7f0d98b885bc9248f0958de8c77eafdb942f6d85
[linux-3.10.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos_params.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "git-1.2.2"
171
172 #define DRV_NAME        "ipw2100"
173 #define DRV_VERSION     IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
176
177 struct pm_qos_request_list ipw2100_pm_qos_req;
178
179 /* Debugging stuff */
180 #ifdef CONFIG_IPW2100_DEBUG
181 #define IPW2100_RX_DEBUG        /* Reception debugging */
182 #endif
183
184 MODULE_DESCRIPTION(DRV_DESCRIPTION);
185 MODULE_VERSION(DRV_VERSION);
186 MODULE_AUTHOR(DRV_COPYRIGHT);
187 MODULE_LICENSE("GPL");
188
189 static int debug = 0;
190 static int network_mode = 0;
191 static int channel = 0;
192 static int associate = 0;
193 static int disable = 0;
194 #ifdef CONFIG_PM
195 static struct ipw2100_fw ipw2100_firmware;
196 #endif
197
198 #include <linux/moduleparam.h>
199 module_param(debug, int, 0444);
200 module_param_named(mode, network_mode, int, 0444);
201 module_param(channel, int, 0444);
202 module_param(associate, int, 0444);
203 module_param(disable, int, 0444);
204
205 MODULE_PARM_DESC(debug, "debug level");
206 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
207 MODULE_PARM_DESC(channel, "channel");
208 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
209 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
210
211 static u32 ipw2100_debug_level = IPW_DL_NONE;
212
213 #ifdef CONFIG_IPW2100_DEBUG
214 #define IPW_DEBUG(level, message...) \
215 do { \
216         if (ipw2100_debug_level & (level)) { \
217                 printk(KERN_DEBUG "ipw2100: %c %s ", \
218                        in_interrupt() ? 'I' : 'U',  __func__); \
219                 printk(message); \
220         } \
221 } while (0)
222 #else
223 #define IPW_DEBUG(level, message...) do {} while (0)
224 #endif                          /* CONFIG_IPW2100_DEBUG */
225
226 #ifdef CONFIG_IPW2100_DEBUG
227 static const char *command_types[] = {
228         "undefined",
229         "unused",               /* HOST_ATTENTION */
230         "HOST_COMPLETE",
231         "unused",               /* SLEEP */
232         "unused",               /* HOST_POWER_DOWN */
233         "unused",
234         "SYSTEM_CONFIG",
235         "unused",               /* SET_IMR */
236         "SSID",
237         "MANDATORY_BSSID",
238         "AUTHENTICATION_TYPE",
239         "ADAPTER_ADDRESS",
240         "PORT_TYPE",
241         "INTERNATIONAL_MODE",
242         "CHANNEL",
243         "RTS_THRESHOLD",
244         "FRAG_THRESHOLD",
245         "POWER_MODE",
246         "TX_RATES",
247         "BASIC_TX_RATES",
248         "WEP_KEY_INFO",
249         "unused",
250         "unused",
251         "unused",
252         "unused",
253         "WEP_KEY_INDEX",
254         "WEP_FLAGS",
255         "ADD_MULTICAST",
256         "CLEAR_ALL_MULTICAST",
257         "BEACON_INTERVAL",
258         "ATIM_WINDOW",
259         "CLEAR_STATISTICS",
260         "undefined",
261         "undefined",
262         "undefined",
263         "undefined",
264         "TX_POWER_INDEX",
265         "undefined",
266         "undefined",
267         "undefined",
268         "undefined",
269         "undefined",
270         "undefined",
271         "BROADCAST_SCAN",
272         "CARD_DISABLE",
273         "PREFERRED_BSSID",
274         "SET_SCAN_OPTIONS",
275         "SCAN_DWELL_TIME",
276         "SWEEP_TABLE",
277         "AP_OR_STATION_TABLE",
278         "GROUP_ORDINALS",
279         "SHORT_RETRY_LIMIT",
280         "LONG_RETRY_LIMIT",
281         "unused",               /* SAVE_CALIBRATION */
282         "unused",               /* RESTORE_CALIBRATION */
283         "undefined",
284         "undefined",
285         "undefined",
286         "HOST_PRE_POWER_DOWN",
287         "unused",               /* HOST_INTERRUPT_COALESCING */
288         "undefined",
289         "CARD_DISABLE_PHY_OFF",
290         "MSDU_TX_RATES" "undefined",
291         "undefined",
292         "SET_STATION_STAT_BITS",
293         "CLEAR_STATIONS_STAT_BITS",
294         "LEAP_ROGUE_MODE",
295         "SET_SECURITY_INFORMATION",
296         "DISASSOCIATION_BSSID",
297         "SET_WPA_ASS_IE"
298 };
299 #endif
300
301 #define WEXT_USECHANNELS 1
302
303 static const long ipw2100_frequencies[] = {
304         2412, 2417, 2422, 2427,
305         2432, 2437, 2442, 2447,
306         2452, 2457, 2462, 2467,
307         2472, 2484
308 };
309
310 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
311
312 static const long ipw2100_rates_11b[] = {
313         1000000,
314         2000000,
315         5500000,
316         11000000
317 };
318
319 static struct ieee80211_rate ipw2100_bg_rates[] = {
320         { .bitrate = 10 },
321         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
322         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
323         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
324 };
325
326 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
327
328 /* Pre-decl until we get the code solid and then we can clean it up */
329 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
330 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
331 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
332
333 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
334 static void ipw2100_queues_free(struct ipw2100_priv *priv);
335 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
336
337 static int ipw2100_fw_download(struct ipw2100_priv *priv,
338                                struct ipw2100_fw *fw);
339 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
340                                 struct ipw2100_fw *fw);
341 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
342                                  size_t max);
343 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
344                                     size_t max);
345 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
346                                      struct ipw2100_fw *fw);
347 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
348                                   struct ipw2100_fw *fw);
349 static void ipw2100_wx_event_work(struct work_struct *work);
350 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
351 static struct iw_handler_def ipw2100_wx_handler_def;
352
353 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
354 {
355         *val = readl((void __iomem *)(dev->base_addr + reg));
356         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
357 }
358
359 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
360 {
361         writel(val, (void __iomem *)(dev->base_addr + reg));
362         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
363 }
364
365 static inline void read_register_word(struct net_device *dev, u32 reg,
366                                       u16 * val)
367 {
368         *val = readw((void __iomem *)(dev->base_addr + reg));
369         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
370 }
371
372 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
373 {
374         *val = readb((void __iomem *)(dev->base_addr + reg));
375         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380         writew(val, (void __iomem *)(dev->base_addr + reg));
381         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
382 }
383
384 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
385 {
386         writeb(val, (void __iomem *)(dev->base_addr + reg));
387         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
388 }
389
390 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
391 {
392         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
393                        addr & IPW_REG_INDIRECT_ADDR_MASK);
394         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
395 }
396
397 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
398 {
399         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
400                        addr & IPW_REG_INDIRECT_ADDR_MASK);
401         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
402 }
403
404 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
405 {
406         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
407                        addr & IPW_REG_INDIRECT_ADDR_MASK);
408         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
409 }
410
411 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
412 {
413         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
414                        addr & IPW_REG_INDIRECT_ADDR_MASK);
415         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
416 }
417
418 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
419 {
420         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
421                        addr & IPW_REG_INDIRECT_ADDR_MASK);
422         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
423 }
424
425 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
426 {
427         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428                        addr & IPW_REG_INDIRECT_ADDR_MASK);
429         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
430 }
431
432 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
433 {
434         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
435                        addr & IPW_REG_INDIRECT_ADDR_MASK);
436 }
437
438 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
439 {
440         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
441 }
442
443 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
444                                     const u8 * buf)
445 {
446         u32 aligned_addr;
447         u32 aligned_len;
448         u32 dif_len;
449         u32 i;
450
451         /* read first nibble byte by byte */
452         aligned_addr = addr & (~0x3);
453         dif_len = addr - aligned_addr;
454         if (dif_len) {
455                 /* Start reading at aligned_addr + dif_len */
456                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
457                                aligned_addr);
458                 for (i = dif_len; i < 4; i++, buf++)
459                         write_register_byte(dev,
460                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
461                                             *buf);
462
463                 len -= dif_len;
464                 aligned_addr += 4;
465         }
466
467         /* read DWs through autoincrement registers */
468         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
469         aligned_len = len & (~0x3);
470         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
471                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
472
473         /* copy the last nibble */
474         dif_len = len - aligned_len;
475         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
476         for (i = 0; i < dif_len; i++, buf++)
477                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
478                                     *buf);
479 }
480
481 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
482                                    u8 * buf)
483 {
484         u32 aligned_addr;
485         u32 aligned_len;
486         u32 dif_len;
487         u32 i;
488
489         /* read first nibble byte by byte */
490         aligned_addr = addr & (~0x3);
491         dif_len = addr - aligned_addr;
492         if (dif_len) {
493                 /* Start reading at aligned_addr + dif_len */
494                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
495                                aligned_addr);
496                 for (i = dif_len; i < 4; i++, buf++)
497                         read_register_byte(dev,
498                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
499                                            buf);
500
501                 len -= dif_len;
502                 aligned_addr += 4;
503         }
504
505         /* read DWs through autoincrement registers */
506         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
507         aligned_len = len & (~0x3);
508         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
509                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
510
511         /* copy the last nibble */
512         dif_len = len - aligned_len;
513         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
514         for (i = 0; i < dif_len; i++, buf++)
515                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
516 }
517
518 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
519 {
520         return (dev->base_addr &&
521                 (readl
522                  ((void __iomem *)(dev->base_addr +
523                                    IPW_REG_DOA_DEBUG_AREA_START))
524                  == IPW_DATA_DOA_DEBUG_VALUE));
525 }
526
527 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
528                                void *val, u32 * len)
529 {
530         struct ipw2100_ordinals *ordinals = &priv->ordinals;
531         u32 addr;
532         u32 field_info;
533         u16 field_len;
534         u16 field_count;
535         u32 total_length;
536
537         if (ordinals->table1_addr == 0) {
538                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
539                        "before they have been loaded.\n");
540                 return -EINVAL;
541         }
542
543         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
544                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
545                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
546
547                         printk(KERN_WARNING DRV_NAME
548                                ": ordinal buffer length too small, need %zd\n",
549                                IPW_ORD_TAB_1_ENTRY_SIZE);
550
551                         return -EINVAL;
552                 }
553
554                 read_nic_dword(priv->net_dev,
555                                ordinals->table1_addr + (ord << 2), &addr);
556                 read_nic_dword(priv->net_dev, addr, val);
557
558                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
559
560                 return 0;
561         }
562
563         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
564
565                 ord -= IPW_START_ORD_TAB_2;
566
567                 /* get the address of statistic */
568                 read_nic_dword(priv->net_dev,
569                                ordinals->table2_addr + (ord << 3), &addr);
570
571                 /* get the second DW of statistics ;
572                  * two 16-bit words - first is length, second is count */
573                 read_nic_dword(priv->net_dev,
574                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
575                                &field_info);
576
577                 /* get each entry length */
578                 field_len = *((u16 *) & field_info);
579
580                 /* get number of entries */
581                 field_count = *(((u16 *) & field_info) + 1);
582
583                 /* abort if no enough memory */
584                 total_length = field_len * field_count;
585                 if (total_length > *len) {
586                         *len = total_length;
587                         return -EINVAL;
588                 }
589
590                 *len = total_length;
591                 if (!total_length)
592                         return 0;
593
594                 /* read the ordinal data from the SRAM */
595                 read_nic_memory(priv->net_dev, addr, total_length, val);
596
597                 return 0;
598         }
599
600         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
601                "in table 2\n", ord);
602
603         return -EINVAL;
604 }
605
606 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
607                                u32 * len)
608 {
609         struct ipw2100_ordinals *ordinals = &priv->ordinals;
610         u32 addr;
611
612         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
613                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
614                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
615                         IPW_DEBUG_INFO("wrong size\n");
616                         return -EINVAL;
617                 }
618
619                 read_nic_dword(priv->net_dev,
620                                ordinals->table1_addr + (ord << 2), &addr);
621
622                 write_nic_dword(priv->net_dev, addr, *val);
623
624                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
625
626                 return 0;
627         }
628
629         IPW_DEBUG_INFO("wrong table\n");
630         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
631                 return -EINVAL;
632
633         return -EINVAL;
634 }
635
636 static char *snprint_line(char *buf, size_t count,
637                           const u8 * data, u32 len, u32 ofs)
638 {
639         int out, i, j, l;
640         char c;
641
642         out = snprintf(buf, count, "%08X", ofs);
643
644         for (l = 0, i = 0; i < 2; i++) {
645                 out += snprintf(buf + out, count - out, " ");
646                 for (j = 0; j < 8 && l < len; j++, l++)
647                         out += snprintf(buf + out, count - out, "%02X ",
648                                         data[(i * 8 + j)]);
649                 for (; j < 8; j++)
650                         out += snprintf(buf + out, count - out, "   ");
651         }
652
653         out += snprintf(buf + out, count - out, " ");
654         for (l = 0, i = 0; i < 2; i++) {
655                 out += snprintf(buf + out, count - out, " ");
656                 for (j = 0; j < 8 && l < len; j++, l++) {
657                         c = data[(i * 8 + j)];
658                         if (!isascii(c) || !isprint(c))
659                                 c = '.';
660
661                         out += snprintf(buf + out, count - out, "%c", c);
662                 }
663
664                 for (; j < 8; j++)
665                         out += snprintf(buf + out, count - out, " ");
666         }
667
668         return buf;
669 }
670
671 static void printk_buf(int level, const u8 * data, u32 len)
672 {
673         char line[81];
674         u32 ofs = 0;
675         if (!(ipw2100_debug_level & level))
676                 return;
677
678         while (len) {
679                 printk(KERN_DEBUG "%s\n",
680                        snprint_line(line, sizeof(line), &data[ofs],
681                                     min(len, 16U), ofs));
682                 ofs += 16;
683                 len -= min(len, 16U);
684         }
685 }
686
687 #define MAX_RESET_BACKOFF 10
688
689 static void schedule_reset(struct ipw2100_priv *priv)
690 {
691         unsigned long now = get_seconds();
692
693         /* If we haven't received a reset request within the backoff period,
694          * then we can reset the backoff interval so this reset occurs
695          * immediately */
696         if (priv->reset_backoff &&
697             (now - priv->last_reset > priv->reset_backoff))
698                 priv->reset_backoff = 0;
699
700         priv->last_reset = get_seconds();
701
702         if (!(priv->status & STATUS_RESET_PENDING)) {
703                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
704                                priv->net_dev->name, priv->reset_backoff);
705                 netif_carrier_off(priv->net_dev);
706                 netif_stop_queue(priv->net_dev);
707                 priv->status |= STATUS_RESET_PENDING;
708                 if (priv->reset_backoff)
709                         queue_delayed_work(priv->workqueue, &priv->reset_work,
710                                            priv->reset_backoff * HZ);
711                 else
712                         queue_delayed_work(priv->workqueue, &priv->reset_work,
713                                            0);
714
715                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
716                         priv->reset_backoff++;
717
718                 wake_up_interruptible(&priv->wait_command_queue);
719         } else
720                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
721                                priv->net_dev->name);
722
723 }
724
725 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
726 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
727                                    struct host_command *cmd)
728 {
729         struct list_head *element;
730         struct ipw2100_tx_packet *packet;
731         unsigned long flags;
732         int err = 0;
733
734         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
735                      command_types[cmd->host_command], cmd->host_command,
736                      cmd->host_command_length);
737         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
738                    cmd->host_command_length);
739
740         spin_lock_irqsave(&priv->low_lock, flags);
741
742         if (priv->fatal_error) {
743                 IPW_DEBUG_INFO
744                     ("Attempt to send command while hardware in fatal error condition.\n");
745                 err = -EIO;
746                 goto fail_unlock;
747         }
748
749         if (!(priv->status & STATUS_RUNNING)) {
750                 IPW_DEBUG_INFO
751                     ("Attempt to send command while hardware is not running.\n");
752                 err = -EIO;
753                 goto fail_unlock;
754         }
755
756         if (priv->status & STATUS_CMD_ACTIVE) {
757                 IPW_DEBUG_INFO
758                     ("Attempt to send command while another command is pending.\n");
759                 err = -EBUSY;
760                 goto fail_unlock;
761         }
762
763         if (list_empty(&priv->msg_free_list)) {
764                 IPW_DEBUG_INFO("no available msg buffers\n");
765                 goto fail_unlock;
766         }
767
768         priv->status |= STATUS_CMD_ACTIVE;
769         priv->messages_sent++;
770
771         element = priv->msg_free_list.next;
772
773         packet = list_entry(element, struct ipw2100_tx_packet, list);
774         packet->jiffy_start = jiffies;
775
776         /* initialize the firmware command packet */
777         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
778         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
779         packet->info.c_struct.cmd->host_command_len_reg =
780             cmd->host_command_length;
781         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
782
783         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
784                cmd->host_command_parameters,
785                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
786
787         list_del(element);
788         DEC_STAT(&priv->msg_free_stat);
789
790         list_add_tail(element, &priv->msg_pend_list);
791         INC_STAT(&priv->msg_pend_stat);
792
793         ipw2100_tx_send_commands(priv);
794         ipw2100_tx_send_data(priv);
795
796         spin_unlock_irqrestore(&priv->low_lock, flags);
797
798         /*
799          * We must wait for this command to complete before another
800          * command can be sent...  but if we wait more than 3 seconds
801          * then there is a problem.
802          */
803
804         err =
805             wait_event_interruptible_timeout(priv->wait_command_queue,
806                                              !(priv->
807                                                status & STATUS_CMD_ACTIVE),
808                                              HOST_COMPLETE_TIMEOUT);
809
810         if (err == 0) {
811                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
812                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
813                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
814                 priv->status &= ~STATUS_CMD_ACTIVE;
815                 schedule_reset(priv);
816                 return -EIO;
817         }
818
819         if (priv->fatal_error) {
820                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
821                        priv->net_dev->name);
822                 return -EIO;
823         }
824
825         /* !!!!! HACK TEST !!!!!
826          * When lots of debug trace statements are enabled, the driver
827          * doesn't seem to have as many firmware restart cycles...
828          *
829          * As a test, we're sticking in a 1/100s delay here */
830         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
831
832         return 0;
833
834       fail_unlock:
835         spin_unlock_irqrestore(&priv->low_lock, flags);
836
837         return err;
838 }
839
840 /*
841  * Verify the values and data access of the hardware
842  * No locks needed or used.  No functions called.
843  */
844 static int ipw2100_verify(struct ipw2100_priv *priv)
845 {
846         u32 data1, data2;
847         u32 address;
848
849         u32 val1 = 0x76543210;
850         u32 val2 = 0xFEDCBA98;
851
852         /* Domain 0 check - all values should be DOA_DEBUG */
853         for (address = IPW_REG_DOA_DEBUG_AREA_START;
854              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
855                 read_register(priv->net_dev, address, &data1);
856                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
857                         return -EIO;
858         }
859
860         /* Domain 1 check - use arbitrary read/write compare  */
861         for (address = 0; address < 5; address++) {
862                 /* The memory area is not used now */
863                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
864                                val1);
865                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
866                                val2);
867                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
868                               &data1);
869                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
870                               &data2);
871                 if (val1 == data1 && val2 == data2)
872                         return 0;
873         }
874
875         return -EIO;
876 }
877
878 /*
879  *
880  * Loop until the CARD_DISABLED bit is the same value as the
881  * supplied parameter
882  *
883  * TODO: See if it would be more efficient to do a wait/wake
884  *       cycle and have the completion event trigger the wakeup
885  *
886  */
887 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
888 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
889 {
890         int i;
891         u32 card_state;
892         u32 len = sizeof(card_state);
893         int err;
894
895         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
896                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
897                                           &card_state, &len);
898                 if (err) {
899                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
900                                        "failed.\n");
901                         return 0;
902                 }
903
904                 /* We'll break out if either the HW state says it is
905                  * in the state we want, or if HOST_COMPLETE command
906                  * finishes */
907                 if ((card_state == state) ||
908                     ((priv->status & STATUS_ENABLED) ?
909                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
910                         if (state == IPW_HW_STATE_ENABLED)
911                                 priv->status |= STATUS_ENABLED;
912                         else
913                                 priv->status &= ~STATUS_ENABLED;
914
915                         return 0;
916                 }
917
918                 udelay(50);
919         }
920
921         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
922                        state ? "DISABLED" : "ENABLED");
923         return -EIO;
924 }
925
926 /*********************************************************************
927     Procedure   :   sw_reset_and_clock
928     Purpose     :   Asserts s/w reset, asserts clock initialization
929                     and waits for clock stabilization
930  ********************************************************************/
931 static int sw_reset_and_clock(struct ipw2100_priv *priv)
932 {
933         int i;
934         u32 r;
935
936         // assert s/w reset
937         write_register(priv->net_dev, IPW_REG_RESET_REG,
938                        IPW_AUX_HOST_RESET_REG_SW_RESET);
939
940         // wait for clock stabilization
941         for (i = 0; i < 1000; i++) {
942                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
943
944                 // check clock ready bit
945                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
946                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
947                         break;
948         }
949
950         if (i == 1000)
951                 return -EIO;    // TODO: better error value
952
953         /* set "initialization complete" bit to move adapter to
954          * D0 state */
955         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
956                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
957
958         /* wait for clock stabilization */
959         for (i = 0; i < 10000; i++) {
960                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
961
962                 /* check clock ready bit */
963                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
964                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
965                         break;
966         }
967
968         if (i == 10000)
969                 return -EIO;    /* TODO: better error value */
970
971         /* set D0 standby bit */
972         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
973         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
974                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
975
976         return 0;
977 }
978
979 /*********************************************************************
980     Procedure   :   ipw2100_download_firmware
981     Purpose     :   Initiaze adapter after power on.
982                     The sequence is:
983                     1. assert s/w reset first!
984                     2. awake clocks & wait for clock stabilization
985                     3. hold ARC (don't ask me why...)
986                     4. load Dino ucode and reset/clock init again
987                     5. zero-out shared mem
988                     6. download f/w
989  *******************************************************************/
990 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
991 {
992         u32 address;
993         int err;
994
995 #ifndef CONFIG_PM
996         /* Fetch the firmware and microcode */
997         struct ipw2100_fw ipw2100_firmware;
998 #endif
999
1000         if (priv->fatal_error) {
1001                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1002                                 "fatal error %d.  Interface must be brought down.\n",
1003                                 priv->net_dev->name, priv->fatal_error);
1004                 return -EINVAL;
1005         }
1006 #ifdef CONFIG_PM
1007         if (!ipw2100_firmware.version) {
1008                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1009                 if (err) {
1010                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1011                                         priv->net_dev->name, err);
1012                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
1013                         goto fail;
1014                 }
1015         }
1016 #else
1017         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1018         if (err) {
1019                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1020                                 priv->net_dev->name, err);
1021                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1022                 goto fail;
1023         }
1024 #endif
1025         priv->firmware_version = ipw2100_firmware.version;
1026
1027         /* s/w reset and clock stabilization */
1028         err = sw_reset_and_clock(priv);
1029         if (err) {
1030                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1031                                 priv->net_dev->name, err);
1032                 goto fail;
1033         }
1034
1035         err = ipw2100_verify(priv);
1036         if (err) {
1037                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1038                                 priv->net_dev->name, err);
1039                 goto fail;
1040         }
1041
1042         /* Hold ARC */
1043         write_nic_dword(priv->net_dev,
1044                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1045
1046         /* allow ARC to run */
1047         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1048
1049         /* load microcode */
1050         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1051         if (err) {
1052                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1053                        priv->net_dev->name, err);
1054                 goto fail;
1055         }
1056
1057         /* release ARC */
1058         write_nic_dword(priv->net_dev,
1059                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1060
1061         /* s/w reset and clock stabilization (again!!!) */
1062         err = sw_reset_and_clock(priv);
1063         if (err) {
1064                 printk(KERN_ERR DRV_NAME
1065                        ": %s: sw_reset_and_clock failed: %d\n",
1066                        priv->net_dev->name, err);
1067                 goto fail;
1068         }
1069
1070         /* load f/w */
1071         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1072         if (err) {
1073                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1074                                 priv->net_dev->name, err);
1075                 goto fail;
1076         }
1077 #ifndef CONFIG_PM
1078         /*
1079          * When the .resume method of the driver is called, the other
1080          * part of the system, i.e. the ide driver could still stay in
1081          * the suspend stage. This prevents us from loading the firmware
1082          * from the disk.  --YZ
1083          */
1084
1085         /* free any storage allocated for firmware image */
1086         ipw2100_release_firmware(priv, &ipw2100_firmware);
1087 #endif
1088
1089         /* zero out Domain 1 area indirectly (Si requirement) */
1090         for (address = IPW_HOST_FW_SHARED_AREA0;
1091              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1092                 write_nic_dword(priv->net_dev, address, 0);
1093         for (address = IPW_HOST_FW_SHARED_AREA1;
1094              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1095                 write_nic_dword(priv->net_dev, address, 0);
1096         for (address = IPW_HOST_FW_SHARED_AREA2;
1097              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1098                 write_nic_dword(priv->net_dev, address, 0);
1099         for (address = IPW_HOST_FW_SHARED_AREA3;
1100              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1101                 write_nic_dword(priv->net_dev, address, 0);
1102         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1103              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1104                 write_nic_dword(priv->net_dev, address, 0);
1105
1106         return 0;
1107
1108       fail:
1109         ipw2100_release_firmware(priv, &ipw2100_firmware);
1110         return err;
1111 }
1112
1113 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1114 {
1115         if (priv->status & STATUS_INT_ENABLED)
1116                 return;
1117         priv->status |= STATUS_INT_ENABLED;
1118         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1119 }
1120
1121 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1122 {
1123         if (!(priv->status & STATUS_INT_ENABLED))
1124                 return;
1125         priv->status &= ~STATUS_INT_ENABLED;
1126         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1127 }
1128
1129 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1130 {
1131         struct ipw2100_ordinals *ord = &priv->ordinals;
1132
1133         IPW_DEBUG_INFO("enter\n");
1134
1135         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1136                       &ord->table1_addr);
1137
1138         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1139                       &ord->table2_addr);
1140
1141         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1142         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1143
1144         ord->table2_size &= 0x0000FFFF;
1145
1146         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1147         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1148         IPW_DEBUG_INFO("exit\n");
1149 }
1150
1151 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1152 {
1153         u32 reg = 0;
1154         /*
1155          * Set GPIO 3 writable by FW; GPIO 1 writable
1156          * by driver and enable clock
1157          */
1158         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1159                IPW_BIT_GPIO_LED_OFF);
1160         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1161 }
1162
1163 static int rf_kill_active(struct ipw2100_priv *priv)
1164 {
1165 #define MAX_RF_KILL_CHECKS 5
1166 #define RF_KILL_CHECK_DELAY 40
1167
1168         unsigned short value = 0;
1169         u32 reg = 0;
1170         int i;
1171
1172         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1173                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1174                 priv->status &= ~STATUS_RF_KILL_HW;
1175                 return 0;
1176         }
1177
1178         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1179                 udelay(RF_KILL_CHECK_DELAY);
1180                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1181                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1182         }
1183
1184         if (value == 0) {
1185                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1186                 priv->status |= STATUS_RF_KILL_HW;
1187         } else {
1188                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1189                 priv->status &= ~STATUS_RF_KILL_HW;
1190         }
1191
1192         return (value == 0);
1193 }
1194
1195 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1196 {
1197         u32 addr, len;
1198         u32 val;
1199
1200         /*
1201          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1202          */
1203         len = sizeof(addr);
1204         if (ipw2100_get_ordinal
1205             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1206                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1207                                __LINE__);
1208                 return -EIO;
1209         }
1210
1211         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1212
1213         /*
1214          * EEPROM version is the byte at offset 0xfd in firmware
1215          * We read 4 bytes, then shift out the byte we actually want */
1216         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1217         priv->eeprom_version = (val >> 24) & 0xFF;
1218         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1219
1220         /*
1221          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1222          *
1223          *  notice that the EEPROM bit is reverse polarity, i.e.
1224          *     bit = 0  signifies HW RF kill switch is supported
1225          *     bit = 1  signifies HW RF kill switch is NOT supported
1226          */
1227         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1228         if (!((val >> 24) & 0x01))
1229                 priv->hw_features |= HW_FEATURE_RFKILL;
1230
1231         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1232                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1233
1234         return 0;
1235 }
1236
1237 /*
1238  * Start firmware execution after power on and intialization
1239  * The sequence is:
1240  *  1. Release ARC
1241  *  2. Wait for f/w initialization completes;
1242  */
1243 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1244 {
1245         int i;
1246         u32 inta, inta_mask, gpio;
1247
1248         IPW_DEBUG_INFO("enter\n");
1249
1250         if (priv->status & STATUS_RUNNING)
1251                 return 0;
1252
1253         /*
1254          * Initialize the hw - drive adapter to DO state by setting
1255          * init_done bit. Wait for clk_ready bit and Download
1256          * fw & dino ucode
1257          */
1258         if (ipw2100_download_firmware(priv)) {
1259                 printk(KERN_ERR DRV_NAME
1260                        ": %s: Failed to power on the adapter.\n",
1261                        priv->net_dev->name);
1262                 return -EIO;
1263         }
1264
1265         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1266          * in the firmware RBD and TBD ring queue */
1267         ipw2100_queues_initialize(priv);
1268
1269         ipw2100_hw_set_gpio(priv);
1270
1271         /* TODO -- Look at disabling interrupts here to make sure none
1272          * get fired during FW initialization */
1273
1274         /* Release ARC - clear reset bit */
1275         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1276
1277         /* wait for f/w intialization complete */
1278         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1279         i = 5000;
1280         do {
1281                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1282                 /* Todo... wait for sync command ... */
1283
1284                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1285
1286                 /* check "init done" bit */
1287                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1288                         /* reset "init done" bit */
1289                         write_register(priv->net_dev, IPW_REG_INTA,
1290                                        IPW2100_INTA_FW_INIT_DONE);
1291                         break;
1292                 }
1293
1294                 /* check error conditions : we check these after the firmware
1295                  * check so that if there is an error, the interrupt handler
1296                  * will see it and the adapter will be reset */
1297                 if (inta &
1298                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1299                         /* clear error conditions */
1300                         write_register(priv->net_dev, IPW_REG_INTA,
1301                                        IPW2100_INTA_FATAL_ERROR |
1302                                        IPW2100_INTA_PARITY_ERROR);
1303                 }
1304         } while (--i);
1305
1306         /* Clear out any pending INTAs since we aren't supposed to have
1307          * interrupts enabled at this point... */
1308         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1309         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1310         inta &= IPW_INTERRUPT_MASK;
1311         /* Clear out any pending interrupts */
1312         if (inta & inta_mask)
1313                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1314
1315         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1316                      i ? "SUCCESS" : "FAILED");
1317
1318         if (!i) {
1319                 printk(KERN_WARNING DRV_NAME
1320                        ": %s: Firmware did not initialize.\n",
1321                        priv->net_dev->name);
1322                 return -EIO;
1323         }
1324
1325         /* allow firmware to write to GPIO1 & GPIO3 */
1326         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1327
1328         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1329
1330         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1331
1332         /* Ready to receive commands */
1333         priv->status |= STATUS_RUNNING;
1334
1335         /* The adapter has been reset; we are not associated */
1336         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1337
1338         IPW_DEBUG_INFO("exit\n");
1339
1340         return 0;
1341 }
1342
1343 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1344 {
1345         if (!priv->fatal_error)
1346                 return;
1347
1348         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1349         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1350         priv->fatal_error = 0;
1351 }
1352
1353 /* NOTE: Our interrupt is disabled when this method is called */
1354 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1355 {
1356         u32 reg;
1357         int i;
1358
1359         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1360
1361         ipw2100_hw_set_gpio(priv);
1362
1363         /* Step 1. Stop Master Assert */
1364         write_register(priv->net_dev, IPW_REG_RESET_REG,
1365                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1366
1367         /* Step 2. Wait for stop Master Assert
1368          *         (not more than 50us, otherwise ret error */
1369         i = 5;
1370         do {
1371                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1372                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1373
1374                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1375                         break;
1376         } while (--i);
1377
1378         priv->status &= ~STATUS_RESET_PENDING;
1379
1380         if (!i) {
1381                 IPW_DEBUG_INFO
1382                     ("exit - waited too long for master assert stop\n");
1383                 return -EIO;
1384         }
1385
1386         write_register(priv->net_dev, IPW_REG_RESET_REG,
1387                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1388
1389         /* Reset any fatal_error conditions */
1390         ipw2100_reset_fatalerror(priv);
1391
1392         /* At this point, the adapter is now stopped and disabled */
1393         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1394                           STATUS_ASSOCIATED | STATUS_ENABLED);
1395
1396         return 0;
1397 }
1398
1399 /*
1400  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1401  *
1402  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1403  *
1404  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1405  * if STATUS_ASSN_LOST is sent.
1406  */
1407 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1408 {
1409
1410 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1411
1412         struct host_command cmd = {
1413                 .host_command = CARD_DISABLE_PHY_OFF,
1414                 .host_command_sequence = 0,
1415                 .host_command_length = 0,
1416         };
1417         int err, i;
1418         u32 val1, val2;
1419
1420         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1421
1422         /* Turn off the radio */
1423         err = ipw2100_hw_send_command(priv, &cmd);
1424         if (err)
1425                 return err;
1426
1427         for (i = 0; i < 2500; i++) {
1428                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1429                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1430
1431                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1432                     (val2 & IPW2100_COMMAND_PHY_OFF))
1433                         return 0;
1434
1435                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1436         }
1437
1438         return -EIO;
1439 }
1440
1441 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1442 {
1443         struct host_command cmd = {
1444                 .host_command = HOST_COMPLETE,
1445                 .host_command_sequence = 0,
1446                 .host_command_length = 0
1447         };
1448         int err = 0;
1449
1450         IPW_DEBUG_HC("HOST_COMPLETE\n");
1451
1452         if (priv->status & STATUS_ENABLED)
1453                 return 0;
1454
1455         mutex_lock(&priv->adapter_mutex);
1456
1457         if (rf_kill_active(priv)) {
1458                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1459                 goto fail_up;
1460         }
1461
1462         err = ipw2100_hw_send_command(priv, &cmd);
1463         if (err) {
1464                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1465                 goto fail_up;
1466         }
1467
1468         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1469         if (err) {
1470                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1471                                priv->net_dev->name);
1472                 goto fail_up;
1473         }
1474
1475         if (priv->stop_hang_check) {
1476                 priv->stop_hang_check = 0;
1477                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1478         }
1479
1480       fail_up:
1481         mutex_unlock(&priv->adapter_mutex);
1482         return err;
1483 }
1484
1485 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1486 {
1487 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1488
1489         struct host_command cmd = {
1490                 .host_command = HOST_PRE_POWER_DOWN,
1491                 .host_command_sequence = 0,
1492                 .host_command_length = 0,
1493         };
1494         int err, i;
1495         u32 reg;
1496
1497         if (!(priv->status & STATUS_RUNNING))
1498                 return 0;
1499
1500         priv->status |= STATUS_STOPPING;
1501
1502         /* We can only shut down the card if the firmware is operational.  So,
1503          * if we haven't reset since a fatal_error, then we can not send the
1504          * shutdown commands. */
1505         if (!priv->fatal_error) {
1506                 /* First, make sure the adapter is enabled so that the PHY_OFF
1507                  * command can shut it down */
1508                 ipw2100_enable_adapter(priv);
1509
1510                 err = ipw2100_hw_phy_off(priv);
1511                 if (err)
1512                         printk(KERN_WARNING DRV_NAME
1513                                ": Error disabling radio %d\n", err);
1514
1515                 /*
1516                  * If in D0-standby mode going directly to D3 may cause a
1517                  * PCI bus violation.  Therefore we must change out of the D0
1518                  * state.
1519                  *
1520                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1521                  * hardware from going into standby mode and will transition
1522                  * out of D0-standby if it is already in that state.
1523                  *
1524                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1525                  * driver upon completion.  Once received, the driver can
1526                  * proceed to the D3 state.
1527                  *
1528                  * Prepare for power down command to fw.  This command would
1529                  * take HW out of D0-standby and prepare it for D3 state.
1530                  *
1531                  * Currently FW does not support event notification for this
1532                  * event. Therefore, skip waiting for it.  Just wait a fixed
1533                  * 100ms
1534                  */
1535                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1536
1537                 err = ipw2100_hw_send_command(priv, &cmd);
1538                 if (err)
1539                         printk(KERN_WARNING DRV_NAME ": "
1540                                "%s: Power down command failed: Error %d\n",
1541                                priv->net_dev->name, err);
1542                 else
1543                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1544         }
1545
1546         priv->status &= ~STATUS_ENABLED;
1547
1548         /*
1549          * Set GPIO 3 writable by FW; GPIO 1 writable
1550          * by driver and enable clock
1551          */
1552         ipw2100_hw_set_gpio(priv);
1553
1554         /*
1555          * Power down adapter.  Sequence:
1556          * 1. Stop master assert (RESET_REG[9]=1)
1557          * 2. Wait for stop master (RESET_REG[8]==1)
1558          * 3. S/w reset assert (RESET_REG[7] = 1)
1559          */
1560
1561         /* Stop master assert */
1562         write_register(priv->net_dev, IPW_REG_RESET_REG,
1563                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1564
1565         /* wait stop master not more than 50 usec.
1566          * Otherwise return error. */
1567         for (i = 5; i > 0; i--) {
1568                 udelay(10);
1569
1570                 /* Check master stop bit */
1571                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1572
1573                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1574                         break;
1575         }
1576
1577         if (i == 0)
1578                 printk(KERN_WARNING DRV_NAME
1579                        ": %s: Could now power down adapter.\n",
1580                        priv->net_dev->name);
1581
1582         /* assert s/w reset */
1583         write_register(priv->net_dev, IPW_REG_RESET_REG,
1584                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1585
1586         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1587
1588         return 0;
1589 }
1590
1591 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1592 {
1593         struct host_command cmd = {
1594                 .host_command = CARD_DISABLE,
1595                 .host_command_sequence = 0,
1596                 .host_command_length = 0
1597         };
1598         int err = 0;
1599
1600         IPW_DEBUG_HC("CARD_DISABLE\n");
1601
1602         if (!(priv->status & STATUS_ENABLED))
1603                 return 0;
1604
1605         /* Make sure we clear the associated state */
1606         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1607
1608         if (!priv->stop_hang_check) {
1609                 priv->stop_hang_check = 1;
1610                 cancel_delayed_work(&priv->hang_check);
1611         }
1612
1613         mutex_lock(&priv->adapter_mutex);
1614
1615         err = ipw2100_hw_send_command(priv, &cmd);
1616         if (err) {
1617                 printk(KERN_WARNING DRV_NAME
1618                        ": exit - failed to send CARD_DISABLE command\n");
1619                 goto fail_up;
1620         }
1621
1622         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1623         if (err) {
1624                 printk(KERN_WARNING DRV_NAME
1625                        ": exit - card failed to change to DISABLED\n");
1626                 goto fail_up;
1627         }
1628
1629         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1630
1631       fail_up:
1632         mutex_unlock(&priv->adapter_mutex);
1633         return err;
1634 }
1635
1636 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1637 {
1638         struct host_command cmd = {
1639                 .host_command = SET_SCAN_OPTIONS,
1640                 .host_command_sequence = 0,
1641                 .host_command_length = 8
1642         };
1643         int err;
1644
1645         IPW_DEBUG_INFO("enter\n");
1646
1647         IPW_DEBUG_SCAN("setting scan options\n");
1648
1649         cmd.host_command_parameters[0] = 0;
1650
1651         if (!(priv->config & CFG_ASSOCIATE))
1652                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1653         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1654                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1655         if (priv->config & CFG_PASSIVE_SCAN)
1656                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1657
1658         cmd.host_command_parameters[1] = priv->channel_mask;
1659
1660         err = ipw2100_hw_send_command(priv, &cmd);
1661
1662         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1663                      cmd.host_command_parameters[0]);
1664
1665         return err;
1666 }
1667
1668 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1669 {
1670         struct host_command cmd = {
1671                 .host_command = BROADCAST_SCAN,
1672                 .host_command_sequence = 0,
1673                 .host_command_length = 4
1674         };
1675         int err;
1676
1677         IPW_DEBUG_HC("START_SCAN\n");
1678
1679         cmd.host_command_parameters[0] = 0;
1680
1681         /* No scanning if in monitor mode */
1682         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1683                 return 1;
1684
1685         if (priv->status & STATUS_SCANNING) {
1686                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1687                 return 0;
1688         }
1689
1690         IPW_DEBUG_INFO("enter\n");
1691
1692         /* Not clearing here; doing so makes iwlist always return nothing...
1693          *
1694          * We should modify the table logic to use aging tables vs. clearing
1695          * the table on each scan start.
1696          */
1697         IPW_DEBUG_SCAN("starting scan\n");
1698
1699         priv->status |= STATUS_SCANNING;
1700         err = ipw2100_hw_send_command(priv, &cmd);
1701         if (err)
1702                 priv->status &= ~STATUS_SCANNING;
1703
1704         IPW_DEBUG_INFO("exit\n");
1705
1706         return err;
1707 }
1708
1709 static const struct libipw_geo ipw_geos[] = {
1710         {                       /* Restricted */
1711          "---",
1712          .bg_channels = 14,
1713          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1714                 {2427, 4}, {2432, 5}, {2437, 6},
1715                 {2442, 7}, {2447, 8}, {2452, 9},
1716                 {2457, 10}, {2462, 11}, {2467, 12},
1717                 {2472, 13}, {2484, 14}},
1718          },
1719 };
1720
1721 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1722 {
1723         unsigned long flags;
1724         int rc = 0;
1725         u32 lock;
1726         u32 ord_len = sizeof(lock);
1727
1728         /* Age scan list entries found before suspend */
1729         if (priv->suspend_time) {
1730                 libipw_networks_age(priv->ieee, priv->suspend_time);
1731                 priv->suspend_time = 0;
1732         }
1733
1734         /* Quiet if manually disabled. */
1735         if (priv->status & STATUS_RF_KILL_SW) {
1736                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1737                                "switch\n", priv->net_dev->name);
1738                 return 0;
1739         }
1740
1741         /* the ipw2100 hardware really doesn't want power management delays
1742          * longer than 175usec
1743          */
1744         pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1745
1746         /* If the interrupt is enabled, turn it off... */
1747         spin_lock_irqsave(&priv->low_lock, flags);
1748         ipw2100_disable_interrupts(priv);
1749
1750         /* Reset any fatal_error conditions */
1751         ipw2100_reset_fatalerror(priv);
1752         spin_unlock_irqrestore(&priv->low_lock, flags);
1753
1754         if (priv->status & STATUS_POWERED ||
1755             (priv->status & STATUS_RESET_PENDING)) {
1756                 /* Power cycle the card ... */
1757                 if (ipw2100_power_cycle_adapter(priv)) {
1758                         printk(KERN_WARNING DRV_NAME
1759                                ": %s: Could not cycle adapter.\n",
1760                                priv->net_dev->name);
1761                         rc = 1;
1762                         goto exit;
1763                 }
1764         } else
1765                 priv->status |= STATUS_POWERED;
1766
1767         /* Load the firmware, start the clocks, etc. */
1768         if (ipw2100_start_adapter(priv)) {
1769                 printk(KERN_ERR DRV_NAME
1770                        ": %s: Failed to start the firmware.\n",
1771                        priv->net_dev->name);
1772                 rc = 1;
1773                 goto exit;
1774         }
1775
1776         ipw2100_initialize_ordinals(priv);
1777
1778         /* Determine capabilities of this particular HW configuration */
1779         if (ipw2100_get_hw_features(priv)) {
1780                 printk(KERN_ERR DRV_NAME
1781                        ": %s: Failed to determine HW features.\n",
1782                        priv->net_dev->name);
1783                 rc = 1;
1784                 goto exit;
1785         }
1786
1787         /* Initialize the geo */
1788         if (libipw_set_geo(priv->ieee, &ipw_geos[0])) {
1789                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1790                 return 0;
1791         }
1792         priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1793
1794         lock = LOCK_NONE;
1795         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1796                 printk(KERN_ERR DRV_NAME
1797                        ": %s: Failed to clear ordinal lock.\n",
1798                        priv->net_dev->name);
1799                 rc = 1;
1800                 goto exit;
1801         }
1802
1803         priv->status &= ~STATUS_SCANNING;
1804
1805         if (rf_kill_active(priv)) {
1806                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807                        priv->net_dev->name);
1808
1809                 if (priv->stop_rf_kill) {
1810                         priv->stop_rf_kill = 0;
1811                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1812                                            round_jiffies_relative(HZ));
1813                 }
1814
1815                 deferred = 1;
1816         }
1817
1818         /* Turn on the interrupt so that commands can be processed */
1819         ipw2100_enable_interrupts(priv);
1820
1821         /* Send all of the commands that must be sent prior to
1822          * HOST_COMPLETE */
1823         if (ipw2100_adapter_setup(priv)) {
1824                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1825                        priv->net_dev->name);
1826                 rc = 1;
1827                 goto exit;
1828         }
1829
1830         if (!deferred) {
1831                 /* Enable the adapter - sends HOST_COMPLETE */
1832                 if (ipw2100_enable_adapter(priv)) {
1833                         printk(KERN_ERR DRV_NAME ": "
1834                                "%s: failed in call to enable adapter.\n",
1835                                priv->net_dev->name);
1836                         ipw2100_hw_stop_adapter(priv);
1837                         rc = 1;
1838                         goto exit;
1839                 }
1840
1841                 /* Start a scan . . . */
1842                 ipw2100_set_scan_options(priv);
1843                 ipw2100_start_scan(priv);
1844         }
1845
1846       exit:
1847         return rc;
1848 }
1849
1850 static void ipw2100_down(struct ipw2100_priv *priv)
1851 {
1852         unsigned long flags;
1853         union iwreq_data wrqu = {
1854                 .ap_addr = {
1855                             .sa_family = ARPHRD_ETHER}
1856         };
1857         int associated = priv->status & STATUS_ASSOCIATED;
1858
1859         /* Kill the RF switch timer */
1860         if (!priv->stop_rf_kill) {
1861                 priv->stop_rf_kill = 1;
1862                 cancel_delayed_work(&priv->rf_kill);
1863         }
1864
1865         /* Kill the firmware hang check timer */
1866         if (!priv->stop_hang_check) {
1867                 priv->stop_hang_check = 1;
1868                 cancel_delayed_work(&priv->hang_check);
1869         }
1870
1871         /* Kill any pending resets */
1872         if (priv->status & STATUS_RESET_PENDING)
1873                 cancel_delayed_work(&priv->reset_work);
1874
1875         /* Make sure the interrupt is on so that FW commands will be
1876          * processed correctly */
1877         spin_lock_irqsave(&priv->low_lock, flags);
1878         ipw2100_enable_interrupts(priv);
1879         spin_unlock_irqrestore(&priv->low_lock, flags);
1880
1881         if (ipw2100_hw_stop_adapter(priv))
1882                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883                        priv->net_dev->name);
1884
1885         /* Do not disable the interrupt until _after_ we disable
1886          * the adaptor.  Otherwise the CARD_DISABLE command will never
1887          * be ack'd by the firmware */
1888         spin_lock_irqsave(&priv->low_lock, flags);
1889         ipw2100_disable_interrupts(priv);
1890         spin_unlock_irqrestore(&priv->low_lock, flags);
1891
1892         pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1893
1894         /* We have to signal any supplicant if we are disassociating */
1895         if (associated)
1896                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1897
1898         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899         netif_carrier_off(priv->net_dev);
1900         netif_stop_queue(priv->net_dev);
1901 }
1902
1903 /* Called by register_netdev() */
1904 static int ipw2100_net_init(struct net_device *dev)
1905 {
1906         struct ipw2100_priv *priv = libipw_priv(dev);
1907         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1908         struct wireless_dev *wdev = &priv->ieee->wdev;
1909         int ret;
1910         int i;
1911
1912         ret = ipw2100_up(priv, 1);
1913         if (ret)
1914                 return ret;
1915
1916         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1917
1918         /* fill-out priv->ieee->bg_band */
1919         if (geo->bg_channels) {
1920                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1921
1922                 bg_band->band = IEEE80211_BAND_2GHZ;
1923                 bg_band->n_channels = geo->bg_channels;
1924                 bg_band->channels =
1925                         kzalloc(geo->bg_channels *
1926                                 sizeof(struct ieee80211_channel), GFP_KERNEL);
1927                 /* translate geo->bg to bg_band.channels */
1928                 for (i = 0; i < geo->bg_channels; i++) {
1929                         bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1930                         bg_band->channels[i].center_freq = geo->bg[i].freq;
1931                         bg_band->channels[i].hw_value = geo->bg[i].channel;
1932                         bg_band->channels[i].max_power = geo->bg[i].max_power;
1933                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1934                                 bg_band->channels[i].flags |=
1935                                         IEEE80211_CHAN_PASSIVE_SCAN;
1936                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1937                                 bg_band->channels[i].flags |=
1938                                         IEEE80211_CHAN_NO_IBSS;
1939                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1940                                 bg_band->channels[i].flags |=
1941                                         IEEE80211_CHAN_RADAR;
1942                         /* No equivalent for LIBIPW_CH_80211H_RULES,
1943                            LIBIPW_CH_UNIFORM_SPREADING, or
1944                            LIBIPW_CH_B_ONLY... */
1945                 }
1946                 /* point at bitrate info */
1947                 bg_band->bitrates = ipw2100_bg_rates;
1948                 bg_band->n_bitrates = RATE_COUNT;
1949
1950                 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1951         }
1952
1953         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1954         if (wiphy_register(wdev->wiphy)) {
1955                 ipw2100_down(priv);
1956                 return -EIO;
1957         }
1958         return 0;
1959 }
1960
1961 static void ipw2100_reset_adapter(struct work_struct *work)
1962 {
1963         struct ipw2100_priv *priv =
1964                 container_of(work, struct ipw2100_priv, reset_work.work);
1965         unsigned long flags;
1966         union iwreq_data wrqu = {
1967                 .ap_addr = {
1968                             .sa_family = ARPHRD_ETHER}
1969         };
1970         int associated = priv->status & STATUS_ASSOCIATED;
1971
1972         spin_lock_irqsave(&priv->low_lock, flags);
1973         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1974         priv->resets++;
1975         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1976         priv->status |= STATUS_SECURITY_UPDATED;
1977
1978         /* Force a power cycle even if interface hasn't been opened
1979          * yet */
1980         cancel_delayed_work(&priv->reset_work);
1981         priv->status |= STATUS_RESET_PENDING;
1982         spin_unlock_irqrestore(&priv->low_lock, flags);
1983
1984         mutex_lock(&priv->action_mutex);
1985         /* stop timed checks so that they don't interfere with reset */
1986         priv->stop_hang_check = 1;
1987         cancel_delayed_work(&priv->hang_check);
1988
1989         /* We have to signal any supplicant if we are disassociating */
1990         if (associated)
1991                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1992
1993         ipw2100_up(priv, 0);
1994         mutex_unlock(&priv->action_mutex);
1995
1996 }
1997
1998 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1999 {
2000
2001 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2002         int ret;
2003         unsigned int len, essid_len;
2004         char essid[IW_ESSID_MAX_SIZE];
2005         u32 txrate;
2006         u32 chan;
2007         char *txratename;
2008         u8 bssid[ETH_ALEN];
2009         DECLARE_SSID_BUF(ssid);
2010
2011         /*
2012          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2013          *      an actual MAC of the AP. Seems like FW sets this
2014          *      address too late. Read it later and expose through
2015          *      /proc or schedule a later task to query and update
2016          */
2017
2018         essid_len = IW_ESSID_MAX_SIZE;
2019         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2020                                   essid, &essid_len);
2021         if (ret) {
2022                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2023                                __LINE__);
2024                 return;
2025         }
2026
2027         len = sizeof(u32);
2028         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2029         if (ret) {
2030                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2031                                __LINE__);
2032                 return;
2033         }
2034
2035         len = sizeof(u32);
2036         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2037         if (ret) {
2038                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2039                                __LINE__);
2040                 return;
2041         }
2042         len = ETH_ALEN;
2043         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
2044         if (ret) {
2045                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2046                                __LINE__);
2047                 return;
2048         }
2049         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2050
2051         switch (txrate) {
2052         case TX_RATE_1_MBIT:
2053                 txratename = "1Mbps";
2054                 break;
2055         case TX_RATE_2_MBIT:
2056                 txratename = "2Mbsp";
2057                 break;
2058         case TX_RATE_5_5_MBIT:
2059                 txratename = "5.5Mbps";
2060                 break;
2061         case TX_RATE_11_MBIT:
2062                 txratename = "11Mbps";
2063                 break;
2064         default:
2065                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2066                 txratename = "unknown rate";
2067                 break;
2068         }
2069
2070         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2071                        priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2072                        txratename, chan, bssid);
2073
2074         /* now we copy read ssid into dev */
2075         if (!(priv->config & CFG_STATIC_ESSID)) {
2076                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2077                 memcpy(priv->essid, essid, priv->essid_len);
2078         }
2079         priv->channel = chan;
2080         memcpy(priv->bssid, bssid, ETH_ALEN);
2081
2082         priv->status |= STATUS_ASSOCIATING;
2083         priv->connect_start = get_seconds();
2084
2085         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
2086 }
2087
2088 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2089                              int length, int batch_mode)
2090 {
2091         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2092         struct host_command cmd = {
2093                 .host_command = SSID,
2094                 .host_command_sequence = 0,
2095                 .host_command_length = ssid_len
2096         };
2097         int err;
2098         DECLARE_SSID_BUF(ssid);
2099
2100         IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2101
2102         if (ssid_len)
2103                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2104
2105         if (!batch_mode) {
2106                 err = ipw2100_disable_adapter(priv);
2107                 if (err)
2108                         return err;
2109         }
2110
2111         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2112          * disable auto association -- so we cheat by setting a bogus SSID */
2113         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2114                 int i;
2115                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2116                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2117                         bogus[i] = 0x18 + i;
2118                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2119         }
2120
2121         /* NOTE:  We always send the SSID command even if the provided ESSID is
2122          * the same as what we currently think is set. */
2123
2124         err = ipw2100_hw_send_command(priv, &cmd);
2125         if (!err) {
2126                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2127                 memcpy(priv->essid, essid, ssid_len);
2128                 priv->essid_len = ssid_len;
2129         }
2130
2131         if (!batch_mode) {
2132                 if (ipw2100_enable_adapter(priv))
2133                         err = -EIO;
2134         }
2135
2136         return err;
2137 }
2138
2139 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2140 {
2141         DECLARE_SSID_BUF(ssid);
2142
2143         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2144                   "disassociated: '%s' %pM\n",
2145                   print_ssid(ssid, priv->essid, priv->essid_len),
2146                   priv->bssid);
2147
2148         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2149
2150         if (priv->status & STATUS_STOPPING) {
2151                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2152                 return;
2153         }
2154
2155         memset(priv->bssid, 0, ETH_ALEN);
2156         memset(priv->ieee->bssid, 0, ETH_ALEN);
2157
2158         netif_carrier_off(priv->net_dev);
2159         netif_stop_queue(priv->net_dev);
2160
2161         if (!(priv->status & STATUS_RUNNING))
2162                 return;
2163
2164         if (priv->status & STATUS_SECURITY_UPDATED)
2165                 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2166
2167         queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2168 }
2169
2170 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2171 {
2172         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2173                        priv->net_dev->name);
2174
2175         /* RF_KILL is now enabled (else we wouldn't be here) */
2176         wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2177         priv->status |= STATUS_RF_KILL_HW;
2178
2179         /* Make sure the RF Kill check timer is running */
2180         priv->stop_rf_kill = 0;
2181         cancel_delayed_work(&priv->rf_kill);
2182         queue_delayed_work(priv->workqueue, &priv->rf_kill,
2183                            round_jiffies_relative(HZ));
2184 }
2185
2186 static void send_scan_event(void *data)
2187 {
2188         struct ipw2100_priv *priv = data;
2189         union iwreq_data wrqu;
2190
2191         wrqu.data.length = 0;
2192         wrqu.data.flags = 0;
2193         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2194 }
2195
2196 static void ipw2100_scan_event_later(struct work_struct *work)
2197 {
2198         send_scan_event(container_of(work, struct ipw2100_priv,
2199                                         scan_event_later.work));
2200 }
2201
2202 static void ipw2100_scan_event_now(struct work_struct *work)
2203 {
2204         send_scan_event(container_of(work, struct ipw2100_priv,
2205                                         scan_event_now));
2206 }
2207
2208 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2209 {
2210         IPW_DEBUG_SCAN("scan complete\n");
2211         /* Age the scan results... */
2212         priv->ieee->scans++;
2213         priv->status &= ~STATUS_SCANNING;
2214
2215         /* Only userspace-requested scan completion events go out immediately */
2216         if (!priv->user_requested_scan) {
2217                 if (!delayed_work_pending(&priv->scan_event_later))
2218                         queue_delayed_work(priv->workqueue,
2219                                         &priv->scan_event_later,
2220                                         round_jiffies_relative(msecs_to_jiffies(4000)));
2221         } else {
2222                 priv->user_requested_scan = 0;
2223                 cancel_delayed_work(&priv->scan_event_later);
2224                 queue_work(priv->workqueue, &priv->scan_event_now);
2225         }
2226 }
2227
2228 #ifdef CONFIG_IPW2100_DEBUG
2229 #define IPW2100_HANDLER(v, f) { v, f, # v }
2230 struct ipw2100_status_indicator {
2231         int status;
2232         void (*cb) (struct ipw2100_priv * priv, u32 status);
2233         char *name;
2234 };
2235 #else
2236 #define IPW2100_HANDLER(v, f) { v, f }
2237 struct ipw2100_status_indicator {
2238         int status;
2239         void (*cb) (struct ipw2100_priv * priv, u32 status);
2240 };
2241 #endif                          /* CONFIG_IPW2100_DEBUG */
2242
2243 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2244 {
2245         IPW_DEBUG_SCAN("Scanning...\n");
2246         priv->status |= STATUS_SCANNING;
2247 }
2248
2249 static const struct ipw2100_status_indicator status_handlers[] = {
2250         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2251         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2252         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2253         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2254         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2255         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2256         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2257         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2258         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2259         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2260         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2261         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2262         IPW2100_HANDLER(-1, NULL)
2263 };
2264
2265 static void isr_status_change(struct ipw2100_priv *priv, int status)
2266 {
2267         int i;
2268
2269         if (status == IPW_STATE_SCANNING &&
2270             priv->status & STATUS_ASSOCIATED &&
2271             !(priv->status & STATUS_SCANNING)) {
2272                 IPW_DEBUG_INFO("Scan detected while associated, with "
2273                                "no scan request.  Restarting firmware.\n");
2274
2275                 /* Wake up any sleeping jobs */
2276                 schedule_reset(priv);
2277         }
2278
2279         for (i = 0; status_handlers[i].status != -1; i++) {
2280                 if (status == status_handlers[i].status) {
2281                         IPW_DEBUG_NOTIF("Status change: %s\n",
2282                                         status_handlers[i].name);
2283                         if (status_handlers[i].cb)
2284                                 status_handlers[i].cb(priv, status);
2285                         priv->wstats.status = status;
2286                         return;
2287                 }
2288         }
2289
2290         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2291 }
2292
2293 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2294                                     struct ipw2100_cmd_header *cmd)
2295 {
2296 #ifdef CONFIG_IPW2100_DEBUG
2297         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2298                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2299                              command_types[cmd->host_command_reg],
2300                              cmd->host_command_reg);
2301         }
2302 #endif
2303         if (cmd->host_command_reg == HOST_COMPLETE)
2304                 priv->status |= STATUS_ENABLED;
2305
2306         if (cmd->host_command_reg == CARD_DISABLE)
2307                 priv->status &= ~STATUS_ENABLED;
2308
2309         priv->status &= ~STATUS_CMD_ACTIVE;
2310
2311         wake_up_interruptible(&priv->wait_command_queue);
2312 }
2313
2314 #ifdef CONFIG_IPW2100_DEBUG
2315 static const char *frame_types[] = {
2316         "COMMAND_STATUS_VAL",
2317         "STATUS_CHANGE_VAL",
2318         "P80211_DATA_VAL",
2319         "P8023_DATA_VAL",
2320         "HOST_NOTIFICATION_VAL"
2321 };
2322 #endif
2323
2324 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2325                                     struct ipw2100_rx_packet *packet)
2326 {
2327         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2328         if (!packet->skb)
2329                 return -ENOMEM;
2330
2331         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2332         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2333                                           sizeof(struct ipw2100_rx),
2334                                           PCI_DMA_FROMDEVICE);
2335         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2336          *       dma_addr */
2337
2338         return 0;
2339 }
2340
2341 #define SEARCH_ERROR   0xffffffff
2342 #define SEARCH_FAIL    0xfffffffe
2343 #define SEARCH_SUCCESS 0xfffffff0
2344 #define SEARCH_DISCARD 0
2345 #define SEARCH_SNAPSHOT 1
2346
2347 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2348 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2349 {
2350         int i;
2351         if (!priv->snapshot[0])
2352                 return;
2353         for (i = 0; i < 0x30; i++)
2354                 kfree(priv->snapshot[i]);
2355         priv->snapshot[0] = NULL;
2356 }
2357
2358 #ifdef IPW2100_DEBUG_C3
2359 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2360 {
2361         int i;
2362         if (priv->snapshot[0])
2363                 return 1;
2364         for (i = 0; i < 0x30; i++) {
2365                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2366                 if (!priv->snapshot[i]) {
2367                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2368                                        "buffer %d\n", priv->net_dev->name, i);
2369                         while (i > 0)
2370                                 kfree(priv->snapshot[--i]);
2371                         priv->snapshot[0] = NULL;
2372                         return 0;
2373                 }
2374         }
2375
2376         return 1;
2377 }
2378
2379 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2380                                     size_t len, int mode)
2381 {
2382         u32 i, j;
2383         u32 tmp;
2384         u8 *s, *d;
2385         u32 ret;
2386
2387         s = in_buf;
2388         if (mode == SEARCH_SNAPSHOT) {
2389                 if (!ipw2100_snapshot_alloc(priv))
2390                         mode = SEARCH_DISCARD;
2391         }
2392
2393         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2394                 read_nic_dword(priv->net_dev, i, &tmp);
2395                 if (mode == SEARCH_SNAPSHOT)
2396                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2397                 if (ret == SEARCH_FAIL) {
2398                         d = (u8 *) & tmp;
2399                         for (j = 0; j < 4; j++) {
2400                                 if (*s != *d) {
2401                                         s = in_buf;
2402                                         continue;
2403                                 }
2404
2405                                 s++;
2406                                 d++;
2407
2408                                 if ((s - in_buf) == len)
2409                                         ret = (i + j) - len + 1;
2410                         }
2411                 } else if (mode == SEARCH_DISCARD)
2412                         return ret;
2413         }
2414
2415         return ret;
2416 }
2417 #endif
2418
2419 /*
2420  *
2421  * 0) Disconnect the SKB from the firmware (just unmap)
2422  * 1) Pack the ETH header into the SKB
2423  * 2) Pass the SKB to the network stack
2424  *
2425  * When packet is provided by the firmware, it contains the following:
2426  *
2427  * .  libipw_hdr
2428  * .  libipw_snap_hdr
2429  *
2430  * The size of the constructed ethernet
2431  *
2432  */
2433 #ifdef IPW2100_RX_DEBUG
2434 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2435 #endif
2436
2437 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2438 {
2439 #ifdef IPW2100_DEBUG_C3
2440         struct ipw2100_status *status = &priv->status_queue.drv[i];
2441         u32 match, reg;
2442         int j;
2443 #endif
2444
2445         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2446                        i * sizeof(struct ipw2100_status));
2447
2448 #ifdef IPW2100_DEBUG_C3
2449         /* Halt the firmware so we can get a good image */
2450         write_register(priv->net_dev, IPW_REG_RESET_REG,
2451                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2452         j = 5;
2453         do {
2454                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2455                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2456
2457                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2458                         break;
2459         } while (j--);
2460
2461         match = ipw2100_match_buf(priv, (u8 *) status,
2462                                   sizeof(struct ipw2100_status),
2463                                   SEARCH_SNAPSHOT);
2464         if (match < SEARCH_SUCCESS)
2465                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2466                                "offset 0x%06X, length %d:\n",
2467                                priv->net_dev->name, match,
2468                                sizeof(struct ipw2100_status));
2469         else
2470                 IPW_DEBUG_INFO("%s: No DMA status match in "
2471                                "Firmware.\n", priv->net_dev->name);
2472
2473         printk_buf((u8 *) priv->status_queue.drv,
2474                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2475 #endif
2476
2477         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2478         priv->net_dev->stats.rx_errors++;
2479         schedule_reset(priv);
2480 }
2481
2482 static void isr_rx(struct ipw2100_priv *priv, int i,
2483                           struct libipw_rx_stats *stats)
2484 {
2485         struct net_device *dev = priv->net_dev;
2486         struct ipw2100_status *status = &priv->status_queue.drv[i];
2487         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2488
2489         IPW_DEBUG_RX("Handler...\n");
2490
2491         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2492                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2493                                "  Dropping.\n",
2494                                dev->name,
2495                                status->frame_size, skb_tailroom(packet->skb));
2496                 dev->stats.rx_errors++;
2497                 return;
2498         }
2499
2500         if (unlikely(!netif_running(dev))) {
2501                 dev->stats.rx_errors++;
2502                 priv->wstats.discard.misc++;
2503                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2504                 return;
2505         }
2506
2507         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2508                      !(priv->status & STATUS_ASSOCIATED))) {
2509                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2510                 priv->wstats.discard.misc++;
2511                 return;
2512         }
2513
2514         pci_unmap_single(priv->pci_dev,
2515                          packet->dma_addr,
2516                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2517
2518         skb_put(packet->skb, status->frame_size);
2519
2520 #ifdef IPW2100_RX_DEBUG
2521         /* Make a copy of the frame so we can dump it to the logs if
2522          * libipw_rx fails */
2523         skb_copy_from_linear_data(packet->skb, packet_data,
2524                                   min_t(u32, status->frame_size,
2525                                              IPW_RX_NIC_BUFFER_LENGTH));
2526 #endif
2527
2528         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2529 #ifdef IPW2100_RX_DEBUG
2530                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2531                                dev->name);
2532                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2533 #endif
2534                 dev->stats.rx_errors++;
2535
2536                 /* libipw_rx failed, so it didn't free the SKB */
2537                 dev_kfree_skb_any(packet->skb);
2538                 packet->skb = NULL;
2539         }
2540
2541         /* We need to allocate a new SKB and attach it to the RDB. */
2542         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2543                 printk(KERN_WARNING DRV_NAME ": "
2544                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2545                        "adapter.\n", dev->name);
2546                 /* TODO: schedule adapter shutdown */
2547                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2548         }
2549
2550         /* Update the RDB entry */
2551         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2552 }
2553
2554 #ifdef CONFIG_IPW2100_MONITOR
2555
2556 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2557                    struct libipw_rx_stats *stats)
2558 {
2559         struct net_device *dev = priv->net_dev;
2560         struct ipw2100_status *status = &priv->status_queue.drv[i];
2561         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2562
2563         /* Magic struct that slots into the radiotap header -- no reason
2564          * to build this manually element by element, we can write it much
2565          * more efficiently than we can parse it. ORDER MATTERS HERE */
2566         struct ipw_rt_hdr {
2567                 struct ieee80211_radiotap_header rt_hdr;
2568                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2569         } *ipw_rt;
2570
2571         IPW_DEBUG_RX("Handler...\n");
2572
2573         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2574                                 sizeof(struct ipw_rt_hdr))) {
2575                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2576                                "  Dropping.\n",
2577                                dev->name,
2578                                status->frame_size,
2579                                skb_tailroom(packet->skb));
2580                 dev->stats.rx_errors++;
2581                 return;
2582         }
2583
2584         if (unlikely(!netif_running(dev))) {
2585                 dev->stats.rx_errors++;
2586                 priv->wstats.discard.misc++;
2587                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2588                 return;
2589         }
2590
2591         if (unlikely(priv->config & CFG_CRC_CHECK &&
2592                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2593                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2594                 dev->stats.rx_errors++;
2595                 return;
2596         }
2597
2598         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2599                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2600         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2601                 packet->skb->data, status->frame_size);
2602
2603         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2604
2605         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2606         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2607         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2608
2609         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2610
2611         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2612
2613         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2614
2615         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2616                 dev->stats.rx_errors++;
2617
2618                 /* libipw_rx failed, so it didn't free the SKB */
2619                 dev_kfree_skb_any(packet->skb);
2620                 packet->skb = NULL;
2621         }
2622
2623         /* We need to allocate a new SKB and attach it to the RDB. */
2624         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2625                 IPW_DEBUG_WARNING(
2626                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2627                         "adapter.\n", dev->name);
2628                 /* TODO: schedule adapter shutdown */
2629                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2630         }
2631
2632         /* Update the RDB entry */
2633         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2634 }
2635
2636 #endif
2637
2638 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2639 {
2640         struct ipw2100_status *status = &priv->status_queue.drv[i];
2641         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2642         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2643
2644         switch (frame_type) {
2645         case COMMAND_STATUS_VAL:
2646                 return (status->frame_size != sizeof(u->rx_data.command));
2647         case STATUS_CHANGE_VAL:
2648                 return (status->frame_size != sizeof(u->rx_data.status));
2649         case HOST_NOTIFICATION_VAL:
2650                 return (status->frame_size < sizeof(u->rx_data.notification));
2651         case P80211_DATA_VAL:
2652         case P8023_DATA_VAL:
2653 #ifdef CONFIG_IPW2100_MONITOR
2654                 return 0;
2655 #else
2656                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2657                 case IEEE80211_FTYPE_MGMT:
2658                 case IEEE80211_FTYPE_CTL:
2659                         return 0;
2660                 case IEEE80211_FTYPE_DATA:
2661                         return (status->frame_size >
2662                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2663                 }
2664 #endif
2665         }
2666
2667         return 1;
2668 }
2669
2670 /*
2671  * ipw2100 interrupts are disabled at this point, and the ISR
2672  * is the only code that calls this method.  So, we do not need
2673  * to play with any locks.
2674  *
2675  * RX Queue works as follows:
2676  *
2677  * Read index - firmware places packet in entry identified by the
2678  *              Read index and advances Read index.  In this manner,
2679  *              Read index will always point to the next packet to
2680  *              be filled--but not yet valid.
2681  *
2682  * Write index - driver fills this entry with an unused RBD entry.
2683  *               This entry has not filled by the firmware yet.
2684  *
2685  * In between the W and R indexes are the RBDs that have been received
2686  * but not yet processed.
2687  *
2688  * The process of handling packets will start at WRITE + 1 and advance
2689  * until it reaches the READ index.
2690  *
2691  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2692  *
2693  */
2694 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2695 {
2696         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2697         struct ipw2100_status_queue *sq = &priv->status_queue;
2698         struct ipw2100_rx_packet *packet;
2699         u16 frame_type;
2700         u32 r, w, i, s;
2701         struct ipw2100_rx *u;
2702         struct libipw_rx_stats stats = {
2703                 .mac_time = jiffies,
2704         };
2705
2706         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2707         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2708
2709         if (r >= rxq->entries) {
2710                 IPW_DEBUG_RX("exit - bad read index\n");
2711                 return;
2712         }
2713
2714         i = (rxq->next + 1) % rxq->entries;
2715         s = i;
2716         while (i != r) {
2717                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2718                    r, rxq->next, i); */
2719
2720                 packet = &priv->rx_buffers[i];
2721
2722                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2723                  * the correct values */
2724                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2725                                             sq->nic +
2726                                             sizeof(struct ipw2100_status) * i,
2727                                             sizeof(struct ipw2100_status),
2728                                             PCI_DMA_FROMDEVICE);
2729
2730                 /* Sync the DMA for the RX buffer so CPU is sure to get
2731                  * the correct values */
2732                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2733                                             sizeof(struct ipw2100_rx),
2734                                             PCI_DMA_FROMDEVICE);
2735
2736                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2737                         ipw2100_corruption_detected(priv, i);
2738                         goto increment;
2739                 }
2740
2741                 u = packet->rxp;
2742                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2743                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2744                 stats.len = sq->drv[i].frame_size;
2745
2746                 stats.mask = 0;
2747                 if (stats.rssi != 0)
2748                         stats.mask |= LIBIPW_STATMASK_RSSI;
2749                 stats.freq = LIBIPW_24GHZ_BAND;
2750
2751                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2752                              priv->net_dev->name, frame_types[frame_type],
2753                              stats.len);
2754
2755                 switch (frame_type) {
2756                 case COMMAND_STATUS_VAL:
2757                         /* Reset Rx watchdog */
2758                         isr_rx_complete_command(priv, &u->rx_data.command);
2759                         break;
2760
2761                 case STATUS_CHANGE_VAL:
2762                         isr_status_change(priv, u->rx_data.status);
2763                         break;
2764
2765                 case P80211_DATA_VAL:
2766                 case P8023_DATA_VAL:
2767 #ifdef CONFIG_IPW2100_MONITOR
2768                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2769                                 isr_rx_monitor(priv, i, &stats);
2770                                 break;
2771                         }
2772 #endif
2773                         if (stats.len < sizeof(struct libipw_hdr_3addr))
2774                                 break;
2775                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2776                         case IEEE80211_FTYPE_MGMT:
2777                                 libipw_rx_mgt(priv->ieee,
2778                                                  &u->rx_data.header, &stats);
2779                                 break;
2780
2781                         case IEEE80211_FTYPE_CTL:
2782                                 break;
2783
2784                         case IEEE80211_FTYPE_DATA:
2785                                 isr_rx(priv, i, &stats);
2786                                 break;
2787
2788                         }
2789                         break;
2790                 }
2791
2792               increment:
2793                 /* clear status field associated with this RBD */
2794                 rxq->drv[i].status.info.field = 0;
2795
2796                 i = (i + 1) % rxq->entries;
2797         }
2798
2799         if (i != s) {
2800                 /* backtrack one entry, wrapping to end if at 0 */
2801                 rxq->next = (i ? i : rxq->entries) - 1;
2802
2803                 write_register(priv->net_dev,
2804                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2805         }
2806 }
2807
2808 /*
2809  * __ipw2100_tx_process
2810  *
2811  * This routine will determine whether the next packet on
2812  * the fw_pend_list has been processed by the firmware yet.
2813  *
2814  * If not, then it does nothing and returns.
2815  *
2816  * If so, then it removes the item from the fw_pend_list, frees
2817  * any associated storage, and places the item back on the
2818  * free list of its source (either msg_free_list or tx_free_list)
2819  *
2820  * TX Queue works as follows:
2821  *
2822  * Read index - points to the next TBD that the firmware will
2823  *              process.  The firmware will read the data, and once
2824  *              done processing, it will advance the Read index.
2825  *
2826  * Write index - driver fills this entry with an constructed TBD
2827  *               entry.  The Write index is not advanced until the
2828  *               packet has been configured.
2829  *
2830  * In between the W and R indexes are the TBDs that have NOT been
2831  * processed.  Lagging behind the R index are packets that have
2832  * been processed but have not been freed by the driver.
2833  *
2834  * In order to free old storage, an internal index will be maintained
2835  * that points to the next packet to be freed.  When all used
2836  * packets have been freed, the oldest index will be the same as the
2837  * firmware's read index.
2838  *
2839  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2840  *
2841  * Because the TBD structure can not contain arbitrary data, the
2842  * driver must keep an internal queue of cached allocations such that
2843  * it can put that data back into the tx_free_list and msg_free_list
2844  * for use by future command and data packets.
2845  *
2846  */
2847 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2848 {
2849         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2850         struct ipw2100_bd *tbd;
2851         struct list_head *element;
2852         struct ipw2100_tx_packet *packet;
2853         int descriptors_used;
2854         int e, i;
2855         u32 r, w, frag_num = 0;
2856
2857         if (list_empty(&priv->fw_pend_list))
2858                 return 0;
2859
2860         element = priv->fw_pend_list.next;
2861
2862         packet = list_entry(element, struct ipw2100_tx_packet, list);
2863         tbd = &txq->drv[packet->index];
2864
2865         /* Determine how many TBD entries must be finished... */
2866         switch (packet->type) {
2867         case COMMAND:
2868                 /* COMMAND uses only one slot; don't advance */
2869                 descriptors_used = 1;
2870                 e = txq->oldest;
2871                 break;
2872
2873         case DATA:
2874                 /* DATA uses two slots; advance and loop position. */
2875                 descriptors_used = tbd->num_fragments;
2876                 frag_num = tbd->num_fragments - 1;
2877                 e = txq->oldest + frag_num;
2878                 e %= txq->entries;
2879                 break;
2880
2881         default:
2882                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2883                        priv->net_dev->name);
2884                 return 0;
2885         }
2886
2887         /* if the last TBD is not done by NIC yet, then packet is
2888          * not ready to be released.
2889          *
2890          */
2891         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2892                       &r);
2893         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2894                       &w);
2895         if (w != txq->next)
2896                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2897                        priv->net_dev->name);
2898
2899         /*
2900          * txq->next is the index of the last packet written txq->oldest is
2901          * the index of the r is the index of the next packet to be read by
2902          * firmware
2903          */
2904
2905         /*
2906          * Quick graphic to help you visualize the following
2907          * if / else statement
2908          *
2909          * ===>|                     s---->|===============
2910          *                               e>|
2911          * | a | b | c | d | e | f | g | h | i | j | k | l
2912          *       r---->|
2913          *               w
2914          *
2915          * w - updated by driver
2916          * r - updated by firmware
2917          * s - start of oldest BD entry (txq->oldest)
2918          * e - end of oldest BD entry
2919          *
2920          */
2921         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2922                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2923                 return 0;
2924         }
2925
2926         list_del(element);
2927         DEC_STAT(&priv->fw_pend_stat);
2928
2929 #ifdef CONFIG_IPW2100_DEBUG
2930         {
2931                 i = txq->oldest;
2932                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2933                              &txq->drv[i],
2934                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2935                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2936
2937                 if (packet->type == DATA) {
2938                         i = (i + 1) % txq->entries;
2939
2940                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2941                                      &txq->drv[i],
2942                                      (u32) (txq->nic + i *
2943                                             sizeof(struct ipw2100_bd)),
2944                                      (u32) txq->drv[i].host_addr,
2945                                      txq->drv[i].buf_length);
2946                 }
2947         }
2948 #endif
2949
2950         switch (packet->type) {
2951         case DATA:
2952                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2953                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2954                                "Expecting DATA TBD but pulled "
2955                                "something else: ids %d=%d.\n",
2956                                priv->net_dev->name, txq->oldest, packet->index);
2957
2958                 /* DATA packet; we have to unmap and free the SKB */
2959                 for (i = 0; i < frag_num; i++) {
2960                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2961
2962                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2963                                      (packet->index + 1 + i) % txq->entries,
2964                                      tbd->host_addr, tbd->buf_length);
2965
2966                         pci_unmap_single(priv->pci_dev,
2967                                          tbd->host_addr,
2968                                          tbd->buf_length, PCI_DMA_TODEVICE);
2969                 }
2970
2971                 libipw_txb_free(packet->info.d_struct.txb);
2972                 packet->info.d_struct.txb = NULL;
2973
2974                 list_add_tail(element, &priv->tx_free_list);
2975                 INC_STAT(&priv->tx_free_stat);
2976
2977                 /* We have a free slot in the Tx queue, so wake up the
2978                  * transmit layer if it is stopped. */
2979                 if (priv->status & STATUS_ASSOCIATED)
2980                         netif_wake_queue(priv->net_dev);
2981
2982                 /* A packet was processed by the hardware, so update the
2983                  * watchdog */
2984                 priv->net_dev->trans_start = jiffies;
2985
2986                 break;
2987
2988         case COMMAND:
2989                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2990                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2991                                "Expecting COMMAND TBD but pulled "
2992                                "something else: ids %d=%d.\n",
2993                                priv->net_dev->name, txq->oldest, packet->index);
2994
2995 #ifdef CONFIG_IPW2100_DEBUG
2996                 if (packet->info.c_struct.cmd->host_command_reg <
2997                     ARRAY_SIZE(command_types))
2998                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2999                                      command_types[packet->info.c_struct.cmd->
3000                                                    host_command_reg],
3001                                      packet->info.c_struct.cmd->
3002                                      host_command_reg,
3003                                      packet->info.c_struct.cmd->cmd_status_reg);
3004 #endif
3005
3006                 list_add_tail(element, &priv->msg_free_list);
3007                 INC_STAT(&priv->msg_free_stat);
3008                 break;
3009         }
3010
3011         /* advance oldest used TBD pointer to start of next entry */
3012         txq->oldest = (e + 1) % txq->entries;
3013         /* increase available TBDs number */
3014         txq->available += descriptors_used;
3015         SET_STAT(&priv->txq_stat, txq->available);
3016
3017         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
3018                      jiffies - packet->jiffy_start);
3019
3020         return (!list_empty(&priv->fw_pend_list));
3021 }
3022
3023 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3024 {
3025         int i = 0;
3026
3027         while (__ipw2100_tx_process(priv) && i < 200)
3028                 i++;
3029
3030         if (i == 200) {
3031                 printk(KERN_WARNING DRV_NAME ": "
3032                        "%s: Driver is running slow (%d iters).\n",
3033                        priv->net_dev->name, i);
3034         }
3035 }
3036
3037 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3038 {
3039         struct list_head *element;
3040         struct ipw2100_tx_packet *packet;
3041         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3042         struct ipw2100_bd *tbd;
3043         int next = txq->next;
3044
3045         while (!list_empty(&priv->msg_pend_list)) {
3046                 /* if there isn't enough space in TBD queue, then
3047                  * don't stuff a new one in.
3048                  * NOTE: 3 are needed as a command will take one,
3049                  *       and there is a minimum of 2 that must be
3050                  *       maintained between the r and w indexes
3051                  */
3052                 if (txq->available <= 3) {
3053                         IPW_DEBUG_TX("no room in tx_queue\n");
3054                         break;
3055                 }
3056
3057                 element = priv->msg_pend_list.next;
3058                 list_del(element);
3059                 DEC_STAT(&priv->msg_pend_stat);
3060
3061                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3062
3063                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
3064                              &txq->drv[txq->next],
3065                              (void *)(txq->nic + txq->next *
3066                                       sizeof(struct ipw2100_bd)));
3067
3068                 packet->index = txq->next;
3069
3070                 tbd = &txq->drv[txq->next];
3071
3072                 /* initialize TBD */
3073                 tbd->host_addr = packet->info.c_struct.cmd_phys;
3074                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3075                 /* not marking number of fragments causes problems
3076                  * with f/w debug version */
3077                 tbd->num_fragments = 1;
3078                 tbd->status.info.field =
3079                     IPW_BD_STATUS_TX_FRAME_COMMAND |
3080                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3081
3082                 /* update TBD queue counters */
3083                 txq->next++;
3084                 txq->next %= txq->entries;
3085                 txq->available--;
3086                 DEC_STAT(&priv->txq_stat);
3087
3088                 list_add_tail(element, &priv->fw_pend_list);
3089                 INC_STAT(&priv->fw_pend_stat);
3090         }
3091
3092         if (txq->next != next) {
3093                 /* kick off the DMA by notifying firmware the
3094                  * write index has moved; make sure TBD stores are sync'd */
3095                 wmb();
3096                 write_register(priv->net_dev,
3097                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3098                                txq->next);
3099         }
3100 }
3101
3102 /*
3103  * ipw2100_tx_send_data
3104  *
3105  */
3106 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3107 {
3108         struct list_head *element;
3109         struct ipw2100_tx_packet *packet;
3110         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3111         struct ipw2100_bd *tbd;
3112         int next = txq->next;
3113         int i = 0;
3114         struct ipw2100_data_header *ipw_hdr;
3115         struct libipw_hdr_3addr *hdr;
3116
3117         while (!list_empty(&priv->tx_pend_list)) {
3118                 /* if there isn't enough space in TBD queue, then
3119                  * don't stuff a new one in.
3120                  * NOTE: 4 are needed as a data will take two,
3121                  *       and there is a minimum of 2 that must be
3122                  *       maintained between the r and w indexes
3123                  */
3124                 element = priv->tx_pend_list.next;
3125                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3126
3127                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3128                              IPW_MAX_BDS)) {
3129                         /* TODO: Support merging buffers if more than
3130                          * IPW_MAX_BDS are used */
3131                         IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3132                                        "Increase fragmentation level.\n",
3133                                        priv->net_dev->name);
3134                 }
3135
3136                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3137                         IPW_DEBUG_TX("no room in tx_queue\n");
3138                         break;
3139                 }
3140
3141                 list_del(element);
3142                 DEC_STAT(&priv->tx_pend_stat);
3143
3144                 tbd = &txq->drv[txq->next];
3145
3146                 packet->index = txq->next;
3147
3148                 ipw_hdr = packet->info.d_struct.data;
3149                 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3150                     fragments[0]->data;
3151
3152                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3153                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3154                            Addr3 = DA */
3155                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3156                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3157                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3158                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3159                            Addr3 = BSSID */
3160                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3161                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3162                 }
3163
3164                 ipw_hdr->host_command_reg = SEND;
3165                 ipw_hdr->host_command_reg1 = 0;
3166
3167                 /* For now we only support host based encryption */
3168                 ipw_hdr->needs_encryption = 0;
3169                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3170                 if (packet->info.d_struct.txb->nr_frags > 1)
3171                         ipw_hdr->fragment_size =
3172                             packet->info.d_struct.txb->frag_size -
3173                             LIBIPW_3ADDR_LEN;
3174                 else
3175                         ipw_hdr->fragment_size = 0;
3176
3177                 tbd->host_addr = packet->info.d_struct.data_phys;
3178                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3179                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3180                 tbd->status.info.field =
3181                     IPW_BD_STATUS_TX_FRAME_802_3 |
3182                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3183                 txq->next++;
3184                 txq->next %= txq->entries;
3185
3186                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3187                              packet->index, tbd->host_addr, tbd->buf_length);
3188 #ifdef CONFIG_IPW2100_DEBUG
3189                 if (packet->info.d_struct.txb->nr_frags > 1)
3190                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3191                                        packet->info.d_struct.txb->nr_frags);
3192 #endif
3193
3194                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3195                         tbd = &txq->drv[txq->next];
3196                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3197                                 tbd->status.info.field =
3198                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3199                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3200                         else
3201                                 tbd->status.info.field =
3202                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3203                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3204
3205                         tbd->buf_length = packet->info.d_struct.txb->
3206                             fragments[i]->len - LIBIPW_3ADDR_LEN;
3207
3208                         tbd->host_addr = pci_map_single(priv->pci_dev,
3209                                                         packet->info.d_struct.
3210                                                         txb->fragments[i]->
3211                                                         data +
3212                                                         LIBIPW_3ADDR_LEN,
3213                                                         tbd->buf_length,
3214                                                         PCI_DMA_TODEVICE);
3215
3216                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3217                                      txq->next, tbd->host_addr,
3218                                      tbd->buf_length);
3219
3220                         pci_dma_sync_single_for_device(priv->pci_dev,
3221                                                        tbd->host_addr,
3222                                                        tbd->buf_length,
3223                                                        PCI_DMA_TODEVICE);
3224
3225                         txq->next++;
3226                         txq->next %= txq->entries;
3227                 }
3228
3229                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3230                 SET_STAT(&priv->txq_stat, txq->available);
3231
3232                 list_add_tail(element, &priv->fw_pend_list);
3233                 INC_STAT(&priv->fw_pend_stat);
3234         }
3235
3236         if (txq->next != next) {
3237                 /* kick off the DMA by notifying firmware the
3238                  * write index has moved; make sure TBD stores are sync'd */
3239                 write_register(priv->net_dev,
3240                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3241                                txq->next);
3242         }
3243 }
3244
3245 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3246 {
3247         struct net_device *dev = priv->net_dev;
3248         unsigned long flags;
3249         u32 inta, tmp;
3250
3251         spin_lock_irqsave(&priv->low_lock, flags);
3252         ipw2100_disable_interrupts(priv);
3253
3254         read_register(dev, IPW_REG_INTA, &inta);
3255
3256         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3257                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3258
3259         priv->in_isr++;
3260         priv->interrupts++;
3261
3262         /* We do not loop and keep polling for more interrupts as this
3263          * is frowned upon and doesn't play nicely with other potentially
3264          * chained IRQs */
3265         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3266                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3267
3268         if (inta & IPW2100_INTA_FATAL_ERROR) {
3269                 printk(KERN_WARNING DRV_NAME
3270                        ": Fatal interrupt. Scheduling firmware restart.\n");
3271                 priv->inta_other++;
3272                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3273
3274                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3275                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3276                                priv->net_dev->name, priv->fatal_error);
3277
3278                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3279                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3280                                priv->net_dev->name, tmp);
3281
3282                 /* Wake up any sleeping jobs */
3283                 schedule_reset(priv);
3284         }
3285
3286         if (inta & IPW2100_INTA_PARITY_ERROR) {
3287                 printk(KERN_ERR DRV_NAME
3288                        ": ***** PARITY ERROR INTERRUPT !!!!\n");
3289                 priv->inta_other++;
3290                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3291         }
3292
3293         if (inta & IPW2100_INTA_RX_TRANSFER) {
3294                 IPW_DEBUG_ISR("RX interrupt\n");
3295
3296                 priv->rx_interrupts++;
3297
3298                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3299
3300                 __ipw2100_rx_process(priv);
3301                 __ipw2100_tx_complete(priv);
3302         }
3303
3304         if (inta & IPW2100_INTA_TX_TRANSFER) {
3305                 IPW_DEBUG_ISR("TX interrupt\n");
3306
3307                 priv->tx_interrupts++;
3308
3309                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3310
3311                 __ipw2100_tx_complete(priv);
3312                 ipw2100_tx_send_commands(priv);
3313                 ipw2100_tx_send_data(priv);
3314         }
3315
3316         if (inta & IPW2100_INTA_TX_COMPLETE) {
3317                 IPW_DEBUG_ISR("TX complete\n");
3318                 priv->inta_other++;
3319                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3320
3321                 __ipw2100_tx_complete(priv);
3322         }
3323
3324         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3325                 /* ipw2100_handle_event(dev); */
3326                 priv->inta_other++;
3327                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3328         }
3329
3330         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3331                 IPW_DEBUG_ISR("FW init done interrupt\n");
3332                 priv->inta_other++;
3333
3334                 read_register(dev, IPW_REG_INTA, &tmp);
3335                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3336                            IPW2100_INTA_PARITY_ERROR)) {
3337                         write_register(dev, IPW_REG_INTA,
3338                                        IPW2100_INTA_FATAL_ERROR |
3339                                        IPW2100_INTA_PARITY_ERROR);
3340                 }
3341
3342                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3343         }
3344
3345         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3346                 IPW_DEBUG_ISR("Status change interrupt\n");
3347                 priv->inta_other++;
3348                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3349         }
3350
3351         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3352                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3353                 priv->inta_other++;
3354                 write_register(dev, IPW_REG_INTA,
3355                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3356         }
3357
3358         priv->in_isr--;
3359         ipw2100_enable_interrupts(priv);
3360
3361         spin_unlock_irqrestore(&priv->low_lock, flags);
3362
3363         IPW_DEBUG_ISR("exit\n");
3364 }
3365
3366 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3367 {
3368         struct ipw2100_priv *priv = data;
3369         u32 inta, inta_mask;
3370
3371         if (!data)
3372                 return IRQ_NONE;
3373
3374         spin_lock(&priv->low_lock);
3375
3376         /* We check to see if we should be ignoring interrupts before
3377          * we touch the hardware.  During ucode load if we try and handle
3378          * an interrupt we can cause keyboard problems as well as cause
3379          * the ucode to fail to initialize */
3380         if (!(priv->status & STATUS_INT_ENABLED)) {
3381                 /* Shared IRQ */
3382                 goto none;
3383         }
3384
3385         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3386         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3387
3388         if (inta == 0xFFFFFFFF) {
3389                 /* Hardware disappeared */
3390                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3391                 goto none;
3392         }
3393
3394         inta &= IPW_INTERRUPT_MASK;
3395
3396         if (!(inta & inta_mask)) {
3397                 /* Shared interrupt */
3398                 goto none;
3399         }
3400
3401         /* We disable the hardware interrupt here just to prevent unneeded
3402          * calls to be made.  We disable this again within the actual
3403          * work tasklet, so if another part of the code re-enables the
3404          * interrupt, that is fine */
3405         ipw2100_disable_interrupts(priv);
3406
3407         tasklet_schedule(&priv->irq_tasklet);
3408         spin_unlock(&priv->low_lock);
3409
3410         return IRQ_HANDLED;
3411       none:
3412         spin_unlock(&priv->low_lock);
3413         return IRQ_NONE;
3414 }
3415
3416 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3417                               struct net_device *dev, int pri)
3418 {
3419         struct ipw2100_priv *priv = libipw_priv(dev);
3420         struct list_head *element;
3421         struct ipw2100_tx_packet *packet;
3422         unsigned long flags;
3423
3424         spin_lock_irqsave(&priv->low_lock, flags);
3425
3426         if (!(priv->status & STATUS_ASSOCIATED)) {
3427                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3428                 priv->net_dev->stats.tx_carrier_errors++;
3429                 netif_stop_queue(dev);
3430                 goto fail_unlock;
3431         }
3432
3433         if (list_empty(&priv->tx_free_list))
3434                 goto fail_unlock;
3435
3436         element = priv->tx_free_list.next;
3437         packet = list_entry(element, struct ipw2100_tx_packet, list);
3438
3439         packet->info.d_struct.txb = txb;
3440
3441         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3442         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3443
3444         packet->jiffy_start = jiffies;
3445
3446         list_del(element);
3447         DEC_STAT(&priv->tx_free_stat);
3448
3449         list_add_tail(element, &priv->tx_pend_list);
3450         INC_STAT(&priv->tx_pend_stat);
3451
3452         ipw2100_tx_send_data(priv);
3453
3454         spin_unlock_irqrestore(&priv->low_lock, flags);
3455         return NETDEV_TX_OK;
3456
3457 fail_unlock:
3458         netif_stop_queue(dev);
3459         spin_unlock_irqrestore(&priv->low_lock, flags);
3460         return NETDEV_TX_BUSY;
3461 }
3462
3463 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3464 {
3465         int i, j, err = -EINVAL;
3466         void *v;
3467         dma_addr_t p;
3468
3469         priv->msg_buffers =
3470             (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3471                                                 sizeof(struct
3472                                                        ipw2100_tx_packet),
3473                                                 GFP_KERNEL);
3474         if (!priv->msg_buffers) {
3475                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3476                        "buffers.\n", priv->net_dev->name);
3477                 return -ENOMEM;
3478         }
3479
3480         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3481                 v = pci_alloc_consistent(priv->pci_dev,
3482                                          sizeof(struct ipw2100_cmd_header), &p);
3483                 if (!v) {
3484                         printk(KERN_ERR DRV_NAME ": "
3485                                "%s: PCI alloc failed for msg "
3486                                "buffers.\n", priv->net_dev->name);
3487                         err = -ENOMEM;
3488                         break;
3489                 }
3490
3491                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3492
3493                 priv->msg_buffers[i].type = COMMAND;
3494                 priv->msg_buffers[i].info.c_struct.cmd =
3495                     (struct ipw2100_cmd_header *)v;
3496                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3497         }
3498
3499         if (i == IPW_COMMAND_POOL_SIZE)
3500                 return 0;
3501
3502         for (j = 0; j < i; j++) {
3503                 pci_free_consistent(priv->pci_dev,
3504                                     sizeof(struct ipw2100_cmd_header),
3505                                     priv->msg_buffers[j].info.c_struct.cmd,
3506                                     priv->msg_buffers[j].info.c_struct.
3507                                     cmd_phys);
3508         }
3509
3510         kfree(priv->msg_buffers);
3511         priv->msg_buffers = NULL;
3512
3513         return err;
3514 }
3515
3516 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3517 {
3518         int i;
3519
3520         INIT_LIST_HEAD(&priv->msg_free_list);
3521         INIT_LIST_HEAD(&priv->msg_pend_list);
3522
3523         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3524                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3525         SET_STAT(&priv->msg_free_stat, i);
3526
3527         return 0;
3528 }
3529
3530 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3531 {
3532         int i;
3533
3534         if (!priv->msg_buffers)
3535                 return;
3536
3537         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3538                 pci_free_consistent(priv->pci_dev,
3539                                     sizeof(struct ipw2100_cmd_header),
3540                                     priv->msg_buffers[i].info.c_struct.cmd,
3541                                     priv->msg_buffers[i].info.c_struct.
3542                                     cmd_phys);
3543         }
3544
3545         kfree(priv->msg_buffers);
3546         priv->msg_buffers = NULL;
3547 }
3548
3549 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3550                         char *buf)
3551 {
3552         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3553         char *out = buf;
3554         int i, j;
3555         u32 val;
3556
3557         for (i = 0; i < 16; i++) {
3558                 out += sprintf(out, "[%08X] ", i * 16);
3559                 for (j = 0; j < 16; j += 4) {
3560                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3561                         out += sprintf(out, "%08X ", val);
3562                 }
3563                 out += sprintf(out, "\n");
3564         }
3565
3566         return out - buf;
3567 }
3568
3569 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3570
3571 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3572                         char *buf)
3573 {
3574         struct ipw2100_priv *p = dev_get_drvdata(d);
3575         return sprintf(buf, "0x%08x\n", (int)p->config);
3576 }
3577
3578 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3579
3580 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3581                            char *buf)
3582 {
3583         struct ipw2100_priv *p = dev_get_drvdata(d);
3584         return sprintf(buf, "0x%08x\n", (int)p->status);
3585 }
3586
3587 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3588
3589 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3590                                char *buf)
3591 {
3592         struct ipw2100_priv *p = dev_get_drvdata(d);
3593         return sprintf(buf, "0x%08x\n", (int)p->capability);
3594 }
3595
3596 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3597
3598 #define IPW2100_REG(x) { IPW_ ##x, #x }
3599 static const struct {
3600         u32 addr;
3601         const char *name;
3602 } hw_data[] = {
3603 IPW2100_REG(REG_GP_CNTRL),
3604             IPW2100_REG(REG_GPIO),
3605             IPW2100_REG(REG_INTA),
3606             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3607 #define IPW2100_NIC(x, s) { x, #x, s }
3608 static const struct {
3609         u32 addr;
3610         const char *name;
3611         size_t size;
3612 } nic_data[] = {
3613 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3614             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3615 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3616 static const struct {
3617         u8 index;
3618         const char *name;
3619         const char *desc;
3620 } ord_data[] = {
3621 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3622             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3623                                 "successful Host Tx's (MSDU)"),
3624             IPW2100_ORD(STAT_TX_DIR_DATA,
3625                                 "successful Directed Tx's (MSDU)"),
3626             IPW2100_ORD(STAT_TX_DIR_DATA1,
3627                                 "successful Directed Tx's (MSDU) @ 1MB"),
3628             IPW2100_ORD(STAT_TX_DIR_DATA2,
3629                                 "successful Directed Tx's (MSDU) @ 2MB"),
3630             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3631                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3632             IPW2100_ORD(STAT_TX_DIR_DATA11,
3633                                 "successful Directed Tx's (MSDU) @ 11MB"),
3634             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3635                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3636             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3637                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3638             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3639                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3640             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3641                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3642             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3643             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3644             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3645             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3646             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3647             IPW2100_ORD(STAT_TX_ASSN_RESP,
3648                                 "successful Association response Tx's"),
3649             IPW2100_ORD(STAT_TX_REASSN,
3650                                 "successful Reassociation Tx's"),
3651             IPW2100_ORD(STAT_TX_REASSN_RESP,
3652                                 "successful Reassociation response Tx's"),
3653             IPW2100_ORD(STAT_TX_PROBE,
3654                                 "probes successfully transmitted"),
3655             IPW2100_ORD(STAT_TX_PROBE_RESP,
3656                                 "probe responses successfully transmitted"),
3657             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3658             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3659             IPW2100_ORD(STAT_TX_DISASSN,
3660                                 "successful Disassociation TX"),
3661             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3662             IPW2100_ORD(STAT_TX_DEAUTH,
3663                                 "successful Deauthentication TX"),
3664             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3665                                 "Total successful Tx data bytes"),
3666             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3667             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3668             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3669             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3670             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3671             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3672             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3673                                 "times max tries in a hop failed"),
3674             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3675                                 "times disassociation failed"),
3676             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3677             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3678             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3679             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3680             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3681             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3682             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3683                                 "directed packets at 5.5MB"),
3684             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3685             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3686             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3687                                 "nondirected packets at 1MB"),
3688             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3689                                 "nondirected packets at 2MB"),
3690             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3691                                 "nondirected packets at 5.5MB"),
3692             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3693                                 "nondirected packets at 11MB"),
3694             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3695             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3696                                                                     "Rx CTS"),
3697             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3698             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3699             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3700             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3701             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3702             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3703             IPW2100_ORD(STAT_RX_REASSN_RESP,
3704                                 "Reassociation response Rx's"),
3705             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3706             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3707             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3708             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3709             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3710             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3711             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3712             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3713                                 "Total rx data bytes received"),
3714             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3715             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3716             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3717             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3718             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3719             IPW2100_ORD(STAT_RX_DUPLICATE1,
3720                                 "duplicate rx packets at 1MB"),
3721             IPW2100_ORD(STAT_RX_DUPLICATE2,
3722                                 "duplicate rx packets at 2MB"),
3723             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3724                                 "duplicate rx packets at 5.5MB"),
3725             IPW2100_ORD(STAT_RX_DUPLICATE11,
3726                                 "duplicate rx packets at 11MB"),
3727             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3728             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3729             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3730             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3731             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3732                                 "rx frames with invalid protocol"),
3733             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3734             IPW2100_ORD(STAT_RX_NO_BUFFER,
3735                                 "rx frames rejected due to no buffer"),
3736             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3737                                 "rx frames dropped due to missing fragment"),
3738             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3739                                 "rx frames dropped due to non-sequential fragment"),
3740             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3741                                 "rx frames dropped due to unmatched 1st frame"),
3742             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3743                                 "rx frames dropped due to uncompleted frame"),
3744             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3745                                 "ICV errors during decryption"),
3746             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3747             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3748             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3749                                 "poll response timeouts"),
3750             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3751                                 "timeouts waiting for last {broad,multi}cast pkt"),
3752             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3753             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3754             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3755             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3756             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3757                                 "current calculation of % missed beacons"),
3758             IPW2100_ORD(STAT_PERCENT_RETRIES,
3759                                 "current calculation of % missed tx retries"),
3760             IPW2100_ORD(ASSOCIATED_AP_PTR,
3761                                 "0 if not associated, else pointer to AP table entry"),
3762             IPW2100_ORD(AVAILABLE_AP_CNT,
3763                                 "AP's decsribed in the AP table"),
3764             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3765             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3766             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3767             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3768                                 "failures due to response fail"),
3769             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3770             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3771             IPW2100_ORD(STAT_ROAM_INHIBIT,
3772                                 "times roaming was inhibited due to activity"),
3773             IPW2100_ORD(RSSI_AT_ASSN,
3774                                 "RSSI of associated AP at time of association"),
3775             IPW2100_ORD(STAT_ASSN_CAUSE1,
3776                                 "reassociation: no probe response or TX on hop"),
3777             IPW2100_ORD(STAT_ASSN_CAUSE2,
3778                                 "reassociation: poor tx/rx quality"),
3779             IPW2100_ORD(STAT_ASSN_CAUSE3,
3780                                 "reassociation: tx/rx quality (excessive AP load"),
3781             IPW2100_ORD(STAT_ASSN_CAUSE4,
3782                                 "reassociation: AP RSSI level"),
3783             IPW2100_ORD(STAT_ASSN_CAUSE5,
3784                                 "reassociations due to load leveling"),
3785             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3786             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3787                                 "times authentication response failed"),
3788             IPW2100_ORD(STATION_TABLE_CNT,
3789                                 "entries in association table"),
3790             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3791             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3792             IPW2100_ORD(COUNTRY_CODE,
3793                                 "IEEE country code as recv'd from beacon"),
3794             IPW2100_ORD(COUNTRY_CHANNELS,
3795                                 "channels suported by country"),
3796             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3797             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3798             IPW2100_ORD(ANTENNA_DIVERSITY,
3799                                 "TRUE if antenna diversity is disabled"),
3800             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3801             IPW2100_ORD(OUR_FREQ,
3802                                 "current radio freq lower digits - channel ID"),
3803             IPW2100_ORD(RTC_TIME, "current RTC time"),
3804             IPW2100_ORD(PORT_TYPE, "operating mode"),
3805             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3806             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3807             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3808             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3809             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3810             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3811             IPW2100_ORD(CAPABILITIES,
3812                                 "Management frame capability field"),
3813             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3814             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3815             IPW2100_ORD(RTS_THRESHOLD,
3816                                 "Min packet length for RTS handshaking"),
3817             IPW2100_ORD(INT_MODE, "International mode"),
3818             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3819                                 "protocol frag threshold"),
3820             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3821                                 "EEPROM offset in SRAM"),
3822             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3823                                 "EEPROM size in SRAM"),
3824             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3825             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3826                                 "EEPROM IBSS 11b channel set"),
3827             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3828             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3829             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3830             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3831             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3832
3833 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3834                               char *buf)
3835 {
3836         int i;
3837         struct ipw2100_priv *priv = dev_get_drvdata(d);
3838         struct net_device *dev = priv->net_dev;
3839         char *out = buf;
3840         u32 val = 0;
3841
3842         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3843
3844         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3845                 read_register(dev, hw_data[i].addr, &val);
3846                 out += sprintf(out, "%30s [%08X] : %08X\n",
3847                                hw_data[i].name, hw_data[i].addr, val);
3848         }
3849
3850         return out - buf;
3851 }
3852
3853 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3854
3855 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3856                              char *buf)
3857 {
3858         struct ipw2100_priv *priv = dev_get_drvdata(d);
3859         struct net_device *dev = priv->net_dev;
3860         char *out = buf;
3861         int i;
3862
3863         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3864
3865         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3866                 u8 tmp8;
3867                 u16 tmp16;
3868                 u32 tmp32;
3869
3870                 switch (nic_data[i].size) {
3871                 case 1:
3872                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3873                         out += sprintf(out, "%30s [%08X] : %02X\n",
3874                                        nic_data[i].name, nic_data[i].addr,
3875                                        tmp8);
3876                         break;
3877                 case 2:
3878                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3879                         out += sprintf(out, "%30s [%08X] : %04X\n",
3880                                        nic_data[i].name, nic_data[i].addr,
3881                                        tmp16);
3882                         break;
3883                 case 4:
3884                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3885                         out += sprintf(out, "%30s [%08X] : %08X\n",
3886                                        nic_data[i].name, nic_data[i].addr,
3887                                        tmp32);
3888                         break;
3889                 }
3890         }
3891         return out - buf;
3892 }
3893
3894 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3895
3896 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3897                            char *buf)
3898 {
3899         struct ipw2100_priv *priv = dev_get_drvdata(d);
3900         struct net_device *dev = priv->net_dev;
3901         static unsigned long loop = 0;
3902         int len = 0;
3903         u32 buffer[4];
3904         int i;
3905         char line[81];
3906
3907         if (loop >= 0x30000)
3908                 loop = 0;
3909
3910         /* sysfs provides us PAGE_SIZE buffer */
3911         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3912
3913                 if (priv->snapshot[0])
3914                         for (i = 0; i < 4; i++)
3915                                 buffer[i] =
3916                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3917                 else
3918                         for (i = 0; i < 4; i++)
3919                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3920
3921                 if (priv->dump_raw)
3922                         len += sprintf(buf + len,
3923                                        "%c%c%c%c"
3924                                        "%c%c%c%c"
3925                                        "%c%c%c%c"
3926                                        "%c%c%c%c",
3927                                        ((u8 *) buffer)[0x0],
3928                                        ((u8 *) buffer)[0x1],
3929                                        ((u8 *) buffer)[0x2],
3930                                        ((u8 *) buffer)[0x3],
3931                                        ((u8 *) buffer)[0x4],
3932                                        ((u8 *) buffer)[0x5],
3933                                        ((u8 *) buffer)[0x6],
3934                                        ((u8 *) buffer)[0x7],
3935                                        ((u8 *) buffer)[0x8],
3936                                        ((u8 *) buffer)[0x9],
3937                                        ((u8 *) buffer)[0xa],
3938                                        ((u8 *) buffer)[0xb],
3939                                        ((u8 *) buffer)[0xc],
3940                                        ((u8 *) buffer)[0xd],
3941                                        ((u8 *) buffer)[0xe],
3942                                        ((u8 *) buffer)[0xf]);
3943                 else
3944                         len += sprintf(buf + len, "%s\n",
3945                                        snprint_line(line, sizeof(line),
3946                                                     (u8 *) buffer, 16, loop));
3947                 loop += 16;
3948         }
3949
3950         return len;
3951 }
3952
3953 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3954                             const char *buf, size_t count)
3955 {
3956         struct ipw2100_priv *priv = dev_get_drvdata(d);
3957         struct net_device *dev = priv->net_dev;
3958         const char *p = buf;
3959
3960         (void)dev;              /* kill unused-var warning for debug-only code */
3961
3962         if (count < 1)
3963                 return count;
3964
3965         if (p[0] == '1' ||
3966             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3967                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3968                                dev->name);
3969                 priv->dump_raw = 1;
3970
3971         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3972                                    tolower(p[1]) == 'f')) {
3973                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3974                                dev->name);
3975                 priv->dump_raw = 0;
3976
3977         } else if (tolower(p[0]) == 'r') {
3978                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3979                 ipw2100_snapshot_free(priv);
3980
3981         } else
3982                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3983                                "reset = clear memory snapshot\n", dev->name);
3984
3985         return count;
3986 }
3987
3988 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3989
3990 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3991                              char *buf)
3992 {
3993         struct ipw2100_priv *priv = dev_get_drvdata(d);
3994         u32 val = 0;
3995         int len = 0;
3996         u32 val_len;
3997         static int loop = 0;
3998
3999         if (priv->status & STATUS_RF_KILL_MASK)
4000                 return 0;
4001
4002         if (loop >= ARRAY_SIZE(ord_data))
4003                 loop = 0;
4004
4005         /* sysfs provides us PAGE_SIZE buffer */
4006         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
4007                 val_len = sizeof(u32);
4008
4009                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
4010                                         &val_len))
4011                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
4012                                        ord_data[loop].index,
4013                                        ord_data[loop].desc);
4014                 else
4015                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
4016                                        ord_data[loop].index, val,
4017                                        ord_data[loop].desc);
4018                 loop++;
4019         }
4020
4021         return len;
4022 }
4023
4024 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
4025
4026 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
4027                           char *buf)
4028 {
4029         struct ipw2100_priv *priv = dev_get_drvdata(d);
4030         char *out = buf;
4031
4032         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4033                        priv->interrupts, priv->tx_interrupts,
4034                        priv->rx_interrupts, priv->inta_other);
4035         out += sprintf(out, "firmware resets: %d\n", priv->resets);
4036         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4037 #ifdef CONFIG_IPW2100_DEBUG
4038         out += sprintf(out, "packet mismatch image: %s\n",
4039                        priv->snapshot[0] ? "YES" : "NO");
4040 #endif
4041
4042         return out - buf;
4043 }
4044
4045 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4046
4047 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4048 {
4049         int err;
4050
4051         if (mode == priv->ieee->iw_mode)
4052                 return 0;
4053
4054         err = ipw2100_disable_adapter(priv);
4055         if (err) {
4056                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4057                        priv->net_dev->name, err);
4058                 return err;
4059         }
4060
4061         switch (mode) {
4062         case IW_MODE_INFRA:
4063                 priv->net_dev->type = ARPHRD_ETHER;
4064                 break;
4065         case IW_MODE_ADHOC:
4066                 priv->net_dev->type = ARPHRD_ETHER;
4067                 break;
4068 #ifdef CONFIG_IPW2100_MONITOR
4069         case IW_MODE_MONITOR:
4070                 priv->last_mode = priv->ieee->iw_mode;
4071                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4072                 break;
4073 #endif                          /* CONFIG_IPW2100_MONITOR */
4074         }
4075
4076         priv->ieee->iw_mode = mode;
4077
4078 #ifdef CONFIG_PM
4079         /* Indicate ipw2100_download_firmware download firmware
4080          * from disk instead of memory. */
4081         ipw2100_firmware.version = 0;
4082 #endif
4083
4084         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
4085         priv->reset_backoff = 0;
4086         schedule_reset(priv);
4087
4088         return 0;
4089 }
4090
4091 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4092                               char *buf)
4093 {
4094         struct ipw2100_priv *priv = dev_get_drvdata(d);
4095         int len = 0;
4096
4097 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4098
4099         if (priv->status & STATUS_ASSOCIATED)
4100                 len += sprintf(buf + len, "connected: %lu\n",
4101                                get_seconds() - priv->connect_start);
4102         else
4103                 len += sprintf(buf + len, "not connected\n");
4104
4105         DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4106         DUMP_VAR(status, "08lx");
4107         DUMP_VAR(config, "08lx");
4108         DUMP_VAR(capability, "08lx");
4109
4110         len +=
4111             sprintf(buf + len, "last_rtc: %lu\n",
4112                     (unsigned long)priv->last_rtc);
4113
4114         DUMP_VAR(fatal_error, "d");
4115         DUMP_VAR(stop_hang_check, "d");
4116         DUMP_VAR(stop_rf_kill, "d");
4117         DUMP_VAR(messages_sent, "d");
4118
4119         DUMP_VAR(tx_pend_stat.value, "d");
4120         DUMP_VAR(tx_pend_stat.hi, "d");
4121
4122         DUMP_VAR(tx_free_stat.value, "d");
4123         DUMP_VAR(tx_free_stat.lo, "d");
4124
4125         DUMP_VAR(msg_free_stat.value, "d");
4126         DUMP_VAR(msg_free_stat.lo, "d");
4127
4128         DUMP_VAR(msg_pend_stat.value, "d");
4129         DUMP_VAR(msg_pend_stat.hi, "d");
4130
4131         DUMP_VAR(fw_pend_stat.value, "d");
4132         DUMP_VAR(fw_pend_stat.hi, "d");
4133
4134         DUMP_VAR(txq_stat.value, "d");
4135         DUMP_VAR(txq_stat.lo, "d");
4136
4137         DUMP_VAR(ieee->scans, "d");
4138         DUMP_VAR(reset_backoff, "d");
4139
4140         return len;
4141 }
4142
4143 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4144
4145 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4146                             char *buf)
4147 {
4148         struct ipw2100_priv *priv = dev_get_drvdata(d);
4149         char essid[IW_ESSID_MAX_SIZE + 1];
4150         u8 bssid[ETH_ALEN];
4151         u32 chan = 0;
4152         char *out = buf;
4153         unsigned int length;
4154         int ret;
4155
4156         if (priv->status & STATUS_RF_KILL_MASK)
4157                 return 0;
4158
4159         memset(essid, 0, sizeof(essid));
4160         memset(bssid, 0, sizeof(bssid));
4161
4162         length = IW_ESSID_MAX_SIZE;
4163         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4164         if (ret)
4165                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4166                                __LINE__);
4167
4168         length = sizeof(bssid);
4169         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4170                                   bssid, &length);
4171         if (ret)
4172                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4173                                __LINE__);
4174
4175         length = sizeof(u32);
4176         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4177         if (ret)
4178                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4179                                __LINE__);
4180
4181         out += sprintf(out, "ESSID: %s\n", essid);
4182         out += sprintf(out, "BSSID:   %pM\n", bssid);
4183         out += sprintf(out, "Channel: %d\n", chan);
4184
4185         return out - buf;
4186 }
4187
4188 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4189
4190 #ifdef CONFIG_IPW2100_DEBUG
4191 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4192 {
4193         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4194 }
4195
4196 static ssize_t store_debug_level(struct device_driver *d,
4197                                  const char *buf, size_t count)
4198 {
4199         char *p = (char *)buf;
4200         u32 val;
4201
4202         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4203                 p++;
4204                 if (p[0] == 'x' || p[0] == 'X')
4205                         p++;
4206                 val = simple_strtoul(p, &p, 16);
4207         } else
4208                 val = simple_strtoul(p, &p, 10);
4209         if (p == buf)
4210                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4211         else
4212                 ipw2100_debug_level = val;
4213
4214         return strnlen(buf, count);
4215 }
4216
4217 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4218                    store_debug_level);
4219 #endif                          /* CONFIG_IPW2100_DEBUG */
4220
4221 static ssize_t show_fatal_error(struct device *d,
4222                                 struct device_attribute *attr, char *buf)
4223 {
4224         struct ipw2100_priv *priv = dev_get_drvdata(d);
4225         char *out = buf;
4226         int i;
4227
4228         if (priv->fatal_error)
4229                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4230         else
4231                 out += sprintf(out, "0\n");
4232
4233         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4234                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4235                                         IPW2100_ERROR_QUEUE])
4236                         continue;
4237
4238                 out += sprintf(out, "%d. 0x%08X\n", i,
4239                                priv->fatal_errors[(priv->fatal_index - i) %
4240                                                   IPW2100_ERROR_QUEUE]);
4241         }
4242
4243         return out - buf;
4244 }
4245
4246 static ssize_t store_fatal_error(struct device *d,
4247                                  struct device_attribute *attr, const char *buf,
4248                                  size_t count)
4249 {
4250         struct ipw2100_priv *priv = dev_get_drvdata(d);
4251         schedule_reset(priv);
4252         return count;
4253 }
4254
4255 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4256                    store_fatal_error);
4257
4258 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4259                              char *buf)
4260 {
4261         struct ipw2100_priv *priv = dev_get_drvdata(d);
4262         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4263 }
4264
4265 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4266                               const char *buf, size_t count)
4267 {
4268         struct ipw2100_priv *priv = dev_get_drvdata(d);
4269         struct net_device *dev = priv->net_dev;
4270         char buffer[] = "00000000";
4271         unsigned long len =
4272             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4273         unsigned long val;
4274         char *p = buffer;
4275
4276         (void)dev;              /* kill unused-var warning for debug-only code */
4277
4278         IPW_DEBUG_INFO("enter\n");
4279
4280         strncpy(buffer, buf, len);
4281         buffer[len] = 0;
4282
4283         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4284                 p++;
4285                 if (p[0] == 'x' || p[0] == 'X')
4286                         p++;
4287                 val = simple_strtoul(p, &p, 16);
4288         } else
4289                 val = simple_strtoul(p, &p, 10);
4290         if (p == buffer) {
4291                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4292         } else {
4293                 priv->ieee->scan_age = val;
4294                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4295         }
4296
4297         IPW_DEBUG_INFO("exit\n");
4298         return len;
4299 }
4300
4301 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4302
4303 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4304                             char *buf)
4305 {
4306         /* 0 - RF kill not enabled
4307            1 - SW based RF kill active (sysfs)
4308            2 - HW based RF kill active
4309            3 - Both HW and SW baed RF kill active */
4310         struct ipw2100_priv *priv = dev_get_drvdata(d);
4311         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4312             (rf_kill_active(priv) ? 0x2 : 0x0);
4313         return sprintf(buf, "%i\n", val);
4314 }
4315
4316 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4317 {
4318         if ((disable_radio ? 1 : 0) ==
4319             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4320                 return 0;
4321
4322         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4323                           disable_radio ? "OFF" : "ON");
4324
4325         mutex_lock(&priv->action_mutex);
4326
4327         if (disable_radio) {
4328                 priv->status |= STATUS_RF_KILL_SW;
4329                 ipw2100_down(priv);
4330         } else {
4331                 priv->status &= ~STATUS_RF_KILL_SW;
4332                 if (rf_kill_active(priv)) {
4333                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4334                                           "disabled by HW switch\n");
4335                         /* Make sure the RF_KILL check timer is running */
4336                         priv->stop_rf_kill = 0;
4337                         cancel_delayed_work(&priv->rf_kill);
4338                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
4339                                            round_jiffies_relative(HZ));
4340                 } else
4341                         schedule_reset(priv);
4342         }
4343
4344         mutex_unlock(&priv->action_mutex);
4345         return 1;
4346 }
4347
4348 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4349                              const char *buf, size_t count)
4350 {
4351         struct ipw2100_priv *priv = dev_get_drvdata(d);
4352         ipw_radio_kill_sw(priv, buf[0] == '1');
4353         return count;
4354 }
4355
4356 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4357
4358 static struct attribute *ipw2100_sysfs_entries[] = {
4359         &dev_attr_hardware.attr,
4360         &dev_attr_registers.attr,
4361         &dev_attr_ordinals.attr,
4362         &dev_attr_pci.attr,
4363         &dev_attr_stats.attr,
4364         &dev_attr_internals.attr,
4365         &dev_attr_bssinfo.attr,
4366         &dev_attr_memory.attr,
4367         &dev_attr_scan_age.attr,
4368         &dev_attr_fatal_error.attr,
4369         &dev_attr_rf_kill.attr,
4370         &dev_attr_cfg.attr,
4371         &dev_attr_status.attr,
4372         &dev_attr_capability.attr,
4373         NULL,
4374 };
4375
4376 static struct attribute_group ipw2100_attribute_group = {
4377         .attrs = ipw2100_sysfs_entries,
4378 };
4379
4380 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4381 {
4382         struct ipw2100_status_queue *q = &priv->status_queue;
4383
4384         IPW_DEBUG_INFO("enter\n");
4385
4386         q->size = entries * sizeof(struct ipw2100_status);
4387         q->drv =
4388             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4389                                                           q->size, &q->nic);
4390         if (!q->drv) {
4391                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4392                 return -ENOMEM;
4393         }
4394
4395         memset(q->drv, 0, q->size);
4396
4397         IPW_DEBUG_INFO("exit\n");
4398
4399         return 0;
4400 }
4401
4402 static void status_queue_free(struct ipw2100_priv *priv)
4403 {
4404         IPW_DEBUG_INFO("enter\n");
4405
4406         if (priv->status_queue.drv) {
4407                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4408                                     priv->status_queue.drv,
4409                                     priv->status_queue.nic);
4410                 priv->status_queue.drv = NULL;
4411         }
4412
4413         IPW_DEBUG_INFO("exit\n");
4414 }
4415
4416 static int bd_queue_allocate(struct ipw2100_priv *priv,
4417                              struct ipw2100_bd_queue *q, int entries)
4418 {
4419         IPW_DEBUG_INFO("enter\n");
4420
4421         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4422
4423         q->entries = entries;
4424         q->size = entries * sizeof(struct ipw2100_bd);
4425         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4426         if (!q->drv) {
4427                 IPW_DEBUG_INFO
4428                     ("can't allocate shared memory for buffer descriptors\n");
4429                 return -ENOMEM;
4430         }
4431         memset(q->drv, 0, q->size);
4432
4433         IPW_DEBUG_INFO("exit\n");
4434
4435         return 0;
4436 }
4437
4438 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4439 {
4440         IPW_DEBUG_INFO("enter\n");
4441
4442         if (!q)
4443                 return;
4444
4445         if (q->drv) {
4446                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4447                 q->drv = NULL;
4448         }
4449
4450         IPW_DEBUG_INFO("exit\n");
4451 }
4452
4453 static void bd_queue_initialize(struct ipw2100_priv *priv,
4454                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4455                                 u32 r, u32 w)
4456 {
4457         IPW_DEBUG_INFO("enter\n");
4458
4459         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4460                        (u32) q->nic);
4461
4462         write_register(priv->net_dev, base, q->nic);
4463         write_register(priv->net_dev, size, q->entries);
4464         write_register(priv->net_dev, r, q->oldest);
4465         write_register(priv->net_dev, w, q->next);
4466
4467         IPW_DEBUG_INFO("exit\n");
4468 }
4469
4470 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4471 {
4472         if (priv->workqueue) {
4473                 priv->stop_rf_kill = 1;
4474                 priv->stop_hang_check = 1;
4475                 cancel_delayed_work(&priv->reset_work);
4476                 cancel_delayed_work(&priv->security_work);
4477                 cancel_delayed_work(&priv->wx_event_work);
4478                 cancel_delayed_work(&priv->hang_check);
4479                 cancel_delayed_work(&priv->rf_kill);
4480                 cancel_delayed_work(&priv->scan_event_later);
4481                 destroy_workqueue(priv->workqueue);
4482                 priv->workqueue = NULL;
4483         }
4484 }
4485
4486 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4487 {
4488         int i, j, err = -EINVAL;
4489         void *v;
4490         dma_addr_t p;
4491
4492         IPW_DEBUG_INFO("enter\n");
4493
4494         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4495         if (err) {
4496                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4497                                 priv->net_dev->name);
4498                 return err;
4499         }
4500
4501         priv->tx_buffers =
4502             (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4503                                                 sizeof(struct
4504                                                        ipw2100_tx_packet),
4505                                                 GFP_ATOMIC);
4506         if (!priv->tx_buffers) {
4507                 printk(KERN_ERR DRV_NAME
4508                        ": %s: alloc failed form tx buffers.\n",
4509                        priv->net_dev->name);
4510                 bd_queue_free(priv, &priv->tx_queue);
4511                 return -ENOMEM;
4512         }
4513
4514         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4515                 v = pci_alloc_consistent(priv->pci_dev,
4516                                          sizeof(struct ipw2100_data_header),
4517                                          &p);
4518                 if (!v) {
4519                         printk(KERN_ERR DRV_NAME
4520                                ": %s: PCI alloc failed for tx " "buffers.\n",
4521                                priv->net_dev->name);
4522                         err = -ENOMEM;
4523                         break;
4524                 }
4525
4526                 priv->tx_buffers[i].type = DATA;
4527                 priv->tx_buffers[i].info.d_struct.data =
4528                     (struct ipw2100_data_header *)v;
4529                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4530                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4531         }
4532
4533         if (i == TX_PENDED_QUEUE_LENGTH)
4534                 return 0;
4535
4536         for (j = 0; j < i; j++) {
4537                 pci_free_consistent(priv->pci_dev,
4538                                     sizeof(struct ipw2100_data_header),
4539                                     priv->tx_buffers[j].info.d_struct.data,
4540                                     priv->tx_buffers[j].info.d_struct.
4541                                     data_phys);
4542         }
4543
4544         kfree(priv->tx_buffers);
4545         priv->tx_buffers = NULL;
4546
4547         return err;
4548 }
4549
4550 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4551 {
4552         int i;
4553
4554         IPW_DEBUG_INFO("enter\n");
4555
4556         /*
4557          * reinitialize packet info lists
4558          */
4559         INIT_LIST_HEAD(&priv->fw_pend_list);
4560         INIT_STAT(&priv->fw_pend_stat);
4561
4562         /*
4563          * reinitialize lists
4564          */
4565         INIT_LIST_HEAD(&priv->tx_pend_list);
4566         INIT_LIST_HEAD(&priv->tx_free_list);
4567         INIT_STAT(&priv->tx_pend_stat);
4568         INIT_STAT(&priv->tx_free_stat);
4569
4570         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4571                 /* We simply drop any SKBs that have been queued for
4572                  * transmit */
4573                 if (priv->tx_buffers[i].info.d_struct.txb) {
4574                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4575                                            txb);
4576                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4577                 }
4578
4579                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4580         }
4581
4582         SET_STAT(&priv->tx_free_stat, i);
4583
4584         priv->tx_queue.oldest = 0;
4585         priv->tx_queue.available = priv->tx_queue.entries;
4586         priv->tx_queue.next = 0;
4587         INIT_STAT(&priv->txq_stat);
4588         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4589
4590         bd_queue_initialize(priv, &priv->tx_queue,
4591                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4592                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4593                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4594                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4595
4596         IPW_DEBUG_INFO("exit\n");
4597
4598 }
4599
4600 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4601 {
4602         int i;
4603
4604         IPW_DEBUG_INFO("enter\n");
4605
4606         bd_queue_free(priv, &priv->tx_queue);
4607
4608         if (!priv->tx_buffers)
4609                 return;
4610
4611         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4612                 if (priv->tx_buffers[i].info.d_struct.txb) {
4613                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4614                                            txb);
4615                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4616                 }
4617                 if (priv->tx_buffers[i].info.d_struct.data)
4618                         pci_free_consistent(priv->pci_dev,
4619                                             sizeof(struct ipw2100_data_header),
4620                                             priv->tx_buffers[i].info.d_struct.
4621                                             data,
4622                                             priv->tx_buffers[i].info.d_struct.
4623                                             data_phys);
4624         }
4625
4626         kfree(priv->tx_buffers);
4627         priv->tx_buffers = NULL;
4628
4629         IPW_DEBUG_INFO("exit\n");
4630 }
4631
4632 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4633 {
4634         int i, j, err = -EINVAL;
4635
4636         IPW_DEBUG_INFO("enter\n");
4637
4638         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4639         if (err) {
4640                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4641                 return err;
4642         }
4643
4644         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4645         if (err) {
4646                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4647                 bd_queue_free(priv, &priv->rx_queue);
4648                 return err;
4649         }
4650
4651         /*
4652          * allocate packets
4653          */
4654         priv->rx_buffers = (struct ipw2100_rx_packet *)
4655             kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4656                     GFP_KERNEL);
4657         if (!priv->rx_buffers) {
4658                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4659
4660                 bd_queue_free(priv, &priv->rx_queue);
4661
4662                 status_queue_free(priv);
4663
4664                 return -ENOMEM;
4665         }
4666
4667         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4668                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4669
4670                 err = ipw2100_alloc_skb(priv, packet);
4671                 if (unlikely(err)) {
4672                         err = -ENOMEM;
4673                         break;
4674                 }
4675
4676                 /* The BD holds the cache aligned address */
4677                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4678                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4679                 priv->status_queue.drv[i].status_fields = 0;
4680         }
4681
4682         if (i == RX_QUEUE_LENGTH)
4683                 return 0;
4684
4685         for (j = 0; j < i; j++) {
4686                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4687                                  sizeof(struct ipw2100_rx_packet),
4688                                  PCI_DMA_FROMDEVICE);
4689                 dev_kfree_skb(priv->rx_buffers[j].skb);
4690         }
4691
4692         kfree(priv->rx_buffers);
4693         priv->rx_buffers = NULL;
4694
4695         bd_queue_free(priv, &priv->rx_queue);
4696
4697         status_queue_free(priv);
4698
4699         return err;
4700 }
4701
4702 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4703 {
4704         IPW_DEBUG_INFO("enter\n");
4705
4706         priv->rx_queue.oldest = 0;
4707         priv->rx_queue.available = priv->rx_queue.entries - 1;
4708         priv->rx_queue.next = priv->rx_queue.entries - 1;
4709
4710         INIT_STAT(&priv->rxq_stat);
4711         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4712
4713         bd_queue_initialize(priv, &priv->rx_queue,
4714                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4715                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4716                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4717                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4718
4719         /* set up the status queue */
4720         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4721                        priv->status_queue.nic);
4722
4723         IPW_DEBUG_INFO("exit\n");
4724 }
4725
4726 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4727 {
4728         int i;
4729
4730         IPW_DEBUG_INFO("enter\n");
4731
4732         bd_queue_free(priv, &priv->rx_queue);
4733         status_queue_free(priv);
4734
4735         if (!priv->rx_buffers)
4736                 return;
4737
4738         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4739                 if (priv->rx_buffers[i].rxp) {
4740                         pci_unmap_single(priv->pci_dev,
4741                                          priv->rx_buffers[i].dma_addr,
4742                                          sizeof(struct ipw2100_rx),
4743                                          PCI_DMA_FROMDEVICE);
4744                         dev_kfree_skb(priv->rx_buffers[i].skb);
4745                 }
4746         }
4747
4748         kfree(priv->rx_buffers);
4749         priv->rx_buffers = NULL;
4750
4751         IPW_DEBUG_INFO("exit\n");
4752 }
4753
4754 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4755 {
4756         u32 length = ETH_ALEN;
4757         u8 addr[ETH_ALEN];
4758
4759         int err;
4760
4761         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4762         if (err) {
4763                 IPW_DEBUG_INFO("MAC address read failed\n");
4764                 return -EIO;
4765         }
4766
4767         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4768         IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4769
4770         return 0;
4771 }
4772
4773 /********************************************************************
4774  *
4775  * Firmware Commands
4776  *
4777  ********************************************************************/
4778
4779 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4780 {
4781         struct host_command cmd = {
4782                 .host_command = ADAPTER_ADDRESS,
4783                 .host_command_sequence = 0,
4784                 .host_command_length = ETH_ALEN
4785         };
4786         int err;
4787
4788         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4789
4790         IPW_DEBUG_INFO("enter\n");
4791
4792         if (priv->config & CFG_CUSTOM_MAC) {
4793                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4794                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4795         } else
4796                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4797                        ETH_ALEN);
4798
4799         err = ipw2100_hw_send_command(priv, &cmd);
4800
4801         IPW_DEBUG_INFO("exit\n");
4802         return err;
4803 }
4804
4805 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4806                                  int batch_mode)
4807 {
4808         struct host_command cmd = {
4809                 .host_command = PORT_TYPE,
4810                 .host_command_sequence = 0,
4811                 .host_command_length = sizeof(u32)
4812         };
4813         int err;
4814
4815         switch (port_type) {
4816         case IW_MODE_INFRA:
4817                 cmd.host_command_parameters[0] = IPW_BSS;
4818                 break;
4819         case IW_MODE_ADHOC:
4820                 cmd.host_command_parameters[0] = IPW_IBSS;
4821                 break;
4822         }
4823
4824         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4825                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4826
4827         if (!batch_mode) {
4828                 err = ipw2100_disable_adapter(priv);
4829                 if (err) {
4830                         printk(KERN_ERR DRV_NAME
4831                                ": %s: Could not disable adapter %d\n",
4832                                priv->net_dev->name, err);
4833                         return err;
4834                 }
4835         }
4836
4837         /* send cmd to firmware */
4838         err = ipw2100_hw_send_command(priv, &cmd);
4839
4840         if (!batch_mode)
4841                 ipw2100_enable_adapter(priv);
4842
4843         return err;
4844 }
4845
4846 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4847                                int batch_mode)
4848 {
4849         struct host_command cmd = {
4850                 .host_command = CHANNEL,
4851                 .host_command_sequence = 0,
4852                 .host_command_length = sizeof(u32)
4853         };
4854         int err;
4855
4856         cmd.host_command_parameters[0] = channel;
4857
4858         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4859
4860         /* If BSS then we don't support channel selection */
4861         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4862                 return 0;
4863
4864         if ((channel != 0) &&
4865             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4866                 return -EINVAL;
4867
4868         if (!batch_mode) {
4869                 err = ipw2100_disable_adapter(priv);
4870                 if (err)
4871                         return err;
4872         }
4873
4874         err = ipw2100_hw_send_command(priv, &cmd);
4875         if (err) {
4876                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4877                 return err;
4878         }
4879
4880         if (channel)
4881                 priv->config |= CFG_STATIC_CHANNEL;
4882         else
4883                 priv->config &= ~CFG_STATIC_CHANNEL;
4884
4885         priv->channel = channel;
4886
4887         if (!batch_mode) {
4888                 err = ipw2100_enable_adapter(priv);
4889                 if (err)
4890                         return err;
4891         }
4892
4893         return 0;
4894 }
4895
4896 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4897 {
4898         struct host_command cmd = {
4899                 .host_command = SYSTEM_CONFIG,
4900                 .host_command_sequence = 0,
4901                 .host_command_length = 12,
4902         };
4903         u32 ibss_mask, len = sizeof(u32);
4904         int err;
4905
4906         /* Set system configuration */
4907
4908         if (!batch_mode) {
4909                 err = ipw2100_disable_adapter(priv);
4910                 if (err)
4911                         return err;
4912         }
4913
4914         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4915                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4916
4917         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4918             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4919
4920         if (!(priv->config & CFG_LONG_PREAMBLE))
4921                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4922
4923         err = ipw2100_get_ordinal(priv,
4924                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4925                                   &ibss_mask, &len);
4926         if (err)
4927                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4928
4929         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4930         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4931
4932         /* 11b only */
4933         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4934
4935         err = ipw2100_hw_send_command(priv, &cmd);
4936         if (err)
4937                 return err;
4938
4939 /* If IPv6 is configured in the kernel then we don't want to filter out all
4940  * of the multicast packets as IPv6 needs some. */
4941 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4942         cmd.host_command = ADD_MULTICAST;
4943         cmd.host_command_sequence = 0;
4944         cmd.host_command_length = 0;
4945
4946         ipw2100_hw_send_command(priv, &cmd);
4947 #endif
4948         if (!batch_mode) {
4949                 err = ipw2100_enable_adapter(priv);
4950                 if (err)
4951                         return err;
4952         }
4953
4954         return 0;
4955 }
4956
4957 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4958                                 int batch_mode)
4959 {
4960         struct host_command cmd = {
4961                 .host_command = BASIC_TX_RATES,
4962                 .host_command_sequence = 0,
4963                 .host_command_length = 4
4964         };
4965         int err;
4966
4967         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4968
4969         if (!batch_mode) {
4970                 err = ipw2100_disable_adapter(priv);
4971                 if (err)
4972                         return err;
4973         }
4974
4975         /* Set BASIC TX Rate first */
4976         ipw2100_hw_send_command(priv, &cmd);
4977
4978         /* Set TX Rate */
4979         cmd.host_command = TX_RATES;
4980         ipw2100_hw_send_command(priv, &cmd);
4981
4982         /* Set MSDU TX Rate */
4983         cmd.host_command = MSDU_TX_RATES;
4984         ipw2100_hw_send_command(priv, &cmd);
4985
4986         if (!batch_mode) {
4987                 err = ipw2100_enable_adapter(priv);
4988                 if (err)
4989                         return err;
4990         }
4991
4992         priv->tx_rates = rate;
4993
4994         return 0;
4995 }
4996
4997 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4998 {
4999         struct host_command cmd = {
5000                 .host_command = POWER_MODE,
5001                 .host_command_sequence = 0,
5002                 .host_command_length = 4
5003         };
5004         int err;
5005
5006         cmd.host_command_parameters[0] = power_level;
5007
5008         err = ipw2100_hw_send_command(priv, &cmd);
5009         if (err)
5010                 return err;
5011
5012         if (power_level == IPW_POWER_MODE_CAM)
5013                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
5014         else
5015                 priv->power_mode = IPW_POWER_ENABLED | power_level;
5016
5017 #ifdef IPW2100_TX_POWER
5018         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
5019                 /* Set beacon interval */
5020                 cmd.host_command = TX_POWER_INDEX;
5021                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
5022
5023                 err = ipw2100_hw_send_command(priv, &cmd);
5024                 if (err)
5025                         return err;
5026         }
5027 #endif
5028
5029         return 0;
5030 }
5031
5032 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
5033 {
5034         struct host_command cmd = {
5035                 .host_command = RTS_THRESHOLD,
5036                 .host_command_sequence = 0,
5037                 .host_command_length = 4
5038         };
5039         int err;
5040
5041         if (threshold & RTS_DISABLED)
5042                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
5043         else
5044                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
5045
5046         err = ipw2100_hw_send_command(priv, &cmd);
5047         if (err)
5048                 return err;
5049
5050         priv->rts_threshold = threshold;
5051
5052         return 0;
5053 }
5054
5055 #if 0
5056 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
5057                                         u32 threshold, int batch_mode)
5058 {
5059         struct host_command cmd = {
5060                 .host_command = FRAG_THRESHOLD,
5061                 .host_command_sequence = 0,
5062                 .host_command_length = 4,
5063                 .host_command_parameters[0] = 0,
5064         };
5065         int err;
5066
5067         if (!batch_mode) {
5068                 err = ipw2100_disable_adapter(priv);
5069                 if (err)
5070                         return err;
5071         }
5072
5073         if (threshold == 0)
5074                 threshold = DEFAULT_FRAG_THRESHOLD;
5075         else {
5076                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5077                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5078         }
5079
5080         cmd.host_command_parameters[0] = threshold;
5081
5082         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5083
5084         err = ipw2100_hw_send_command(priv, &cmd);
5085
5086         if (!batch_mode)
5087                 ipw2100_enable_adapter(priv);
5088
5089         if (!err)
5090                 priv->frag_threshold = threshold;
5091
5092         return err;
5093 }
5094 #endif
5095
5096 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5097 {
5098         struct host_command cmd = {
5099                 .host_command = SHORT_RETRY_LIMIT,
5100                 .host_command_sequence = 0,
5101                 .host_command_length = 4
5102         };
5103         int err;
5104
5105         cmd.host_command_parameters[0] = retry;
5106
5107         err = ipw2100_hw_send_command(priv, &cmd);
5108         if (err)
5109                 return err;
5110
5111         priv->short_retry_limit = retry;
5112
5113         return 0;
5114 }
5115
5116 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5117 {
5118         struct host_command cmd = {
5119                 .host_command = LONG_RETRY_LIMIT,
5120                 .host_command_sequence = 0,
5121                 .host_command_length = 4
5122         };
5123         int err;
5124
5125         cmd.host_command_parameters[0] = retry;
5126
5127         err = ipw2100_hw_send_command(priv, &cmd);
5128         if (err)
5129                 return err;
5130
5131         priv->long_retry_limit = retry;
5132
5133         return 0;
5134 }
5135
5136 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5137                                        int batch_mode)
5138 {
5139         struct host_command cmd = {
5140                 .host_command = MANDATORY_BSSID,
5141                 .host_command_sequence = 0,
5142                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5143         };
5144         int err;
5145
5146 #ifdef CONFIG_IPW2100_DEBUG
5147         if (bssid != NULL)
5148                 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5149         else
5150                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5151 #endif
5152         /* if BSSID is empty then we disable mandatory bssid mode */
5153         if (bssid != NULL)
5154                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5155
5156         if (!batch_mode) {
5157                 err = ipw2100_disable_adapter(priv);
5158                 if (err)
5159                         return err;
5160         }
5161
5162         err = ipw2100_hw_send_command(priv, &cmd);
5163
5164         if (!batch_mode)
5165                 ipw2100_enable_adapter(priv);
5166
5167         return err;
5168 }
5169
5170 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5171 {
5172         struct host_command cmd = {
5173                 .host_command = DISASSOCIATION_BSSID,
5174                 .host_command_sequence = 0,
5175                 .host_command_length = ETH_ALEN
5176         };
5177         int err;
5178         int len;
5179
5180         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5181
5182         len = ETH_ALEN;
5183         /* The Firmware currently ignores the BSSID and just disassociates from
5184          * the currently associated AP -- but in the off chance that a future
5185          * firmware does use the BSSID provided here, we go ahead and try and
5186          * set it to the currently associated AP's BSSID */
5187         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5188
5189         err = ipw2100_hw_send_command(priv, &cmd);
5190
5191         return err;
5192 }
5193
5194 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5195                               struct ipw2100_wpa_assoc_frame *, int)
5196     __attribute__ ((unused));
5197
5198 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5199                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5200                               int batch_mode)
5201 {
5202         struct host_command cmd = {
5203                 .host_command = SET_WPA_IE,
5204                 .host_command_sequence = 0,
5205                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5206         };
5207         int err;
5208
5209         IPW_DEBUG_HC("SET_WPA_IE\n");
5210
5211         if (!batch_mode) {
5212                 err = ipw2100_disable_adapter(priv);
5213                 if (err)
5214                         return err;
5215         }
5216
5217         memcpy(cmd.host_command_parameters, wpa_frame,
5218                sizeof(struct ipw2100_wpa_assoc_frame));
5219
5220         err = ipw2100_hw_send_command(priv, &cmd);
5221
5222         if (!batch_mode) {
5223                 if (ipw2100_enable_adapter(priv))
5224                         err = -EIO;
5225         }
5226
5227         return err;
5228 }
5229
5230 struct security_info_params {
5231         u32 allowed_ciphers;
5232         u16 version;
5233         u8 auth_mode;
5234         u8 replay_counters_number;
5235         u8 unicast_using_group;
5236 } __attribute__ ((packed));
5237
5238 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5239                                             int auth_mode,
5240                                             int security_level,
5241                                             int unicast_using_group,
5242                                             int batch_mode)
5243 {
5244         struct host_command cmd = {
5245                 .host_command = SET_SECURITY_INFORMATION,
5246                 .host_command_sequence = 0,
5247                 .host_command_length = sizeof(struct security_info_params)
5248         };
5249         struct security_info_params *security =
5250             (struct security_info_params *)&cmd.host_command_parameters;
5251         int err;
5252         memset(security, 0, sizeof(*security));
5253
5254         /* If shared key AP authentication is turned on, then we need to
5255          * configure the firmware to try and use it.
5256          *
5257          * Actual data encryption/decryption is handled by the host. */
5258         security->auth_mode = auth_mode;
5259         security->unicast_using_group = unicast_using_group;
5260
5261         switch (security_level) {
5262         default:
5263         case SEC_LEVEL_0:
5264                 security->allowed_ciphers = IPW_NONE_CIPHER;
5265                 break;
5266         case SEC_LEVEL_1:
5267                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5268                     IPW_WEP104_CIPHER;
5269                 break;
5270         case SEC_LEVEL_2:
5271                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5272                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5273                 break;
5274         case SEC_LEVEL_2_CKIP:
5275                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5276                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5277                 break;
5278         case SEC_LEVEL_3:
5279                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5280                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5281                 break;
5282         }
5283
5284         IPW_DEBUG_HC
5285             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5286              security->auth_mode, security->allowed_ciphers, security_level);
5287
5288         security->replay_counters_number = 0;
5289
5290         if (!batch_mode) {
5291                 err = ipw2100_disable_adapter(priv);
5292                 if (err)
5293                         return err;
5294         }
5295
5296         err = ipw2100_hw_send_command(priv, &cmd);
5297
5298         if (!batch_mode)
5299                 ipw2100_enable_adapter(priv);
5300
5301         return err;
5302 }
5303
5304 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5305 {
5306         struct host_command cmd = {
5307                 .host_command = TX_POWER_INDEX,
5308                 .host_command_sequence = 0,
5309                 .host_command_length = 4
5310         };
5311         int err = 0;
5312         u32 tmp = tx_power;
5313
5314         if (tx_power != IPW_TX_POWER_DEFAULT)
5315                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5316                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5317
5318         cmd.host_command_parameters[0] = tmp;
5319
5320         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5321                 err = ipw2100_hw_send_command(priv, &cmd);
5322         if (!err)
5323                 priv->tx_power = tx_power;
5324
5325         return 0;
5326 }
5327
5328 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5329                                             u32 interval, int batch_mode)
5330 {
5331         struct host_command cmd = {
5332                 .host_command = BEACON_INTERVAL,
5333                 .host_command_sequence = 0,
5334                 .host_command_length = 4
5335         };
5336         int err;
5337
5338         cmd.host_command_parameters[0] = interval;
5339
5340         IPW_DEBUG_INFO("enter\n");
5341
5342         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5343                 if (!batch_mode) {
5344                         err = ipw2100_disable_adapter(priv);
5345                         if (err)
5346                                 return err;
5347                 }
5348
5349                 ipw2100_hw_send_command(priv, &cmd);
5350
5351                 if (!batch_mode) {
5352                         err = ipw2100_enable_adapter(priv);
5353                         if (err)
5354                                 return err;
5355                 }
5356         }
5357
5358         IPW_DEBUG_INFO("exit\n");
5359
5360         return 0;
5361 }
5362
5363 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5364 {
5365         ipw2100_tx_initialize(priv);
5366         ipw2100_rx_initialize(priv);
5367         ipw2100_msg_initialize(priv);
5368 }
5369
5370 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5371 {
5372         ipw2100_tx_free(priv);
5373         ipw2100_rx_free(priv);
5374         ipw2100_msg_free(priv);
5375 }
5376
5377 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5378 {
5379         if (ipw2100_tx_allocate(priv) ||
5380             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5381                 goto fail;
5382
5383         return 0;
5384
5385       fail:
5386         ipw2100_tx_free(priv);
5387         ipw2100_rx_free(priv);
5388         ipw2100_msg_free(priv);
5389         return -ENOMEM;
5390 }
5391
5392 #define IPW_PRIVACY_CAPABLE 0x0008
5393
5394 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5395                                  int batch_mode)
5396 {
5397         struct host_command cmd = {
5398                 .host_command = WEP_FLAGS,
5399                 .host_command_sequence = 0,
5400                 .host_command_length = 4
5401         };
5402         int err;
5403
5404         cmd.host_command_parameters[0] = flags;
5405
5406         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5407
5408         if (!batch_mode) {
5409                 err = ipw2100_disable_adapter(priv);
5410                 if (err) {
5411                         printk(KERN_ERR DRV_NAME
5412                                ": %s: Could not disable adapter %d\n",
5413                                priv->net_dev->name, err);
5414                         return err;
5415                 }
5416         }
5417
5418         /* send cmd to firmware */
5419         err = ipw2100_hw_send_command(priv, &cmd);
5420
5421         if (!batch_mode)
5422                 ipw2100_enable_adapter(priv);
5423
5424         return err;
5425 }
5426
5427 struct ipw2100_wep_key {
5428         u8 idx;
5429         u8 len;
5430         u8 key[13];
5431 };
5432
5433 /* Macros to ease up priting WEP keys */
5434 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5435 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5436 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5437 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5438
5439 /**
5440  * Set a the wep key
5441  *
5442  * @priv: struct to work on
5443  * @idx: index of the key we want to set
5444  * @key: ptr to the key data to set
5445  * @len: length of the buffer at @key
5446  * @batch_mode: FIXME perform the operation in batch mode, not
5447  *              disabling the device.
5448  *
5449  * @returns 0 if OK, < 0 errno code on error.
5450  *
5451  * Fill out a command structure with the new wep key, length an
5452  * index and send it down the wire.
5453  */
5454 static int ipw2100_set_key(struct ipw2100_priv *priv,
5455                            int idx, char *key, int len, int batch_mode)
5456 {
5457         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5458         struct host_command cmd = {
5459                 .host_command = WEP_KEY_INFO,
5460                 .host_command_sequence = 0,
5461                 .host_command_length = sizeof(struct ipw2100_wep_key),
5462         };
5463         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5464         int err;
5465
5466         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5467                      idx, keylen, len);
5468
5469         /* NOTE: We don't check cached values in case the firmware was reset
5470          * or some other problem is occurring.  If the user is setting the key,
5471          * then we push the change */
5472
5473         wep_key->idx = idx;
5474         wep_key->len = keylen;
5475
5476         if (keylen) {
5477                 memcpy(wep_key->key, key, len);
5478                 memset(wep_key->key + len, 0, keylen - len);
5479         }
5480
5481         /* Will be optimized out on debug not being configured in */
5482         if (keylen == 0)
5483                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5484                               priv->net_dev->name, wep_key->idx);
5485         else if (keylen == 5)
5486                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5487                               priv->net_dev->name, wep_key->idx, wep_key->len,
5488                               WEP_STR_64(wep_key->key));
5489         else
5490                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5491                               "\n",
5492                               priv->net_dev->name, wep_key->idx, wep_key->len,
5493                               WEP_STR_128(wep_key->key));
5494
5495         if (!batch_mode) {
5496                 err = ipw2100_disable_adapter(priv);
5497                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5498                 if (err) {
5499                         printk(KERN_ERR DRV_NAME
5500                                ": %s: Could not disable adapter %d\n",
5501                                priv->net_dev->name, err);
5502                         return err;
5503                 }
5504         }
5505
5506         /* send cmd to firmware */
5507         err = ipw2100_hw_send_command(priv, &cmd);
5508
5509         if (!batch_mode) {
5510                 int err2 = ipw2100_enable_adapter(priv);
5511                 if (err == 0)
5512                         err = err2;
5513         }
5514         return err;
5515 }
5516
5517 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5518                                  int idx, int batch_mode)
5519 {
5520         struct host_command cmd = {
5521                 .host_command = WEP_KEY_INDEX,
5522                 .host_command_sequence = 0,
5523                 .host_command_length = 4,
5524                 .host_command_parameters = {idx},
5525         };
5526         int err;
5527
5528         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5529
5530         if (idx < 0 || idx > 3)
5531                 return -EINVAL;
5532
5533         if (!batch_mode) {
5534                 err = ipw2100_disable_adapter(priv);
5535                 if (err) {
5536                         printk(KERN_ERR DRV_NAME
5537                                ": %s: Could not disable adapter %d\n",
5538                                priv->net_dev->name, err);
5539                         return err;
5540                 }
5541         }
5542
5543         /* send cmd to firmware */
5544         err = ipw2100_hw_send_command(priv, &cmd);
5545
5546         if (!batch_mode)
5547                 ipw2100_enable_adapter(priv);
5548
5549         return err;
5550 }
5551
5552 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5553 {
5554         int i, err, auth_mode, sec_level, use_group;
5555
5556         if (!(priv->status & STATUS_RUNNING))
5557                 return 0;
5558
5559         if (!batch_mode) {
5560                 err = ipw2100_disable_adapter(priv);
5561                 if (err)
5562                         return err;
5563         }
5564
5565         if (!priv->ieee->sec.enabled) {
5566                 err =
5567                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5568                                                      SEC_LEVEL_0, 0, 1);
5569         } else {
5570                 auth_mode = IPW_AUTH_OPEN;
5571                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5572                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5573                                 auth_mode = IPW_AUTH_SHARED;
5574                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5575                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5576                 }
5577
5578                 sec_level = SEC_LEVEL_0;
5579                 if (priv->ieee->sec.flags & SEC_LEVEL)
5580                         sec_level = priv->ieee->sec.level;
5581
5582                 use_group = 0;
5583                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5584                         use_group = priv->ieee->sec.unicast_uses_group;
5585
5586                 err =
5587                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5588                                                      use_group, 1);
5589         }
5590
5591         if (err)
5592                 goto exit;
5593
5594         if (priv->ieee->sec.enabled) {
5595                 for (i = 0; i < 4; i++) {
5596                         if (!(priv->ieee->sec.flags & (1 << i))) {
5597                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5598                                 priv->ieee->sec.key_sizes[i] = 0;
5599                         } else {
5600                                 err = ipw2100_set_key(priv, i,
5601                                                       priv->ieee->sec.keys[i],
5602                                                       priv->ieee->sec.
5603                                                       key_sizes[i], 1);
5604                                 if (err)
5605                                         goto exit;
5606                         }
5607                 }
5608
5609                 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5610         }
5611
5612         /* Always enable privacy so the Host can filter WEP packets if
5613          * encrypted data is sent up */
5614         err =
5615             ipw2100_set_wep_flags(priv,
5616                                   priv->ieee->sec.
5617                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5618         if (err)
5619                 goto exit;
5620
5621         priv->status &= ~STATUS_SECURITY_UPDATED;
5622
5623       exit:
5624         if (!batch_mode)
5625                 ipw2100_enable_adapter(priv);
5626
5627         return err;
5628 }
5629
5630 static void ipw2100_security_work(struct work_struct *work)
5631 {
5632         struct ipw2100_priv *priv =
5633                 container_of(work, struct ipw2100_priv, security_work.work);
5634
5635         /* If we happen to have reconnected before we get a chance to
5636          * process this, then update the security settings--which causes
5637          * a disassociation to occur */
5638         if (!(priv->status & STATUS_ASSOCIATED) &&
5639             priv->status & STATUS_SECURITY_UPDATED)
5640                 ipw2100_configure_security(priv, 0);
5641 }
5642
5643 static void shim__set_security(struct net_device *dev,
5644                                struct libipw_security *sec)
5645 {
5646         struct ipw2100_priv *priv = libipw_priv(dev);
5647         int i, force_update = 0;
5648
5649         mutex_lock(&priv->action_mutex);
5650         if (!(priv->status & STATUS_INITIALIZED))
5651                 goto done;
5652
5653         for (i = 0; i < 4; i++) {
5654                 if (sec->flags & (1 << i)) {
5655                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5656                         if (sec->key_sizes[i] == 0)
5657                                 priv->ieee->sec.flags &= ~(1 << i);
5658                         else
5659                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5660                                        sec->key_sizes[i]);
5661                         if (sec->level == SEC_LEVEL_1) {
5662                                 priv->ieee->sec.flags |= (1 << i);
5663                                 priv->status |= STATUS_SECURITY_UPDATED;
5664                         } else
5665                                 priv->ieee->sec.flags &= ~(1 << i);
5666                 }
5667         }
5668
5669         if ((sec->flags & SEC_ACTIVE_KEY) &&
5670             priv->ieee->sec.active_key != sec->active_key) {
5671                 if (sec->active_key <= 3) {
5672                         priv->ieee->sec.active_key = sec->active_key;
5673                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5674                 } else
5675                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5676
5677                 priv->status |= STATUS_SECURITY_UPDATED;
5678         }
5679
5680         if ((sec->flags & SEC_AUTH_MODE) &&
5681             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5682                 priv->ieee->sec.auth_mode = sec->auth_mode;
5683                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5684                 priv->status |= STATUS_SECURITY_UPDATED;
5685         }
5686
5687         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5688                 priv->ieee->sec.flags |= SEC_ENABLED;
5689                 priv->ieee->sec.enabled = sec->enabled;
5690                 priv->status |= STATUS_SECURITY_UPDATED;
5691                 force_update = 1;
5692         }
5693
5694         if (sec->flags & SEC_ENCRYPT)
5695                 priv->ieee->sec.encrypt = sec->encrypt;
5696
5697         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5698                 priv->ieee->sec.level = sec->level;
5699                 priv->ieee->sec.flags |= SEC_LEVEL;
5700                 priv->status |= STATUS_SECURITY_UPDATED;
5701         }
5702
5703         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5704                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5705                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5706                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5707                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5708                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5709                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5710                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5711                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5712                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5713
5714 /* As a temporary work around to enable WPA until we figure out why
5715  * wpa_supplicant toggles the security capability of the driver, which
5716  * forces a disassocation with force_update...
5717  *
5718  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5719         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5720                 ipw2100_configure_security(priv, 0);
5721       done:
5722         mutex_unlock(&priv->action_mutex);
5723 }
5724
5725 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5726 {
5727         int err;
5728         int batch_mode = 1;
5729         u8 *bssid;
5730
5731         IPW_DEBUG_INFO("enter\n");
5732
5733         err = ipw2100_disable_adapter(priv);
5734         if (err)
5735                 return err;
5736 #ifdef CONFIG_IPW2100_MONITOR
5737         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5738                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5739                 if (err)
5740                         return err;
5741
5742                 IPW_DEBUG_INFO("exit\n");
5743
5744                 return 0;
5745         }
5746 #endif                          /* CONFIG_IPW2100_MONITOR */
5747
5748         err = ipw2100_read_mac_address(priv);
5749         if (err)
5750                 return -EIO;
5751
5752         err = ipw2100_set_mac_address(priv, batch_mode);
5753         if (err)
5754                 return err;
5755
5756         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5757         if (err)
5758                 return err;
5759
5760         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5761                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5762                 if (err)
5763                         return err;
5764         }
5765
5766         err = ipw2100_system_config(priv, batch_mode);
5767         if (err)
5768                 return err;
5769
5770         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5771         if (err)
5772                 return err;
5773
5774         /* Default to power mode OFF */
5775         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5776         if (err)
5777                 return err;
5778
5779         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5780         if (err)
5781                 return err;
5782
5783         if (priv->config & CFG_STATIC_BSSID)
5784                 bssid = priv->bssid;
5785         else
5786                 bssid = NULL;
5787         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5788         if (err)
5789                 return err;
5790
5791         if (priv->config & CFG_STATIC_ESSID)
5792                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5793                                         batch_mode);
5794         else
5795                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5796         if (err)
5797                 return err;
5798
5799         err = ipw2100_configure_security(priv, batch_mode);
5800         if (err)
5801                 return err;
5802
5803         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5804                 err =
5805                     ipw2100_set_ibss_beacon_interval(priv,
5806                                                      priv->beacon_interval,
5807                                                      batch_mode);
5808                 if (err)
5809                         return err;
5810
5811                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5812                 if (err)
5813                         return err;
5814         }
5815
5816         /*
5817            err = ipw2100_set_fragmentation_threshold(
5818            priv, priv->frag_threshold, batch_mode);
5819            if (err)
5820            return err;
5821          */
5822
5823         IPW_DEBUG_INFO("exit\n");
5824
5825         return 0;
5826 }
5827
5828 /*************************************************************************
5829  *
5830  * EXTERNALLY CALLED METHODS
5831  *
5832  *************************************************************************/
5833
5834 /* This method is called by the network layer -- not to be confused with
5835  * ipw2100_set_mac_address() declared above called by this driver (and this
5836  * method as well) to talk to the firmware */
5837 static int ipw2100_set_address(struct net_device *dev, void *p)
5838 {
5839         struct ipw2100_priv *priv = libipw_priv(dev);
5840         struct sockaddr *addr = p;
5841         int err = 0;
5842
5843         if (!is_valid_ether_addr(addr->sa_data))
5844                 return -EADDRNOTAVAIL;
5845
5846         mutex_lock(&priv->action_mutex);
5847
5848         priv->config |= CFG_CUSTOM_MAC;
5849         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5850
5851         err = ipw2100_set_mac_address(priv, 0);
5852         if (err)
5853                 goto done;
5854
5855         priv->reset_backoff = 0;
5856         mutex_unlock(&priv->action_mutex);
5857         ipw2100_reset_adapter(&priv->reset_work.work);
5858         return 0;
5859
5860       done:
5861         mutex_unlock(&priv->action_mutex);
5862         return err;
5863 }
5864
5865 static int ipw2100_open(struct net_device *dev)
5866 {
5867         struct ipw2100_priv *priv = libipw_priv(dev);
5868         unsigned long flags;
5869         IPW_DEBUG_INFO("dev->open\n");
5870
5871         spin_lock_irqsave(&priv->low_lock, flags);
5872         if (priv->status & STATUS_ASSOCIATED) {
5873                 netif_carrier_on(dev);
5874                 netif_start_queue(dev);
5875         }
5876         spin_unlock_irqrestore(&priv->low_lock, flags);
5877
5878         return 0;
5879 }
5880
5881 static int ipw2100_close(struct net_device *dev)
5882 {
5883         struct ipw2100_priv *priv = libipw_priv(dev);
5884         unsigned long flags;
5885         struct list_head *element;
5886         struct ipw2100_tx_packet *packet;
5887
5888         IPW_DEBUG_INFO("enter\n");
5889
5890         spin_lock_irqsave(&priv->low_lock, flags);
5891
5892         if (priv->status & STATUS_ASSOCIATED)
5893                 netif_carrier_off(dev);
5894         netif_stop_queue(dev);
5895
5896         /* Flush the TX queue ... */
5897         while (!list_empty(&priv->tx_pend_list)) {
5898                 element = priv->tx_pend_list.next;
5899                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5900
5901                 list_del(element);
5902                 DEC_STAT(&priv->tx_pend_stat);
5903
5904                 libipw_txb_free(packet->info.d_struct.txb);
5905                 packet->info.d_struct.txb = NULL;
5906
5907                 list_add_tail(element, &priv->tx_free_list);
5908                 INC_STAT(&priv->tx_free_stat);
5909         }
5910         spin_unlock_irqrestore(&priv->low_lock, flags);
5911
5912         IPW_DEBUG_INFO("exit\n");
5913
5914         return 0;
5915 }
5916
5917 /*
5918  * TODO:  Fix this function... its just wrong
5919  */
5920 static void ipw2100_tx_timeout(struct net_device *dev)
5921 {
5922         struct ipw2100_priv *priv = libipw_priv(dev);
5923
5924         dev->stats.tx_errors++;
5925
5926 #ifdef CONFIG_IPW2100_MONITOR
5927         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5928                 return;
5929 #endif
5930
5931         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5932                        dev->name);
5933         schedule_reset(priv);
5934 }
5935
5936 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5937 {
5938         /* This is called when wpa_supplicant loads and closes the driver
5939          * interface. */
5940         priv->ieee->wpa_enabled = value;
5941         return 0;
5942 }
5943
5944 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5945 {
5946
5947         struct libipw_device *ieee = priv->ieee;
5948         struct libipw_security sec = {
5949                 .flags = SEC_AUTH_MODE,
5950         };
5951         int ret = 0;
5952
5953         if (value & IW_AUTH_ALG_SHARED_KEY) {
5954                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5955                 ieee->open_wep = 0;
5956         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5957                 sec.auth_mode = WLAN_AUTH_OPEN;
5958                 ieee->open_wep = 1;
5959         } else if (value & IW_AUTH_ALG_LEAP) {
5960                 sec.auth_mode = WLAN_AUTH_LEAP;
5961                 ieee->open_wep = 1;
5962         } else
5963                 return -EINVAL;
5964
5965         if (ieee->set_security)
5966                 ieee->set_security(ieee->dev, &sec);
5967         else
5968                 ret = -EOPNOTSUPP;
5969
5970         return ret;
5971 }
5972
5973 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5974                                     char *wpa_ie, int wpa_ie_len)
5975 {
5976
5977         struct ipw2100_wpa_assoc_frame frame;
5978
5979         frame.fixed_ie_mask = 0;
5980
5981         /* copy WPA IE */
5982         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5983         frame.var_ie_len = wpa_ie_len;
5984
5985         /* make sure WPA is enabled */
5986         ipw2100_wpa_enable(priv, 1);
5987         ipw2100_set_wpa_ie(priv, &frame, 0);
5988 }
5989
5990 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5991                                     struct ethtool_drvinfo *info)
5992 {
5993         struct ipw2100_priv *priv = libipw_priv(dev);
5994         char fw_ver[64], ucode_ver[64];
5995
5996         strcpy(info->driver, DRV_NAME);
5997         strcpy(info->version, DRV_VERSION);
5998
5999         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
6000         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
6001
6002         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
6003                  fw_ver, priv->eeprom_version, ucode_ver);
6004
6005         strcpy(info->bus_info, pci_name(priv->pci_dev));
6006 }
6007
6008 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
6009 {
6010         struct ipw2100_priv *priv = libipw_priv(dev);
6011         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
6012 }
6013
6014 static const struct ethtool_ops ipw2100_ethtool_ops = {
6015         .get_link = ipw2100_ethtool_get_link,
6016         .get_drvinfo = ipw_ethtool_get_drvinfo,
6017 };
6018
6019 static void ipw2100_hang_check(struct work_struct *work)
6020 {
6021         struct ipw2100_priv *priv =
6022                 container_of(work, struct ipw2100_priv, hang_check.work);
6023         unsigned long flags;
6024         u32 rtc = 0xa5a5a5a5;
6025         u32 len = sizeof(rtc);
6026         int restart = 0;
6027
6028         spin_lock_irqsave(&priv->low_lock, flags);
6029
6030         if (priv->fatal_error != 0) {
6031                 /* If fatal_error is set then we need to restart */
6032                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
6033                                priv->net_dev->name);
6034
6035                 restart = 1;
6036         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
6037                    (rtc == priv->last_rtc)) {
6038                 /* Check if firmware is hung */
6039                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6040                                priv->net_dev->name);
6041
6042                 restart = 1;
6043         }
6044
6045         if (restart) {
6046                 /* Kill timer */
6047                 priv->stop_hang_check = 1;
6048                 priv->hangs++;
6049
6050                 /* Restart the NIC */
6051                 schedule_reset(priv);
6052         }
6053
6054         priv->last_rtc = rtc;
6055
6056         if (!priv->stop_hang_check)
6057                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
6058
6059         spin_unlock_irqrestore(&priv->low_lock, flags);
6060 }