =
5614                 container_of(work, struct ipw2100_priv, security_work.work);
5615
5616         /* If we happen to have reconnected before we get a chance to
5617          * process this, then update the security settings--which causes
5618          * a disassociation to occur */
5619         if (!(priv->status & STATUS_ASSOCIATED) &&
5620             priv->status & STATUS_SECURITY_UPDATED)
5621                 ipw2100_configure_security(priv, 0);
5622 }
5623
5624 static void shim__set_security(struct net_device *dev,
5625                                struct libipw_security *sec)
5626 {
5627         struct ipw2100_priv *priv = libipw_priv(dev);
5628         int i, force_update = 0;
5629
5630         mutex_lock(&priv->action_mutex);
5631         if (!(priv->status & STATUS_INITIALIZED))
5632                 goto done;
5633
5634         for (i = 0; i < 4; i++) {
5635                 if (sec->flags & (1 << i)) {
5636                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5637                         if (sec->key_sizes[i] == 0)
5638                                 priv->ieee->sec.flags &= ~(1 << i);
5639                         else
5640                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5641                                        sec->key_sizes[i]);
5642                         if (sec->level == SEC_LEVEL_1) {
5643                                 priv->ieee->sec.flags |= (1 << i);
5644                                 priv->status |= STATUS_SECURITY_UPDATED;
5645                         } else
5646                                 priv->ieee->sec.flags &= ~(1 << i);
5647                 }
5648         }
5649
5650         if ((sec->flags & SEC_ACTIVE_KEY) &&
5651             priv->ieee->sec.active_key != sec->active_key) {
5652                 if (sec->active_key <= 3) {
5653                         priv->ieee->sec.active_key = sec->active_key;
5654                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5655                 } else
5656                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5657
5658                 priv->status |= STATUS_SECURITY_UPDATED;
5659         }
5660
5661         if ((sec->flags & SEC_AUTH_MODE) &&
5662             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5663                 priv->ieee->sec.auth_mode = sec->auth_mode;
5664                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5665                 priv->status |= STATUS_SECURITY_UPDATED;
5666         }
5667
5668         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5669                 priv->ieee->sec.flags |= SEC_ENABLED;
5670                 priv->ieee->sec.enabled = sec->enabled;
5671                 priv->status |= STATUS_SECURITY_UPDATED;
5672                 force_update = 1;
5673         }
5674
5675         if (sec->flags & SEC_ENCRYPT)
5676                 priv->ieee->sec.encrypt = sec->encrypt;
5677
5678         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5679                 priv->ieee->sec.level = sec->level;
5680                 priv->ieee->sec.flags |= SEC_LEVEL;
5681                 priv->status |= STATUS_SECURITY_UPDATED;
5682         }
5683
5684         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5685                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5686                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5687                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5688                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5689                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5690                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5691                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5692                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5693                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5694
5695 /* As a temporary work around to enable WPA until we figure out why
5696  * wpa_supplicant toggles the security capability of the driver, which
5697  * forces a disassocation with force_update...
5698  *
5699  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5700         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5701                 ipw2100_configure_security(priv, 0);
5702       done:
5703         mutex_unlock(&priv->action_mutex);
5704 }
5705
5706 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5707 {
5708         int err;
5709         int batch_mode = 1;
5710         u8 *bssid;
5711
5712         IPW_DEBUG_INFO("enter\n");
5713
5714         err = ipw2100_disable_adapter(priv);
5715         if (err)
5716                 return err;
5717 #ifdef CONFIG_IPW2100_MONITOR
5718         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5719                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5720                 if (err)
5721                         return err;
5722
5723                 IPW_DEBUG_INFO("exit\n");
5724
5725                 return 0;
5726         }
5727 #endif                          /* CONFIG_IPW2100_MONITOR */
5728
5729         err = ipw2100_read_mac_address(priv);
5730         if (err)
5731                 return -EIO;
5732
5733         err = ipw2100_set_mac_address(priv, batch_mode);
5734         if (err)
5735                 return err;
5736
5737         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5738         if (err)
5739                 return err;
5740
5741         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5742                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5743                 if (err)
5744                         return err;
5745         }
5746
5747         err = ipw2100_system_config(priv, batch_mode);
5748         if (err)
5749                 return err;
5750
5751         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5752         if (err)
5753                 return err;
5754
5755         /* Default to power mode OFF */
5756         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5757         if (err)
5758                 return err;
5759
5760         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5761         if (err)
5762                 return err;
5763
5764         if (priv->config & CFG_STATIC_BSSID)
5765                 bssid = priv->bssid;
5766         else
5767                 bssid = NULL;
5768         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5769         if (err)
5770                 return err;
5771
5772         if (priv->config & CFG_STATIC_ESSID)
5773                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5774                                         batch_mode);
5775         else
5776                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5777         if (err)
5778                 return err;
5779
5780         err = ipw2100_configure_security(priv, batch_mode);
5781         if (err)
5782                 return err;
5783
5784         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5785                 err =
5786                     ipw2100_set_ibss_beacon_interval(priv,
5787                                                      priv->beacon_interval,
5788                                                      batch_mode);
5789                 if (err)
5790                         return err;
5791
5792                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5793                 if (err)
5794                         return err;
5795         }
5796
5797         /*
5798            err = ipw2100_set_fragmentation_threshold(
5799            priv, priv->frag_threshold, batch_mode);
5800            if (err)
5801            return err;
5802          */
5803
5804         IPW_DEBUG_INFO("exit\n");
5805
5806         return 0;
5807 }
5808
5809 /*************************************************************************
5810  *
5811  * EXTERNALLY CALLED METHODS
5812  *
5813  *************************************************************************/
5814
5815 /* This method is called by the network layer -- not to be confused with
5816  * ipw2100_set_mac_address() declared above called by this driver (and this
5817  * method as well) to talk to the firmware */
5818 static int ipw2100_set_address(struct net_device *dev, void *p)
5819 {
5820         struct ipw2100_priv *priv = libipw_priv(dev);
5821         struct sockaddr *addr = p;
5822         int err = 0;
5823
5824         if (!is_valid_ether_addr(addr->sa_data))
5825                 return -EADDRNOTAVAIL;
5826
5827         mutex_lock(&priv->action_mutex);
5828
5829         priv->config |= CFG_CUSTOM_MAC;
5830         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5831
5832         err = ipw2100_set_mac_address(priv, 0);
5833         if (err)
5834                 goto done;
5835
5836         priv->reset_backoff = 0;
5837         mutex_unlock(&priv->action_mutex);
5838         ipw2100_reset_adapter(&priv->reset_work.work);
5839         return 0;
5840
5841       done:
5842         mutex_unlock(&priv->action_mutex);
5843         return err;
5844 }
5845
5846 static int ipw2100_open(struct net_device *dev)
5847 {
5848         struct ipw2100_priv *priv = libipw_priv(dev);
5849         unsigned long flags;
5850         IPW_DEBUG_INFO("dev->open\n");
5851
5852         spin_lock_irqsave(&priv->low_lock, flags);
5853         if (priv->status & STATUS_ASSOCIATED) {
5854                 netif_carrier_on(dev);
5855                 netif_start_queue(dev);
5856         }
5857         spin_unlock_irqrestore(&priv->low_lock, flags);
5858
5859         return 0;
5860 }
5861
5862 static int ipw2100_close(struct net_device *dev)
5863 {
5864         struct ipw2100_priv *priv = libipw_priv(dev);
5865         unsigned long flags;
5866         struct list_head *element;
5867         struct ipw2100_tx_packet *packet;
5868
5869         IPW_DEBUG_INFO("enter\n");
5870
5871         spin_lock_irqsave(&priv->low_lock, flags);
5872
5873         if (priv->status & STATUS_ASSOCIATED)
5874                 netif_carrier_off(dev);
5875         netif_stop_queue(dev);
5876
5877         /* Flush the TX queue ... */
5878         while (!list_empty(&priv->tx_pend_list)) {
5879                 element = priv->tx_pend_list.next;
5880                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5881
5882                 list_del(element);
5883                 DEC_STAT(&priv->tx_pend_stat);
5884
5885                 libipw_txb_free(packet->info.d_struct.txb);
5886                 packet->info.d_struct.txb = NULL;
5887
5888                 list_add_tail(element, &priv->tx_free_list);
5889                 INC_STAT(&priv->tx_free_stat);
5890         }
5891         spin_unlock_irqrestore(&priv->low_lock, flags);
5892
5893         IPW_DEBUG_INFO("exit\n");
5894
5895         return 0;
5896 }
5897
5898 /*
5899  * TODO:  Fix this function... its just wrong
5900  */
5901 static void ipw2100_tx_timeout(struct net_device *dev)
5902 {
5903         struct ipw2100_priv *priv = libipw_priv(dev);
5904
5905         dev->stats.tx_errors++;
5906
5907 #ifdef CONFIG_IPW2100_MONITOR
5908         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5909                 return;
5910 #endif
5911
5912         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5913                        dev->name);
5914         schedule_reset(priv);
5915 }
5916
5917 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5918 {
5919         /* This is called when wpa_supplicant loads and closes the driver
5920          * interface. */
5921         priv->ieee->wpa_enabled = value;
5922         return 0;
5923 }
5924
5925 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5926 {
5927
5928         struct libipw_device *ieee = priv->ieee;
5929         struct libipw_security sec = {
5930                 .flags = SEC_AUTH_MODE,
5931         };
5932         int ret = 0;
5933
5934         if (value & IW_AUTH_ALG_SHARED_KEY) {
5935                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5936                 ieee->open_wep = 0;
5937         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5938                 sec.auth_mode = WLAN_AUTH_OPEN;
5939                 ieee->open_wep = 1;
5940         } else if (value & IW_AUTH_ALG_LEAP) {
5941                 sec.auth_mode = WLAN_AUTH_LEAP;
5942                 ieee->open_wep = 1;
5943         } else
5944                 return -EINVAL;
5945
5946         if (ieee->set_security)
5947                 ieee->set_security(ieee->dev, &sec);
5948         else
5949                 ret = -EOPNOTSUPP;
5950
5951         return ret;
5952 }
5953
5954 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5955                                     char *wpa_ie, int wpa_ie_len)
5956 {
5957
5958         struct ipw2100_wpa_assoc_frame frame;
5959
5960         frame.fixed_ie_mask = 0;
5961
5962         /* copy WPA IE */
5963         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5964         frame.var_ie_len = wpa_ie_len;
5965
5966         /* make sure WPA is enabled */
5967         ipw2100_wpa_enable(priv, 1);
5968         ipw2100_set_wpa_ie(priv, &frame, 0);
5969 }
5970
5971 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5972                                     struct ethtool_drvinfo *info)
5973 {
5974         struct ipw2100_priv *priv = libipw_priv(dev);
5975         char fw_ver[64], ucode_ver[64];
5976
5977         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5978         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5979
5980         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5981         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5982
5983         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5984                  fw_ver, priv->eeprom_version, ucode_ver);
5985
5986         strlcpy(info->bus_info, pci_name(priv->pci_dev),
5987                 sizeof(info->bus_info));
5988 }
5989
5990 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5991 {
5992         struct ipw2100_priv *priv = libipw_priv(dev);
5993         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5994 }
5995
5996 static const struct ethtool_ops ipw2100_ethtool_ops = {
5997         .get_link = ipw2100_ethtool_get_link,
5998         .get_drvinfo = ipw_ethtool_get_drvinfo,
5999 };
6000
6001 static void ipw2100_hang_check(struct work_struct *work)
6002 {
6003         struct ipw2100_priv *priv =
6004                 container_of(work, struct ipw2100_priv, hang_check.work);
6005         unsigned long flags;
6006         u32 rtc = 0xa5a5a5a5;
6007         u32 len = sizeof(rtc);
6008         int restart = 0;
6009
6010         spin_lock_irqsave(&priv->low_lock, flags);
6011
6012         if (priv->fatal_error != 0) {
6013                 /* If fatal_error is set then we need to restart */
6014                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
6015                                priv->net_dev->name);
6016
6017                 restart = 1;
6018         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
6019                    (rtc == priv->last_rtc)) {
6020                 /* Check if firmware is hung */
6021                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6022                                priv->net_dev->name);
6023
6024                 restart = 1;
6025         }
6026
6027         if (restart) {
6028                 /* Kill timer */
6029                 priv->stop_hang_check = 1;
6030                 priv->hangs++;
6031
6032                 /* Restart the NIC */
6033                 schedule_reset(priv);
6034         }
6035
6036         priv->last_rtc = rtc;
6037
6038         if (!priv->stop_hang_check)
6039                 schedule_delayed_work(&priv->hang_check, HZ / 2);
6040
6041         spin_unlock_irqrestore(&priv->low_lock, flags);
6042 }
6043
6044 static void ipw2100_rf_kill(struct work_struct *work)
6045 {
6046         struct ipw2100_priv *priv =
6047                 container_of(work, struct ipw2100_priv, rf_kill.work);
6048         unsigned long flags;
6049
6050         spin_lock_irqsave(&priv->low_lock, flags);
6051
6052         if (rf_kill_active(priv)) {
6053                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6054                 if (!priv->stop_rf_kill)
6055                         schedule_delayed_work(&priv->rf_kill,
6056                                               round_jiffies_relative(HZ));
6057                 goto exit_unlock;
6058         }
6059
6060         /* RF Kill is now disabled, so bring the device back up */
6061
6062         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6063                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6064                                   "device\n");
6065                 schedule_reset(priv);
6066         } else
6067