ipw2100: remove useless tests in the PCI device remove path.
[linux-3.10.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "git-1.2.2"
171
172 #define DRV_NAME        "ipw2100"
173 #define DRV_VERSION     IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
176
177 static struct pm_qos_request ipw2100_pm_qos_req;
178
179 /* Debugging stuff */
180 #ifdef CONFIG_IPW2100_DEBUG
181 #define IPW2100_RX_DEBUG        /* Reception debugging */
182 #endif
183
184 MODULE_DESCRIPTION(DRV_DESCRIPTION);
185 MODULE_VERSION(DRV_VERSION);
186 MODULE_AUTHOR(DRV_COPYRIGHT);
187 MODULE_LICENSE("GPL");
188
189 static int debug = 0;
190 static int network_mode = 0;
191 static int channel = 0;
192 static int associate = 0;
193 static int disable = 0;
194 #ifdef CONFIG_PM
195 static struct ipw2100_fw ipw2100_firmware;
196 #endif
197
198 #include <linux/moduleparam.h>
199 module_param(debug, int, 0444);
200 module_param_named(mode, network_mode, int, 0444);
201 module_param(channel, int, 0444);
202 module_param(associate, int, 0444);
203 module_param(disable, int, 0444);
204
205 MODULE_PARM_DESC(debug, "debug level");
206 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
207 MODULE_PARM_DESC(channel, "channel");
208 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
209 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
210
211 static u32 ipw2100_debug_level = IPW_DL_NONE;
212
213 #ifdef CONFIG_IPW2100_DEBUG
214 #define IPW_DEBUG(level, message...) \
215 do { \
216         if (ipw2100_debug_level & (level)) { \
217                 printk(KERN_DEBUG "ipw2100: %c %s ", \
218                        in_interrupt() ? 'I' : 'U',  __func__); \
219                 printk(message); \
220         } \
221 } while (0)
222 #else
223 #define IPW_DEBUG(level, message...) do {} while (0)
224 #endif                          /* CONFIG_IPW2100_DEBUG */
225
226 #ifdef CONFIG_IPW2100_DEBUG
227 static const char *command_types[] = {
228         "undefined",
229         "unused",               /* HOST_ATTENTION */
230         "HOST_COMPLETE",
231         "unused",               /* SLEEP */
232         "unused",               /* HOST_POWER_DOWN */
233         "unused",
234         "SYSTEM_CONFIG",
235         "unused",               /* SET_IMR */
236         "SSID",
237         "MANDATORY_BSSID",
238         "AUTHENTICATION_TYPE",
239         "ADAPTER_ADDRESS",
240         "PORT_TYPE",
241         "INTERNATIONAL_MODE",
242         "CHANNEL",
243         "RTS_THRESHOLD",
244         "FRAG_THRESHOLD",
245         "POWER_MODE",
246         "TX_RATES",
247         "BASIC_TX_RATES",
248         "WEP_KEY_INFO",
249         "unused",
250         "unused",
251         "unused",
252         "unused",
253         "WEP_KEY_INDEX",
254         "WEP_FLAGS",
255         "ADD_MULTICAST",
256         "CLEAR_ALL_MULTICAST",
257         "BEACON_INTERVAL",
258         "ATIM_WINDOW",
259         "CLEAR_STATISTICS",
260         "undefined",
261         "undefined",
262         "undefined",
263         "undefined",
264         "TX_POWER_INDEX",
265         "undefined",
266         "undefined",
267         "undefined",
268         "undefined",
269         "undefined",
270         "undefined",
271         "BROADCAST_SCAN",
272         "CARD_DISABLE",
273         "PREFERRED_BSSID",
274         "SET_SCAN_OPTIONS",
275         "SCAN_DWELL_TIME",
276         "SWEEP_TABLE",
277         "AP_OR_STATION_TABLE",
278         "GROUP_ORDINALS",
279         "SHORT_RETRY_LIMIT",
280         "LONG_RETRY_LIMIT",
281         "unused",               /* SAVE_CALIBRATION */
282         "unused",               /* RESTORE_CALIBRATION */
283         "undefined",
284         "undefined",
285         "undefined",
286         "HOST_PRE_POWER_DOWN",
287         "unused",               /* HOST_INTERRUPT_COALESCING */
288         "undefined",
289         "CARD_DISABLE_PHY_OFF",
290         "MSDU_TX_RATES",
291         "undefined",
292         "SET_STATION_STAT_BITS",
293         "CLEAR_STATIONS_STAT_BITS",
294         "LEAP_ROGUE_MODE",
295         "SET_SECURITY_INFORMATION",
296         "DISASSOCIATION_BSSID",
297         "SET_WPA_ASS_IE"
298 };
299 #endif
300
301 static const long ipw2100_frequencies[] = {
302         2412, 2417, 2422, 2427,
303         2432, 2437, 2442, 2447,
304         2452, 2457, 2462, 2467,
305         2472, 2484
306 };
307
308 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
309
310 static struct ieee80211_rate ipw2100_bg_rates[] = {
311         { .bitrate = 10 },
312         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
313         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315 };
316
317 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
318
319 /* Pre-decl until we get the code solid and then we can clean it up */
320 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
321 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
322 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
323
324 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
325 static void ipw2100_queues_free(struct ipw2100_priv *priv);
326 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
327
328 static int ipw2100_fw_download(struct ipw2100_priv *priv,
329                                struct ipw2100_fw *fw);
330 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
331                                 struct ipw2100_fw *fw);
332 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
333                                  size_t max);
334 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
335                                     size_t max);
336 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
337                                      struct ipw2100_fw *fw);
338 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
339                                   struct ipw2100_fw *fw);
340 static void ipw2100_wx_event_work(struct work_struct *work);
341 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
342 static struct iw_handler_def ipw2100_wx_handler_def;
343
344 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
345 {
346         struct ipw2100_priv *priv = libipw_priv(dev);
347
348         *val = ioread32(priv->ioaddr + reg);
349         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
350 }
351
352 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
353 {
354         struct ipw2100_priv *priv = libipw_priv(dev);
355
356         iowrite32(val, priv->ioaddr + reg);
357         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
358 }
359
360 static inline void read_register_word(struct net_device *dev, u32 reg,
361                                       u16 * val)
362 {
363         struct ipw2100_priv *priv = libipw_priv(dev);
364
365         *val = ioread16(priv->ioaddr + reg);
366         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
367 }
368
369 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
370 {
371         struct ipw2100_priv *priv = libipw_priv(dev);
372
373         *val = ioread8(priv->ioaddr + reg);
374         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
375 }
376
377 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
378 {
379         struct ipw2100_priv *priv = libipw_priv(dev);
380
381         iowrite16(val, priv->ioaddr + reg);
382         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
383 }
384
385 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
386 {
387         struct ipw2100_priv *priv = libipw_priv(dev);
388
389         iowrite8(val, priv->ioaddr + reg);
390         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
391 }
392
393 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
394 {
395         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
396                        addr & IPW_REG_INDIRECT_ADDR_MASK);
397         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
398 }
399
400 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
401 {
402         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
403                        addr & IPW_REG_INDIRECT_ADDR_MASK);
404         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
405 }
406
407 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
408 {
409         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
410                        addr & IPW_REG_INDIRECT_ADDR_MASK);
411         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
412 }
413
414 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
415 {
416         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
417                        addr & IPW_REG_INDIRECT_ADDR_MASK);
418         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
419 }
420
421 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
422 {
423         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
424                        addr & IPW_REG_INDIRECT_ADDR_MASK);
425         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
426 }
427
428 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
429 {
430         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
431                        addr & IPW_REG_INDIRECT_ADDR_MASK);
432         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
433 }
434
435 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
436 {
437         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
438                        addr & IPW_REG_INDIRECT_ADDR_MASK);
439 }
440
441 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
442 {
443         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
444 }
445
446 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
447                                     const u8 * buf)
448 {
449         u32 aligned_addr;
450         u32 aligned_len;
451         u32 dif_len;
452         u32 i;
453
454         /* read first nibble byte by byte */
455         aligned_addr = addr & (~0x3);
456         dif_len = addr - aligned_addr;
457         if (dif_len) {
458                 /* Start reading at aligned_addr + dif_len */
459                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
460                                aligned_addr);
461                 for (i = dif_len; i < 4; i++, buf++)
462                         write_register_byte(dev,
463                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
464                                             *buf);
465
466                 len -= dif_len;
467                 aligned_addr += 4;
468         }
469
470         /* read DWs through autoincrement registers */
471         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
472         aligned_len = len & (~0x3);
473         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
474                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
475
476         /* copy the last nibble */
477         dif_len = len - aligned_len;
478         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
479         for (i = 0; i < dif_len; i++, buf++)
480                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
481                                     *buf);
482 }
483
484 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
485                                    u8 * buf)
486 {
487         u32 aligned_addr;
488         u32 aligned_len;
489         u32 dif_len;
490         u32 i;
491
492         /* read first nibble byte by byte */
493         aligned_addr = addr & (~0x3);
494         dif_len = addr - aligned_addr;
495         if (dif_len) {
496                 /* Start reading at aligned_addr + dif_len */
497                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
498                                aligned_addr);
499                 for (i = dif_len; i < 4; i++, buf++)
500                         read_register_byte(dev,
501                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
502                                            buf);
503
504                 len -= dif_len;
505                 aligned_addr += 4;
506         }
507
508         /* read DWs through autoincrement registers */
509         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
510         aligned_len = len & (~0x3);
511         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
512                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
513
514         /* copy the last nibble */
515         dif_len = len - aligned_len;
516         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
517         for (i = 0; i < dif_len; i++, buf++)
518                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
519 }
520
521 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
522 {
523         u32 dbg;
524
525         read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
526
527         return dbg == IPW_DATA_DOA_DEBUG_VALUE;
528 }
529
530 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
531                                void *val, u32 * len)
532 {
533         struct ipw2100_ordinals *ordinals = &priv->ordinals;
534         u32 addr;
535         u32 field_info;
536         u16 field_len;
537         u16 field_count;
538         u32 total_length;
539
540         if (ordinals->table1_addr == 0) {
541                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
542                        "before they have been loaded.\n");
543                 return -EINVAL;
544         }
545
546         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
547                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
548                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
549
550                         printk(KERN_WARNING DRV_NAME
551                                ": ordinal buffer length too small, need %zd\n",
552                                IPW_ORD_TAB_1_ENTRY_SIZE);
553
554                         return -EINVAL;
555                 }
556
557                 read_nic_dword(priv->net_dev,
558                                ordinals->table1_addr + (ord << 2), &addr);
559                 read_nic_dword(priv->net_dev, addr, val);
560
561                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
562
563                 return 0;
564         }
565
566         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
567
568                 ord -= IPW_START_ORD_TAB_2;
569
570                 /* get the address of statistic */
571                 read_nic_dword(priv->net_dev,
572                                ordinals->table2_addr + (ord << 3), &addr);
573
574                 /* get the second DW of statistics ;
575                  * two 16-bit words - first is length, second is count */
576                 read_nic_dword(priv->net_dev,
577                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
578                                &field_info);
579
580                 /* get each entry length */
581                 field_len = *((u16 *) & field_info);
582
583                 /* get number of entries */
584                 field_count = *(((u16 *) & field_info) + 1);
585
586                 /* abort if no enough memory */
587                 total_length = field_len * field_count;
588                 if (total_length > *len) {
589                         *len = total_length;
590                         return -EINVAL;
591                 }
592
593                 *len = total_length;
594                 if (!total_length)
595                         return 0;
596
597                 /* read the ordinal data from the SRAM */
598                 read_nic_memory(priv->net_dev, addr, total_length, val);
599
600                 return 0;
601         }
602
603         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
604                "in table 2\n", ord);
605
606         return -EINVAL;
607 }
608
609 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
610                                u32 * len)
611 {
612         struct ipw2100_ordinals *ordinals = &priv->ordinals;
613         u32 addr;
614
615         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
616                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
617                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
618                         IPW_DEBUG_INFO("wrong size\n");
619                         return -EINVAL;
620                 }
621
622                 read_nic_dword(priv->net_dev,
623                                ordinals->table1_addr + (ord << 2), &addr);
624
625                 write_nic_dword(priv->net_dev, addr, *val);
626
627                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
628
629                 return 0;
630         }
631
632         IPW_DEBUG_INFO("wrong table\n");
633         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
634                 return -EINVAL;
635
636         return -EINVAL;
637 }
638
639 static char *snprint_line(char *buf, size_t count,
640                           const u8 * data, u32 len, u32 ofs)
641 {
642         int out, i, j, l;
643         char c;
644
645         out = snprintf(buf, count, "%08X", ofs);
646
647         for (l = 0, i = 0; i < 2; i++) {
648                 out += snprintf(buf + out, count - out, " ");
649                 for (j = 0; j < 8 && l < len; j++, l++)
650                         out += snprintf(buf + out, count - out, "%02X ",
651                                         data[(i * 8 + j)]);
652                 for (; j < 8; j++)
653                         out += snprintf(buf + out, count - out, "   ");
654         }
655
656         out += snprintf(buf + out, count - out, " ");
657         for (l = 0, i = 0; i < 2; i++) {
658                 out += snprintf(buf + out, count - out, " ");
659                 for (j = 0; j < 8 && l < len; j++, l++) {
660                         c = data[(i * 8 + j)];
661                         if (!isascii(c) || !isprint(c))
662                                 c = '.';
663
664                         out += snprintf(buf + out, count - out, "%c", c);
665                 }
666
667                 for (; j < 8; j++)
668                         out += snprintf(buf + out, count - out, " ");
669         }
670
671         return buf;
672 }
673
674 static void printk_buf(int level, const u8 * data, u32 len)
675 {
676         char line[81];
677         u32 ofs = 0;
678         if (!(ipw2100_debug_level & level))
679                 return;
680
681         while (len) {
682                 printk(KERN_DEBUG "%s\n",
683                        snprint_line(line, sizeof(line), &data[ofs],
684                                     min(len, 16U), ofs));
685                 ofs += 16;
686                 len -= min(len, 16U);
687         }
688 }
689
690 #define MAX_RESET_BACKOFF 10
691
692 static void schedule_reset(struct ipw2100_priv *priv)
693 {
694         unsigned long now = get_seconds();
695
696         /* If we haven't received a reset request within the backoff period,
697          * then we can reset the backoff interval so this reset occurs
698          * immediately */
699         if (priv->reset_backoff &&
700             (now - priv->last_reset > priv->reset_backoff))
701                 priv->reset_backoff = 0;
702
703         priv->last_reset = get_seconds();
704
705         if (!(priv->status & STATUS_RESET_PENDING)) {
706                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
707                                priv->net_dev->name, priv->reset_backoff);
708                 netif_carrier_off(priv->net_dev);
709                 netif_stop_queue(priv->net_dev);
710                 priv->status |= STATUS_RESET_PENDING;
711                 if (priv->reset_backoff)
712                         schedule_delayed_work(&priv->reset_work,
713                                               priv->reset_backoff * HZ);
714                 else
715                         schedule_delayed_work(&priv->reset_work, 0);
716
717                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
718                         priv->reset_backoff++;
719
720                 wake_up_interruptible(&priv->wait_command_queue);
721         } else
722                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
723                                priv->net_dev->name);
724
725 }
726
727 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
728 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
729                                    struct host_command *cmd)
730 {
731         struct list_head *element;
732         struct ipw2100_tx_packet *packet;
733         unsigned long flags;
734         int err = 0;
735
736         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
737                      command_types[cmd->host_command], cmd->host_command,
738                      cmd->host_command_length);
739         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
740                    cmd->host_command_length);
741
742         spin_lock_irqsave(&priv->low_lock, flags);
743
744         if (priv->fatal_error) {
745                 IPW_DEBUG_INFO
746                     ("Attempt to send command while hardware in fatal error condition.\n");
747                 err = -EIO;
748                 goto fail_unlock;
749         }
750
751         if (!(priv->status & STATUS_RUNNING)) {
752                 IPW_DEBUG_INFO
753                     ("Attempt to send command while hardware is not running.\n");
754                 err = -EIO;
755                 goto fail_unlock;
756         }
757
758         if (priv->status & STATUS_CMD_ACTIVE) {
759                 IPW_DEBUG_INFO
760                     ("Attempt to send command while another command is pending.\n");
761                 err = -EBUSY;
762                 goto fail_unlock;
763         }
764
765         if (list_empty(&priv->msg_free_list)) {
766                 IPW_DEBUG_INFO("no available msg buffers\n");
767                 goto fail_unlock;
768         }
769
770         priv->status |= STATUS_CMD_ACTIVE;
771         priv->messages_sent++;
772
773         element = priv->msg_free_list.next;
774
775         packet = list_entry(element, struct ipw2100_tx_packet, list);
776         packet->jiffy_start = jiffies;
777
778         /* initialize the firmware command packet */
779         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
780         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
781         packet->info.c_struct.cmd->host_command_len_reg =
782             cmd->host_command_length;
783         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
784
785         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
786                cmd->host_command_parameters,
787                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
788
789         list_del(element);
790         DEC_STAT(&priv->msg_free_stat);
791
792         list_add_tail(element, &priv->msg_pend_list);
793         INC_STAT(&priv->msg_pend_stat);
794
795         ipw2100_tx_send_commands(priv);
796         ipw2100_tx_send_data(priv);
797
798         spin_unlock_irqrestore(&priv->low_lock, flags);
799
800         /*
801          * We must wait for this command to complete before another
802          * command can be sent...  but if we wait more than 3 seconds
803          * then there is a problem.
804          */
805
806         err =
807             wait_event_interruptible_timeout(priv->wait_command_queue,
808                                              !(priv->
809                                                status & STATUS_CMD_ACTIVE),
810                                              HOST_COMPLETE_TIMEOUT);
811
812         if (err == 0) {
813                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
814                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
815                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
816                 priv->status &= ~STATUS_CMD_ACTIVE;
817                 schedule_reset(priv);
818                 return -EIO;
819         }
820
821         if (priv->fatal_error) {
822                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
823                        priv->net_dev->name);
824                 return -EIO;
825         }
826
827         /* !!!!! HACK TEST !!!!!
828          * When lots of debug trace statements are enabled, the driver
829          * doesn't seem to have as many firmware restart cycles...
830          *
831          * As a test, we're sticking in a 1/100s delay here */
832         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
833
834         return 0;
835
836       fail_unlock:
837         spin_unlock_irqrestore(&priv->low_lock, flags);
838
839         return err;
840 }
841
842 /*
843  * Verify the values and data access of the hardware
844  * No locks needed or used.  No functions called.
845  */
846 static int ipw2100_verify(struct ipw2100_priv *priv)
847 {
848         u32 data1, data2;
849         u32 address;
850
851         u32 val1 = 0x76543210;
852         u32 val2 = 0xFEDCBA98;
853
854         /* Domain 0 check - all values should be DOA_DEBUG */
855         for (address = IPW_REG_DOA_DEBUG_AREA_START;
856              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
857                 read_register(priv->net_dev, address, &data1);
858                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
859                         return -EIO;
860         }
861
862         /* Domain 1 check - use arbitrary read/write compare  */
863         for (address = 0; address < 5; address++) {
864                 /* The memory area is not used now */
865                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
866                                val1);
867                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
868                                val2);
869                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
870                               &data1);
871                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
872                               &data2);
873                 if (val1 == data1 && val2 == data2)
874                         return 0;
875         }
876
877         return -EIO;
878 }
879
880 /*
881  *
882  * Loop until the CARD_DISABLED bit is the same value as the
883  * supplied parameter
884  *
885  * TODO: See if it would be more efficient to do a wait/wake
886  *       cycle and have the completion event trigger the wakeup
887  *
888  */
889 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
890 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
891 {
892         int i;
893         u32 card_state;
894         u32 len = sizeof(card_state);
895         int err;
896
897         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
898                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
899                                           &card_state, &len);
900                 if (err) {
901                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
902                                        "failed.\n");
903                         return 0;
904                 }
905
906                 /* We'll break out if either the HW state says it is
907                  * in the state we want, or if HOST_COMPLETE command
908                  * finishes */
909                 if ((card_state == state) ||
910                     ((priv->status & STATUS_ENABLED) ?
911                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
912                         if (state == IPW_HW_STATE_ENABLED)
913                                 priv->status |= STATUS_ENABLED;
914                         else
915                                 priv->status &= ~STATUS_ENABLED;
916
917                         return 0;
918                 }
919
920                 udelay(50);
921         }
922
923         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
924                        state ? "DISABLED" : "ENABLED");
925         return -EIO;
926 }
927
928 /*********************************************************************
929     Procedure   :   sw_reset_and_clock
930     Purpose     :   Asserts s/w reset, asserts clock initialization
931                     and waits for clock stabilization
932  ********************************************************************/
933 static int sw_reset_and_clock(struct ipw2100_priv *priv)
934 {
935         int i;
936         u32 r;
937
938         // assert s/w reset
939         write_register(priv->net_dev, IPW_REG_RESET_REG,
940                        IPW_AUX_HOST_RESET_REG_SW_RESET);
941
942         // wait for clock stabilization
943         for (i = 0; i < 1000; i++) {
944                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
945
946                 // check clock ready bit
947                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
948                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
949                         break;
950         }
951
952         if (i == 1000)
953                 return -EIO;    // TODO: better error value
954
955         /* set "initialization complete" bit to move adapter to
956          * D0 state */
957         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
958                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
959
960         /* wait for clock stabilization */
961         for (i = 0; i < 10000; i++) {
962                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
963
964                 /* check clock ready bit */
965                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
966                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
967                         break;
968         }
969
970         if (i == 10000)
971                 return -EIO;    /* TODO: better error value */
972
973         /* set D0 standby bit */
974         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
975         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
976                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
977
978         return 0;
979 }
980
981 /*********************************************************************
982     Procedure   :   ipw2100_download_firmware
983     Purpose     :   Initiaze adapter after power on.
984                     The sequence is:
985                     1. assert s/w reset first!
986                     2. awake clocks & wait for clock stabilization
987                     3. hold ARC (don't ask me why...)
988                     4. load Dino ucode and reset/clock init again
989                     5. zero-out shared mem
990                     6. download f/w
991  *******************************************************************/
992 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
993 {
994         u32 address;
995         int err;
996
997 #ifndef CONFIG_PM
998         /* Fetch the firmware and microcode */
999         struct ipw2100_fw ipw2100_firmware;
1000 #endif
1001
1002         if (priv->fatal_error) {
1003                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1004                                 "fatal error %d.  Interface must be brought down.\n",
1005                                 priv->net_dev->name, priv->fatal_error);
1006                 return -EINVAL;
1007         }
1008 #ifdef CONFIG_PM
1009         if (!ipw2100_firmware.version) {
1010                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1011                 if (err) {
1012                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1013                                         priv->net_dev->name, err);
1014                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
1015                         goto fail;
1016                 }
1017         }
1018 #else
1019         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1020         if (err) {
1021                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1022                                 priv->net_dev->name, err);
1023                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1024                 goto fail;
1025         }
1026 #endif
1027         priv->firmware_version = ipw2100_firmware.version;
1028
1029         /* s/w reset and clock stabilization */
1030         err = sw_reset_and_clock(priv);
1031         if (err) {
1032                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1033                                 priv->net_dev->name, err);
1034                 goto fail;
1035         }
1036
1037         err = ipw2100_verify(priv);
1038         if (err) {
1039                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1040                                 priv->net_dev->name, err);
1041                 goto fail;
1042         }
1043
1044         /* Hold ARC */
1045         write_nic_dword(priv->net_dev,
1046                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1047
1048         /* allow ARC to run */
1049         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1050
1051         /* load microcode */
1052         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1053         if (err) {
1054                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1055                        priv->net_dev->name, err);
1056                 goto fail;
1057         }
1058
1059         /* release ARC */
1060         write_nic_dword(priv->net_dev,
1061                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1062
1063         /* s/w reset and clock stabilization (again!!!) */
1064         err = sw_reset_and_clock(priv);
1065         if (err) {
1066                 printk(KERN_ERR DRV_NAME
1067                        ": %s: sw_reset_and_clock failed: %d\n",
1068                        priv->net_dev->name, err);
1069                 goto fail;
1070         }
1071
1072         /* load f/w */
1073         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1074         if (err) {
1075                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1076                                 priv->net_dev->name, err);
1077                 goto fail;
1078         }
1079 #ifndef CONFIG_PM
1080         /*
1081          * When the .resume method of the driver is called, the other
1082          * part of the system, i.e. the ide driver could still stay in
1083          * the suspend stage. This prevents us from loading the firmware
1084          * from the disk.  --YZ
1085          */
1086
1087         /* free any storage allocated for firmware image */
1088         ipw2100_release_firmware(priv, &ipw2100_firmware);
1089 #endif
1090
1091         /* zero out Domain 1 area indirectly (Si requirement) */
1092         for (address = IPW_HOST_FW_SHARED_AREA0;
1093              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1094                 write_nic_dword(priv->net_dev, address, 0);
1095         for (address = IPW_HOST_FW_SHARED_AREA1;
1096              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1097                 write_nic_dword(priv->net_dev, address, 0);
1098         for (address = IPW_HOST_FW_SHARED_AREA2;
1099              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1100                 write_nic_dword(priv->net_dev, address, 0);
1101         for (address = IPW_HOST_FW_SHARED_AREA3;
1102              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1103                 write_nic_dword(priv->net_dev, address, 0);
1104         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1105              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1106                 write_nic_dword(priv->net_dev, address, 0);
1107
1108         return 0;
1109
1110       fail:
1111         ipw2100_release_firmware(priv, &ipw2100_firmware);
1112         return err;
1113 }
1114
1115 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1116 {
1117         if (priv->status & STATUS_INT_ENABLED)
1118                 return;
1119         priv->status |= STATUS_INT_ENABLED;
1120         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1121 }
1122
1123 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1124 {
1125         if (!(priv->status & STATUS_INT_ENABLED))
1126                 return;
1127         priv->status &= ~STATUS_INT_ENABLED;
1128         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1129 }
1130
1131 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1132 {
1133         struct ipw2100_ordinals *ord = &priv->ordinals;
1134
1135         IPW_DEBUG_INFO("enter\n");
1136
1137         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1138                       &ord->table1_addr);
1139
1140         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1141                       &ord->table2_addr);
1142
1143         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1144         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1145
1146         ord->table2_size &= 0x0000FFFF;
1147
1148         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1149         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1150         IPW_DEBUG_INFO("exit\n");
1151 }
1152
1153 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1154 {
1155         u32 reg = 0;
1156         /*
1157          * Set GPIO 3 writable by FW; GPIO 1 writable
1158          * by driver and enable clock
1159          */
1160         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1161                IPW_BIT_GPIO_LED_OFF);
1162         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1163 }
1164
1165 static int rf_kill_active(struct ipw2100_priv *priv)
1166 {
1167 #define MAX_RF_KILL_CHECKS 5
1168 #define RF_KILL_CHECK_DELAY 40
1169
1170         unsigned short value = 0;
1171         u32 reg = 0;
1172         int i;
1173
1174         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1175                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1176                 priv->status &= ~STATUS_RF_KILL_HW;
1177                 return 0;
1178         }
1179
1180         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1181                 udelay(RF_KILL_CHECK_DELAY);
1182                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1183                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1184         }
1185
1186         if (value == 0) {
1187                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1188                 priv->status |= STATUS_RF_KILL_HW;
1189         } else {
1190                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1191                 priv->status &= ~STATUS_RF_KILL_HW;
1192         }
1193
1194         return (value == 0);
1195 }
1196
1197 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1198 {
1199         u32 addr, len;
1200         u32 val;
1201
1202         /*
1203          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1204          */
1205         len = sizeof(addr);
1206         if (ipw2100_get_ordinal
1207             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1208                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1209                                __LINE__);
1210                 return -EIO;
1211         }
1212
1213         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1214
1215         /*
1216          * EEPROM version is the byte at offset 0xfd in firmware
1217          * We read 4 bytes, then shift out the byte we actually want */
1218         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1219         priv->eeprom_version = (val >> 24) & 0xFF;
1220         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1221
1222         /*
1223          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1224          *
1225          *  notice that the EEPROM bit is reverse polarity, i.e.
1226          *     bit = 0  signifies HW RF kill switch is supported
1227          *     bit = 1  signifies HW RF kill switch is NOT supported
1228          */
1229         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1230         if (!((val >> 24) & 0x01))
1231                 priv->hw_features |= HW_FEATURE_RFKILL;
1232
1233         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1234                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1235
1236         return 0;
1237 }
1238
1239 /*
1240  * Start firmware execution after power on and intialization
1241  * The sequence is:
1242  *  1. Release ARC
1243  *  2. Wait for f/w initialization completes;
1244  */
1245 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1246 {
1247         int i;
1248         u32 inta, inta_mask, gpio;
1249
1250         IPW_DEBUG_INFO("enter\n");
1251
1252         if (priv->status & STATUS_RUNNING)
1253                 return 0;
1254
1255         /*
1256          * Initialize the hw - drive adapter to DO state by setting
1257          * init_done bit. Wait for clk_ready bit and Download
1258          * fw & dino ucode
1259          */
1260         if (ipw2100_download_firmware(priv)) {
1261                 printk(KERN_ERR DRV_NAME
1262                        ": %s: Failed to power on the adapter.\n",
1263                        priv->net_dev->name);
1264                 return -EIO;
1265         }
1266
1267         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1268          * in the firmware RBD and TBD ring queue */
1269         ipw2100_queues_initialize(priv);
1270
1271         ipw2100_hw_set_gpio(priv);
1272
1273         /* TODO -- Look at disabling interrupts here to make sure none
1274          * get fired during FW initialization */
1275
1276         /* Release ARC - clear reset bit */
1277         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1278
1279         /* wait for f/w intialization complete */
1280         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1281         i = 5000;
1282         do {
1283                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1284                 /* Todo... wait for sync command ... */
1285
1286                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1287
1288                 /* check "init done" bit */
1289                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1290                         /* reset "init done" bit */
1291                         write_register(priv->net_dev, IPW_REG_INTA,
1292                                        IPW2100_INTA_FW_INIT_DONE);
1293                         break;
1294                 }
1295
1296                 /* check error conditions : we check these after the firmware
1297                  * check so that if there is an error, the interrupt handler
1298                  * will see it and the adapter will be reset */
1299                 if (inta &
1300                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1301                         /* clear error conditions */
1302                         write_register(priv->net_dev, IPW_REG_INTA,
1303                                        IPW2100_INTA_FATAL_ERROR |
1304                                        IPW2100_INTA_PARITY_ERROR);
1305                 }
1306         } while (--i);
1307
1308         /* Clear out any pending INTAs since we aren't supposed to have
1309          * interrupts enabled at this point... */
1310         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1311         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1312         inta &= IPW_INTERRUPT_MASK;
1313         /* Clear out any pending interrupts */
1314         if (inta & inta_mask)
1315                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1316
1317         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1318                      i ? "SUCCESS" : "FAILED");
1319
1320         if (!i) {
1321                 printk(KERN_WARNING DRV_NAME
1322                        ": %s: Firmware did not initialize.\n",
1323                        priv->net_dev->name);
1324                 return -EIO;
1325         }
1326
1327         /* allow firmware to write to GPIO1 & GPIO3 */
1328         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1329
1330         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1331
1332         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1333
1334         /* Ready to receive commands */
1335         priv->status |= STATUS_RUNNING;
1336
1337         /* The adapter has been reset; we are not associated */
1338         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1339
1340         IPW_DEBUG_INFO("exit\n");
1341
1342         return 0;
1343 }
1344
1345 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1346 {
1347         if (!priv->fatal_error)
1348                 return;
1349
1350         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1351         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1352         priv->fatal_error = 0;
1353 }
1354
1355 /* NOTE: Our interrupt is disabled when this method is called */
1356 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1357 {
1358         u32 reg;
1359         int i;
1360
1361         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1362
1363         ipw2100_hw_set_gpio(priv);
1364
1365         /* Step 1. Stop Master Assert */
1366         write_register(priv->net_dev, IPW_REG_RESET_REG,
1367                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1368
1369         /* Step 2. Wait for stop Master Assert
1370          *         (not more than 50us, otherwise ret error */
1371         i = 5;
1372         do {
1373                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1374                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1375
1376                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1377                         break;
1378         } while (--i);
1379
1380         priv->status &= ~STATUS_RESET_PENDING;
1381
1382         if (!i) {
1383                 IPW_DEBUG_INFO
1384                     ("exit - waited too long for master assert stop\n");
1385                 return -EIO;
1386         }
1387
1388         write_register(priv->net_dev, IPW_REG_RESET_REG,
1389                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1390
1391         /* Reset any fatal_error conditions */
1392         ipw2100_reset_fatalerror(priv);
1393
1394         /* At this point, the adapter is now stopped and disabled */
1395         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1396                           STATUS_ASSOCIATED | STATUS_ENABLED);
1397
1398         return 0;
1399 }
1400
1401 /*
1402  * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1403  *
1404  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1405  *
1406  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1407  * if STATUS_ASSN_LOST is sent.
1408  */
1409 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1410 {
1411
1412 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1413
1414         struct host_command cmd = {
1415                 .host_command = CARD_DISABLE_PHY_OFF,
1416                 .host_command_sequence = 0,
1417                 .host_command_length = 0,
1418         };
1419         int err, i;
1420         u32 val1, val2;
1421
1422         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1423
1424         /* Turn off the radio */
1425         err = ipw2100_hw_send_command(priv, &cmd);
1426         if (err)
1427                 return err;
1428
1429         for (i = 0; i < 2500; i++) {
1430                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1431                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1432
1433                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1434                     (val2 & IPW2100_COMMAND_PHY_OFF))
1435                         return 0;
1436
1437                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1438         }
1439
1440         return -EIO;
1441 }
1442
1443 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1444 {
1445         struct host_command cmd = {
1446                 .host_command = HOST_COMPLETE,
1447                 .host_command_sequence = 0,
1448                 .host_command_length = 0
1449         };
1450         int err = 0;
1451
1452         IPW_DEBUG_HC("HOST_COMPLETE\n");
1453
1454         if (priv->status & STATUS_ENABLED)
1455                 return 0;
1456
1457         mutex_lock(&priv->adapter_mutex);
1458
1459         if (rf_kill_active(priv)) {
1460                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1461                 goto fail_up;
1462         }
1463
1464         err = ipw2100_hw_send_command(priv, &cmd);
1465         if (err) {
1466                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1467                 goto fail_up;
1468         }
1469
1470         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1471         if (err) {
1472                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1473                                priv->net_dev->name);
1474                 goto fail_up;
1475         }
1476
1477         if (priv->stop_hang_check) {
1478                 priv->stop_hang_check = 0;
1479                 schedule_delayed_work(&priv->hang_check, HZ / 2);
1480         }
1481
1482       fail_up:
1483         mutex_unlock(&priv->adapter_mutex);
1484         return err;
1485 }
1486
1487 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1488 {
1489 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1490
1491         struct host_command cmd = {
1492                 .host_command = HOST_PRE_POWER_DOWN,
1493                 .host_command_sequence = 0,
1494                 .host_command_length = 0,
1495         };
1496         int err, i;
1497         u32 reg;
1498
1499         if (!(priv->status & STATUS_RUNNING))
1500                 return 0;
1501
1502         priv->status |= STATUS_STOPPING;
1503
1504         /* We can only shut down the card if the firmware is operational.  So,
1505          * if we haven't reset since a fatal_error, then we can not send the
1506          * shutdown commands. */
1507         if (!priv->fatal_error) {
1508                 /* First, make sure the adapter is enabled so that the PHY_OFF
1509                  * command can shut it down */
1510                 ipw2100_enable_adapter(priv);
1511
1512                 err = ipw2100_hw_phy_off(priv);
1513                 if (err)
1514                         printk(KERN_WARNING DRV_NAME
1515                                ": Error disabling radio %d\n", err);
1516
1517                 /*
1518                  * If in D0-standby mode going directly to D3 may cause a
1519                  * PCI bus violation.  Therefore we must change out of the D0
1520                  * state.
1521                  *
1522                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1523                  * hardware from going into standby mode and will transition
1524                  * out of D0-standby if it is already in that state.
1525                  *
1526                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1527                  * driver upon completion.  Once received, the driver can
1528                  * proceed to the D3 state.
1529                  *
1530                  * Prepare for power down command to fw.  This command would
1531                  * take HW out of D0-standby and prepare it for D3 state.
1532                  *
1533                  * Currently FW does not support event notification for this
1534                  * event. Therefore, skip waiting for it.  Just wait a fixed
1535                  * 100ms
1536                  */
1537                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1538
1539                 err = ipw2100_hw_send_command(priv, &cmd);
1540                 if (err)
1541                         printk(KERN_WARNING DRV_NAME ": "
1542                                "%s: Power down command failed: Error %d\n",
1543                                priv->net_dev->name, err);
1544                 else
1545                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1546         }
1547
1548         priv->status &= ~STATUS_ENABLED;
1549
1550         /*
1551          * Set GPIO 3 writable by FW; GPIO 1 writable
1552          * by driver and enable clock
1553          */
1554         ipw2100_hw_set_gpio(priv);
1555
1556         /*
1557          * Power down adapter.  Sequence:
1558          * 1. Stop master assert (RESET_REG[9]=1)
1559          * 2. Wait for stop master (RESET_REG[8]==1)
1560          * 3. S/w reset assert (RESET_REG[7] = 1)
1561          */
1562
1563         /* Stop master assert */
1564         write_register(priv->net_dev, IPW_REG_RESET_REG,
1565                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1566
1567         /* wait stop master not more than 50 usec.
1568          * Otherwise return error. */
1569         for (i = 5; i > 0; i--) {
1570                 udelay(10);
1571
1572                 /* Check master stop bit */
1573                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1574
1575                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1576                         break;
1577         }
1578
1579         if (i == 0)
1580                 printk(KERN_WARNING DRV_NAME
1581                        ": %s: Could now power down adapter.\n",
1582                        priv->net_dev->name);
1583
1584         /* assert s/w reset */
1585         write_register(priv->net_dev, IPW_REG_RESET_REG,
1586                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1587
1588         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1589
1590         return 0;
1591 }
1592
1593 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1594 {
1595         struct host_command cmd = {
1596                 .host_command = CARD_DISABLE,
1597                 .host_command_sequence = 0,
1598                 .host_command_length = 0
1599         };
1600         int err = 0;
1601
1602         IPW_DEBUG_HC("CARD_DISABLE\n");
1603
1604         if (!(priv->status & STATUS_ENABLED))
1605                 return 0;
1606
1607         /* Make sure we clear the associated state */
1608         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1609
1610         if (!priv->stop_hang_check) {
1611                 priv->stop_hang_check = 1;
1612                 cancel_delayed_work(&priv->hang_check);
1613         }
1614
1615         mutex_lock(&priv->adapter_mutex);
1616
1617         err = ipw2100_hw_send_command(priv, &cmd);
1618         if (err) {
1619                 printk(KERN_WARNING DRV_NAME
1620                        ": exit - failed to send CARD_DISABLE command\n");
1621                 goto fail_up;
1622         }
1623
1624         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1625         if (err) {
1626                 printk(KERN_WARNING DRV_NAME
1627                        ": exit - card failed to change to DISABLED\n");
1628                 goto fail_up;
1629         }
1630
1631         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1632
1633       fail_up:
1634         mutex_unlock(&priv->adapter_mutex);
1635         return err;
1636 }
1637
1638 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1639 {
1640         struct host_command cmd = {
1641                 .host_command = SET_SCAN_OPTIONS,
1642                 .host_command_sequence = 0,
1643                 .host_command_length = 8
1644         };
1645         int err;
1646
1647         IPW_DEBUG_INFO("enter\n");
1648
1649         IPW_DEBUG_SCAN("setting scan options\n");
1650
1651         cmd.host_command_parameters[0] = 0;
1652
1653         if (!(priv->config & CFG_ASSOCIATE))
1654                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1655         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1656                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1657         if (priv->config & CFG_PASSIVE_SCAN)
1658                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1659
1660         cmd.host_command_parameters[1] = priv->channel_mask;
1661
1662         err = ipw2100_hw_send_command(priv, &cmd);
1663
1664         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1665                      cmd.host_command_parameters[0]);
1666
1667         return err;
1668 }
1669
1670 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1671 {
1672         struct host_command cmd = {
1673                 .host_command = BROADCAST_SCAN,
1674                 .host_command_sequence = 0,
1675                 .host_command_length = 4
1676         };
1677         int err;
1678
1679         IPW_DEBUG_HC("START_SCAN\n");
1680
1681         cmd.host_command_parameters[0] = 0;
1682
1683         /* No scanning if in monitor mode */
1684         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1685                 return 1;
1686
1687         if (priv->status & STATUS_SCANNING) {
1688                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1689                 return 0;
1690         }
1691
1692         IPW_DEBUG_INFO("enter\n");
1693
1694         /* Not clearing here; doing so makes iwlist always return nothing...
1695          *
1696          * We should modify the table logic to use aging tables vs. clearing
1697          * the table on each scan start.
1698          */
1699         IPW_DEBUG_SCAN("starting scan\n");
1700
1701         priv->status |= STATUS_SCANNING;
1702         err = ipw2100_hw_send_command(priv, &cmd);
1703         if (err)
1704                 priv->status &= ~STATUS_SCANNING;
1705
1706         IPW_DEBUG_INFO("exit\n");
1707
1708         return err;
1709 }
1710
1711 static const struct libipw_geo ipw_geos[] = {
1712         {                       /* Restricted */
1713          "---",
1714          .bg_channels = 14,
1715          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1716                 {2427, 4}, {2432, 5}, {2437, 6},
1717                 {2442, 7}, {2447, 8}, {2452, 9},
1718                 {2457, 10}, {2462, 11}, {2467, 12},
1719                 {2472, 13}, {2484, 14}},
1720          },
1721 };
1722
1723 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1724 {
1725         unsigned long flags;
1726         int rc = 0;
1727         u32 lock;
1728         u32 ord_len = sizeof(lock);
1729
1730         /* Age scan list entries found before suspend */
1731         if (priv->suspend_time) {
1732                 libipw_networks_age(priv->ieee, priv->suspend_time);
1733                 priv->suspend_time = 0;
1734         }
1735
1736         /* Quiet if manually disabled. */
1737         if (priv->status & STATUS_RF_KILL_SW) {
1738                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1739                                "switch\n", priv->net_dev->name);
1740                 return 0;
1741         }
1742
1743         /* the ipw2100 hardware really doesn't want power management delays
1744          * longer than 175usec
1745          */
1746         pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1747
1748         /* If the interrupt is enabled, turn it off... */
1749         spin_lock_irqsave(&priv->low_lock, flags);
1750         ipw2100_disable_interrupts(priv);
1751
1752         /* Reset any fatal_error conditions */
1753         ipw2100_reset_fatalerror(priv);
1754         spin_unlock_irqrestore(&priv->low_lock, flags);
1755
1756         if (priv->status & STATUS_POWERED ||
1757             (priv->status & STATUS_RESET_PENDING)) {
1758                 /* Power cycle the card ... */
1759                 if (ipw2100_power_cycle_adapter(priv)) {
1760                         printk(KERN_WARNING DRV_NAME
1761                                ": %s: Could not cycle adapter.\n",
1762                                priv->net_dev->name);
1763                         rc = 1;
1764                         goto exit;
1765                 }
1766         } else
1767                 priv->status |= STATUS_POWERED;
1768
1769         /* Load the firmware, start the clocks, etc. */
1770         if (ipw2100_start_adapter(priv)) {
1771                 printk(KERN_ERR DRV_NAME
1772                        ": %s: Failed to start the firmware.\n",
1773                        priv->net_dev->name);
1774                 rc = 1;
1775                 goto exit;
1776         }
1777
1778         ipw2100_initialize_ordinals(priv);
1779
1780         /* Determine capabilities of this particular HW configuration */
1781         if (ipw2100_get_hw_features(priv)) {
1782                 printk(KERN_ERR DRV_NAME
1783                        ": %s: Failed to determine HW features.\n",
1784                        priv->net_dev->name);
1785                 rc = 1;
1786                 goto exit;
1787         }
1788
1789         /* Initialize the geo */
1790         if (libipw_set_geo(priv->ieee, &ipw_geos[0])) {
1791                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1792                 return 0;
1793         }
1794         priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1795
1796         lock = LOCK_NONE;
1797         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1798                 printk(KERN_ERR DRV_NAME
1799                        ": %s: Failed to clear ordinal lock.\n",
1800                        priv->net_dev->name);
1801                 rc = 1;
1802                 goto exit;
1803         }
1804
1805         priv->status &= ~STATUS_SCANNING;
1806
1807         if (rf_kill_active(priv)) {
1808                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1809                        priv->net_dev->name);
1810
1811                 if (priv->stop_rf_kill) {
1812                         priv->stop_rf_kill = 0;
1813                         schedule_delayed_work(&priv->rf_kill,
1814                                               round_jiffies_relative(HZ));
1815                 }
1816
1817                 deferred = 1;
1818         }
1819
1820         /* Turn on the interrupt so that commands can be processed */
1821         ipw2100_enable_interrupts(priv);
1822
1823         /* Send all of the commands that must be sent prior to
1824          * HOST_COMPLETE */
1825         if (ipw2100_adapter_setup(priv)) {
1826                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1827                        priv->net_dev->name);
1828                 rc = 1;
1829                 goto exit;
1830         }
1831
1832         if (!deferred) {
1833                 /* Enable the adapter - sends HOST_COMPLETE */
1834                 if (ipw2100_enable_adapter(priv)) {
1835                         printk(KERN_ERR DRV_NAME ": "
1836                                "%s: failed in call to enable adapter.\n",
1837                                priv->net_dev->name);
1838                         ipw2100_hw_stop_adapter(priv);
1839                         rc = 1;
1840                         goto exit;
1841                 }
1842
1843                 /* Start a scan . . . */
1844                 ipw2100_set_scan_options(priv);
1845                 ipw2100_start_scan(priv);
1846         }
1847
1848       exit:
1849         return rc;
1850 }
1851
1852 static void ipw2100_down(struct ipw2100_priv *priv)
1853 {
1854         unsigned long flags;
1855         union iwreq_data wrqu = {
1856                 .ap_addr = {
1857                             .sa_family = ARPHRD_ETHER}
1858         };
1859         int associated = priv->status & STATUS_ASSOCIATED;
1860
1861         /* Kill the RF switch timer */
1862         if (!priv->stop_rf_kill) {
1863                 priv->stop_rf_kill = 1;
1864                 cancel_delayed_work(&priv->rf_kill);
1865         }
1866
1867         /* Kill the firmware hang check timer */
1868         if (!priv->stop_hang_check) {
1869                 priv->stop_hang_check = 1;
1870                 cancel_delayed_work(&priv->hang_check);
1871         }
1872
1873         /* Kill any pending resets */
1874         if (priv->status & STATUS_RESET_PENDING)
1875                 cancel_delayed_work(&priv->reset_work);
1876
1877         /* Make sure the interrupt is on so that FW commands will be
1878          * processed correctly */
1879         spin_lock_irqsave(&priv->low_lock, flags);
1880         ipw2100_enable_interrupts(priv);
1881         spin_unlock_irqrestore(&priv->low_lock, flags);
1882
1883         if (ipw2100_hw_stop_adapter(priv))
1884                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1885                        priv->net_dev->name);
1886
1887         /* Do not disable the interrupt until _after_ we disable
1888          * the adaptor.  Otherwise the CARD_DISABLE command will never
1889          * be ack'd by the firmware */
1890         spin_lock_irqsave(&priv->low_lock, flags);
1891         ipw2100_disable_interrupts(priv);
1892         spin_unlock_irqrestore(&priv->low_lock, flags);
1893
1894         pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1895
1896         /* We have to signal any supplicant if we are disassociating */
1897         if (associated)
1898                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1899
1900         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1901         netif_carrier_off(priv->net_dev);
1902         netif_stop_queue(priv->net_dev);
1903 }
1904
1905 /* Called by register_netdev() */
1906 static int ipw2100_net_init(struct net_device *dev)
1907 {
1908         struct ipw2100_priv *priv = libipw_priv(dev);
1909
1910         return ipw2100_up(priv, 1);
1911 }
1912
1913 static int ipw2100_wdev_init(struct net_device *dev)
1914 {
1915         struct ipw2100_priv *priv = libipw_priv(dev);
1916         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1917         struct wireless_dev *wdev = &priv->ieee->wdev;
1918         int i;
1919
1920         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1921
1922         /* fill-out priv->ieee->bg_band */
1923         if (geo->bg_channels) {
1924                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1925
1926                 bg_band->band = IEEE80211_BAND_2GHZ;
1927                 bg_band->n_channels = geo->bg_channels;
1928                 bg_band->channels = kcalloc(geo->bg_channels,
1929                                             sizeof(struct ieee80211_channel),
1930                                             GFP_KERNEL);
1931                 if (!bg_band->channels) {
1932                         ipw2100_down(priv);
1933                         return -ENOMEM;
1934                 }
1935                 /* translate geo->bg to bg_band.channels */
1936                 for (i = 0; i < geo->bg_channels; i++) {
1937                         bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1938                         bg_band->channels[i].center_freq = geo->bg[i].freq;
1939                         bg_band->channels[i].hw_value = geo->bg[i].channel;
1940                         bg_band->channels[i].max_power = geo->bg[i].max_power;
1941                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1942                                 bg_band->channels[i].flags |=
1943                                         IEEE80211_CHAN_PASSIVE_SCAN;
1944                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1945                                 bg_band->channels[i].flags |=
1946                                         IEEE80211_CHAN_NO_IBSS;
1947                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1948                                 bg_band->channels[i].flags |=
1949                                         IEEE80211_CHAN_RADAR;
1950                         /* No equivalent for LIBIPW_CH_80211H_RULES,
1951                            LIBIPW_CH_UNIFORM_SPREADING, or
1952                            LIBIPW_CH_B_ONLY... */
1953                 }
1954                 /* point at bitrate info */
1955                 bg_band->bitrates = ipw2100_bg_rates;
1956                 bg_band->n_bitrates = RATE_COUNT;
1957
1958                 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1959         }
1960
1961         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1962         if (wiphy_register(wdev->wiphy)) {
1963                 ipw2100_down(priv);
1964                 return -EIO;
1965         }
1966         return 0;
1967 }
1968
1969 static void ipw2100_reset_adapter(struct work_struct *work)
1970 {
1971         struct ipw2100_priv *priv =
1972                 container_of(work, struct ipw2100_priv, reset_work.work);
1973         unsigned long flags;
1974         union iwreq_data wrqu = {
1975                 .ap_addr = {
1976                             .sa_family = ARPHRD_ETHER}
1977         };
1978         int associated = priv->status & STATUS_ASSOCIATED;
1979
1980         spin_lock_irqsave(&priv->low_lock, flags);
1981         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1982         priv->resets++;
1983         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1984         priv->status |= STATUS_SECURITY_UPDATED;
1985
1986         /* Force a power cycle even if interface hasn't been opened
1987          * yet */
1988         cancel_delayed_work(&priv->reset_work);
1989         priv->status |= STATUS_RESET_PENDING;
1990         spin_unlock_irqrestore(&priv->low_lock, flags);
1991
1992         mutex_lock(&priv->action_mutex);
1993         /* stop timed checks so that they don't interfere with reset */
1994         priv->stop_hang_check = 1;
1995         cancel_delayed_work(&priv->hang_check);
1996
1997         /* We have to signal any supplicant if we are disassociating */
1998         if (associated)
1999                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
2000
2001         ipw2100_up(priv, 0);
2002         mutex_unlock(&priv->action_mutex);
2003
2004 }
2005
2006 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
2007 {
2008
2009 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2010         int ret;
2011         unsigned int len, essid_len;
2012         char essid[IW_ESSID_MAX_SIZE];
2013         u32 txrate;
2014         u32 chan;
2015         char *txratename;
2016         u8 bssid[ETH_ALEN];
2017         DECLARE_SSID_BUF(ssid);
2018
2019         /*
2020          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2021          *      an actual MAC of the AP. Seems like FW sets this
2022          *      address too late. Read it later and expose through
2023          *      /proc or schedule a later task to query and update
2024          */
2025
2026         essid_len = IW_ESSID_MAX_SIZE;
2027         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2028                                   essid, &essid_len);
2029         if (ret) {
2030                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2031                                __LINE__);
2032                 return;
2033         }
2034
2035         len = sizeof(u32);
2036         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2037         if (ret) {
2038                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2039                                __LINE__);
2040                 return;
2041         }
2042
2043         len = sizeof(u32);
2044         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2045         if (ret) {
2046                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2047                                __LINE__);
2048                 return;
2049         }
2050         len = ETH_ALEN;
2051         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
2052         if (ret) {
2053                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2054                                __LINE__);
2055                 return;
2056         }
2057         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2058
2059         switch (txrate) {
2060         case TX_RATE_1_MBIT:
2061                 txratename = "1Mbps";
2062                 break;
2063         case TX_RATE_2_MBIT:
2064                 txratename = "2Mbsp";
2065                 break;
2066         case TX_RATE_5_5_MBIT:
2067                 txratename = "5.5Mbps";
2068                 break;
2069         case TX_RATE_11_MBIT:
2070                 txratename = "11Mbps";
2071                 break;
2072         default:
2073                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2074                 txratename = "unknown rate";
2075                 break;
2076         }
2077
2078         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2079                        priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2080                        txratename, chan, bssid);
2081
2082         /* now we copy read ssid into dev */
2083         if (!(priv->config & CFG_STATIC_ESSID)) {
2084                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2085                 memcpy(priv->essid, essid, priv->essid_len);
2086         }
2087         priv->channel = chan;
2088         memcpy(priv->bssid, bssid, ETH_ALEN);
2089
2090         priv->status |= STATUS_ASSOCIATING;
2091         priv->connect_start = get_seconds();
2092
2093         schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2094 }
2095
2096 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2097                              int length, int batch_mode)
2098 {
2099         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2100         struct host_command cmd = {
2101                 .host_command = SSID,
2102                 .host_command_sequence = 0,
2103                 .host_command_length = ssid_len
2104         };
2105         int err;
2106         DECLARE_SSID_BUF(ssid);
2107
2108         IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2109
2110         if (ssid_len)
2111                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2112
2113         if (!batch_mode) {
2114                 err = ipw2100_disable_adapter(priv);
2115                 if (err)
2116                         return err;
2117         }
2118
2119         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2120          * disable auto association -- so we cheat by setting a bogus SSID */
2121         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2122                 int i;
2123                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2124                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2125                         bogus[i] = 0x18 + i;
2126                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2127         }
2128
2129         /* NOTE:  We always send the SSID command even if the provided ESSID is
2130          * the same as what we currently think is set. */
2131
2132         err = ipw2100_hw_send_command(priv, &cmd);
2133         if (!err) {
2134                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2135                 memcpy(priv->essid, essid, ssid_len);
2136                 priv->essid_len = ssid_len;
2137         }
2138
2139         if (!batch_mode) {
2140                 if (ipw2100_enable_adapter(priv))
2141                         err = -EIO;
2142         }
2143
2144         return err;
2145 }
2146
2147 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2148 {
2149         DECLARE_SSID_BUF(ssid);
2150
2151         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2152                   "disassociated: '%s' %pM\n",
2153                   print_ssid(ssid, priv->essid, priv->essid_len),
2154                   priv->bssid);
2155
2156         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2157
2158         if (priv->status & STATUS_STOPPING) {
2159                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2160                 return;
2161         }
2162
2163         memset(priv->bssid, 0, ETH_ALEN);
2164         memset(priv->ieee->bssid, 0, ETH_ALEN);
2165
2166         netif_carrier_off(priv->net_dev);
2167         netif_stop_queue(priv->net_dev);
2168
2169         if (!(priv->status & STATUS_RUNNING))
2170                 return;
2171
2172         if (priv->status & STATUS_SECURITY_UPDATED)
2173                 schedule_delayed_work(&priv->security_work, 0);
2174
2175         schedule_delayed_work(&priv->wx_event_work, 0);
2176 }
2177
2178 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2179 {
2180         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2181                        priv->net_dev->name);
2182
2183         /* RF_KILL is now enabled (else we wouldn't be here) */
2184         wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2185         priv->status |= STATUS_RF_KILL_HW;
2186
2187         /* Make sure the RF Kill check timer is running */
2188         priv->stop_rf_kill = 0;
2189         cancel_delayed_work(&priv->rf_kill);
2190         schedule_delayed_work(&priv->rf_kill, round_jiffies_relative(HZ));
2191 }
2192
2193 static void send_scan_event(void *data)
2194 {
2195         struct ipw2100_priv *priv = data;
2196         union iwreq_data wrqu;
2197
2198         wrqu.data.length = 0;
2199         wrqu.data.flags = 0;
2200         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2201 }
2202
2203 static void ipw2100_scan_event_later(struct work_struct *work)
2204 {
2205         send_scan_event(container_of(work, struct ipw2100_priv,
2206                                         scan_event_later.work));
2207 }
2208
2209 static void ipw2100_scan_event_now(struct work_struct *work)
2210 {
2211         send_scan_event(container_of(work, struct ipw2100_priv,
2212                                         scan_event_now));
2213 }
2214
2215 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2216 {
2217         IPW_DEBUG_SCAN("scan complete\n");
2218         /* Age the scan results... */
2219         priv->ieee->scans++;
2220         priv->status &= ~STATUS_SCANNING;
2221
2222         /* Only userspace-requested scan completion events go out immediately */
2223         if (!priv->user_requested_scan) {
2224                 if (!delayed_work_pending(&priv->scan_event_later))
2225                         schedule_delayed_work(&priv->scan_event_later,
2226                                               round_jiffies_relative(msecs_to_jiffies(4000)));
2227         } else {
2228                 priv->user_requested_scan = 0;
2229                 cancel_delayed_work(&priv->scan_event_later);
2230                 schedule_work(&priv->scan_event_now);
2231         }
2232 }
2233
2234 #ifdef CONFIG_IPW2100_DEBUG
2235 #define IPW2100_HANDLER(v, f) { v, f, # v }
2236 struct ipw2100_status_indicator {
2237         int status;
2238         void (*cb) (struct ipw2100_priv * priv, u32 status);
2239         char *name;
2240 };
2241 #else
2242 #define IPW2100_HANDLER(v, f) { v, f }
2243 struct ipw2100_status_indicator {
2244         int status;
2245         void (*cb) (struct ipw2100_priv * priv, u32 status);
2246 };
2247 #endif                          /* CONFIG_IPW2100_DEBUG */
2248
2249 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2250 {
2251         IPW_DEBUG_SCAN("Scanning...\n");
2252         priv->status |= STATUS_SCANNING;
2253 }
2254
2255 static const struct ipw2100_status_indicator status_handlers[] = {
2256         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2257         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2258         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2259         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2260         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2261         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2262         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2263         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2264         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2265         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2266         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2267         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2268         IPW2100_HANDLER(-1, NULL)
2269 };
2270
2271 static void isr_status_change(struct ipw2100_priv *priv, int status)
2272 {
2273         int i;
2274
2275         if (status == IPW_STATE_SCANNING &&
2276             priv->status & STATUS_ASSOCIATED &&
2277             !(priv->status & STATUS_SCANNING)) {
2278                 IPW_DEBUG_INFO("Scan detected while associated, with "
2279                                "no scan request.  Restarting firmware.\n");
2280
2281                 /* Wake up any sleeping jobs */
2282                 schedule_reset(priv);
2283         }
2284
2285         for (i = 0; status_handlers[i].status != -1; i++) {
2286                 if (status == status_handlers[i].status) {
2287                         IPW_DEBUG_NOTIF("Status change: %s\n",
2288                                         status_handlers[i].name);
2289                         if (status_handlers[i].cb)
2290                                 status_handlers[i].cb(priv, status);
2291                         priv->wstats.status = status;
2292                         return;
2293                 }
2294         }
2295
2296         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2297 }
2298
2299 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2300                                     struct ipw2100_cmd_header *cmd)
2301 {
2302 #ifdef CONFIG_IPW2100_DEBUG
2303         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2304                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2305                              command_types[cmd->host_command_reg],
2306                              cmd->host_command_reg);
2307         }
2308 #endif
2309         if (cmd->host_command_reg == HOST_COMPLETE)
2310                 priv->status |= STATUS_ENABLED;
2311
2312         if (cmd->host_command_reg == CARD_DISABLE)
2313                 priv->status &= ~STATUS_ENABLED;
2314
2315         priv->status &= ~STATUS_CMD_ACTIVE;
2316
2317         wake_up_interruptible(&priv->wait_command_queue);
2318 }
2319
2320 #ifdef CONFIG_IPW2100_DEBUG
2321 static const char *frame_types[] = {
2322         "COMMAND_STATUS_VAL",
2323         "STATUS_CHANGE_VAL",
2324         "P80211_DATA_VAL",
2325         "P8023_DATA_VAL",
2326         "HOST_NOTIFICATION_VAL"
2327 };
2328 #endif
2329
2330 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2331                                     struct ipw2100_rx_packet *packet)
2332 {
2333         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2334         if (!packet->skb)
2335                 return -ENOMEM;
2336
2337         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2338         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2339                                           sizeof(struct ipw2100_rx),
2340                                           PCI_DMA_FROMDEVICE);
2341         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2342          *       dma_addr */
2343
2344         return 0;
2345 }
2346
2347 #define SEARCH_ERROR   0xffffffff
2348 #define SEARCH_FAIL    0xfffffffe
2349 #define SEARCH_SUCCESS 0xfffffff0
2350 #define SEARCH_DISCARD 0
2351 #define SEARCH_SNAPSHOT 1
2352
2353 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2354 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2355 {
2356         int i;
2357         if (!priv->snapshot[0])
2358                 return;
2359         for (i = 0; i < 0x30; i++)
2360                 kfree(priv->snapshot[i]);
2361         priv->snapshot[0] = NULL;
2362 }
2363
2364 #ifdef IPW2100_DEBUG_C3
2365 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2366 {
2367         int i;
2368         if (priv->snapshot[0])
2369                 return 1;
2370         for (i = 0; i < 0x30; i++) {
2371                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2372                 if (!priv->snapshot[i]) {
2373                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2374                                        "buffer %d\n", priv->net_dev->name, i);
2375                         while (i > 0)
2376                                 kfree(priv->snapshot[--i]);
2377                         priv->snapshot[0] = NULL;
2378                         return 0;
2379                 }
2380         }
2381
2382         return 1;
2383 }
2384
2385 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2386                                     size_t len, int mode)
2387 {
2388         u32 i, j;
2389         u32 tmp;
2390         u8 *s, *d;
2391         u32 ret;
2392
2393         s = in_buf;
2394         if (mode == SEARCH_SNAPSHOT) {
2395                 if (!ipw2100_snapshot_alloc(priv))
2396                         mode = SEARCH_DISCARD;
2397         }
2398
2399         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2400                 read_nic_dword(priv->net_dev, i, &tmp);
2401                 if (mode == SEARCH_SNAPSHOT)
2402                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2403                 if (ret == SEARCH_FAIL) {
2404                         d = (u8 *) & tmp;
2405                         for (j = 0; j < 4; j++) {
2406                                 if (*s != *d) {
2407                                         s = in_buf;
2408                                         continue;
2409                                 }
2410
2411                                 s++;
2412                                 d++;
2413
2414                                 if ((s - in_buf) == len)
2415                                         ret = (i + j) - len + 1;
2416                         }
2417                 } else if (mode == SEARCH_DISCARD)
2418                         return ret;
2419         }
2420
2421         return ret;
2422 }
2423 #endif
2424
2425 /*
2426  *
2427  * 0) Disconnect the SKB from the firmware (just unmap)
2428  * 1) Pack the ETH header into the SKB
2429  * 2) Pass the SKB to the network stack
2430  *
2431  * When packet is provided by the firmware, it contains the following:
2432  *
2433  * .  libipw_hdr
2434  * .  libipw_snap_hdr
2435  *
2436  * The size of the constructed ethernet
2437  *
2438  */
2439 #ifdef IPW2100_RX_DEBUG
2440 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2441 #endif
2442
2443 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2444 {
2445 #ifdef IPW2100_DEBUG_C3
2446         struct ipw2100_status *status = &priv->status_queue.drv[i];
2447         u32 match, reg;
2448         int j;
2449 #endif
2450
2451         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2452                        i * sizeof(struct ipw2100_status));
2453
2454 #ifdef IPW2100_DEBUG_C3
2455         /* Halt the firmware so we can get a good image */
2456         write_register(priv->net_dev, IPW_REG_RESET_REG,
2457                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2458         j = 5;
2459         do {
2460                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2461                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2462
2463                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2464                         break;
2465         } while (j--);
2466
2467         match = ipw2100_match_buf(priv, (u8 *) status,
2468                                   sizeof(struct ipw2100_status),
2469                                   SEARCH_SNAPSHOT);
2470         if (match < SEARCH_SUCCESS)
2471                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2472                                "offset 0x%06X, length %d:\n",
2473                                priv->net_dev->name, match,
2474                                sizeof(struct ipw2100_status));
2475         else
2476                 IPW_DEBUG_INFO("%s: No DMA status match in "
2477                                "Firmware.\n", priv->net_dev->name);
2478
2479         printk_buf((u8 *) priv->status_queue.drv,
2480                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2481 #endif
2482
2483         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2484         priv->net_dev->stats.rx_errors++;
2485         schedule_reset(priv);
2486 }
2487
2488 static void isr_rx(struct ipw2100_priv *priv, int i,
2489                           struct libipw_rx_stats *stats)
2490 {
2491         struct net_device *dev = priv->net_dev;
2492         struct ipw2100_status *status = &priv->status_queue.drv[i];
2493         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2494
2495         IPW_DEBUG_RX("Handler...\n");
2496
2497         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2498                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2499                                "  Dropping.\n",
2500                                dev->name,
2501                                status->frame_size, skb_tailroom(packet->skb));
2502                 dev->stats.rx_errors++;
2503                 return;
2504         }
2505
2506         if (unlikely(!netif_running(dev))) {
2507                 dev->stats.rx_errors++;
2508                 priv->wstats.discard.misc++;
2509                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2510                 return;
2511         }
2512
2513         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2514                      !(priv->status & STATUS_ASSOCIATED))) {
2515                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2516                 priv->wstats.discard.misc++;
2517                 return;
2518         }
2519
2520         pci_unmap_single(priv->pci_dev,
2521                          packet->dma_addr,
2522                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2523
2524         skb_put(packet->skb, status->frame_size);
2525
2526 #ifdef IPW2100_RX_DEBUG
2527         /* Make a copy of the frame so we can dump it to the logs if
2528          * libipw_rx fails */
2529         skb_copy_from_linear_data(packet->skb, packet_data,
2530                                   min_t(u32, status->frame_size,
2531                                              IPW_RX_NIC_BUFFER_LENGTH));
2532 #endif
2533
2534         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2535 #ifdef IPW2100_RX_DEBUG
2536                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2537                                dev->name);
2538                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2539 #endif
2540                 dev->stats.rx_errors++;
2541
2542                 /* libipw_rx failed, so it didn't free the SKB */
2543                 dev_kfree_skb_any(packet->skb);
2544                 packet->skb = NULL;
2545         }
2546
2547         /* We need to allocate a new SKB and attach it to the RDB. */
2548         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2549                 printk(KERN_WARNING DRV_NAME ": "
2550                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2551                        "adapter.\n", dev->name);
2552                 /* TODO: schedule adapter shutdown */
2553                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2554         }
2555
2556         /* Update the RDB entry */
2557         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2558 }
2559
2560 #ifdef CONFIG_IPW2100_MONITOR
2561
2562 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2563                    struct libipw_rx_stats *stats)
2564 {
2565         struct net_device *dev = priv->net_dev;
2566         struct ipw2100_status *status = &priv->status_queue.drv[i];
2567         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2568
2569         /* Magic struct that slots into the radiotap header -- no reason
2570          * to build this manually element by element, we can write it much
2571          * more efficiently than we can parse it. ORDER MATTERS HERE */
2572         struct ipw_rt_hdr {
2573                 struct ieee80211_radiotap_header rt_hdr;
2574                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2575         } *ipw_rt;
2576
2577         IPW_DEBUG_RX("Handler...\n");
2578
2579         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2580                                 sizeof(struct ipw_rt_hdr))) {
2581                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2582                                "  Dropping.\n",
2583                                dev->name,
2584                                status->frame_size,
2585                                skb_tailroom(packet->skb));
2586                 dev->stats.rx_errors++;
2587                 return;
2588         }
2589
2590         if (unlikely(!netif_running(dev))) {
2591                 dev->stats.rx_errors++;
2592                 priv->wstats.discard.misc++;
2593                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2594                 return;
2595         }
2596
2597         if (unlikely(priv->config & CFG_CRC_CHECK &&
2598                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2599                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2600                 dev->stats.rx_errors++;
2601                 return;
2602         }
2603
2604         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2605                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2606         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2607                 packet->skb->data, status->frame_size);
2608
2609         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2610
2611         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2612         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2613         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2614
2615         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2616
2617         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2618
2619         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2620
2621         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2622                 dev->stats.rx_errors++;
2623
2624                 /* libipw_rx failed, so it didn't free the SKB */
2625                 dev_kfree_skb_any(packet->skb);
2626                 packet->skb = NULL;
2627         }
2628
2629         /* We need to allocate a new SKB and attach it to the RDB. */
2630         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2631                 IPW_DEBUG_WARNING(
2632                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2633                         "adapter.\n", dev->name);
2634                 /* TODO: schedule adapter shutdown */
2635                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2636         }
2637
2638         /* Update the RDB entry */
2639         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2640 }
2641
2642 #endif
2643
2644 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2645 {
2646         struct ipw2100_status *status = &priv->status_queue.drv[i];
2647         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2648         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2649
2650         switch (frame_type) {
2651         case COMMAND_STATUS_VAL:
2652                 return (status->frame_size != sizeof(u->rx_data.command));
2653         case STATUS_CHANGE_VAL:
2654                 return (status->frame_size != sizeof(u->rx_data.status));
2655         case HOST_NOTIFICATION_VAL:
2656                 return (status->frame_size < sizeof(u->rx_data.notification));
2657         case P80211_DATA_VAL:
2658         case P8023_DATA_VAL:
2659 #ifdef CONFIG_IPW2100_MONITOR
2660                 return 0;
2661 #else
2662                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2663                 case IEEE80211_FTYPE_MGMT:
2664                 case IEEE80211_FTYPE_CTL:
2665                         return 0;
2666                 case IEEE80211_FTYPE_DATA:
2667                         return (status->frame_size >
2668                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2669                 }
2670 #endif
2671         }
2672
2673         return 1;
2674 }
2675
2676 /*
2677  * ipw2100 interrupts are disabled at this point, and the ISR
2678  * is the only code that calls this method.  So, we do not need
2679  * to play with any locks.
2680  *
2681  * RX Queue works as follows:
2682  *
2683  * Read index - firmware places packet in entry identified by the
2684  *              Read index and advances Read index.  In this manner,
2685  *              Read index will always point to the next packet to
2686  *              be filled--but not yet valid.
2687  *
2688  * Write index - driver fills this entry with an unused RBD entry.
2689  *               This entry has not filled by the firmware yet.
2690  *
2691  * In between the W and R indexes are the RBDs that have been received
2692  * but not yet processed.
2693  *
2694  * The process of handling packets will start at WRITE + 1 and advance
2695  * until it reaches the READ index.
2696  *
2697  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2698  *
2699  */
2700 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2701 {
2702         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2703         struct ipw2100_status_queue *sq = &priv->status_queue;
2704         struct ipw2100_rx_packet *packet;
2705         u16 frame_type;
2706         u32 r, w, i, s;
2707         struct ipw2100_rx *u;
2708         struct libipw_rx_stats stats = {
2709                 .mac_time = jiffies,
2710         };
2711
2712         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2713         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2714
2715         if (r >= rxq->entries) {
2716                 IPW_DEBUG_RX("exit - bad read index\n");
2717                 return;
2718         }
2719
2720         i = (rxq->next + 1) % rxq->entries;
2721         s = i;
2722         while (i != r) {
2723                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2724                    r, rxq->next, i); */
2725
2726                 packet = &priv->rx_buffers[i];
2727
2728                 /* Sync the DMA for the RX buffer so CPU is sure to get
2729                  * the correct values */
2730                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2731                                             sizeof(struct ipw2100_rx),
2732                                             PCI_DMA_FROMDEVICE);
2733
2734                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2735                         ipw2100_corruption_detected(priv, i);
2736                         goto increment;
2737                 }
2738
2739                 u = packet->rxp;
2740                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2741                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2742                 stats.len = sq->drv[i].frame_size;
2743
2744                 stats.mask = 0;
2745                 if (stats.rssi != 0)
2746                         stats.mask |= LIBIPW_STATMASK_RSSI;
2747                 stats.freq = LIBIPW_24GHZ_BAND;
2748
2749                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2750                              priv->net_dev->name, frame_types[frame_type],
2751                              stats.len);
2752
2753                 switch (frame_type) {
2754                 case COMMAND_STATUS_VAL:
2755                         /* Reset Rx watchdog */
2756                         isr_rx_complete_command(priv, &u->rx_data.command);
2757                         break;
2758
2759                 case STATUS_CHANGE_VAL:
2760                         isr_status_change(priv, u->rx_data.status);
2761                         break;
2762
2763                 case P80211_DATA_VAL:
2764                 case P8023_DATA_VAL:
2765 #ifdef CONFIG_IPW2100_MONITOR
2766                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2767                                 isr_rx_monitor(priv, i, &stats);
2768                                 break;
2769                         }
2770 #endif
2771                         if (stats.len < sizeof(struct libipw_hdr_3addr))
2772                                 break;
2773                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2774                         case IEEE80211_FTYPE_MGMT:
2775                                 libipw_rx_mgt(priv->ieee,
2776                                                  &u->rx_data.header, &stats);
2777                                 break;
2778
2779                         case IEEE80211_FTYPE_CTL:
2780                                 break;
2781
2782                         case IEEE80211_FTYPE_DATA:
2783                                 isr_rx(priv, i, &stats);
2784                                 break;
2785
2786                         }
2787                         break;
2788                 }
2789
2790               increment:
2791                 /* clear status field associated with this RBD */
2792                 rxq->drv[i].status.info.field = 0;
2793
2794                 i = (i + 1) % rxq->entries;
2795         }
2796
2797         if (i != s) {
2798                 /* backtrack one entry, wrapping to end if at 0 */
2799                 rxq->next = (i ? i : rxq->entries) - 1;
2800
2801                 write_register(priv->net_dev,
2802                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2803         }
2804 }
2805
2806 /*
2807  * __ipw2100_tx_process
2808  *
2809  * This routine will determine whether the next packet on
2810  * the fw_pend_list has been processed by the firmware yet.
2811  *
2812  * If not, then it does nothing and returns.
2813  *
2814  * If so, then it removes the item from the fw_pend_list, frees
2815  * any associated storage, and places the item back on the
2816  * free list of its source (either msg_free_list or tx_free_list)
2817  *
2818  * TX Queue works as follows:
2819  *
2820  * Read index - points to the next TBD that the firmware will
2821  *              process.  The firmware will read the data, and once
2822  *              done processing, it will advance the Read index.
2823  *
2824  * Write index - driver fills this entry with an constructed TBD
2825  *               entry.  The Write index is not advanced until the
2826  *               packet has been configured.
2827  *
2828  * In between the W and R indexes are the TBDs that have NOT been
2829  * processed.  Lagging behind the R index are packets that have
2830  * been processed but have not been freed by the driver.
2831  *
2832  * In order to free old storage, an internal index will be maintained
2833  * that points to the next packet to be freed.  When all used
2834  * packets have been freed, the oldest index will be the same as the
2835  * firmware's read index.
2836  *
2837  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2838  *
2839  * Because the TBD structure can not contain arbitrary data, the
2840  * driver must keep an internal queue of cached allocations such that
2841  * it can put that data back into the tx_free_list and msg_free_list
2842  * for use by future command and data packets.
2843  *
2844  */
2845 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2846 {
2847         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2848         struct ipw2100_bd *tbd;
2849         struct list_head *element;
2850         struct ipw2100_tx_packet *packet;
2851         int descriptors_used;
2852         int e, i;
2853         u32 r, w, frag_num = 0;
2854
2855         if (list_empty(&priv->fw_pend_list))
2856                 return 0;
2857
2858         element = priv->fw_pend_list.next;
2859
2860         packet = list_entry(element, struct ipw2100_tx_packet, list);
2861         tbd = &txq->drv[packet->index];
2862
2863         /* Determine how many TBD entries must be finished... */
2864         switch (packet->type) {
2865         case COMMAND:
2866                 /* COMMAND uses only one slot; don't advance */
2867                 descriptors_used = 1;
2868                 e = txq->oldest;
2869                 break;
2870
2871         case DATA:
2872                 /* DATA uses two slots; advance and loop position. */
2873                 descriptors_used = tbd->num_fragments;
2874                 frag_num = tbd->num_fragments - 1;
2875                 e = txq->oldest + frag_num;
2876                 e %= txq->entries;
2877                 break;
2878
2879         default:
2880                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2881                        priv->net_dev->name);
2882                 return 0;
2883         }
2884
2885         /* if the last TBD is not done by NIC yet, then packet is
2886          * not ready to be released.
2887          *
2888          */
2889         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2890                       &r);
2891         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2892                       &w);
2893         if (w != txq->next)
2894                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2895                        priv->net_dev->name);
2896
2897         /*
2898          * txq->next is the index of the last packet written txq->oldest is
2899          * the index of the r is the index of the next packet to be read by
2900          * firmware
2901          */
2902
2903         /*
2904          * Quick graphic to help you visualize the following
2905          * if / else statement
2906          *
2907          * ===>|                     s---->|===============
2908          *                               e>|
2909          * | a | b | c | d | e | f | g | h | i | j | k | l
2910          *       r---->|
2911          *               w
2912          *
2913          * w - updated by driver
2914          * r - updated by firmware
2915          * s - start of oldest BD entry (txq->oldest)
2916          * e - end of oldest BD entry
2917          *
2918          */
2919         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2920                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2921                 return 0;
2922         }
2923
2924         list_del(element);
2925         DEC_STAT(&priv->fw_pend_stat);
2926
2927 #ifdef CONFIG_IPW2100_DEBUG
2928         {
2929                 i = txq->oldest;
2930                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2931                              &txq->drv[i],
2932                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2933                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2934
2935                 if (packet->type == DATA) {
2936                         i = (i + 1) % txq->entries;
2937
2938                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2939                                      &txq->drv[i],
2940                                      (u32) (txq->nic + i *
2941                                             sizeof(struct ipw2100_bd)),
2942                                      (u32) txq->drv[i].host_addr,
2943                                      txq->drv[i].buf_length);
2944                 }
2945         }
2946 #endif
2947
2948         switch (packet->type) {
2949         case DATA:
2950                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2951                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2952                                "Expecting DATA TBD but pulled "
2953                                "something else: ids %d=%d.\n",
2954                                priv->net_dev->name, txq->oldest, packet->index);
2955
2956                 /* DATA packet; we have to unmap and free the SKB */
2957                 for (i = 0; i < frag_num; i++) {
2958                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2959
2960                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2961                                      (packet->index + 1 + i) % txq->entries,
2962                                      tbd->host_addr, tbd->buf_length);
2963
2964                         pci_unmap_single(priv->pci_dev,
2965                                          tbd->host_addr,
2966                                          tbd->buf_length, PCI_DMA_TODEVICE);
2967                 }
2968
2969                 libipw_txb_free(packet->info.d_struct.txb);
2970                 packet->info.d_struct.txb = NULL;
2971
2972                 list_add_tail(element, &priv->tx_free_list);
2973                 INC_STAT(&priv->tx_free_stat);
2974
2975                 /* We have a free slot in the Tx queue, so wake up the
2976                  * transmit layer if it is stopped. */
2977                 if (priv->status & STATUS_ASSOCIATED)
2978                         netif_wake_queue(priv->net_dev);
2979
2980                 /* A packet was processed by the hardware, so update the
2981                  * watchdog */
2982                 priv->net_dev->trans_start = jiffies;
2983
2984                 break;
2985
2986         case COMMAND:
2987                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2988                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2989                                "Expecting COMMAND TBD but pulled "
2990                                "something else: ids %d=%d.\n",
2991                                priv->net_dev->name, txq->oldest, packet->index);
2992
2993 #ifdef CONFIG_IPW2100_DEBUG
2994                 if (packet->info.c_struct.cmd->host_command_reg <
2995                     ARRAY_SIZE(command_types))
2996                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2997                                      command_types[packet->info.c_struct.cmd->
2998                                                    host_command_reg],
2999                                      packet->info.c_struct.cmd->
3000                                      host_command_reg,
3001                                      packet->info.c_struct.cmd->cmd_status_reg);
3002 #endif
3003
3004                 list_add_tail(element, &priv->msg_free_list);
3005                 INC_STAT(&priv->msg_free_stat);
3006                 break;
3007         }
3008
3009         /* advance oldest used TBD pointer to start of next entry */
3010         txq->oldest = (e + 1) % txq->entries;
3011         /* increase available TBDs number */
3012         txq->available += descriptors_used;
3013         SET_STAT(&priv->txq_stat, txq->available);
3014
3015         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
3016                      jiffies - packet->jiffy_start);
3017
3018         return (!list_empty(&priv->fw_pend_list));
3019 }
3020
3021 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3022 {
3023         int i = 0;
3024
3025         while (__ipw2100_tx_process(priv) && i < 200)
3026                 i++;
3027
3028         if (i == 200) {
3029                 printk(KERN_WARNING DRV_NAME ": "
3030                        "%s: Driver is running slow (%d iters).\n",
3031                        priv->net_dev->name, i);
3032         }
3033 }
3034
3035 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3036 {
3037         struct list_head *element;
3038         struct ipw2100_tx_packet *packet;
3039         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3040         struct ipw2100_bd *tbd;
3041         int next = txq->next;
3042
3043         while (!list_empty(&priv->msg_pend_list)) {
3044                 /* if there isn't enough space in TBD queue, then
3045                  * don't stuff a new one in.
3046                  * NOTE: 3 are needed as a command will take one,
3047                  *       and there is a minimum of 2 that must be
3048                  *       maintained between the r and w indexes
3049                  */
3050                 if (txq->available <= 3) {
3051                         IPW_DEBUG_TX("no room in tx_queue\n");
3052                         break;
3053                 }
3054
3055                 element = priv->msg_pend_list.next;
3056                 list_del(element);
3057                 DEC_STAT(&priv->msg_pend_stat);
3058
3059                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3060
3061                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3062                              &txq->drv[txq->next],
3063                              (u32) (txq->nic + txq->next *
3064                                       sizeof(struct ipw2100_bd)));
3065
3066                 packet->index = txq->next;
3067
3068                 tbd = &txq->drv[txq->next];
3069
3070                 /* initialize TBD */
3071                 tbd->host_addr = packet->info.c_struct.cmd_phys;
3072                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3073                 /* not marking number of fragments causes problems
3074                  * with f/w debug version */
3075                 tbd->num_fragments = 1;
3076                 tbd->status.info.field =
3077                     IPW_BD_STATUS_TX_FRAME_COMMAND |
3078                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3079
3080                 /* update TBD queue counters */
3081                 txq->next++;
3082                 txq->next %= txq->entries;
3083                 txq->available--;
3084                 DEC_STAT(&priv->txq_stat);
3085
3086                 list_add_tail(element, &priv->fw_pend_list);
3087                 INC_STAT(&priv->fw_pend_stat);
3088         }
3089
3090         if (txq->next != next) {
3091                 /* kick off the DMA by notifying firmware the
3092                  * write index has moved; make sure TBD stores are sync'd */
3093                 wmb();
3094                 write_register(priv->net_dev,
3095                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3096                                txq->next);
3097         }
3098 }
3099
3100 /*
3101  * ipw2100_tx_send_data
3102  *
3103  */
3104 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3105 {
3106         struct list_head *element;
3107         struct ipw2100_tx_packet *packet;
3108         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3109         struct ipw2100_bd *tbd;
3110         int next = txq->next;
3111         int i = 0;
3112         struct ipw2100_data_header *ipw_hdr;
3113         struct libipw_hdr_3addr *hdr;
3114
3115         while (!list_empty(&priv->tx_pend_list)) {
3116                 /* if there isn't enough space in TBD queue, then
3117                  * don't stuff a new one in.
3118                  * NOTE: 4 are needed as a data will take two,
3119                  *       and there is a minimum of 2 that must be
3120                  *       maintained between the r and w indexes
3121                  */
3122                 element = priv->tx_pend_list.next;
3123                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3124
3125                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3126                              IPW_MAX_BDS)) {
3127                         /* TODO: Support merging buffers if more than
3128                          * IPW_MAX_BDS are used */
3129                         IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3130                                        "Increase fragmentation level.\n",
3131                                        priv->net_dev->name);
3132                 }
3133
3134                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3135                         IPW_DEBUG_TX("no room in tx_queue\n");
3136                         break;
3137                 }
3138
3139                 list_del(element);
3140                 DEC_STAT(&priv->tx_pend_stat);
3141
3142                 tbd = &txq->drv[txq->next];
3143
3144                 packet->index = txq->next;
3145
3146                 ipw_hdr = packet->info.d_struct.data;
3147                 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3148                     fragments[0]->data;
3149
3150                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3151                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3152                            Addr3 = DA */
3153                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3154                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3155                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3156                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3157                            Addr3 = BSSID */
3158                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3159                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3160                 }
3161
3162                 ipw_hdr->host_command_reg = SEND;
3163                 ipw_hdr->host_command_reg1 = 0;
3164
3165                 /* For now we only support host based encryption */
3166                 ipw_hdr->needs_encryption = 0;
3167                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3168                 if (packet->info.d_struct.txb->nr_frags > 1)
3169                         ipw_hdr->fragment_size =
3170                             packet->info.d_struct.txb->frag_size -
3171                             LIBIPW_3ADDR_LEN;
3172                 else
3173                         ipw_hdr->fragment_size = 0;
3174
3175                 tbd->host_addr = packet->info.d_struct.data_phys;
3176                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3177                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3178                 tbd->status.info.field =
3179                     IPW_BD_STATUS_TX_FRAME_802_3 |
3180                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3181                 txq->next++;
3182                 txq->next %= txq->entries;
3183
3184                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3185                              packet->index, tbd->host_addr, tbd->buf_length);
3186 #ifdef CONFIG_IPW2100_DEBUG
3187                 if (packet->info.d_struct.txb->nr_frags > 1)
3188                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3189                                        packet->info.d_struct.txb->nr_frags);
3190 #endif
3191
3192                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3193                         tbd = &txq->drv[txq->next];
3194                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3195                                 tbd->status.info.field =
3196                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3197                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3198                         else
3199                                 tbd->status.info.field =
3200                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3201                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3202
3203                         tbd->buf_length = packet->info.d_struct.txb->
3204                             fragments[i]->len - LIBIPW_3ADDR_LEN;
3205
3206                         tbd->host_addr = pci_map_single(priv->pci_dev,
3207                                                         packet->info.d_struct.
3208                                                         txb->fragments[i]->
3209                                                         data +
3210                                                         LIBIPW_3ADDR_LEN,
3211                                                         tbd->buf_length,
3212                                                         PCI_DMA_TODEVICE);
3213
3214                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3215                                      txq->next, tbd->host_addr,
3216                                      tbd->buf_length);
3217
3218                         pci_dma_sync_single_for_device(priv->pci_dev,
3219                                                        tbd->host_addr,
3220                                                        tbd->buf_length,
3221                                                        PCI_DMA_TODEVICE);
3222
3223                         txq->next++;
3224                         txq->next %= txq->entries;
3225                 }
3226
3227                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3228                 SET_STAT(&priv->txq_stat, txq->available);
3229
3230                 list_add_tail(element, &priv->fw_pend_list);
3231                 INC_STAT(&priv->fw_pend_stat);
3232         }
3233
3234         if (txq->next != next) {
3235                 /* kick off the DMA by notifying firmware the
3236                  * write index has moved; make sure TBD stores are sync'd */
3237                 write_register(priv->net_dev,
3238                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3239                                txq->next);
3240         }
3241 }
3242
3243 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3244 {
3245         struct net_device *dev = priv->net_dev;
3246         unsigned long flags;
3247         u32 inta, tmp;
3248
3249         spin_lock_irqsave(&priv->low_lock, flags);
3250         ipw2100_disable_interrupts(priv);
3251
3252         read_register(dev, IPW_REG_INTA, &inta);
3253
3254         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3255                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3256
3257         priv->in_isr++;
3258         priv->interrupts++;
3259
3260         /* We do not loop and keep polling for more interrupts as this
3261          * is frowned upon and doesn't play nicely with other potentially
3262          * chained IRQs */
3263         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3264                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3265
3266         if (inta & IPW2100_INTA_FATAL_ERROR) {
3267                 printk(KERN_WARNING DRV_NAME
3268                        ": Fatal interrupt. Scheduling firmware restart.\n");
3269                 priv->inta_other++;
3270                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3271
3272                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3273                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3274                                priv->net_dev->name, priv->fatal_error);
3275
3276                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3277                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3278                                priv->net_dev->name, tmp);
3279
3280                 /* Wake up any sleeping jobs */
3281                 schedule_reset(priv);
3282         }
3283
3284         if (inta & IPW2100_INTA_PARITY_ERROR) {
3285                 printk(KERN_ERR DRV_NAME
3286                        ": ***** PARITY ERROR INTERRUPT !!!!\n");
3287                 priv->inta_other++;
3288                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3289         }
3290
3291         if (inta & IPW2100_INTA_RX_TRANSFER) {
3292                 IPW_DEBUG_ISR("RX interrupt\n");
3293
3294                 priv->rx_interrupts++;
3295
3296                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3297
3298                 __ipw2100_rx_process(priv);
3299                 __ipw2100_tx_complete(priv);
3300         }
3301
3302         if (inta & IPW2100_INTA_TX_TRANSFER) {
3303                 IPW_DEBUG_ISR("TX interrupt\n");
3304
3305                 priv->tx_interrupts++;
3306
3307                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3308
3309                 __ipw2100_tx_complete(priv);
3310                 ipw2100_tx_send_commands(priv);
3311                 ipw2100_tx_send_data(priv);
3312         }
3313
3314         if (inta & IPW2100_INTA_TX_COMPLETE) {
3315                 IPW_DEBUG_ISR("TX complete\n");
3316                 priv->inta_other++;
3317                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3318
3319                 __ipw2100_tx_complete(priv);
3320         }
3321
3322         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3323                 /* ipw2100_handle_event(dev); */
3324                 priv->inta_other++;
3325                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3326         }
3327
3328         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3329                 IPW_DEBUG_ISR("FW init done interrupt\n");
3330                 priv->inta_other++;
3331
3332                 read_register(dev, IPW_REG_INTA, &tmp);
3333                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3334                            IPW2100_INTA_PARITY_ERROR)) {
3335                         write_register(dev, IPW_REG_INTA,
3336                                        IPW2100_INTA_FATAL_ERROR |
3337                                        IPW2100_INTA_PARITY_ERROR);
3338                 }
3339
3340                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3341         }
3342
3343         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3344                 IPW_DEBUG_ISR("Status change interrupt\n");
3345                 priv->inta_other++;
3346                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3347         }
3348
3349         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3350                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3351                 priv->inta_other++;
3352                 write_register(dev, IPW_REG_INTA,
3353                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3354         }
3355
3356         priv->in_isr--;
3357         ipw2100_enable_interrupts(priv);
3358
3359         spin_unlock_irqrestore(&priv->low_lock, flags);
3360
3361         IPW_DEBUG_ISR("exit\n");
3362 }
3363
3364 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3365 {
3366         struct ipw2100_priv *priv = data;
3367         u32 inta, inta_mask;
3368
3369         if (!data)
3370                 return IRQ_NONE;
3371
3372         spin_lock(&priv->low_lock);
3373
3374         /* We check to see if we should be ignoring interrupts before
3375          * we touch the hardware.  During ucode load if we try and handle
3376          * an interrupt we can cause keyboard problems as well as cause
3377          * the ucode to fail to initialize */
3378         if (!(priv->status & STATUS_INT_ENABLED)) {
3379                 /* Shared IRQ */
3380                 goto none;
3381         }
3382
3383         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3384         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3385
3386         if (inta == 0xFFFFFFFF) {
3387                 /* Hardware disappeared */
3388                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3389                 goto none;
3390         }
3391
3392         inta &= IPW_INTERRUPT_MASK;
3393
3394         if (!(inta & inta_mask)) {
3395                 /* Shared interrupt */
3396                 goto none;
3397         }
3398
3399         /* We disable the hardware interrupt here just to prevent unneeded
3400          * calls to be made.  We disable this again within the actual
3401          * work tasklet, so if another part of the code re-enables the
3402          * interrupt, that is fine */
3403         ipw2100_disable_interrupts(priv);
3404
3405         tasklet_schedule(&priv->irq_tasklet);
3406         spin_unlock(&priv->low_lock);
3407
3408         return IRQ_HANDLED;
3409       none:
3410         spin_unlock(&priv->low_lock);
3411         return IRQ_NONE;
3412 }
3413
3414 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3415                               struct net_device *dev, int pri)
3416 {
3417         struct ipw2100_priv *priv = libipw_priv(dev);
3418         struct list_head *element;
3419         struct ipw2100_tx_packet *packet;
3420         unsigned long flags;
3421
3422         spin_lock_irqsave(&priv->low_lock, flags);
3423
3424         if (!(priv->status & STATUS_ASSOCIATED)) {
3425                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3426                 priv->net_dev->stats.tx_carrier_errors++;
3427                 netif_stop_queue(dev);
3428                 goto fail_unlock;
3429         }
3430
3431         if (list_empty(&priv->tx_free_list))
3432                 goto fail_unlock;
3433
3434         element = priv->tx_free_list.next;
3435         packet = list_entry(element, struct ipw2100_tx_packet, list);
3436
3437         packet->info.d_struct.txb = txb;
3438
3439         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3440         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3441
3442         packet->jiffy_start = jiffies;
3443
3444         list_del(element);
3445         DEC_STAT(&priv->tx_free_stat);
3446
3447         list_add_tail(element, &priv->tx_pend_list);
3448         INC_STAT(&priv->tx_pend_stat);
3449
3450         ipw2100_tx_send_data(priv);
3451
3452         spin_unlock_irqrestore(&priv->low_lock, flags);
3453         return NETDEV_TX_OK;
3454
3455 fail_unlock:
3456         netif_stop_queue(dev);
3457         spin_unlock_irqrestore(&priv->low_lock, flags);
3458         return NETDEV_TX_BUSY;
3459 }
3460
3461 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3462 {
3463         int i, j, err = -EINVAL;
3464         void *v;
3465         dma_addr_t p;
3466
3467         priv->msg_buffers =
3468             kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3469                     GFP_KERNEL);
3470         if (!priv->msg_buffers)
3471                 return -ENOMEM;
3472
3473         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3474                 v = pci_alloc_consistent(priv->pci_dev,
3475                                          sizeof(struct ipw2100_cmd_header), &p);
3476                 if (!v) {
3477                         printk(KERN_ERR DRV_NAME ": "
3478                                "%s: PCI alloc failed for msg "
3479                                "buffers.\n", priv->net_dev->name);
3480                         err = -ENOMEM;
3481                         break;
3482                 }
3483
3484                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3485
3486                 priv->msg_buffers[i].type = COMMAND;
3487                 priv->msg_buffers[i].info.c_struct.cmd =
3488                     (struct ipw2100_cmd_header *)v;
3489                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3490         }
3491
3492         if (i == IPW_COMMAND_POOL_SIZE)
3493                 return 0;
3494
3495         for (j = 0; j < i; j++) {
3496                 pci_free_consistent(priv->pci_dev,
3497                                     sizeof(struct ipw2100_cmd_header),
3498                                     priv->msg_buffers[j].info.c_struct.cmd,
3499                                     priv->msg_buffers[j].info.c_struct.
3500                                     cmd_phys);
3501         }
3502
3503         kfree(priv->msg_buffers);
3504         priv->msg_buffers = NULL;
3505
3506         return err;
3507 }
3508
3509 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3510 {
3511         int i;
3512
3513         INIT_LIST_HEAD(&priv->msg_free_list);
3514         INIT_LIST_HEAD(&priv->msg_pend_list);
3515
3516         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3517                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3518         SET_STAT(&priv->msg_free_stat, i);
3519
3520         return 0;
3521 }
3522
3523 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3524 {
3525         int i;
3526
3527         if (!priv->msg_buffers)
3528                 return;
3529
3530         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3531                 pci_free_consistent(priv->pci_dev,
3532                                     sizeof(struct ipw2100_cmd_header),
3533                                     priv->msg_buffers[i].info.c_struct.cmd,
3534                                     priv->msg_buffers[i].info.c_struct.
3535                                     cmd_phys);
3536         }
3537
3538         kfree(priv->msg_buffers);
3539         priv->msg_buffers = NULL;
3540 }
3541
3542 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3543                         char *buf)
3544 {
3545         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3546         char *out = buf;
3547         int i, j;
3548         u32 val;
3549
3550         for (i = 0; i < 16; i++) {
3551                 out += sprintf(out, "[%08X] ", i * 16);
3552                 for (j = 0; j < 16; j += 4) {
3553                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3554                         out += sprintf(out, "%08X ", val);
3555                 }
3556                 out += sprintf(out, "\n");
3557         }
3558
3559         return out - buf;
3560 }
3561
3562 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3563
3564 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3565                         char *buf)
3566 {
3567         struct ipw2100_priv *p = dev_get_drvdata(d);
3568         return sprintf(buf, "0x%08x\n", (int)p->config);
3569 }
3570
3571 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3572
3573 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3574                            char *buf)
3575 {
3576         struct ipw2100_priv *p = dev_get_drvdata(d);
3577         return sprintf(buf, "0x%08x\n", (int)p->status);
3578 }
3579
3580 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3581
3582 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3583                                char *buf)
3584 {
3585         struct ipw2100_priv *p = dev_get_drvdata(d);
3586         return sprintf(buf, "0x%08x\n", (int)p->capability);
3587 }
3588
3589 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3590
3591 #define IPW2100_REG(x) { IPW_ ##x, #x }
3592 static const struct {
3593         u32 addr;
3594         const char *name;
3595 } hw_data[] = {
3596 IPW2100_REG(REG_GP_CNTRL),
3597             IPW2100_REG(REG_GPIO),
3598             IPW2100_REG(REG_INTA),
3599             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3600 #define IPW2100_NIC(x, s) { x, #x, s }
3601 static const struct {
3602         u32 addr;
3603         const char *name;
3604         size_t size;
3605 } nic_data[] = {
3606 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3607             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3608 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3609 static const struct {
3610         u8 index;
3611         const char *name;
3612         const char *desc;
3613 } ord_data[] = {
3614 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3615             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3616                                 "successful Host Tx's (MSDU)"),
3617             IPW2100_ORD(STAT_TX_DIR_DATA,
3618                                 "successful Directed Tx's (MSDU)"),
3619             IPW2100_ORD(STAT_TX_DIR_DATA1,
3620                                 "successful Directed Tx's (MSDU) @ 1MB"),
3621             IPW2100_ORD(STAT_TX_DIR_DATA2,
3622                                 "successful Directed Tx's (MSDU) @ 2MB"),
3623             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3624                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3625             IPW2100_ORD(STAT_TX_DIR_DATA11,
3626                                 "successful Directed Tx's (MSDU) @ 11MB"),
3627             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3628                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3629             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3630                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3631             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3632                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3633             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3634                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3635             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3636             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3637             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3638             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3639             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3640             IPW2100_ORD(STAT_TX_ASSN_RESP,
3641                                 "successful Association response Tx's"),
3642             IPW2100_ORD(STAT_TX_REASSN,
3643                                 "successful Reassociation Tx's"),
3644             IPW2100_ORD(STAT_TX_REASSN_RESP,
3645                                 "successful Reassociation response Tx's"),
3646             IPW2100_ORD(STAT_TX_PROBE,
3647                                 "probes successfully transmitted"),
3648             IPW2100_ORD(STAT_TX_PROBE_RESP,
3649                                 "probe responses successfully transmitted"),
3650             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3651             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3652             IPW2100_ORD(STAT_TX_DISASSN,
3653                                 "successful Disassociation TX"),
3654             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3655             IPW2100_ORD(STAT_TX_DEAUTH,
3656                                 "successful Deauthentication TX"),
3657             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3658                                 "Total successful Tx data bytes"),
3659             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3660             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3661             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3662             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3663             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3664             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3665             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3666                                 "times max tries in a hop failed"),
3667             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3668                                 "times disassociation failed"),
3669             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3670             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3671             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3672             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3673             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3674             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3675             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3676                                 "directed packets at 5.5MB"),
3677             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3678             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3679             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3680                                 "nondirected packets at 1MB"),
3681             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3682                                 "nondirected packets at 2MB"),
3683             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3684                                 "nondirected packets at 5.5MB"),
3685             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3686                                 "nondirected packets at 11MB"),
3687             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3688             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3689                                                                     "Rx CTS"),
3690             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3691             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3692             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3693             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3694             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3695             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3696             IPW2100_ORD(STAT_RX_REASSN_RESP,
3697                                 "Reassociation response Rx's"),
3698             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3699             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3700             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3701             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3702             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3703             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3704             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3705             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3706                                 "Total rx data bytes received"),
3707             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3708             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3709             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3710             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3711             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3712             IPW2100_ORD(STAT_RX_DUPLICATE1,
3713                                 "duplicate rx packets at 1MB"),
3714             IPW2100_ORD(STAT_RX_DUPLICATE2,
3715                                 "duplicate rx packets at 2MB"),
3716             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3717                                 "duplicate rx packets at 5.5MB"),
3718             IPW2100_ORD(STAT_RX_DUPLICATE11,
3719                                 "duplicate rx packets at 11MB"),
3720             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3721             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3722             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3723             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3724             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3725                                 "rx frames with invalid protocol"),
3726             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3727             IPW2100_ORD(STAT_RX_NO_BUFFER,
3728                                 "rx frames rejected due to no buffer"),
3729             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3730                                 "rx frames dropped due to missing fragment"),
3731             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3732                                 "rx frames dropped due to non-sequential fragment"),
3733             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3734                                 "rx frames dropped due to unmatched 1st frame"),
3735             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3736                                 "rx frames dropped due to uncompleted frame"),
3737             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3738                                 "ICV errors during decryption"),
3739             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3740             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3741             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3742                                 "poll response timeouts"),
3743             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3744                                 "timeouts waiting for last {broad,multi}cast pkt"),
3745             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3746             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3747             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3748             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3749             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3750                                 "current calculation of % missed beacons"),
3751             IPW2100_ORD(STAT_PERCENT_RETRIES,
3752                                 "current calculation of % missed tx retries"),
3753             IPW2100_ORD(ASSOCIATED_AP_PTR,
3754                                 "0 if not associated, else pointer to AP table entry"),
3755             IPW2100_ORD(AVAILABLE_AP_CNT,
3756                                 "AP's decsribed in the AP table"),
3757             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3758             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3759             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3760             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3761                                 "failures due to response fail"),
3762             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3763             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3764             IPW2100_ORD(STAT_ROAM_INHIBIT,
3765                                 "times roaming was inhibited due to activity"),
3766             IPW2100_ORD(RSSI_AT_ASSN,
3767                                 "RSSI of associated AP at time of association"),
3768             IPW2100_ORD(STAT_ASSN_CAUSE1,
3769                                 "reassociation: no probe response or TX on hop"),
3770             IPW2100_ORD(STAT_ASSN_CAUSE2,
3771                                 "reassociation: poor tx/rx quality"),
3772             IPW2100_ORD(STAT_ASSN_CAUSE3,
3773                                 "reassociation: tx/rx quality (excessive AP load"),
3774             IPW2100_ORD(STAT_ASSN_CAUSE4,
3775                                 "reassociation: AP RSSI level"),
3776             IPW2100_ORD(STAT_ASSN_CAUSE5,
3777                                 "reassociations due to load leveling"),
3778             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3779             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3780                                 "times authentication response failed"),
3781             IPW2100_ORD(STATION_TABLE_CNT,
3782                                 "entries in association table"),
3783             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3784             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3785             IPW2100_ORD(COUNTRY_CODE,
3786                                 "IEEE country code as recv'd from beacon"),
3787             IPW2100_ORD(COUNTRY_CHANNELS,
3788                                 "channels suported by country"),
3789             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3790             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3791             IPW2100_ORD(ANTENNA_DIVERSITY,
3792                                 "TRUE if antenna diversity is disabled"),
3793             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3794             IPW2100_ORD(OUR_FREQ,
3795                                 "current radio freq lower digits - channel ID"),
3796             IPW2100_ORD(RTC_TIME, "current RTC time"),
3797             IPW2100_ORD(PORT_TYPE, "operating mode"),
3798             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3799             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3800             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3801             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3802             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3803             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3804             IPW2100_ORD(CAPABILITIES,
3805                                 "Management frame capability field"),
3806             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3807             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3808             IPW2100_ORD(RTS_THRESHOLD,
3809                                 "Min packet length for RTS handshaking"),
3810             IPW2100_ORD(INT_MODE, "International mode"),
3811             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3812                                 "protocol frag threshold"),
3813             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3814                                 "EEPROM offset in SRAM"),
3815             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3816                                 "EEPROM size in SRAM"),
3817             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3818             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3819                                 "EEPROM IBSS 11b channel set"),
3820             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3821             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3822             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3823             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3824             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3825
3826 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3827                               char *buf)
3828 {
3829         int i;
3830         struct ipw2100_priv *priv = dev_get_drvdata(d);
3831         struct net_device *dev = priv->net_dev;
3832         char *out = buf;
3833         u32 val = 0;
3834
3835         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3836
3837         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3838                 read_register(dev, hw_data[i].addr, &val);
3839                 out += sprintf(out, "%30s [%08X] : %08X\n",
3840                                hw_data[i].name, hw_data[i].addr, val);
3841         }
3842
3843         return out - buf;
3844 }
3845
3846 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3847
3848 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3849                              char *buf)
3850 {
3851         struct ipw2100_priv *priv = dev_get_drvdata(d);
3852         struct net_device *dev = priv->net_dev;
3853         char *out = buf;
3854         int i;
3855
3856         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3857
3858         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3859                 u8 tmp8;
3860                 u16 tmp16;
3861                 u32 tmp32;
3862
3863                 switch (nic_data[i].size) {
3864                 case 1:
3865                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3866                         out += sprintf(out, "%30s [%08X] : %02X\n",
3867                                        nic_data[i].name, nic_data[i].addr,
3868                                        tmp8);
3869                         break;
3870                 case 2:
3871                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3872                         out += sprintf(out, "%30s [%08X] : %04X\n",
3873                                        nic_data[i].name, nic_data[i].addr,
3874                                        tmp16);
3875                         break;
3876                 case 4:
3877                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3878                         out += sprintf(out, "%30s [%08X] : %08X\n",
3879                                        nic_data[i].name, nic_data[i].addr,
3880                                        tmp32);
3881                         break;
3882                 }
3883         }
3884         return out - buf;
3885 }
3886
3887 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3888
3889 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3890                            char *buf)
3891 {
3892         struct ipw2100_priv *priv = dev_get_drvdata(d);
3893         struct net_device *dev = priv->net_dev;
3894         static unsigned long loop = 0;
3895         int len = 0;
3896         u32 buffer[4];
3897         int i;
3898         char line[81];
3899
3900         if (loop >= 0x30000)
3901                 loop = 0;
3902
3903         /* sysfs provides us PAGE_SIZE buffer */
3904         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3905
3906                 if (priv->snapshot[0])
3907                         for (i = 0; i < 4; i++)
3908                                 buffer[i] =
3909                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3910                 else
3911                         for (i = 0; i < 4; i++)
3912                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3913
3914                 if (priv->dump_raw)
3915                         len += sprintf(buf + len,
3916                                        "%c%c%c%c"
3917                                        "%c%c%c%c"
3918                                        "%c%c%c%c"
3919                                        "%c%c%c%c",
3920                                        ((u8 *) buffer)[0x0],
3921                                        ((u8 *) buffer)[0x1],
3922                                        ((u8 *) buffer)[0x2],
3923                                        ((u8 *) buffer)[0x3],
3924                                        ((u8 *) buffer)[0x4],
3925                                        ((u8 *) buffer)[0x5],
3926                                        ((u8 *) buffer)[0x6],
3927                                        ((u8 *) buffer)[0x7],
3928                                        ((u8 *) buffer)[0x8],
3929                                        ((u8 *) buffer)[0x9],
3930                                        ((u8 *) buffer)[0xa],
3931                                        ((u8 *) buffer)[0xb],
3932                                        ((u8 *) buffer)[0xc],
3933                                        ((u8 *) buffer)[0xd],
3934                                        ((u8 *) buffer)[0xe],
3935                                        ((u8 *) buffer)[0xf]);
3936                 else
3937                         len += sprintf(buf + len, "%s\n",
3938                                        snprint_line(line, sizeof(line),
3939                                                     (u8 *) buffer, 16, loop));
3940                 loop += 16;
3941         }
3942
3943         return len;
3944 }
3945
3946 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3947                             const char *buf, size_t count)
3948 {
3949         struct ipw2100_priv *priv = dev_get_drvdata(d);
3950         struct net_device *dev = priv->net_dev;
3951         const char *p = buf;
3952
3953         (void)dev;              /* kill unused-var warning for debug-only code */
3954
3955         if (count < 1)
3956                 return count;
3957
3958         if (p[0] == '1' ||
3959             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3960                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3961                                dev->name);
3962                 priv->dump_raw = 1;
3963
3964         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3965                                    tolower(p[1]) == 'f')) {
3966                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3967                                dev->name);
3968                 priv->dump_raw = 0;
3969
3970         } else if (tolower(p[0]) == 'r') {
3971                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3972                 ipw2100_snapshot_free(priv);
3973
3974         } else
3975                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3976                                "reset = clear memory snapshot\n", dev->name);
3977
3978         return count;
3979 }
3980
3981 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3982
3983 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3984                              char *buf)
3985 {
3986         struct ipw2100_priv *priv = dev_get_drvdata(d);
3987         u32 val = 0;
3988         int len = 0;
3989         u32 val_len;
3990         static int loop = 0;
3991
3992         if (priv->status & STATUS_RF_KILL_MASK)
3993                 return 0;
3994
3995         if (loop >= ARRAY_SIZE(ord_data))
3996                 loop = 0;
3997
3998         /* sysfs provides us PAGE_SIZE buffer */
3999         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
4000                 val_len = sizeof(u32);
4001
4002                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
4003                                         &val_len))
4004                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
4005                                        ord_data[loop].index,
4006                                        ord_data[loop].desc);
4007                 else
4008                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
4009                                        ord_data[loop].index, val,
4010                                        ord_data[loop].desc);
4011                 loop++;
4012         }
4013
4014         return len;
4015 }
4016
4017 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
4018
4019 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
4020                           char *buf)
4021 {
4022         struct ipw2100_priv *priv = dev_get_drvdata(d);
4023         char *out = buf;
4024
4025         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4026                        priv->interrupts, priv->tx_interrupts,
4027                        priv->rx_interrupts, priv->inta_other);
4028         out += sprintf(out, "firmware resets: %d\n", priv->resets);
4029         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4030 #ifdef CONFIG_IPW2100_DEBUG
4031         out += sprintf(out, "packet mismatch image: %s\n",
4032                        priv->snapshot[0] ? "YES" : "NO");
4033 #endif
4034
4035         return out - buf;
4036 }
4037
4038 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4039
4040 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4041 {
4042         int err;
4043
4044         if (mode == priv->ieee->iw_mode)
4045                 return 0;
4046
4047         err = ipw2100_disable_adapter(priv);
4048         if (err) {
4049                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4050                        priv->net_dev->name, err);
4051                 return err;
4052         }
4053
4054         switch (mode) {
4055         case IW_MODE_INFRA:
4056                 priv->net_dev->type = ARPHRD_ETHER;
4057                 break;
4058         case IW_MODE_ADHOC:
4059                 priv->net_dev->type = ARPHRD_ETHER;
4060                 break;
4061 #ifdef CONFIG_IPW2100_MONITOR
4062         case IW_MODE_MONITOR:
4063                 priv->last_mode = priv->ieee->iw_mode;
4064                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4065                 break;
4066 #endif                          /* CONFIG_IPW2100_MONITOR */
4067         }
4068
4069         priv->ieee->iw_mode = mode;
4070
4071 #ifdef CONFIG_PM
4072         /* Indicate ipw2100_download_firmware download firmware
4073          * from disk instead of memory. */
4074         ipw2100_firmware.version = 0;
4075 #endif
4076
4077         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
4078         priv->reset_backoff = 0;
4079         schedule_reset(priv);
4080
4081         return 0;
4082 }
4083
4084 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4085                               char *buf)
4086 {
4087         struct ipw2100_priv *priv = dev_get_drvdata(d);
4088         int len = 0;
4089
4090 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4091
4092         if (priv->status & STATUS_ASSOCIATED)
4093                 len += sprintf(buf + len, "connected: %lu\n",
4094                                get_seconds() - priv->connect_start);
4095         else
4096                 len += sprintf(buf + len, "not connected\n");
4097
4098         DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4099         DUMP_VAR(status, "08lx");
4100         DUMP_VAR(config, "08lx");
4101         DUMP_VAR(capability, "08lx");
4102
4103         len +=
4104             sprintf(buf + len, "last_rtc: %lu\n",
4105                     (unsigned long)priv->last_rtc);
4106
4107         DUMP_VAR(fatal_error, "d");
4108         DUMP_VAR(stop_hang_check, "d");
4109         DUMP_VAR(stop_rf_kill, "d");
4110         DUMP_VAR(messages_sent, "d");
4111
4112         DUMP_VAR(tx_pend_stat.value, "d");
4113         DUMP_VAR(tx_pend_stat.hi, "d");
4114
4115         DUMP_VAR(tx_free_stat.value, "d");
4116         DUMP_VAR(tx_free_stat.lo, "d");
4117
4118         DUMP_VAR(msg_free_stat.value, "d");
4119         DUMP_VAR(msg_free_stat.lo, "d");
4120
4121         DUMP_VAR(msg_pend_stat.value, "d");
4122         DUMP_VAR(msg_pend_stat.hi, "d");
4123
4124         DUMP_VAR(fw_pend_stat.value, "d");
4125         DUMP_VAR(fw_pend_stat.hi, "d");
4126
4127         DUMP_VAR(txq_stat.value, "d");
4128         DUMP_VAR(txq_stat.lo, "d");
4129
4130         DUMP_VAR(ieee->scans, "d");
4131         DUMP_VAR(reset_backoff, "d");
4132
4133         return len;
4134 }
4135
4136 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4137
4138 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4139                             char *buf)
4140 {
4141         struct ipw2100_priv *priv = dev_get_drvdata(d);
4142         char essid[IW_ESSID_MAX_SIZE + 1];
4143         u8 bssid[ETH_ALEN];
4144         u32 chan = 0;
4145         char *out = buf;
4146         unsigned int length;
4147         int ret;
4148
4149         if (priv->status & STATUS_RF_KILL_MASK)
4150                 return 0;
4151
4152         memset(essid, 0, sizeof(essid));
4153         memset(bssid, 0, sizeof(bssid));
4154
4155         length = IW_ESSID_MAX_SIZE;
4156         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4157         if (ret)
4158                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4159                                __LINE__);
4160
4161         length = sizeof(bssid);
4162         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4163                                   bssid, &length);
4164         if (ret)
4165                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4166                                __LINE__);
4167
4168         length = sizeof(u32);
4169         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4170         if (ret)
4171                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4172                                __LINE__);
4173
4174         out += sprintf(out, "ESSID: %s\n", essid);
4175         out += sprintf(out, "BSSID:   %pM\n", bssid);
4176         out += sprintf(out, "Channel: %d\n", chan);
4177
4178         return out - buf;
4179 }
4180
4181 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4182
4183 #ifdef CONFIG_IPW2100_DEBUG
4184 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4185 {
4186         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4187 }
4188
4189 static ssize_t store_debug_level(struct device_driver *d,
4190                                  const char *buf, size_t count)
4191 {
4192         char *p = (char *)buf;
4193         u32 val;
4194
4195         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4196                 p++;
4197                 if (p[0] == 'x' || p[0] == 'X')
4198                         p++;
4199                 val = simple_strtoul(p, &p, 16);
4200         } else
4201                 val = simple_strtoul(p, &p, 10);
4202         if (p == buf)
4203                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4204         else
4205                 ipw2100_debug_level = val;
4206
4207         return strnlen(buf, count);
4208 }
4209
4210 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4211                    store_debug_level);
4212 #endif                          /* CONFIG_IPW2100_DEBUG */
4213
4214 static ssize_t show_fatal_error(struct device *d,
4215                                 struct device_attribute *attr, char *buf)
4216 {
4217         struct ipw2100_priv *priv = dev_get_drvdata(d);
4218         char *out = buf;
4219         int i;
4220
4221         if (priv->fatal_error)
4222                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4223         else
4224                 out += sprintf(out, "0\n");
4225
4226         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4227                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4228                                         IPW2100_ERROR_QUEUE])
4229                         continue;
4230
4231                 out += sprintf(out, "%d. 0x%08X\n", i,
4232                                priv->fatal_errors[(priv->fatal_index - i) %
4233                                                   IPW2100_ERROR_QUEUE]);
4234         }
4235
4236         return out - buf;
4237 }
4238
4239 static ssize_t store_fatal_error(struct device *d,
4240                                  struct device_attribute *attr, const char *buf,
4241                                  size_t count)
4242 {
4243         struct ipw2100_priv *priv = dev_get_drvdata(d);
4244         schedule_reset(priv);
4245         return count;
4246 }
4247
4248 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4249                    store_fatal_error);
4250
4251 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4252                              char *buf)
4253 {
4254         struct ipw2100_priv *priv = dev_get_drvdata(d);
4255         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4256 }
4257
4258 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4259                               const char *buf, size_t count)
4260 {
4261         struct ipw2100_priv *priv = dev_get_drvdata(d);
4262         struct net_device *dev = priv->net_dev;
4263         char buffer[] = "00000000";
4264         unsigned long len =
4265             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4266         unsigned long val;
4267         char *p = buffer;
4268
4269         (void)dev;              /* kill unused-var warning for debug-only code */
4270
4271         IPW_DEBUG_INFO("enter\n");
4272
4273         strncpy(buffer, buf, len);
4274         buffer[len] = 0;
4275
4276         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4277                 p++;
4278                 if (p[0] == 'x' || p[0] == 'X')
4279                         p++;
4280                 val = simple_strtoul(p, &p, 16);
4281         } else
4282                 val = simple_strtoul(p, &p, 10);
4283         if (p == buffer) {
4284                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4285         } else {
4286                 priv->ieee->scan_age = val;
4287                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4288         }
4289
4290         IPW_DEBUG_INFO("exit\n");
4291         return len;
4292 }
4293
4294 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4295
4296 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4297                             char *buf)
4298 {
4299         /* 0 - RF kill not enabled
4300            1 - SW based RF kill active (sysfs)
4301            2 - HW based RF kill active
4302            3 - Both HW and SW baed RF kill active */
4303         struct ipw2100_priv *priv = dev_get_drvdata(d);
4304         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4305             (rf_kill_active(priv) ? 0x2 : 0x0);
4306         return sprintf(buf, "%i\n", val);
4307 }
4308
4309 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4310 {
4311         if ((disable_radio ? 1 : 0) ==
4312             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4313                 return 0;
4314
4315         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4316                           disable_radio ? "OFF" : "ON");
4317
4318         mutex_lock(&priv->action_mutex);
4319
4320         if (disable_radio) {
4321                 priv->status |= STATUS_RF_KILL_SW;
4322                 ipw2100_down(priv);
4323         } else {
4324                 priv->status &= ~STATUS_RF_KILL_SW;
4325                 if (rf_kill_active(priv)) {
4326                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4327                                           "disabled by HW switch\n");
4328                         /* Make sure the RF_KILL check timer is running */
4329                         priv->stop_rf_kill = 0;
4330                         cancel_delayed_work(&priv->rf_kill);
4331                         schedule_delayed_work(&priv->rf_kill,
4332                                               round_jiffies_relative(HZ));
4333                 } else
4334                         schedule_reset(priv);
4335         }
4336
4337         mutex_unlock(&priv->action_mutex);
4338         return 1;
4339 }
4340
4341 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4342                              const char *buf, size_t count)
4343 {
4344         struct ipw2100_priv *priv = dev_get_drvdata(d);
4345         ipw_radio_kill_sw(priv, buf[0] == '1');
4346         return count;
4347 }
4348
4349 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4350
4351 static struct attribute *ipw2100_sysfs_entries[] = {
4352         &dev_attr_hardware.attr,
4353         &dev_attr_registers.attr,
4354         &dev_attr_ordinals.attr,
4355         &dev_attr_pci.attr,
4356         &dev_attr_stats.attr,
4357         &dev_attr_internals.attr,
4358         &dev_attr_bssinfo.attr,
4359         &dev_attr_memory.attr,
4360         &dev_attr_scan_age.attr,
4361         &dev_attr_fatal_error.attr,
4362         &dev_attr_rf_kill.attr,
4363         &dev_attr_cfg.attr,
4364         &dev_attr_status.attr,
4365         &dev_attr_capability.attr,
4366         NULL,
4367 };
4368
4369 static struct attribute_group ipw2100_attribute_group = {
4370         .attrs = ipw2100_sysfs_entries,
4371 };
4372
4373 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4374 {
4375         struct ipw2100_status_queue *q = &priv->status_queue;
4376
4377         IPW_DEBUG_INFO("enter\n");
4378
4379         q->size = entries * sizeof(struct ipw2100_status);
4380         q->drv =
4381             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4382                                                           q->size, &q->nic);
4383         if (!q->drv) {
4384                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4385                 return -ENOMEM;
4386         }
4387
4388         memset(q->drv, 0, q->size);
4389
4390         IPW_DEBUG_INFO("exit\n");
4391
4392         return 0;
4393 }
4394
4395 static void status_queue_free(struct ipw2100_priv *priv)
4396 {
4397         IPW_DEBUG_INFO("enter\n");
4398
4399         if (priv->status_queue.drv) {
4400                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4401                                     priv->status_queue.drv,
4402                                     priv->status_queue.nic);
4403                 priv->status_queue.drv = NULL;
4404         }
4405
4406         IPW_DEBUG_INFO("exit\n");
4407 }
4408
4409 static int bd_queue_allocate(struct ipw2100_priv *priv,
4410                              struct ipw2100_bd_queue *q, int entries)
4411 {
4412         IPW_DEBUG_INFO("enter\n");
4413
4414         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4415
4416         q->entries = entries;
4417         q->size = entries * sizeof(struct ipw2100_bd);
4418         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4419         if (!q->drv) {
4420                 IPW_DEBUG_INFO
4421                     ("can't allocate shared memory for buffer descriptors\n");
4422                 return -ENOMEM;
4423         }
4424         memset(q->drv, 0, q->size);
4425
4426         IPW_DEBUG_INFO("exit\n");
4427
4428         return 0;
4429 }
4430
4431 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4432 {
4433         IPW_DEBUG_INFO("enter\n");
4434
4435         if (!q)
4436                 return;
4437
4438         if (q->drv) {
4439                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4440                 q->drv = NULL;
4441         }
4442
4443         IPW_DEBUG_INFO("exit\n");
4444 }
4445
4446 static void bd_queue_initialize(struct ipw2100_priv *priv,
4447                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4448                                 u32 r, u32 w)
4449 {
4450         IPW_DEBUG_INFO("enter\n");
4451
4452         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4453                        (u32) q->nic);
4454
4455         write_register(priv->net_dev, base, q->nic);
4456         write_register(priv->net_dev, size, q->entries);
4457         write_register(priv->net_dev, r, q->oldest);
4458         write_register(priv->net_dev, w, q->next);
4459
4460         IPW_DEBUG_INFO("exit\n");
4461 }
4462
4463 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4464 {
4465         priv->stop_rf_kill = 1;
4466         priv->stop_hang_check = 1;
4467         cancel_delayed_work_sync(&priv->reset_work);
4468         cancel_delayed_work_sync(&priv->security_work);
4469         cancel_delayed_work_sync(&priv->wx_event_work);
4470         cancel_delayed_work_sync(&priv->hang_check);
4471         cancel_delayed_work_sync(&priv->rf_kill);
4472         cancel_work_sync(&priv->scan_event_now);
4473         cancel_delayed_work_sync(&priv->scan_event_later);
4474 }
4475
4476 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4477 {
4478         int i, j, err = -EINVAL;
4479         void *v;
4480         dma_addr_t p;
4481
4482         IPW_DEBUG_INFO("enter\n");
4483
4484         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4485         if (err) {
4486                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4487                                 priv->net_dev->name);
4488                 return err;
4489         }
4490
4491         priv->tx_buffers =
4492             kmalloc(TX_PENDED_QUEUE_LENGTH * sizeof(struct ipw2100_tx_packet),
4493                     GFP_ATOMIC);
4494         if (!priv->tx_buffers) {
4495                 printk(KERN_ERR DRV_NAME
4496                        ": %s: alloc failed form tx buffers.\n",
4497                        priv->net_dev->name);
4498                 bd_queue_free(priv, &priv->tx_queue);
4499                 return -ENOMEM;
4500         }
4501
4502         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4503                 v = pci_alloc_consistent(priv->pci_dev,
4504                                          sizeof(struct ipw2100_data_header),
4505                                          &p);
4506                 if (!v) {
4507                         printk(KERN_ERR DRV_NAME
4508                                ": %s: PCI alloc failed for tx " "buffers.\n",
4509                                priv->net_dev->name);
4510                         err = -ENOMEM;
4511                         break;
4512                 }
4513
4514                 priv->tx_buffers[i].type = DATA;
4515                 priv->tx_buffers[i].info.d_struct.data =
4516                     (struct ipw2100_data_header *)v;
4517                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4518                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4519         }
4520
4521         if (i == TX_PENDED_QUEUE_LENGTH)
4522                 return 0;
4523
4524         for (j = 0; j < i; j++) {
4525                 pci_free_consistent(priv->pci_dev,
4526                                     sizeof(struct ipw2100_data_header),
4527                                     priv->tx_buffers[j].info.d_struct.data,
4528                                     priv->tx_buffers[j].info.d_struct.
4529                                     data_phys);
4530         }
4531
4532         kfree(priv->tx_buffers);
4533         priv->tx_buffers = NULL;
4534
4535         return err;
4536 }
4537
4538 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4539 {
4540         int i;
4541
4542         IPW_DEBUG_INFO("enter\n");
4543
4544         /*
4545          * reinitialize packet info lists
4546          */
4547         INIT_LIST_HEAD(&priv->fw_pend_list);
4548         INIT_STAT(&priv->fw_pend_stat);
4549
4550         /*
4551          * reinitialize lists
4552          */
4553         INIT_LIST_HEAD(&priv->tx_pend_list);
4554         INIT_LIST_HEAD(&priv->tx_free_list);
4555         INIT_STAT(&priv->tx_pend_stat);
4556         INIT_STAT(&priv->tx_free_stat);
4557
4558         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4559                 /* We simply drop any SKBs that have been queued for
4560                  * transmit */
4561                 if (priv->tx_buffers[i].info.d_struct.txb) {
4562                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4563                                            txb);
4564                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4565                 }
4566
4567                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4568         }
4569
4570         SET_STAT(&priv->tx_free_stat, i);
4571
4572         priv->tx_queue.oldest = 0;
4573         priv->tx_queue.available = priv->tx_queue.entries;
4574         priv->tx_queue.next = 0;
4575         INIT_STAT(&priv->txq_stat);
4576         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4577
4578         bd_queue_initialize(priv, &priv->tx_queue,
4579                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4580                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4581                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4582                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4583
4584         IPW_DEBUG_INFO("exit\n");
4585
4586 }
4587
4588 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4589 {
4590         int i;
4591
4592         IPW_DEBUG_INFO("enter\n");
4593
4594         bd_queue_free(priv, &priv->tx_queue);
4595
4596         if (!priv->tx_buffers)
4597                 return;
4598
4599         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4600                 if (priv->tx_buffers[i].info.d_struct.txb) {
4601                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4602                                            txb);
4603                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4604                 }
4605                 if (priv->tx_buffers[i].info.d_struct.data)
4606                         pci_free_consistent(priv->pci_dev,
4607                                             sizeof(struct ipw2100_data_header),
4608                                             priv->tx_buffers[i].info.d_struct.
4609                                             data,
4610                                             priv->tx_buffers[i].info.d_struct.
4611                                             data_phys);
4612         }
4613
4614         kfree(priv->tx_buffers);
4615         priv->tx_buffers = NULL;
4616
4617         IPW_DEBUG_INFO("exit\n");
4618 }
4619
4620 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4621 {
4622         int i, j, err = -EINVAL;
4623
4624         IPW_DEBUG_INFO("enter\n");
4625
4626         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4627         if (err) {
4628                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4629                 return err;
4630         }
4631
4632         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4633         if (err) {
4634                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4635                 bd_queue_free(priv, &priv->rx_queue);
4636                 return err;
4637         }
4638
4639         /*
4640          * allocate packets
4641          */
4642         priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4643                                    sizeof(struct ipw2100_rx_packet),
4644                                    GFP_KERNEL);
4645         if (!priv->rx_buffers) {
4646                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4647
4648                 bd_queue_free(priv, &priv->rx_queue);
4649
4650                 status_queue_free(priv);
4651
4652                 return -ENOMEM;
4653         }
4654
4655         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4656                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4657
4658                 err = ipw2100_alloc_skb(priv, packet);
4659                 if (unlikely(err)) {
4660                         err = -ENOMEM;
4661                         break;
4662                 }
4663
4664                 /* The BD holds the cache aligned address */
4665                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4666                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4667                 priv->status_queue.drv[i].status_fields = 0;
4668         }
4669
4670         if (i == RX_QUEUE_LENGTH)
4671                 return 0;
4672
4673         for (j = 0; j < i; j++) {
4674                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4675                                  sizeof(struct ipw2100_rx_packet),
4676                                  PCI_DMA_FROMDEVICE);
4677                 dev_kfree_skb(priv->rx_buffers[j].skb);
4678         }
4679
4680         kfree(priv->rx_buffers);
4681         priv->rx_buffers = NULL;
4682
4683         bd_queue_free(priv, &priv->rx_queue);
4684
4685         status_queue_free(priv);
4686
4687         return err;
4688 }
4689
4690 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4691 {
4692         IPW_DEBUG_INFO("enter\n");
4693
4694         priv->rx_queue.oldest = 0;
4695         priv->rx_queue.available = priv->rx_queue.entries - 1;
4696         priv->rx_queue.next = priv->rx_queue.entries - 1;
4697
4698         INIT_STAT(&priv->rxq_stat);
4699         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4700
4701         bd_queue_initialize(priv, &priv->rx_queue,
4702                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4703                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4704                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4705                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4706
4707         /* set up the status queue */
4708         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4709                        priv->status_queue.nic);
4710
4711         IPW_DEBUG_INFO("exit\n");
4712 }
4713
4714 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4715 {
4716         int i;
4717
4718         IPW_DEBUG_INFO("enter\n");
4719
4720         bd_queue_free(priv, &priv->rx_queue);
4721         status_queue_free(priv);
4722
4723         if (!priv->rx_buffers)
4724                 return;
4725
4726         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4727                 if (priv->rx_buffers[i].rxp) {
4728                         pci_unmap_single(priv->pci_dev,
4729                                          priv->rx_buffers[i].dma_addr,
4730                                          sizeof(struct ipw2100_rx),
4731                                          PCI_DMA_FROMDEVICE);
4732                         dev_kfree_skb(priv->rx_buffers[i].skb);
4733                 }
4734         }
4735
4736         kfree(priv->rx_buffers);
4737         priv->rx_buffers = NULL;
4738
4739         IPW_DEBUG_INFO("exit\n");
4740 }
4741
4742 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4743 {
4744         u32 length = ETH_ALEN;
4745         u8 addr[ETH_ALEN];
4746
4747         int err;
4748
4749         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4750         if (err) {
4751                 IPW_DEBUG_INFO("MAC address read failed\n");
4752                 return -EIO;
4753         }
4754
4755         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4756         IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4757
4758         return 0;
4759 }
4760
4761 /********************************************************************
4762  *
4763  * Firmware Commands
4764  *
4765  ********************************************************************/
4766
4767 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4768 {
4769         struct host_command cmd = {
4770                 .host_command = ADAPTER_ADDRESS,
4771                 .host_command_sequence = 0,
4772                 .host_command_length = ETH_ALEN
4773         };
4774         int err;
4775
4776         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4777
4778         IPW_DEBUG_INFO("enter\n");
4779
4780         if (priv->config & CFG_CUSTOM_MAC) {
4781                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4782                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4783         } else
4784                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4785                        ETH_ALEN);
4786
4787         err = ipw2100_hw_send_command(priv, &cmd);
4788
4789         IPW_DEBUG_INFO("exit\n");
4790         return err;
4791 }
4792
4793 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4794                                  int batch_mode)
4795 {
4796         struct host_command cmd = {
4797                 .host_command = PORT_TYPE,
4798                 .host_command_sequence = 0,
4799                 .host_command_length = sizeof(u32)
4800         };
4801         int err;
4802
4803         switch (port_type) {
4804         case IW_MODE_INFRA:
4805                 cmd.host_command_parameters[0] = IPW_BSS;
4806                 break;
4807         case IW_MODE_ADHOC:
4808                 cmd.host_command_parameters[0] = IPW_IBSS;
4809                 break;
4810         }
4811
4812         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4813                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4814
4815         if (!batch_mode) {
4816                 err = ipw2100_disable_adapter(priv);
4817                 if (err) {
4818                         printk(KERN_ERR DRV_NAME
4819                                ": %s: Could not disable adapter %d\n",
4820                                priv->net_dev->name, err);
4821                         return err;
4822                 }
4823         }
4824
4825         /* send cmd to firmware */
4826         err = ipw2100_hw_send_command(priv, &cmd);
4827
4828         if (!batch_mode)
4829                 ipw2100_enable_adapter(priv);
4830
4831         return err;
4832 }
4833
4834 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4835                                int batch_mode)
4836 {
4837         struct host_command cmd = {
4838                 .host_command = CHANNEL,
4839                 .host_command_sequence = 0,
4840                 .host_command_length = sizeof(u32)
4841         };
4842         int err;
4843
4844         cmd.host_command_parameters[0] = channel;
4845
4846         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4847
4848         /* If BSS then we don't support channel selection */
4849         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4850                 return 0;
4851
4852         if ((channel != 0) &&
4853             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4854                 return -EINVAL;
4855
4856         if (!batch_mode) {
4857                 err = ipw2100_disable_adapter(priv);
4858                 if (err)
4859                         return err;
4860         }
4861
4862         err = ipw2100_hw_send_command(priv, &cmd);
4863         if (err) {
4864                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4865                 return err;
4866         }
4867
4868         if (channel)
4869                 priv->config |= CFG_STATIC_CHANNEL;
4870         else
4871                 priv->config &= ~CFG_STATIC_CHANNEL;
4872
4873         priv->channel = channel;
4874
4875         if (!batch_mode) {
4876                 err = ipw2100_enable_adapter(priv);
4877                 if (err)
4878                         return err;
4879         }
4880
4881         return 0;
4882 }
4883
4884 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4885 {
4886         struct host_command cmd = {
4887                 .host_command = SYSTEM_CONFIG,
4888                 .host_command_sequence = 0,
4889                 .host_command_length = 12,
4890         };
4891         u32 ibss_mask, len = sizeof(u32);
4892         int err;
4893
4894         /* Set system configuration */
4895
4896         if (!batch_mode) {
4897                 err = ipw2100_disable_adapter(priv);
4898                 if (err)
4899                         return err;
4900         }
4901
4902         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4903                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4904
4905         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4906             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4907
4908         if (!(priv->config & CFG_LONG_PREAMBLE))
4909                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4910
4911         err = ipw2100_get_ordinal(priv,
4912                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4913                                   &ibss_mask, &len);
4914         if (err)
4915                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4916
4917         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4918         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4919
4920         /* 11b only */
4921         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4922
4923         err = ipw2100_hw_send_command(priv, &cmd);
4924         if (err)
4925                 return err;
4926
4927 /* If IPv6 is configured in the kernel then we don't want to filter out all
4928  * of the multicast packets as IPv6 needs some. */
4929 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4930         cmd.host_command = ADD_MULTICAST;
4931         cmd.host_command_sequence = 0;
4932         cmd.host_command_length = 0;
4933
4934         ipw2100_hw_send_command(priv, &cmd);
4935 #endif
4936         if (!batch_mode) {
4937                 err = ipw2100_enable_adapter(priv);
4938                 if (err)
4939                         return err;
4940         }
4941
4942         return 0;
4943 }
4944
4945 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4946                                 int batch_mode)
4947 {
4948         struct host_command cmd = {
4949                 .host_command = BASIC_TX_RATES,
4950                 .host_command_sequence = 0,
4951                 .host_command_length = 4
4952         };
4953         int err;
4954
4955         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4956
4957         if (!batch_mode) {
4958                 err = ipw2100_disable_adapter(priv);
4959                 if (err)
4960                         return err;
4961         }
4962
4963         /* Set BASIC TX Rate first */
4964         ipw2100_hw_send_command(priv, &cmd);
4965
4966         /* Set TX Rate */
4967         cmd.host_command = TX_RATES;
4968         ipw2100_hw_send_command(priv, &cmd);
4969
4970         /* Set MSDU TX Rate */
4971         cmd.host_command = MSDU_TX_RATES;
4972         ipw2100_hw_send_command(priv, &cmd);
4973
4974         if (!batch_mode) {
4975                 err = ipw2100_enable_adapter(priv);
4976                 if (err)
4977                         return err;
4978         }
4979
4980         priv->tx_rates = rate;
4981
4982         return 0;
4983 }
4984
4985 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4986 {
4987         struct host_command cmd = {
4988                 .host_command = POWER_MODE,
4989                 .host_command_sequence = 0,
4990                 .host_command_length = 4
4991         };
4992         int err;
4993
4994         cmd.host_command_parameters[0] = power_level;
4995
4996         err = ipw2100_hw_send_command(priv, &cmd);
4997         if (err)
4998                 return err;
4999
5000         if (power_level == IPW_POWER_MODE_CAM)
5001                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
5002         else
5003                 priv->power_mode = IPW_POWER_ENABLED | power_level;
5004
5005 #ifdef IPW2100_TX_POWER
5006         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
5007                 /* Set beacon interval */
5008                 cmd.host_command = TX_POWER_INDEX;
5009                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
5010
5011                 err = ipw2100_hw_send_command(priv, &cmd);
5012                 if (err)
5013                         return err;
5014         }
5015 #endif
5016
5017         return 0;
5018 }
5019
5020 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
5021 {
5022         struct host_command cmd = {
5023                 .host_command = RTS_THRESHOLD,
5024                 .host_command_sequence = 0,
5025                 .host_command_length = 4
5026         };
5027         int err;
5028
5029         if (threshold & RTS_DISABLED)
5030                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
5031         else
5032                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
5033
5034         err = ipw2100_hw_send_command(priv, &cmd);
5035         if (err)
5036                 return err;
5037
5038         priv->rts_threshold = threshold;
5039
5040         return 0;
5041 }
5042
5043 #if 0
5044 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
5045                                         u32 threshold, int batch_mode)
5046 {
5047         struct host_command cmd = {
5048                 .host_command = FRAG_THRESHOLD,
5049                 .host_command_sequence = 0,
5050                 .host_command_length = 4,
5051                 .host_command_parameters[0] = 0,
5052         };
5053         int err;
5054
5055         if (!batch_mode) {
5056                 err = ipw2100_disable_adapter(priv);
5057                 if (err)
5058                         return err;
5059         }
5060
5061         if (threshold == 0)
5062                 threshold = DEFAULT_FRAG_THRESHOLD;
5063         else {
5064                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5065                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5066         }
5067
5068         cmd.host_command_parameters[0] = threshold;
5069
5070         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5071
5072         err = ipw2100_hw_send_command(priv, &cmd);
5073
5074         if (!batch_mode)
5075                 ipw2100_enable_adapter(priv);
5076
5077         if (!err)
5078                 priv->frag_threshold = threshold;
5079
5080         return err;
5081 }
5082 #endif
5083
5084 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5085 {
5086         struct host_command cmd = {
5087                 .host_command = SHORT_RETRY_LIMIT,
5088                 .host_command_sequence = 0,
5089                 .host_command_length = 4
5090         };
5091         int err;
5092
5093         cmd.host_command_parameters[0] = retry;
5094
5095         err = ipw2100_hw_send_command(priv, &cmd);
5096         if (err)
5097                 return err;
5098
5099         priv->short_retry_limit = retry;
5100
5101         return 0;
5102 }
5103
5104 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5105 {
5106         struct host_command cmd = {
5107                 .host_command = LONG_RETRY_LIMIT,
5108                 .host_command_sequence = 0,
5109                 .host_command_length = 4
5110         };
5111         int err;
5112
5113         cmd.host_command_parameters[0] = retry;
5114
5115         err = ipw2100_hw_send_command(priv, &cmd);
5116         if (err)
5117                 return err;
5118
5119         priv->long_retry_limit = retry;
5120
5121         return 0;
5122 }
5123
5124 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5125                                        int batch_mode)
5126 {
5127         struct host_command cmd = {
5128                 .host_command = MANDATORY_BSSID,
5129                 .host_command_sequence = 0,
5130                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5131         };
5132         int err;
5133
5134 #ifdef CONFIG_IPW2100_DEBUG
5135         if (bssid != NULL)
5136                 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5137         else
5138                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5139 #endif
5140         /* if BSSID is empty then we disable mandatory bssid mode */
5141         if (bssid != NULL)
5142                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5143
5144         if (!batch_mode) {
5145                 err = ipw2100_disable_adapter(priv);
5146                 if (err)
5147                         return err;
5148         }
5149
5150         err = ipw2100_hw_send_command(priv, &cmd);
5151
5152         if (!batch_mode)
5153                 ipw2100_enable_adapter(priv);
5154
5155         return err;
5156 }
5157
5158 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5159 {
5160         struct host_command cmd = {
5161                 .host_command = DISASSOCIATION_BSSID,
5162                 .host_command_sequence = 0,
5163                 .host_command_length = ETH_ALEN
5164         };
5165         int err;
5166         int len;
5167
5168         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5169
5170         len = ETH_ALEN;
5171         /* The Firmware currently ignores the BSSID and just disassociates from
5172          * the currently associated AP -- but in the off chance that a future
5173          * firmware does use the BSSID provided here, we go ahead and try and
5174          * set it to the currently associated AP's BSSID */
5175         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5176
5177         err = ipw2100_hw_send_command(priv, &cmd);
5178
5179         return err;
5180 }
5181
5182 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5183                               struct ipw2100_wpa_assoc_frame *, int)
5184     __attribute__ ((unused));
5185
5186 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5187                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5188                               int batch_mode)
5189 {
5190         struct host_command cmd = {
5191                 .host_command = SET_WPA_IE,
5192                 .host_command_sequence = 0,
5193                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5194         };
5195         int err;
5196
5197         IPW_DEBUG_HC("SET_WPA_IE\n");
5198
5199         if (!batch_mode) {
5200                 err = ipw2100_disable_adapter(priv);
5201                 if (err)
5202                         return err;
5203         }
5204
5205         memcpy(cmd.host_command_parameters, wpa_frame,
5206                sizeof(struct ipw2100_wpa_assoc_frame));
5207
5208         err = ipw2100_hw_send_command(priv, &cmd);
5209
5210         if (!batch_mode) {
5211                 if (ipw2100_enable_adapter(priv))
5212                         err = -EIO;
5213         }
5214
5215         return err;
5216 }
5217
5218 struct security_info_params {
5219         u32 allowed_ciphers;
5220         u16 version;
5221         u8 auth_mode;
5222         u8 replay_counters_number;
5223         u8 unicast_using_group;
5224 } __packed;
5225
5226 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5227                                             int auth_mode,
5228                                             int security_level,
5229                                             int unicast_using_group,
5230                                             int batch_mode)
5231 {
5232         struct host_command cmd = {
5233                 .host_command = SET_SECURITY_INFORMATION,
5234                 .host_command_sequence = 0,
5235                 .host_command_length = sizeof(struct security_info_params)
5236         };
5237         struct security_info_params *security =
5238             (struct security_info_params *)&cmd.host_command_parameters;
5239         int err;
5240         memset(security, 0, sizeof(*security));
5241
5242         /* If shared key AP authentication is turned on, then we need to
5243          * configure the firmware to try and use it.
5244          *
5245          * Actual data encryption/decryption is handled by the host. */
5246         security->auth_mode = auth_mode;
5247         security->unicast_using_group = unicast_using_group;
5248
5249         switch (security_level) {
5250         default:
5251         case SEC_LEVEL_0:
5252                 security->allowed_ciphers = IPW_NONE_CIPHER;
5253                 break;
5254         case SEC_LEVEL_1:
5255                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5256                     IPW_WEP104_CIPHER;
5257                 break;
5258         case SEC_LEVEL_2:
5259                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5260                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5261                 break;
5262         case SEC_LEVEL_2_CKIP:
5263                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5264                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5265                 break;
5266         case SEC_LEVEL_3:
5267                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5268                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5269                 break;
5270         }
5271
5272         IPW_DEBUG_HC
5273             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5274              security->auth_mode, security->allowed_ciphers, security_level);
5275
5276         security->replay_counters_number = 0;
5277
5278         if (!batch_mode) {
5279                 err = ipw2100_disable_adapter(priv);
5280                 if (err)
5281                         return err;
5282         }
5283
5284         err = ipw2100_hw_send_command(priv, &cmd);
5285
5286         if (!batch_mode)
5287                 ipw2100_enable_adapter(priv);
5288
5289         return err;
5290 }
5291
5292 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5293 {
5294         struct host_command cmd = {
5295                 .host_command = TX_POWER_INDEX,
5296                 .host_command_sequence = 0,
5297                 .host_command_length = 4
5298         };
5299         int err = 0;
5300         u32 tmp = tx_power;
5301
5302         if (tx_power != IPW_TX_POWER_DEFAULT)
5303                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5304                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5305
5306         cmd.host_command_parameters[0] = tmp;
5307
5308         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5309                 err = ipw2100_hw_send_command(priv, &cmd);
5310         if (!err)
5311                 priv->tx_power = tx_power;
5312
5313         return 0;
5314 }
5315
5316 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5317                                             u32 interval, int batch_mode)
5318 {
5319         struct host_command cmd = {
5320                 .host_command = BEACON_INTERVAL,
5321                 .host_command_sequence = 0,
5322                 .host_command_length = 4
5323         };
5324         int err;
5325
5326         cmd.host_command_parameters[0] = interval;
5327
5328         IPW_DEBUG_INFO("enter\n");
5329
5330         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5331                 if (!batch_mode) {
5332                         err = ipw2100_disable_adapter(priv);
5333                         if (err)
5334                                 return err;
5335                 }
5336
5337                 ipw2100_hw_send_command(priv, &cmd);
5338
5339                 if (!batch_mode) {
5340                         err = ipw2100_enable_adapter(priv);
5341                         if (err)
5342                                 return err;
5343                 }
5344         }
5345
5346         IPW_DEBUG_INFO("exit\n");
5347
5348         return 0;
5349 }
5350
5351 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5352 {
5353         ipw2100_tx_initialize(priv);
5354         ipw2100_rx_initialize(priv);
5355         ipw2100_msg_initialize(priv);
5356 }
5357
5358 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5359 {
5360         ipw2100_tx_free(priv);
5361         ipw2100_rx_free(priv);
5362         ipw2100_msg_free(priv);
5363 }
5364
5365 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5366 {
5367         if (ipw2100_tx_allocate(priv) ||
5368             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5369                 goto fail;
5370
5371         return 0;
5372
5373       fail:
5374         ipw2100_tx_free(priv);
5375         ipw2100_rx_free(priv);
5376         ipw2100_msg_free(priv);
5377         return -ENOMEM;
5378 }
5379
5380 #define IPW_PRIVACY_CAPABLE 0x0008
5381
5382 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5383                                  int batch_mode)
5384 {
5385         struct host_command cmd = {
5386                 .host_command = WEP_FLAGS,
5387                 .host_command_sequence = 0,
5388                 .host_command_length = 4
5389         };
5390         int err;
5391
5392         cmd.host_command_parameters[0] = flags;
5393
5394         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5395
5396         if (!batch_mode) {
5397                 err = ipw2100_disable_adapter(priv);
5398                 if (err) {
5399                         printk(KERN_ERR DRV_NAME
5400                                ": %s: Could not disable adapter %d\n",
5401                                priv->net_dev->name, err);
5402                         return err;
5403                 }
5404         }
5405
5406         /* send cmd to firmware */
5407         err = ipw2100_hw_send_command(priv, &cmd);
5408
5409         if (!batch_mode)
5410                 ipw2100_enable_adapter(priv);
5411
5412         return err;
5413 }
5414
5415 struct ipw2100_wep_key {
5416         u8 idx;
5417         u8 len;
5418         u8 key[13];
5419 };
5420
5421 /* Macros to ease up priting WEP keys */
5422 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5423 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5424 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5425 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5426
5427 /**
5428  * Set a the wep key
5429  *
5430  * @priv: struct to work on
5431  * @idx: index of the key we want to set
5432  * @key: ptr to the key data to set
5433  * @len: length of the buffer at @key
5434  * @batch_mode: FIXME perform the operation in batch mode, not
5435  *              disabling the device.
5436  *
5437  * @returns 0 if OK, < 0 errno code on error.
5438  *
5439  * Fill out a command structure with the new wep key, length an
5440  * index and send it down the wire.
5441  */
5442 static int ipw2100_set_key(struct ipw2100_priv *priv,
5443                            int idx, char *key, int len, int batch_mode)
5444 {
5445         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5446         struct host_command cmd = {
5447                 .host_command = WEP_KEY_INFO,
5448                 .host_command_sequence = 0,
5449                 .host_command_length = sizeof(struct ipw2100_wep_key),
5450         };
5451         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5452         int err;
5453
5454         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5455                      idx, keylen, len);
5456
5457         /* NOTE: We don't check cached values in case the firmware was reset
5458          * or some other problem is occurring.  If the user is setting the key,
5459          * then we push the change */
5460
5461         wep_key->idx = idx;
5462         wep_key->len = keylen;
5463
5464         if (keylen) {
5465                 memcpy(wep_key->key, key, len);
5466                 memset(wep_key->key + len, 0, keylen - len);
5467         }
5468
5469         /* Will be optimized out on debug not being configured in */
5470         if (keylen == 0)
5471                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5472                               priv->net_dev->name, wep_key->idx);
5473         else if (keylen == 5)
5474                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5475                               priv->net_dev->name, wep_key->idx, wep_key->len,
5476                               WEP_STR_64(wep_key->key));
5477         else
5478                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5479                               "\n",
5480                               priv->net_dev->name, wep_key->idx, wep_key->len,
5481                               WEP_STR_128(wep_key->key));
5482
5483         if (!batch_mode) {
5484                 err = ipw2100_disable_adapter(priv);
5485                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5486                 if (err) {
5487                         printk(KERN_ERR DRV_NAME
5488                                ": %s: Could not disable adapter %d\n",
5489                                priv->net_dev->name, err);
5490                         return err;
5491                 }
5492         }
5493
5494         /* send cmd to firmware */
5495         err = ipw2100_hw_send_command(priv, &cmd);
5496
5497         if (!batch_mode) {
5498                 int err2 = ipw2100_enable_adapter(priv);
5499                 if (err == 0)
5500                         err = err2;
5501         }
5502         return err;
5503 }
5504
5505 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5506                                  int idx, int batch_mode)
5507 {
5508         struct host_command cmd = {
5509                 .host_command = WEP_KEY_INDEX,
5510                 .host_command_sequence = 0,
5511                 .host_command_length = 4,
5512                 .host_command_parameters = {idx},
5513         };
5514         int err;
5515
5516         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5517
5518         if (idx < 0 || idx > 3)
5519                 return -EINVAL;
5520
5521         if (!batch_mode) {
5522                 err = ipw2100_disable_adapter(priv);
5523                 if (err) {
5524                         printk(KERN_ERR DRV_NAME
5525                                ": %s: Could not disable adapter %d\n",
5526                                priv->net_dev->name, err);
5527                         return err;
5528                 }
5529         }
5530
5531         /* send cmd to firmware */
5532         err = ipw2100_hw_send_command(priv, &cmd);
5533
5534         if (!batch_mode)
5535                 ipw2100_enable_adapter(priv);
5536
5537         return err;
5538 }
5539
5540 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5541 {
5542         int i, err, auth_mode, sec_level, use_group;
5543
5544         if (!(priv->status & STATUS_RUNNING))
5545                 return 0;
5546
5547         if (!batch_mode) {
5548                 err = ipw2100_disable_adapter(priv);
5549                 if (err)
5550                         return err;
5551         }
5552
5553         if (!priv->ieee->sec.enabled) {
5554                 err =
5555                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5556                                                      SEC_LEVEL_0, 0, 1);
5557         } else {
5558                 auth_mode = IPW_AUTH_OPEN;
5559                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5560                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5561                                 auth_mode = IPW_AUTH_SHARED;
5562                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5563                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5564                 }
5565
5566                 sec_level = SEC_LEVEL_0;
5567                 if (priv->ieee->sec.flags & SEC_LEVEL)
5568                         sec_level = priv->ieee->sec.level;
5569
5570                 use_group = 0;
5571                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5572                         use_group = priv->ieee->sec.unicast_uses_group;
5573
5574                 err =
5575                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5576                                                      use_group, 1);
5577         }
5578
5579         if (err)
5580                 goto exit;
5581
5582         if (priv->ieee->sec.enabled) {
5583                 for (i = 0; i < 4; i++) {
5584                         if (!(priv->ieee->sec.flags & (1 << i))) {
5585                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5586                                 priv->ieee->sec.key_sizes[i] = 0;
5587                         } else {
5588                                 err = ipw2100_set_key(priv, i,
5589                                                       priv->ieee->sec.keys[i],
5590                                                       priv->ieee->sec.
5591                                                       key_sizes[i], 1);
5592                                 if (err)
5593                                         goto exit;
5594                         }
5595                 }
5596
5597                 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5598         }
5599
5600         /* Always enable privacy so the Host can filter WEP packets if
5601          * encrypted data is sent up */
5602         err =
5603             ipw2100_set_wep_flags(priv,
5604                                   priv->ieee->sec.
5605                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5606         if (err)
5607                 goto exit;
5608
5609         priv->status &= ~STATUS_SECURITY_UPDATED;
5610
5611       exit:
5612         if (!batch_mode)
5613                 ipw2100_enable_adapter(priv);
5614
5615         return err;
5616 }
5617
5618 static void ipw2100_security_work(struct work_struct *work)
5619 {
5620         struct ipw2100_priv *priv =
5621                 container_of(work, struct ipw2100_priv, security_work.work);
5622
5623         /* If we happen to have reconnected before we get a chance to
5624          * process this, then update the security settings--which causes
5625          * a disassociation to occur */
5626         if (!(priv->status & STATUS_ASSOCIATED) &&
5627             priv->status & STATUS_SECURITY_UPDATED)
5628                 ipw2100_configure_security(priv, 0);
5629 }
5630
5631 static void shim__set_security(struct net_device *dev,
5632                                struct libipw_security *sec)
5633 {
5634         struct ipw2100_priv *priv = libipw_priv(dev);
5635         int i, force_update = 0;
5636
5637         mutex_lock(&priv->action_mutex);
5638         if (!(priv->status & STATUS_INITIALIZED))
5639                 goto done;
5640
5641         for (i = 0; i < 4; i++) {
5642                 if (sec->flags & (1 << i)) {
5643                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5644                         if (sec->key_sizes[i] == 0)
5645                                 priv->ieee->sec.flags &= ~(1 << i);
5646                         else
5647                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5648                                        sec->key_sizes[i]);
5649                         if (sec->level == SEC_LEVEL_1) {
5650                                 priv->ieee->sec.flags |= (1 << i);
5651                                 priv->status |= STATUS_SECURITY_UPDATED;
5652                         } else
5653                                 priv->ieee->sec.flags &= ~(1 << i);
5654                 }
5655         }
5656
5657         if ((sec->flags & SEC_ACTIVE_KEY) &&
5658             priv->ieee->sec.active_key != sec->active_key) {
5659                 if (sec->active_key <= 3) {
5660                         priv->ieee->sec.active_key = sec->active_key;
5661                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5662                 } else
5663                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5664
5665                 priv->status |= STATUS_SECURITY_UPDATED;
5666         }
5667
5668         if ((sec->flags & SEC_AUTH_MODE) &&
5669             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5670                 priv->ieee->sec.auth_mode = sec->auth_mode;
5671                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5672                 priv->status |= STATUS_SECURITY_UPDATED;
5673         }
5674
5675         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5676                 priv->ieee->sec.flags |= SEC_ENABLED;
5677                 priv->ieee->sec.enabled = sec->enabled;
5678                 priv->status |= STATUS_SECURITY_UPDATED;
5679                 force_update = 1;
5680         }
5681
5682         if (sec->flags & SEC_ENCRYPT)
5683                 priv->ieee->sec.encrypt = sec->encrypt;
5684
5685         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5686                 priv->ieee->sec.level = sec->level;
5687                 priv->ieee->sec.flags |= SEC_LEVEL;
5688                 priv->status |= STATUS_SECURITY_UPDATED;
5689         }
5690
5691         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5692                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5693                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5694                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5695                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5696                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5697                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5698                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5699                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5700                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5701
5702 /* As a temporary work around to enable WPA until we figure out why
5703  * wpa_supplicant toggles the security capability of the driver, which
5704  * forces a disassocation with force_update...
5705  *
5706  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5707         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5708                 ipw2100_configure_security(priv, 0);
5709       done:
5710         mutex_unlock(&priv->action_mutex);
5711 }
5712
5713 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5714 {
5715         int err;
5716         int batch_mode = 1;
5717         u8 *bssid;
5718
5719         IPW_DEBUG_INFO("enter\n");
5720
5721         err = ipw2100_disable_adapter(priv);
5722         if (err)
5723                 return err;
5724 #ifdef CONFIG_IPW2100_MONITOR
5725         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5726                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5727                 if (err)
5728                         return err;
5729
5730                 IPW_DEBUG_INFO("exit\n");
5731
5732                 return 0;
5733         }
5734 #endif                          /* CONFIG_IPW2100_MONITOR */
5735
5736         err = ipw2100_read_mac_address(priv);
5737         if (err)
5738                 return -EIO;
5739
5740         err = ipw2100_set_mac_address(priv, batch_mode);
5741         if (err)
5742                 return err;
5743
5744         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5745         if (err)
5746                 return err;
5747
5748         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5749                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5750                 if (err)
5751                         return err;
5752         }
5753
5754         err = ipw2100_system_config(priv, batch_mode);
5755         if (err)
5756                 return err;
5757
5758         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5759         if (err)
5760                 return err;
5761
5762         /* Default to power mode OFF */
5763         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5764         if (err)
5765                 return err;
5766
5767         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5768         if (err)
5769                 return err;
5770
5771         if (priv->config & CFG_STATIC_BSSID)
5772                 bssid = priv->bssid;
5773         else
5774                 bssid = NULL;
5775         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5776         if (err)
5777                 return err;
5778
5779         if (priv->config & CFG_STATIC_ESSID)
5780                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5781                                         batch_mode);
5782         else
5783                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5784         if (err)
5785                 return err;
5786
5787         err = ipw2100_configure_security(priv, batch_mode);
5788         if (err)
5789                 return err;
5790
5791         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5792                 err =
5793                     ipw2100_set_ibss_beacon_interval(priv,
5794                                                      priv->beacon_interval,
5795                                                      batch_mode);
5796                 if (err)
5797                         return err;
5798
5799                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5800                 if (err)
5801                         return err;
5802         }
5803
5804         /*
5805            err = ipw2100_set_fragmentation_threshold(
5806            priv, priv->frag_threshold, batch_mode);
5807            if (err)
5808            return err;
5809          */
5810
5811         IPW_DEBUG_INFO("exit\n");
5812
5813         return 0;
5814 }
5815
5816 /*************************************************************************
5817  *
5818  * EXTERNALLY CALLED METHODS
5819  *
5820  *************************************************************************/
5821
5822 /* This method is called by the network layer -- not to be confused with
5823  * ipw2100_set_mac_address() declared above called by this driver (and this
5824  * method as well) to talk to the firmware */
5825 static int ipw2100_set_address(struct net_device *dev, void *p)
5826 {
5827         struct ipw2100_priv *priv = libipw_priv(dev);
5828         struct sockaddr *addr = p;
5829         int err = 0;
5830
5831         if (!is_valid_ether_addr(addr->sa_data))
5832                 return -EADDRNOTAVAIL;
5833
5834         mutex_lock(&priv->action_mutex);
5835
5836         priv->config |= CFG_CUSTOM_MAC;
5837         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5838
5839         err = ipw2100_set_mac_address(priv, 0);
5840         if (err)
5841                 goto done;
5842
5843         priv->reset_backoff = 0;
5844         mutex_unlock(&priv->action_mutex);
5845         ipw2100_reset_adapter(&priv->reset_work.work);
5846         return 0;
5847
5848       done:
5849         mutex_unlock(&priv->action_mutex);
5850         return err;
5851 }
5852
5853 static int ipw2100_open(struct net_device *dev)
5854 {
5855         struct ipw2100_priv *priv = libipw_priv(dev);
5856         unsigned long flags;
5857         IPW_DEBUG_INFO("dev->open\n");
5858
5859         spin_lock_irqsave(&priv->low_lock, flags);
5860         if (priv->status & STATUS_ASSOCIATED) {
5861                 netif_carrier_on(dev);
5862                 netif_start_queue(dev);
5863         }
5864         spin_unlock_irqrestore(&priv->low_lock, flags);
5865
5866         return 0;
5867 }
5868
5869 static int ipw2100_close(struct net_device *dev)
5870 {
5871         struct ipw2100_priv *priv = libipw_priv(dev);
5872         unsigned long flags;
5873         struct list_head *element;
5874         struct ipw2100_tx_packet *packet;
5875
5876         IPW_DEBUG_INFO("enter\n");
5877
5878         spin_lock_irqsave(&priv->low_lock, flags);
5879
5880         if (priv->status & STATUS_ASSOCIATED)
5881                 netif_carrier_off(dev);
5882         netif_stop_queue(dev);
5883
5884         /* Flush the TX queue ... */
5885         while (!list_empty(&priv->tx_pend_list)) {
5886                 element = priv->tx_pend_list.next;
5887                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5888
5889                 list_del(element);
5890                 DEC_STAT(&priv->tx_pend_stat);
5891
5892                 libipw_txb_free(packet->info.d_struct.txb);
5893                 packet->info.d_struct.txb = NULL;
5894
5895                 list_add_tail(element, &priv->tx_free_list);
5896                 INC_STAT(&priv->tx_free_stat);
5897         }
5898         spin_unlock_irqrestore(&priv->low_lock, flags);
5899
5900         IPW_DEBUG_INFO("exit\n");
5901
5902         return 0;
5903 }
5904
5905 /*
5906  * TODO:  Fix this function... its just wrong
5907  */
5908 static void ipw2100_tx_timeout(struct net_device *dev)
5909 {
5910         struct ipw2100_priv *priv = libipw_priv(dev);
5911
5912         dev->stats.tx_errors++;
5913
5914 #ifdef CONFIG_IPW2100_MONITOR
5915         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5916                 return;
5917 #endif
5918
5919         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5920                        dev->name);
5921         schedule_reset(priv);
5922 }
5923
5924 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5925 {
5926         /* This is called when wpa_supplicant loads and closes the driver
5927          * interface. */
5928         priv->ieee->wpa_enabled = value;
5929         return 0;
5930 }
5931
5932 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5933 {
5934
5935         struct libipw_device *ieee = priv->ieee;
5936         struct libipw_security sec = {
5937                 .flags = SEC_AUTH_MODE,
5938         };
5939         int ret = 0;
5940
5941         if (value & IW_AUTH_ALG_SHARED_KEY) {
5942                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5943                 ieee->open_wep = 0;
5944         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5945                 sec.auth_mode = WLAN_AUTH_OPEN;
5946                 ieee->open_wep = 1;
5947         } else if (value & IW_AUTH_ALG_LEAP) {
5948                 sec.auth_mode = WLAN_AUTH_LEAP;
5949                 ieee->open_wep = 1;
5950         } else
5951                 return -EINVAL;
5952
5953         if (ieee->set_security)
5954                 ieee->set_security(ieee->dev, &sec);
5955         else
5956                 ret = -EOPNOTSUPP;
5957
5958         return ret;
5959 }
5960
5961 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5962                                     char *wpa_ie, int wpa_ie_len)
5963 {
5964
5965         struct ipw2100_wpa_assoc_frame frame;
5966
5967         frame.fixed_ie_mask = 0;
5968
5969         /* copy WPA IE */
5970         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5971         frame.var_ie_len = wpa_ie_len;
5972
5973         /* make sure WPA is enabled */
5974         ipw2100_wpa_enable(priv, 1);
5975         ipw2100_set_wpa_ie(priv, &frame, 0);
5976 }
5977
5978 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5979                                     struct ethtool_drvinfo *info)
5980 {
5981         struct ipw2100_priv *priv = libipw_priv(dev);
5982         char fw_ver[64], ucode_ver[64];
5983
5984         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5985         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5986
5987         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5988         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5989
5990         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5991                  fw_ver, priv->eeprom_version, ucode_ver);
5992
5993         strlcpy(info->bus_info, pci_name(priv->pci_dev),
5994                 sizeof(info->bus_info));
5995 }
5996
5997 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5998 {
5999         struct ipw2100_priv *priv = libipw_priv(dev);
6000         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
6001 }
6002
6003 static const struct ethtool_ops ipw2100_ethtool_ops = {
6004         .get_link = ipw2100_ethtool_get_link,
6005         .get_drvinfo = ipw_ethtool_get_drvinfo,
6006 };
6007
6008 static void ipw2100_hang_check(struct work_struct *work)
6009 {
6010         struct ipw2100_priv *priv =
6011                 container_of(work, struct ipw2100_priv, hang_check.work);
6012         unsigned long flags;
6013         u32 rtc = 0xa5a5a5a5;
6014         u32 len = sizeof(rtc);
6015         int restart = 0;
6016
6017         spin_lock_irqsave(&priv->low_lock, flags);
6018
6019         if (priv->fatal_error != 0) {
6020                 /* If fatal_error is set then we need to restart */
6021                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
6022                                priv->net_dev->name);
6023
6024                 restart = 1;
6025         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
6026                    (rtc == priv->last_rtc)) {
6027                 /* Check if firmware is hung */
6028                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6029                                priv->net_dev->name);
6030
6031                 restart = 1;
6032         }
6033
6034         if (restart) {
6035                 /* Kill timer */
6036                 priv->stop_hang_check = 1;
6037                 priv->hangs++;
6038
6039                 /* Restart the NIC */
6040                 schedule_reset(priv);
6041         }
6042
6043         priv->last_rtc = rtc;
6044
6045         if (!priv->stop_hang_check)
6046                 schedule_delayed_work(&priv->hang_check, HZ / 2);
6047
6048         spin_unlock_irqrestore(&priv->low_lock, flags);
6049 }
6050
6051 static void ipw2100_rf_kill(struct work_struct *work)
6052 {
6053         struct ipw2100_priv *priv =
6054                 container_of(work, struct ipw2100_priv, rf_kill.work);
6055         unsigned long flags;
6056
6057         spin_lock_irqsave(&priv->low_lock, flags);
6058
6059         if (rf_kill_active(priv)) {
6060                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6061                 if (!priv->stop_rf_kill)
6062                         schedule_delayed_work(&priv->rf_kill,
6063                                               round_jiffies_relative(HZ));
6064                 goto exit_unlock;
6065         }
6066
6067         /* RF Kill is now disabled, so bring the device back up */
6068
6069         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6070                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6071                                   "device\n");
6072                 schedule_reset(priv);
6073