Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[linux-3.10.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos_params.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "git-1.2.2"
171
172 #define DRV_NAME        "ipw2100"
173 #define DRV_VERSION     IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
176
177 /* Debugging stuff */
178 #ifdef CONFIG_IPW2100_DEBUG
179 #define IPW2100_RX_DEBUG        /* Reception debugging */
180 #endif
181
182 MODULE_DESCRIPTION(DRV_DESCRIPTION);
183 MODULE_VERSION(DRV_VERSION);
184 MODULE_AUTHOR(DRV_COPYRIGHT);
185 MODULE_LICENSE("GPL");
186
187 static int debug = 0;
188 static int network_mode = 0;
189 static int channel = 0;
190 static int associate = 0;
191 static int disable = 0;
192 #ifdef CONFIG_PM
193 static struct ipw2100_fw ipw2100_firmware;
194 #endif
195
196 #include <linux/moduleparam.h>
197 module_param(debug, int, 0444);
198 module_param_named(mode, network_mode, int, 0444);
199 module_param(channel, int, 0444);
200 module_param(associate, int, 0444);
201 module_param(disable, int, 0444);
202
203 MODULE_PARM_DESC(debug, "debug level");
204 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
205 MODULE_PARM_DESC(channel, "channel");
206 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
207 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208
209 static u32 ipw2100_debug_level = IPW_DL_NONE;
210
211 #ifdef CONFIG_IPW2100_DEBUG
212 #define IPW_DEBUG(level, message...) \
213 do { \
214         if (ipw2100_debug_level & (level)) { \
215                 printk(KERN_DEBUG "ipw2100: %c %s ", \
216                        in_interrupt() ? 'I' : 'U',  __func__); \
217                 printk(message); \
218         } \
219 } while (0)
220 #else
221 #define IPW_DEBUG(level, message...) do {} while (0)
222 #endif                          /* CONFIG_IPW2100_DEBUG */
223
224 #ifdef CONFIG_IPW2100_DEBUG
225 static const char *command_types[] = {
226         "undefined",
227         "unused",               /* HOST_ATTENTION */
228         "HOST_COMPLETE",
229         "unused",               /* SLEEP */
230         "unused",               /* HOST_POWER_DOWN */
231         "unused",
232         "SYSTEM_CONFIG",
233         "unused",               /* SET_IMR */
234         "SSID",
235         "MANDATORY_BSSID",
236         "AUTHENTICATION_TYPE",
237         "ADAPTER_ADDRESS",
238         "PORT_TYPE",
239         "INTERNATIONAL_MODE",
240         "CHANNEL",
241         "RTS_THRESHOLD",
242         "FRAG_THRESHOLD",
243         "POWER_MODE",
244         "TX_RATES",
245         "BASIC_TX_RATES",
246         "WEP_KEY_INFO",
247         "unused",
248         "unused",
249         "unused",
250         "unused",
251         "WEP_KEY_INDEX",
252         "WEP_FLAGS",
253         "ADD_MULTICAST",
254         "CLEAR_ALL_MULTICAST",
255         "BEACON_INTERVAL",
256         "ATIM_WINDOW",
257         "CLEAR_STATISTICS",
258         "undefined",
259         "undefined",
260         "undefined",
261         "undefined",
262         "TX_POWER_INDEX",
263         "undefined",
264         "undefined",
265         "undefined",
266         "undefined",
267         "undefined",
268         "undefined",
269         "BROADCAST_SCAN",
270         "CARD_DISABLE",
271         "PREFERRED_BSSID",
272         "SET_SCAN_OPTIONS",
273         "SCAN_DWELL_TIME",
274         "SWEEP_TABLE",
275         "AP_OR_STATION_TABLE",
276         "GROUP_ORDINALS",
277         "SHORT_RETRY_LIMIT",
278         "LONG_RETRY_LIMIT",
279         "unused",               /* SAVE_CALIBRATION */
280         "unused",               /* RESTORE_CALIBRATION */
281         "undefined",
282         "undefined",
283         "undefined",
284         "HOST_PRE_POWER_DOWN",
285         "unused",               /* HOST_INTERRUPT_COALESCING */
286         "undefined",
287         "CARD_DISABLE_PHY_OFF",
288         "MSDU_TX_RATES" "undefined",
289         "undefined",
290         "SET_STATION_STAT_BITS",
291         "CLEAR_STATIONS_STAT_BITS",
292         "LEAP_ROGUE_MODE",
293         "SET_SECURITY_INFORMATION",
294         "DISASSOCIATION_BSSID",
295         "SET_WPA_ASS_IE"
296 };
297 #endif
298
299 #define WEXT_USECHANNELS 1
300
301 static const long ipw2100_frequencies[] = {
302         2412, 2417, 2422, 2427,
303         2432, 2437, 2442, 2447,
304         2452, 2457, 2462, 2467,
305         2472, 2484
306 };
307
308 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
309
310 static const long ipw2100_rates_11b[] = {
311         1000000,
312         2000000,
313         5500000,
314         11000000
315 };
316
317 static struct ieee80211_rate ipw2100_bg_rates[] = {
318         { .bitrate = 10 },
319         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
320         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
321         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
322 };
323
324 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
325
326 /* Pre-decl until we get the code solid and then we can clean it up */
327 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
328 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
329 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
330
331 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
332 static void ipw2100_queues_free(struct ipw2100_priv *priv);
333 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
334
335 static int ipw2100_fw_download(struct ipw2100_priv *priv,
336                                struct ipw2100_fw *fw);
337 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
338                                 struct ipw2100_fw *fw);
339 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
340                                  size_t max);
341 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
342                                     size_t max);
343 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
344                                      struct ipw2100_fw *fw);
345 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
346                                   struct ipw2100_fw *fw);
347 static void ipw2100_wx_event_work(struct work_struct *work);
348 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
349 static struct iw_handler_def ipw2100_wx_handler_def;
350
351 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
352 {
353         *val = readl((void __iomem *)(dev->base_addr + reg));
354         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
355 }
356
357 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
358 {
359         writel(val, (void __iomem *)(dev->base_addr + reg));
360         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
361 }
362
363 static inline void read_register_word(struct net_device *dev, u32 reg,
364                                       u16 * val)
365 {
366         *val = readw((void __iomem *)(dev->base_addr + reg));
367         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372         *val = readb((void __iomem *)(dev->base_addr + reg));
373         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
374 }
375
376 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
377 {
378         writew(val, (void __iomem *)(dev->base_addr + reg));
379         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
380 }
381
382 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
383 {
384         writeb(val, (void __iomem *)(dev->base_addr + reg));
385         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
386 }
387
388 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
389 {
390         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
391                        addr & IPW_REG_INDIRECT_ADDR_MASK);
392         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
393 }
394
395 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
396 {
397         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
398                        addr & IPW_REG_INDIRECT_ADDR_MASK);
399         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
400 }
401
402 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
403 {
404         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
405                        addr & IPW_REG_INDIRECT_ADDR_MASK);
406         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
407 }
408
409 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
410 {
411         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
412                        addr & IPW_REG_INDIRECT_ADDR_MASK);
413         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
414 }
415
416 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
417 {
418         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
419                        addr & IPW_REG_INDIRECT_ADDR_MASK);
420         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
421 }
422
423 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
424 {
425         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
426                        addr & IPW_REG_INDIRECT_ADDR_MASK);
427         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
428 }
429
430 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
431 {
432         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
433                        addr & IPW_REG_INDIRECT_ADDR_MASK);
434 }
435
436 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
437 {
438         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
439 }
440
441 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
442                                     const u8 * buf)
443 {
444         u32 aligned_addr;
445         u32 aligned_len;
446         u32 dif_len;
447         u32 i;
448
449         /* read first nibble byte by byte */
450         aligned_addr = addr & (~0x3);
451         dif_len = addr - aligned_addr;
452         if (dif_len) {
453                 /* Start reading at aligned_addr + dif_len */
454                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
455                                aligned_addr);
456                 for (i = dif_len; i < 4; i++, buf++)
457                         write_register_byte(dev,
458                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
459                                             *buf);
460
461                 len -= dif_len;
462                 aligned_addr += 4;
463         }
464
465         /* read DWs through autoincrement registers */
466         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
467         aligned_len = len & (~0x3);
468         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
469                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
470
471         /* copy the last nibble */
472         dif_len = len - aligned_len;
473         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
474         for (i = 0; i < dif_len; i++, buf++)
475                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
476                                     *buf);
477 }
478
479 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
480                                    u8 * buf)
481 {
482         u32 aligned_addr;
483         u32 aligned_len;
484         u32 dif_len;
485         u32 i;
486
487         /* read first nibble byte by byte */
488         aligned_addr = addr & (~0x3);
489         dif_len = addr - aligned_addr;
490         if (dif_len) {
491                 /* Start reading at aligned_addr + dif_len */
492                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
493                                aligned_addr);
494                 for (i = dif_len; i < 4; i++, buf++)
495                         read_register_byte(dev,
496                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
497                                            buf);
498
499                 len -= dif_len;
500                 aligned_addr += 4;
501         }
502
503         /* read DWs through autoincrement registers */
504         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
505         aligned_len = len & (~0x3);
506         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
507                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
508
509         /* copy the last nibble */
510         dif_len = len - aligned_len;
511         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
512         for (i = 0; i < dif_len; i++, buf++)
513                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
514 }
515
516 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
517 {
518         return (dev->base_addr &&
519                 (readl
520                  ((void __iomem *)(dev->base_addr +
521                                    IPW_REG_DOA_DEBUG_AREA_START))
522                  == IPW_DATA_DOA_DEBUG_VALUE));
523 }
524
525 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
526                                void *val, u32 * len)
527 {
528         struct ipw2100_ordinals *ordinals = &priv->ordinals;
529         u32 addr;
530         u32 field_info;
531         u16 field_len;
532         u16 field_count;
533         u32 total_length;
534
535         if (ordinals->table1_addr == 0) {
536                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
537                        "before they have been loaded.\n");
538                 return -EINVAL;
539         }
540
541         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
542                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
543                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
544
545                         printk(KERN_WARNING DRV_NAME
546                                ": ordinal buffer length too small, need %zd\n",
547                                IPW_ORD_TAB_1_ENTRY_SIZE);
548
549                         return -EINVAL;
550                 }
551
552                 read_nic_dword(priv->net_dev,
553                                ordinals->table1_addr + (ord << 2), &addr);
554                 read_nic_dword(priv->net_dev, addr, val);
555
556                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
557
558                 return 0;
559         }
560
561         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
562
563                 ord -= IPW_START_ORD_TAB_2;
564
565                 /* get the address of statistic */
566                 read_nic_dword(priv->net_dev,
567                                ordinals->table2_addr + (ord << 3), &addr);
568
569                 /* get the second DW of statistics ;
570                  * two 16-bit words - first is length, second is count */
571                 read_nic_dword(priv->net_dev,
572                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
573                                &field_info);
574
575                 /* get each entry length */
576                 field_len = *((u16 *) & field_info);
577
578                 /* get number of entries */
579                 field_count = *(((u16 *) & field_info) + 1);
580
581                 /* abort if no enough memory */
582                 total_length = field_len * field_count;
583                 if (total_length > *len) {
584                         *len = total_length;
585                         return -EINVAL;
586                 }
587
588                 *len = total_length;
589                 if (!total_length)
590                         return 0;
591
592                 /* read the ordinal data from the SRAM */
593                 read_nic_memory(priv->net_dev, addr, total_length, val);
594
595                 return 0;
596         }
597
598         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
599                "in table 2\n", ord);
600
601         return -EINVAL;
602 }
603
604 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
605                                u32 * len)
606 {
607         struct ipw2100_ordinals *ordinals = &priv->ordinals;
608         u32 addr;
609
610         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
611                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
612                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
613                         IPW_DEBUG_INFO("wrong size\n");
614                         return -EINVAL;
615                 }
616
617                 read_nic_dword(priv->net_dev,
618                                ordinals->table1_addr + (ord << 2), &addr);
619
620                 write_nic_dword(priv->net_dev, addr, *val);
621
622                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
623
624                 return 0;
625         }
626
627         IPW_DEBUG_INFO("wrong table\n");
628         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
629                 return -EINVAL;
630
631         return -EINVAL;
632 }
633
634 static char *snprint_line(char *buf, size_t count,
635                           const u8 * data, u32 len, u32 ofs)
636 {
637         int out, i, j, l;
638         char c;
639
640         out = snprintf(buf, count, "%08X", ofs);
641
642         for (l = 0, i = 0; i < 2; i++) {
643                 out += snprintf(buf + out, count - out, " ");
644                 for (j = 0; j < 8 && l < len; j++, l++)
645                         out += snprintf(buf + out, count - out, "%02X ",
646                                         data[(i * 8 + j)]);
647                 for (; j < 8; j++)
648                         out += snprintf(buf + out, count - out, "   ");
649         }
650
651         out += snprintf(buf + out, count - out, " ");
652         for (l = 0, i = 0; i < 2; i++) {
653                 out += snprintf(buf + out, count - out, " ");
654                 for (j = 0; j < 8 && l < len; j++, l++) {
655                         c = data[(i * 8 + j)];
656                         if (!isascii(c) || !isprint(c))
657                                 c = '.';
658
659                         out += snprintf(buf + out, count - out, "%c", c);
660                 }
661
662                 for (; j < 8; j++)
663                         out += snprintf(buf + out, count - out, " ");
664         }
665
666         return buf;
667 }
668
669 static void printk_buf(int level, const u8 * data, u32 len)
670 {
671         char line[81];
672         u32 ofs = 0;
673         if (!(ipw2100_debug_level & level))
674                 return;
675
676         while (len) {
677                 printk(KERN_DEBUG "%s\n",
678                        snprint_line(line, sizeof(line), &data[ofs],
679                                     min(len, 16U), ofs));
680                 ofs += 16;
681                 len -= min(len, 16U);
682         }
683 }
684
685 #define MAX_RESET_BACKOFF 10
686
687 static void schedule_reset(struct ipw2100_priv *priv)
688 {
689         unsigned long now = get_seconds();
690
691         /* If we haven't received a reset request within the backoff period,
692          * then we can reset the backoff interval so this reset occurs
693          * immediately */
694         if (priv->reset_backoff &&
695             (now - priv->last_reset > priv->reset_backoff))
696                 priv->reset_backoff = 0;
697
698         priv->last_reset = get_seconds();
699
700         if (!(priv->status & STATUS_RESET_PENDING)) {
701                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
702                                priv->net_dev->name, priv->reset_backoff);
703                 netif_carrier_off(priv->net_dev);
704                 netif_stop_queue(priv->net_dev);
705                 priv->status |= STATUS_RESET_PENDING;
706                 if (priv->reset_backoff)
707                         queue_delayed_work(priv->workqueue, &priv->reset_work,
708                                            priv->reset_backoff * HZ);
709                 else
710                         queue_delayed_work(priv->workqueue, &priv->reset_work,
711                                            0);
712
713                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
714                         priv->reset_backoff++;
715
716                 wake_up_interruptible(&priv->wait_command_queue);
717         } else
718                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
719                                priv->net_dev->name);
720
721 }
722
723 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
724 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
725                                    struct host_command *cmd)
726 {
727         struct list_head *element;
728         struct ipw2100_tx_packet *packet;
729         unsigned long flags;
730         int err = 0;
731
732         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
733                      command_types[cmd->host_command], cmd->host_command,
734                      cmd->host_command_length);
735         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
736                    cmd->host_command_length);
737
738         spin_lock_irqsave(&priv->low_lock, flags);
739
740         if (priv->fatal_error) {
741                 IPW_DEBUG_INFO
742                     ("Attempt to send command while hardware in fatal error condition.\n");
743                 err = -EIO;
744                 goto fail_unlock;
745         }
746
747         if (!(priv->status & STATUS_RUNNING)) {
748                 IPW_DEBUG_INFO
749                     ("Attempt to send command while hardware is not running.\n");
750                 err = -EIO;
751                 goto fail_unlock;
752         }
753
754         if (priv->status & STATUS_CMD_ACTIVE) {
755                 IPW_DEBUG_INFO
756                     ("Attempt to send command while another command is pending.\n");
757                 err = -EBUSY;
758                 goto fail_unlock;
759         }
760
761         if (list_empty(&priv->msg_free_list)) {
762                 IPW_DEBUG_INFO("no available msg buffers\n");
763                 goto fail_unlock;
764         }
765
766         priv->status |= STATUS_CMD_ACTIVE;
767         priv->messages_sent++;
768
769         element = priv->msg_free_list.next;
770
771         packet = list_entry(element, struct ipw2100_tx_packet, list);
772         packet->jiffy_start = jiffies;
773
774         /* initialize the firmware command packet */
775         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
776         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
777         packet->info.c_struct.cmd->host_command_len_reg =
778             cmd->host_command_length;
779         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
780
781         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
782                cmd->host_command_parameters,
783                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
784
785         list_del(element);
786         DEC_STAT(&priv->msg_free_stat);
787
788         list_add_tail(element, &priv->msg_pend_list);
789         INC_STAT(&priv->msg_pend_stat);
790
791         ipw2100_tx_send_commands(priv);
792         ipw2100_tx_send_data(priv);
793
794         spin_unlock_irqrestore(&priv->low_lock, flags);
795
796         /*
797          * We must wait for this command to complete before another
798          * command can be sent...  but if we wait more than 3 seconds
799          * then there is a problem.
800          */
801
802         err =
803             wait_event_interruptible_timeout(priv->wait_command_queue,
804                                              !(priv->
805                                                status & STATUS_CMD_ACTIVE),
806                                              HOST_COMPLETE_TIMEOUT);
807
808         if (err == 0) {
809                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
810                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
811                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
812                 priv->status &= ~STATUS_CMD_ACTIVE;
813                 schedule_reset(priv);
814                 return -EIO;
815         }
816
817         if (priv->fatal_error) {
818                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
819                        priv->net_dev->name);
820                 return -EIO;
821         }
822
823         /* !!!!! HACK TEST !!!!!
824          * When lots of debug trace statements are enabled, the driver
825          * doesn't seem to have as many firmware restart cycles...
826          *
827          * As a test, we're sticking in a 1/100s delay here */
828         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
829
830         return 0;
831
832       fail_unlock:
833         spin_unlock_irqrestore(&priv->low_lock, flags);
834
835         return err;
836 }
837
838 /*
839  * Verify the values and data access of the hardware
840  * No locks needed or used.  No functions called.
841  */
842 static int ipw2100_verify(struct ipw2100_priv *priv)
843 {
844         u32 data1, data2;
845         u32 address;
846
847         u32 val1 = 0x76543210;
848         u32 val2 = 0xFEDCBA98;
849
850         /* Domain 0 check - all values should be DOA_DEBUG */
851         for (address = IPW_REG_DOA_DEBUG_AREA_START;
852              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
853                 read_register(priv->net_dev, address, &data1);
854                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
855                         return -EIO;
856         }
857
858         /* Domain 1 check - use arbitrary read/write compare  */
859         for (address = 0; address < 5; address++) {
860                 /* The memory area is not used now */
861                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
862                                val1);
863                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
864                                val2);
865                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
866                               &data1);
867                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
868                               &data2);
869                 if (val1 == data1 && val2 == data2)
870                         return 0;
871         }
872
873         return -EIO;
874 }
875
876 /*
877  *
878  * Loop until the CARD_DISABLED bit is the same value as the
879  * supplied parameter
880  *
881  * TODO: See if it would be more efficient to do a wait/wake
882  *       cycle and have the completion event trigger the wakeup
883  *
884  */
885 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
886 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
887 {
888         int i;
889         u32 card_state;
890         u32 len = sizeof(card_state);
891         int err;
892
893         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
894                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
895                                           &card_state, &len);
896                 if (err) {
897                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
898                                        "failed.\n");
899                         return 0;
900                 }
901
902                 /* We'll break out if either the HW state says it is
903                  * in the state we want, or if HOST_COMPLETE command
904                  * finishes */
905                 if ((card_state == state) ||
906                     ((priv->status & STATUS_ENABLED) ?
907                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
908                         if (state == IPW_HW_STATE_ENABLED)
909                                 priv->status |= STATUS_ENABLED;
910                         else
911                                 priv->status &= ~STATUS_ENABLED;
912
913                         return 0;
914                 }
915
916                 udelay(50);
917         }
918
919         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
920                        state ? "DISABLED" : "ENABLED");
921         return -EIO;
922 }
923
924 /*********************************************************************
925     Procedure   :   sw_reset_and_clock
926     Purpose     :   Asserts s/w reset, asserts clock initialization
927                     and waits for clock stabilization
928  ********************************************************************/
929 static int sw_reset_and_clock(struct ipw2100_priv *priv)
930 {
931         int i;
932         u32 r;
933
934         // assert s/w reset
935         write_register(priv->net_dev, IPW_REG_RESET_REG,
936                        IPW_AUX_HOST_RESET_REG_SW_RESET);
937
938         // wait for clock stabilization
939         for (i = 0; i < 1000; i++) {
940                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
941
942                 // check clock ready bit
943                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
944                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
945                         break;
946         }
947
948         if (i == 1000)
949                 return -EIO;    // TODO: better error value
950
951         /* set "initialization complete" bit to move adapter to
952          * D0 state */
953         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
954                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
955
956         /* wait for clock stabilization */
957         for (i = 0; i < 10000; i++) {
958                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
959
960                 /* check clock ready bit */
961                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
962                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
963                         break;
964         }
965
966         if (i == 10000)
967                 return -EIO;    /* TODO: better error value */
968
969         /* set D0 standby bit */
970         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
971         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
972                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
973
974         return 0;
975 }
976
977 /*********************************************************************
978     Procedure   :   ipw2100_download_firmware
979     Purpose     :   Initiaze adapter after power on.
980                     The sequence is:
981                     1. assert s/w reset first!
982                     2. awake clocks & wait for clock stabilization
983                     3. hold ARC (don't ask me why...)
984                     4. load Dino ucode and reset/clock init again
985                     5. zero-out shared mem
986                     6. download f/w
987  *******************************************************************/
988 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
989 {
990         u32 address;
991         int err;
992
993 #ifndef CONFIG_PM
994         /* Fetch the firmware and microcode */
995         struct ipw2100_fw ipw2100_firmware;
996 #endif
997
998         if (priv->fatal_error) {
999                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1000                                 "fatal error %d.  Interface must be brought down.\n",
1001                                 priv->net_dev->name, priv->fatal_error);
1002                 return -EINVAL;
1003         }
1004 #ifdef CONFIG_PM
1005         if (!ipw2100_firmware.version) {
1006                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1007                 if (err) {
1008                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1009                                         priv->net_dev->name, err);
1010                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
1011                         goto fail;
1012                 }
1013         }
1014 #else
1015         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1016         if (err) {
1017                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1018                                 priv->net_dev->name, err);
1019                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1020                 goto fail;
1021         }
1022 #endif
1023         priv->firmware_version = ipw2100_firmware.version;
1024
1025         /* s/w reset and clock stabilization */
1026         err = sw_reset_and_clock(priv);
1027         if (err) {
1028                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1029                                 priv->net_dev->name, err);
1030                 goto fail;
1031         }
1032
1033         err = ipw2100_verify(priv);
1034         if (err) {
1035                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1036                                 priv->net_dev->name, err);
1037                 goto fail;
1038         }
1039
1040         /* Hold ARC */
1041         write_nic_dword(priv->net_dev,
1042                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1043
1044         /* allow ARC to run */
1045         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1046
1047         /* load microcode */
1048         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1049         if (err) {
1050                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1051                        priv->net_dev->name, err);
1052                 goto fail;
1053         }
1054
1055         /* release ARC */
1056         write_nic_dword(priv->net_dev,
1057                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1058
1059         /* s/w reset and clock stabilization (again!!!) */
1060         err = sw_reset_and_clock(priv);
1061         if (err) {
1062                 printk(KERN_ERR DRV_NAME
1063                        ": %s: sw_reset_and_clock failed: %d\n",
1064                        priv->net_dev->name, err);
1065                 goto fail;
1066         }
1067
1068         /* load f/w */
1069         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1070         if (err) {
1071                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1072                                 priv->net_dev->name, err);
1073                 goto fail;
1074         }
1075 #ifndef CONFIG_PM
1076         /*
1077          * When the .resume method of the driver is called, the other
1078          * part of the system, i.e. the ide driver could still stay in
1079          * the suspend stage. This prevents us from loading the firmware
1080          * from the disk.  --YZ
1081          */
1082
1083         /* free any storage allocated for firmware image */
1084         ipw2100_release_firmware(priv, &ipw2100_firmware);
1085 #endif
1086
1087         /* zero out Domain 1 area indirectly (Si requirement) */
1088         for (address = IPW_HOST_FW_SHARED_AREA0;
1089              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1090                 write_nic_dword(priv->net_dev, address, 0);
1091         for (address = IPW_HOST_FW_SHARED_AREA1;
1092              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1093                 write_nic_dword(priv->net_dev, address, 0);
1094         for (address = IPW_HOST_FW_SHARED_AREA2;
1095              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1096                 write_nic_dword(priv->net_dev, address, 0);
1097         for (address = IPW_HOST_FW_SHARED_AREA3;
1098              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1099                 write_nic_dword(priv->net_dev, address, 0);
1100         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1101              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1102                 write_nic_dword(priv->net_dev, address, 0);
1103
1104         return 0;
1105
1106       fail:
1107         ipw2100_release_firmware(priv, &ipw2100_firmware);
1108         return err;
1109 }
1110
1111 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1112 {
1113         if (priv->status & STATUS_INT_ENABLED)
1114                 return;
1115         priv->status |= STATUS_INT_ENABLED;
1116         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1117 }
1118
1119 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1120 {
1121         if (!(priv->status & STATUS_INT_ENABLED))
1122                 return;
1123         priv->status &= ~STATUS_INT_ENABLED;
1124         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1125 }
1126
1127 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1128 {
1129         struct ipw2100_ordinals *ord = &priv->ordinals;
1130
1131         IPW_DEBUG_INFO("enter\n");
1132
1133         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1134                       &ord->table1_addr);
1135
1136         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1137                       &ord->table2_addr);
1138
1139         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1140         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1141
1142         ord->table2_size &= 0x0000FFFF;
1143
1144         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1145         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1146         IPW_DEBUG_INFO("exit\n");
1147 }
1148
1149 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1150 {
1151         u32 reg = 0;
1152         /*
1153          * Set GPIO 3 writable by FW; GPIO 1 writable
1154          * by driver and enable clock
1155          */
1156         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1157                IPW_BIT_GPIO_LED_OFF);
1158         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1159 }
1160
1161 static int rf_kill_active(struct ipw2100_priv *priv)
1162 {
1163 #define MAX_RF_KILL_CHECKS 5
1164 #define RF_KILL_CHECK_DELAY 40
1165
1166         unsigned short value = 0;
1167         u32 reg = 0;
1168         int i;
1169
1170         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1171                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1172                 priv->status &= ~STATUS_RF_KILL_HW;
1173                 return 0;
1174         }
1175
1176         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1177                 udelay(RF_KILL_CHECK_DELAY);
1178                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1179                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1180         }
1181
1182         if (value == 0) {
1183                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1184                 priv->status |= STATUS_RF_KILL_HW;
1185         } else {
1186                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1187                 priv->status &= ~STATUS_RF_KILL_HW;
1188         }
1189
1190         return (value == 0);
1191 }
1192
1193 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1194 {
1195         u32 addr, len;
1196         u32 val;
1197
1198         /*
1199          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1200          */
1201         len = sizeof(addr);
1202         if (ipw2100_get_ordinal
1203             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1204                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1205                                __LINE__);
1206                 return -EIO;
1207         }
1208
1209         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1210
1211         /*
1212          * EEPROM version is the byte at offset 0xfd in firmware
1213          * We read 4 bytes, then shift out the byte we actually want */
1214         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1215         priv->eeprom_version = (val >> 24) & 0xFF;
1216         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1217
1218         /*
1219          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1220          *
1221          *  notice that the EEPROM bit is reverse polarity, i.e.
1222          *     bit = 0  signifies HW RF kill switch is supported
1223          *     bit = 1  signifies HW RF kill switch is NOT supported
1224          */
1225         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1226         if (!((val >> 24) & 0x01))
1227                 priv->hw_features |= HW_FEATURE_RFKILL;
1228
1229         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1230                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1231
1232         return 0;
1233 }
1234
1235 /*
1236  * Start firmware execution after power on and intialization
1237  * The sequence is:
1238  *  1. Release ARC
1239  *  2. Wait for f/w initialization completes;
1240  */
1241 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1242 {
1243         int i;
1244         u32 inta, inta_mask, gpio;
1245
1246         IPW_DEBUG_INFO("enter\n");
1247
1248         if (priv->status & STATUS_RUNNING)
1249                 return 0;
1250
1251         /*
1252          * Initialize the hw - drive adapter to DO state by setting
1253          * init_done bit. Wait for clk_ready bit and Download
1254          * fw & dino ucode
1255          */
1256         if (ipw2100_download_firmware(priv)) {
1257                 printk(KERN_ERR DRV_NAME
1258                        ": %s: Failed to power on the adapter.\n",
1259                        priv->net_dev->name);
1260                 return -EIO;
1261         }
1262
1263         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1264          * in the firmware RBD and TBD ring queue */
1265         ipw2100_queues_initialize(priv);
1266
1267         ipw2100_hw_set_gpio(priv);
1268
1269         /* TODO -- Look at disabling interrupts here to make sure none
1270          * get fired during FW initialization */
1271
1272         /* Release ARC - clear reset bit */
1273         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1274
1275         /* wait for f/w intialization complete */
1276         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1277         i = 5000;
1278         do {
1279                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1280                 /* Todo... wait for sync command ... */
1281
1282                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1283
1284                 /* check "init done" bit */
1285                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1286                         /* reset "init done" bit */
1287                         write_register(priv->net_dev, IPW_REG_INTA,
1288                                        IPW2100_INTA_FW_INIT_DONE);
1289                         break;
1290                 }
1291
1292                 /* check error conditions : we check these after the firmware
1293                  * check so that if there is an error, the interrupt handler
1294                  * will see it and the adapter will be reset */
1295                 if (inta &
1296                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1297                         /* clear error conditions */
1298                         write_register(priv->net_dev, IPW_REG_INTA,
1299                                        IPW2100_INTA_FATAL_ERROR |
1300                                        IPW2100_INTA_PARITY_ERROR);
1301                 }
1302         } while (--i);
1303
1304         /* Clear out any pending INTAs since we aren't supposed to have
1305          * interrupts enabled at this point... */
1306         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1307         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1308         inta &= IPW_INTERRUPT_MASK;
1309         /* Clear out any pending interrupts */
1310         if (inta & inta_mask)
1311                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1312
1313         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1314                      i ? "SUCCESS" : "FAILED");
1315
1316         if (!i) {
1317                 printk(KERN_WARNING DRV_NAME
1318                        ": %s: Firmware did not initialize.\n",
1319                        priv->net_dev->name);
1320                 return -EIO;
1321         }
1322
1323         /* allow firmware to write to GPIO1 & GPIO3 */
1324         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1325
1326         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1327
1328         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1329
1330         /* Ready to receive commands */
1331         priv->status |= STATUS_RUNNING;
1332
1333         /* The adapter has been reset; we are not associated */
1334         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1335
1336         IPW_DEBUG_INFO("exit\n");
1337
1338         return 0;
1339 }
1340
1341 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1342 {
1343         if (!priv->fatal_error)
1344                 return;
1345
1346         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1347         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1348         priv->fatal_error = 0;
1349 }
1350
1351 /* NOTE: Our interrupt is disabled when this method is called */
1352 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1353 {
1354         u32 reg;
1355         int i;
1356
1357         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1358
1359         ipw2100_hw_set_gpio(priv);
1360
1361         /* Step 1. Stop Master Assert */
1362         write_register(priv->net_dev, IPW_REG_RESET_REG,
1363                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1364
1365         /* Step 2. Wait for stop Master Assert
1366          *         (not more than 50us, otherwise ret error */
1367         i = 5;
1368         do {
1369                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1370                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1371
1372                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1373                         break;
1374         } while (--i);
1375
1376         priv->status &= ~STATUS_RESET_PENDING;
1377
1378         if (!i) {
1379                 IPW_DEBUG_INFO
1380                     ("exit - waited too long for master assert stop\n");
1381                 return -EIO;
1382         }
1383
1384         write_register(priv->net_dev, IPW_REG_RESET_REG,
1385                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1386
1387         /* Reset any fatal_error conditions */
1388         ipw2100_reset_fatalerror(priv);
1389
1390         /* At this point, the adapter is now stopped and disabled */
1391         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1392                           STATUS_ASSOCIATED | STATUS_ENABLED);
1393
1394         return 0;
1395 }
1396
1397 /*
1398  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1399  *
1400  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1401  *
1402  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1403  * if STATUS_ASSN_LOST is sent.
1404  */
1405 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1406 {
1407
1408 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1409
1410         struct host_command cmd = {
1411                 .host_command = CARD_DISABLE_PHY_OFF,
1412                 .host_command_sequence = 0,
1413                 .host_command_length = 0,
1414         };
1415         int err, i;
1416         u32 val1, val2;
1417
1418         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1419
1420         /* Turn off the radio */
1421         err = ipw2100_hw_send_command(priv, &cmd);
1422         if (err)
1423                 return err;
1424
1425         for (i = 0; i < 2500; i++) {
1426                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1427                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1428
1429                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1430                     (val2 & IPW2100_COMMAND_PHY_OFF))
1431                         return 0;
1432
1433                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1434         }
1435
1436         return -EIO;
1437 }
1438
1439 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1440 {
1441         struct host_command cmd = {
1442                 .host_command = HOST_COMPLETE,
1443                 .host_command_sequence = 0,
1444                 .host_command_length = 0
1445         };
1446         int err = 0;
1447
1448         IPW_DEBUG_HC("HOST_COMPLETE\n");
1449
1450         if (priv->status & STATUS_ENABLED)
1451                 return 0;
1452
1453         mutex_lock(&priv->adapter_mutex);
1454
1455         if (rf_kill_active(priv)) {
1456                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1457                 goto fail_up;
1458         }
1459
1460         err = ipw2100_hw_send_command(priv, &cmd);
1461         if (err) {
1462                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1463                 goto fail_up;
1464         }
1465
1466         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1467         if (err) {
1468                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1469                                priv->net_dev->name);
1470                 goto fail_up;
1471         }
1472
1473         if (priv->stop_hang_check) {
1474                 priv->stop_hang_check = 0;
1475                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1476         }
1477
1478       fail_up:
1479         mutex_unlock(&priv->adapter_mutex);
1480         return err;
1481 }
1482
1483 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1484 {
1485 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1486
1487         struct host_command cmd = {
1488                 .host_command = HOST_PRE_POWER_DOWN,
1489                 .host_command_sequence = 0,
1490                 .host_command_length = 0,
1491         };
1492         int err, i;
1493         u32 reg;
1494
1495         if (!(priv->status & STATUS_RUNNING))
1496                 return 0;
1497
1498         priv->status |= STATUS_STOPPING;
1499
1500         /* We can only shut down the card if the firmware is operational.  So,
1501          * if we haven't reset since a fatal_error, then we can not send the
1502          * shutdown commands. */
1503         if (!priv->fatal_error) {
1504                 /* First, make sure the adapter is enabled so that the PHY_OFF
1505                  * command can shut it down */
1506                 ipw2100_enable_adapter(priv);
1507
1508                 err = ipw2100_hw_phy_off(priv);
1509                 if (err)
1510                         printk(KERN_WARNING DRV_NAME
1511                                ": Error disabling radio %d\n", err);
1512
1513                 /*
1514                  * If in D0-standby mode going directly to D3 may cause a
1515                  * PCI bus violation.  Therefore we must change out of the D0
1516                  * state.
1517                  *
1518                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1519                  * hardware from going into standby mode and will transition
1520                  * out of D0-standby if it is already in that state.
1521                  *
1522                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1523                  * driver upon completion.  Once received, the driver can
1524                  * proceed to the D3 state.
1525                  *
1526                  * Prepare for power down command to fw.  This command would
1527                  * take HW out of D0-standby and prepare it for D3 state.
1528                  *
1529                  * Currently FW does not support event notification for this
1530                  * event. Therefore, skip waiting for it.  Just wait a fixed
1531                  * 100ms
1532                  */
1533                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1534
1535                 err = ipw2100_hw_send_command(priv, &cmd);
1536                 if (err)
1537                         printk(KERN_WARNING DRV_NAME ": "
1538                                "%s: Power down command failed: Error %d\n",
1539                                priv->net_dev->name, err);
1540                 else
1541                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1542         }
1543
1544         priv->status &= ~STATUS_ENABLED;
1545
1546         /*
1547          * Set GPIO 3 writable by FW; GPIO 1 writable
1548          * by driver and enable clock
1549          */
1550         ipw2100_hw_set_gpio(priv);
1551
1552         /*
1553          * Power down adapter.  Sequence:
1554          * 1. Stop master assert (RESET_REG[9]=1)
1555          * 2. Wait for stop master (RESET_REG[8]==1)
1556          * 3. S/w reset assert (RESET_REG[7] = 1)
1557          */
1558
1559         /* Stop master assert */
1560         write_register(priv->net_dev, IPW_REG_RESET_REG,
1561                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1562
1563         /* wait stop master not more than 50 usec.
1564          * Otherwise return error. */
1565         for (i = 5; i > 0; i--) {
1566                 udelay(10);
1567
1568                 /* Check master stop bit */
1569                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1570
1571                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1572                         break;
1573         }
1574
1575         if (i == 0)
1576                 printk(KERN_WARNING DRV_NAME
1577                        ": %s: Could now power down adapter.\n",
1578                        priv->net_dev->name);
1579
1580         /* assert s/w reset */
1581         write_register(priv->net_dev, IPW_REG_RESET_REG,
1582                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1583
1584         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1585
1586         return 0;
1587 }
1588
1589 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1590 {
1591         struct host_command cmd = {
1592                 .host_command = CARD_DISABLE,
1593                 .host_command_sequence = 0,
1594                 .host_command_length = 0
1595         };
1596         int err = 0;
1597
1598         IPW_DEBUG_HC("CARD_DISABLE\n");
1599
1600         if (!(priv->status & STATUS_ENABLED))
1601                 return 0;
1602
1603         /* Make sure we clear the associated state */
1604         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1605
1606         if (!priv->stop_hang_check) {
1607                 priv->stop_hang_check = 1;
1608                 cancel_delayed_work(&priv->hang_check);
1609         }
1610
1611         mutex_lock(&priv->adapter_mutex);
1612
1613         err = ipw2100_hw_send_command(priv, &cmd);
1614         if (err) {
1615                 printk(KERN_WARNING DRV_NAME
1616                        ": exit - failed to send CARD_DISABLE command\n");
1617                 goto fail_up;
1618         }
1619
1620         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1621         if (err) {
1622                 printk(KERN_WARNING DRV_NAME
1623                        ": exit - card failed to change to DISABLED\n");
1624                 goto fail_up;
1625         }
1626
1627         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1628
1629       fail_up:
1630         mutex_unlock(&priv->adapter_mutex);
1631         return err;
1632 }
1633
1634 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1635 {
1636         struct host_command cmd = {
1637                 .host_command = SET_SCAN_OPTIONS,
1638                 .host_command_sequence = 0,
1639                 .host_command_length = 8
1640         };
1641         int err;
1642
1643         IPW_DEBUG_INFO("enter\n");
1644
1645         IPW_DEBUG_SCAN("setting scan options\n");
1646
1647         cmd.host_command_parameters[0] = 0;
1648
1649         if (!(priv->config & CFG_ASSOCIATE))
1650                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1651         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1652                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1653         if (priv->config & CFG_PASSIVE_SCAN)
1654                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1655
1656         cmd.host_command_parameters[1] = priv->channel_mask;
1657
1658         err = ipw2100_hw_send_command(priv, &cmd);
1659
1660         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1661                      cmd.host_command_parameters[0]);
1662
1663         return err;
1664 }
1665
1666 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1667 {
1668         struct host_command cmd = {
1669                 .host_command = BROADCAST_SCAN,
1670                 .host_command_sequence = 0,
1671                 .host_command_length = 4
1672         };
1673         int err;
1674
1675         IPW_DEBUG_HC("START_SCAN\n");
1676
1677         cmd.host_command_parameters[0] = 0;
1678
1679         /* No scanning if in monitor mode */
1680         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1681                 return 1;
1682
1683         if (priv->status & STATUS_SCANNING) {
1684                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1685                 return 0;
1686         }
1687
1688         IPW_DEBUG_INFO("enter\n");
1689
1690         /* Not clearing here; doing so makes iwlist always return nothing...
1691          *
1692          * We should modify the table logic to use aging tables vs. clearing
1693          * the table on each scan start.
1694          */
1695         IPW_DEBUG_SCAN("starting scan\n");
1696
1697         priv->status |= STATUS_SCANNING;
1698         err = ipw2100_hw_send_command(priv, &cmd);
1699         if (err)
1700                 priv->status &= ~STATUS_SCANNING;
1701
1702         IPW_DEBUG_INFO("exit\n");
1703
1704         return err;
1705 }
1706
1707 static const struct libipw_geo ipw_geos[] = {
1708         {                       /* Restricted */
1709          "---",
1710          .bg_channels = 14,
1711          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1712                 {2427, 4}, {2432, 5}, {2437, 6},
1713                 {2442, 7}, {2447, 8}, {2452, 9},
1714                 {2457, 10}, {2462, 11}, {2467, 12},
1715                 {2472, 13}, {2484, 14}},
1716          },
1717 };
1718
1719 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1720 {
1721         unsigned long flags;
1722         int rc = 0;
1723         u32 lock;
1724         u32 ord_len = sizeof(lock);
1725
1726         /* Age scan list entries found before suspend */
1727         if (priv->suspend_time) {
1728                 libipw_networks_age(priv->ieee, priv->suspend_time);
1729                 priv->suspend_time = 0;
1730         }
1731
1732         /* Quiet if manually disabled. */
1733         if (priv->status & STATUS_RF_KILL_SW) {
1734                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1735                                "switch\n", priv->net_dev->name);
1736                 return 0;
1737         }
1738
1739         /* the ipw2100 hardware really doesn't want power management delays
1740          * longer than 175usec
1741          */
1742         pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100", 175);
1743
1744         /* If the interrupt is enabled, turn it off... */
1745         spin_lock_irqsave(&priv->low_lock, flags);
1746         ipw2100_disable_interrupts(priv);
1747
1748         /* Reset any fatal_error conditions */
1749         ipw2100_reset_fatalerror(priv);
1750         spin_unlock_irqrestore(&priv->low_lock, flags);
1751
1752         if (priv->status & STATUS_POWERED ||
1753             (priv->status & STATUS_RESET_PENDING)) {
1754                 /* Power cycle the card ... */
1755                 if (ipw2100_power_cycle_adapter(priv)) {
1756                         printk(KERN_WARNING DRV_NAME
1757                                ": %s: Could not cycle adapter.\n",
1758                                priv->net_dev->name);
1759                         rc = 1;
1760                         goto exit;
1761                 }
1762         } else
1763                 priv->status |= STATUS_POWERED;
1764
1765         /* Load the firmware, start the clocks, etc. */
1766         if (ipw2100_start_adapter(priv)) {
1767                 printk(KERN_ERR DRV_NAME
1768                        ": %s: Failed to start the firmware.\n",
1769                        priv->net_dev->name);
1770                 rc = 1;
1771                 goto exit;
1772         }
1773
1774         ipw2100_initialize_ordinals(priv);
1775
1776         /* Determine capabilities of this particular HW configuration */
1777         if (ipw2100_get_hw_features(priv)) {
1778                 printk(KERN_ERR DRV_NAME
1779                        ": %s: Failed to determine HW features.\n",
1780                        priv->net_dev->name);
1781                 rc = 1;
1782                 goto exit;
1783         }
1784
1785         /* Initialize the geo */
1786         if (libipw_set_geo(priv->ieee, &ipw_geos[0])) {
1787                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1788                 return 0;
1789         }
1790         priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1791
1792         lock = LOCK_NONE;
1793         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1794                 printk(KERN_ERR DRV_NAME
1795                        ": %s: Failed to clear ordinal lock.\n",
1796                        priv->net_dev->name);
1797                 rc = 1;
1798                 goto exit;
1799         }
1800
1801         priv->status &= ~STATUS_SCANNING;
1802
1803         if (rf_kill_active(priv)) {
1804                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1805                        priv->net_dev->name);
1806
1807                 if (priv->stop_rf_kill) {
1808                         priv->stop_rf_kill = 0;
1809                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1810                                            round_jiffies_relative(HZ));
1811                 }
1812
1813                 deferred = 1;
1814         }
1815
1816         /* Turn on the interrupt so that commands can be processed */
1817         ipw2100_enable_interrupts(priv);
1818
1819         /* Send all of the commands that must be sent prior to
1820          * HOST_COMPLETE */
1821         if (ipw2100_adapter_setup(priv)) {
1822                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1823                        priv->net_dev->name);
1824                 rc = 1;
1825                 goto exit;
1826         }
1827
1828         if (!deferred) {
1829                 /* Enable the adapter - sends HOST_COMPLETE */
1830                 if (ipw2100_enable_adapter(priv)) {
1831                         printk(KERN_ERR DRV_NAME ": "
1832                                "%s: failed in call to enable adapter.\n",
1833                                priv->net_dev->name);
1834                         ipw2100_hw_stop_adapter(priv);
1835                         rc = 1;
1836                         goto exit;
1837                 }
1838
1839                 /* Start a scan . . . */
1840                 ipw2100_set_scan_options(priv);
1841                 ipw2100_start_scan(priv);
1842         }
1843
1844       exit:
1845         return rc;
1846 }
1847
1848 static void ipw2100_down(struct ipw2100_priv *priv)
1849 {
1850         unsigned long flags;
1851         union iwreq_data wrqu = {
1852                 .ap_addr = {
1853                             .sa_family = ARPHRD_ETHER}
1854         };
1855         int associated = priv->status & STATUS_ASSOCIATED;
1856
1857         /* Kill the RF switch timer */
1858         if (!priv->stop_rf_kill) {
1859                 priv->stop_rf_kill = 1;
1860                 cancel_delayed_work(&priv->rf_kill);
1861         }
1862
1863         /* Kill the firmware hang check timer */
1864         if (!priv->stop_hang_check) {
1865                 priv->stop_hang_check = 1;
1866                 cancel_delayed_work(&priv->hang_check);
1867         }
1868
1869         /* Kill any pending resets */
1870         if (priv->status & STATUS_RESET_PENDING)
1871                 cancel_delayed_work(&priv->reset_work);
1872
1873         /* Make sure the interrupt is on so that FW commands will be
1874          * processed correctly */
1875         spin_lock_irqsave(&priv->low_lock, flags);
1876         ipw2100_enable_interrupts(priv);
1877         spin_unlock_irqrestore(&priv->low_lock, flags);
1878
1879         if (ipw2100_hw_stop_adapter(priv))
1880                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1881                        priv->net_dev->name);
1882
1883         /* Do not disable the interrupt until _after_ we disable
1884          * the adaptor.  Otherwise the CARD_DISABLE command will never
1885          * be ack'd by the firmware */
1886         spin_lock_irqsave(&priv->low_lock, flags);
1887         ipw2100_disable_interrupts(priv);
1888         spin_unlock_irqrestore(&priv->low_lock, flags);
1889
1890         pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100",
1891                         PM_QOS_DEFAULT_VALUE);
1892
1893         /* We have to signal any supplicant if we are disassociating */
1894         if (associated)
1895                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1896
1897         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1898         netif_carrier_off(priv->net_dev);
1899         netif_stop_queue(priv->net_dev);
1900 }
1901
1902 /* Called by register_netdev() */
1903 static int ipw2100_net_init(struct net_device *dev)
1904 {
1905         struct ipw2100_priv *priv = libipw_priv(dev);
1906         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1907         struct wireless_dev *wdev = &priv->ieee->wdev;
1908         int ret;
1909         int i;
1910
1911         ret = ipw2100_up(priv, 1);
1912         if (ret)
1913                 return ret;
1914
1915         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1916
1917         /* fill-out priv->ieee->bg_band */
1918         if (geo->bg_channels) {
1919                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1920
1921                 bg_band->band = IEEE80211_BAND_2GHZ;
1922                 bg_band->n_channels = geo->bg_channels;
1923                 bg_band->channels =
1924                         kzalloc(geo->bg_channels *
1925                                 sizeof(struct ieee80211_channel), GFP_KERNEL);
1926                 /* translate geo->bg to bg_band.channels */
1927                 for (i = 0; i < geo->bg_channels; i++) {
1928                         bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1929                         bg_band->channels[i].center_freq = geo->bg[i].freq;
1930                         bg_band->channels[i].hw_value = geo->bg[i].channel;
1931                         bg_band->channels[i].max_power = geo->bg[i].max_power;
1932                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1933                                 bg_band->channels[i].flags |=
1934                                         IEEE80211_CHAN_PASSIVE_SCAN;
1935                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1936                                 bg_band->channels[i].flags |=
1937                                         IEEE80211_CHAN_NO_IBSS;
1938                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1939                                 bg_band->channels[i].flags |=
1940                                         IEEE80211_CHAN_RADAR;
1941                         /* No equivalent for LIBIPW_CH_80211H_RULES,
1942                            LIBIPW_CH_UNIFORM_SPREADING, or
1943                            LIBIPW_CH_B_ONLY... */
1944                 }
1945                 /* point at bitrate info */
1946                 bg_band->bitrates = ipw2100_bg_rates;
1947                 bg_band->n_bitrates = RATE_COUNT;
1948
1949                 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1950         }
1951
1952         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1953         if (wiphy_register(wdev->wiphy)) {
1954                 ipw2100_down(priv);
1955                 return -EIO;
1956         }
1957         return 0;
1958 }
1959
1960 static void ipw2100_reset_adapter(struct work_struct *work)
1961 {
1962         struct ipw2100_priv *priv =
1963                 container_of(work, struct ipw2100_priv, reset_work.work);
1964         unsigned long flags;
1965         union iwreq_data wrqu = {
1966                 .ap_addr = {
1967                             .sa_family = ARPHRD_ETHER}
1968         };
1969         int associated = priv->status & STATUS_ASSOCIATED;
1970
1971         spin_lock_irqsave(&priv->low_lock, flags);
1972         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1973         priv->resets++;
1974         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1975         priv->status |= STATUS_SECURITY_UPDATED;
1976
1977         /* Force a power cycle even if interface hasn't been opened
1978          * yet */
1979         cancel_delayed_work(&priv->reset_work);
1980         priv->status |= STATUS_RESET_PENDING;
1981         spin_unlock_irqrestore(&priv->low_lock, flags);
1982
1983         mutex_lock(&priv->action_mutex);
1984         /* stop timed checks so that they don't interfere with reset */
1985         priv->stop_hang_check = 1;
1986         cancel_delayed_work(&priv->hang_check);
1987
1988         /* We have to signal any supplicant if we are disassociating */
1989         if (associated)
1990                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1991
1992         ipw2100_up(priv, 0);
1993         mutex_unlock(&priv->action_mutex);
1994
1995 }
1996
1997 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1998 {
1999
2000 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2001         int ret;
2002         unsigned int len, essid_len;
2003         char essid[IW_ESSID_MAX_SIZE];
2004         u32 txrate;
2005         u32 chan;
2006         char *txratename;
2007         u8 bssid[ETH_ALEN];
2008         DECLARE_SSID_BUF(ssid);
2009
2010         /*
2011          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2012          *      an actual MAC of the AP. Seems like FW sets this
2013          *      address too late. Read it later and expose through
2014          *      /proc or schedule a later task to query and update
2015          */
2016
2017         essid_len = IW_ESSID_MAX_SIZE;
2018         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2019                                   essid, &essid_len);
2020         if (ret) {
2021                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2022                                __LINE__);
2023                 return;
2024         }
2025
2026         len = sizeof(u32);
2027         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2028         if (ret) {
2029                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2030                                __LINE__);
2031                 return;
2032         }
2033
2034         len = sizeof(u32);
2035         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2036         if (ret) {
2037                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2038                                __LINE__);
2039                 return;
2040         }
2041         len = ETH_ALEN;
2042         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
2043         if (ret) {
2044                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2045                                __LINE__);
2046                 return;
2047         }
2048         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2049
2050         switch (txrate) {
2051         case TX_RATE_1_MBIT:
2052                 txratename = "1Mbps";
2053                 break;
2054         case TX_RATE_2_MBIT:
2055                 txratename = "2Mbsp";
2056                 break;
2057         case TX_RATE_5_5_MBIT:
2058                 txratename = "5.5Mbps";
2059                 break;
2060         case TX_RATE_11_MBIT:
2061                 txratename = "11Mbps";
2062                 break;
2063         default:
2064                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2065                 txratename = "unknown rate";
2066                 break;
2067         }
2068
2069         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2070                        priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2071                        txratename, chan, bssid);
2072
2073         /* now we copy read ssid into dev */
2074         if (!(priv->config & CFG_STATIC_ESSID)) {
2075                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2076                 memcpy(priv->essid, essid, priv->essid_len);
2077         }
2078         priv->channel = chan;
2079         memcpy(priv->bssid, bssid, ETH_ALEN);
2080
2081         priv->status |= STATUS_ASSOCIATING;
2082         priv->connect_start = get_seconds();
2083
2084         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
2085 }
2086
2087 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2088                              int length, int batch_mode)
2089 {
2090         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2091         struct host_command cmd = {
2092                 .host_command = SSID,
2093                 .host_command_sequence = 0,
2094                 .host_command_length = ssid_len
2095         };
2096         int err;
2097         DECLARE_SSID_BUF(ssid);
2098
2099         IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2100
2101         if (ssid_len)
2102                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2103
2104         if (!batch_mode) {
2105                 err = ipw2100_disable_adapter(priv);
2106                 if (err)
2107                         return err;
2108         }
2109
2110         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2111          * disable auto association -- so we cheat by setting a bogus SSID */
2112         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2113                 int i;
2114                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2115                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2116                         bogus[i] = 0x18 + i;
2117                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2118         }
2119
2120         /* NOTE:  We always send the SSID command even if the provided ESSID is
2121          * the same as what we currently think is set. */
2122
2123         err = ipw2100_hw_send_command(priv, &cmd);
2124         if (!err) {
2125                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2126                 memcpy(priv->essid, essid, ssid_len);
2127                 priv->essid_len = ssid_len;
2128         }
2129
2130         if (!batch_mode) {
2131                 if (ipw2100_enable_adapter(priv))
2132                         err = -EIO;
2133         }
2134
2135         return err;
2136 }
2137
2138 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2139 {
2140         DECLARE_SSID_BUF(ssid);
2141
2142         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2143                   "disassociated: '%s' %pM \n",
2144                   print_ssid(ssid, priv->essid, priv->essid_len),
2145                   priv->bssid);
2146
2147         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2148
2149         if (priv->status & STATUS_STOPPING) {
2150                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2151                 return;
2152         }
2153
2154         memset(priv->bssid, 0, ETH_ALEN);
2155         memset(priv->ieee->bssid, 0, ETH_ALEN);
2156
2157         netif_carrier_off(priv->net_dev);
2158         netif_stop_queue(priv->net_dev);
2159
2160         if (!(priv->status & STATUS_RUNNING))
2161                 return;
2162
2163         if (priv->status & STATUS_SECURITY_UPDATED)
2164                 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2165
2166         queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2167 }
2168
2169 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2170 {
2171         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2172                        priv->net_dev->name);
2173
2174         /* RF_KILL is now enabled (else we wouldn't be here) */
2175         wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2176         priv->status |= STATUS_RF_KILL_HW;
2177
2178         /* Make sure the RF Kill check timer is running */
2179         priv->stop_rf_kill = 0;
2180         cancel_delayed_work(&priv->rf_kill);
2181         queue_delayed_work(priv->workqueue, &priv->rf_kill,
2182                            round_jiffies_relative(HZ));
2183 }
2184
2185 static void send_scan_event(void *data)
2186 {
2187         struct ipw2100_priv *priv = data;
2188         union iwreq_data wrqu;
2189
2190         wrqu.data.length = 0;
2191         wrqu.data.flags = 0;
2192         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2193 }
2194
2195 static void ipw2100_scan_event_later(struct work_struct *work)
2196 {
2197         send_scan_event(container_of(work, struct ipw2100_priv,
2198                                         scan_event_later.work));
2199 }
2200
2201 static void ipw2100_scan_event_now(struct work_struct *work)
2202 {
2203         send_scan_event(container_of(work, struct ipw2100_priv,
2204                                         scan_event_now));
2205 }
2206
2207 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2208 {
2209         IPW_DEBUG_SCAN("scan complete\n");
2210         /* Age the scan results... */
2211         priv->ieee->scans++;
2212         priv->status &= ~STATUS_SCANNING;
2213
2214         /* Only userspace-requested scan completion events go out immediately */
2215         if (!priv->user_requested_scan) {
2216                 if (!delayed_work_pending(&priv->scan_event_later))
2217                         queue_delayed_work(priv->workqueue,
2218                                         &priv->scan_event_later,
2219                                         round_jiffies_relative(msecs_to_jiffies(4000)));
2220         } else {
2221                 priv->user_requested_scan = 0;
2222                 cancel_delayed_work(&priv->scan_event_later);
2223                 queue_work(priv->workqueue, &priv->scan_event_now);
2224         }
2225 }
2226
2227 #ifdef CONFIG_IPW2100_DEBUG
2228 #define IPW2100_HANDLER(v, f) { v, f, # v }
2229 struct ipw2100_status_indicator {
2230         int status;
2231         void (*cb) (struct ipw2100_priv * priv, u32 status);
2232         char *name;
2233 };
2234 #else
2235 #define IPW2100_HANDLER(v, f) { v, f }
2236 struct ipw2100_status_indicator {
2237         int status;
2238         void (*cb) (struct ipw2100_priv * priv, u32 status);
2239 };
2240 #endif                          /* CONFIG_IPW2100_DEBUG */
2241
2242 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2243 {
2244         IPW_DEBUG_SCAN("Scanning...\n");
2245         priv->status |= STATUS_SCANNING;
2246 }
2247
2248 static const struct ipw2100_status_indicator status_handlers[] = {
2249         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2250         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2251         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2252         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2253         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2254         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2255         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2256         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2257         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2258         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2259         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2260         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2261         IPW2100_HANDLER(-1, NULL)
2262 };
2263
2264 static void isr_status_change(struct ipw2100_priv *priv, int status)
2265 {
2266         int i;
2267
2268         if (status == IPW_STATE_SCANNING &&
2269             priv->status & STATUS_ASSOCIATED &&
2270             !(priv->status & STATUS_SCANNING)) {
2271                 IPW_DEBUG_INFO("Scan detected while associated, with "
2272                                "no scan request.  Restarting firmware.\n");
2273
2274                 /* Wake up any sleeping jobs */
2275                 schedule_reset(priv);
2276         }
2277
2278         for (i = 0; status_handlers[i].status != -1; i++) {
2279                 if (status == status_handlers[i].status) {
2280                         IPW_DEBUG_NOTIF("Status change: %s\n",
2281                                         status_handlers[i].name);
2282                         if (status_handlers[i].cb)
2283                                 status_handlers[i].cb(priv, status);
2284                         priv->wstats.status = status;
2285                         return;
2286                 }
2287         }
2288
2289         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2290 }
2291
2292 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2293                                     struct ipw2100_cmd_header *cmd)
2294 {
2295 #ifdef CONFIG_IPW2100_DEBUG
2296         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2297                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2298                              command_types[cmd->host_command_reg],
2299                              cmd->host_command_reg);
2300         }
2301 #endif
2302         if (cmd->host_command_reg == HOST_COMPLETE)
2303                 priv->status |= STATUS_ENABLED;
2304
2305         if (cmd->host_command_reg == CARD_DISABLE)
2306                 priv->status &= ~STATUS_ENABLED;
2307
2308         priv->status &= ~STATUS_CMD_ACTIVE;
2309
2310         wake_up_interruptible(&priv->wait_command_queue);
2311 }
2312
2313 #ifdef CONFIG_IPW2100_DEBUG
2314 static const char *frame_types[] = {
2315         "COMMAND_STATUS_VAL",
2316         "STATUS_CHANGE_VAL",
2317         "P80211_DATA_VAL",
2318         "P8023_DATA_VAL",
2319         "HOST_NOTIFICATION_VAL"
2320 };
2321 #endif
2322
2323 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2324                                     struct ipw2100_rx_packet *packet)
2325 {
2326         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2327         if (!packet->skb)
2328                 return -ENOMEM;
2329
2330         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2331         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2332                                           sizeof(struct ipw2100_rx),
2333                                           PCI_DMA_FROMDEVICE);
2334         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2335          *       dma_addr */
2336
2337         return 0;
2338 }
2339
2340 #define SEARCH_ERROR   0xffffffff
2341 #define SEARCH_FAIL    0xfffffffe
2342 #define SEARCH_SUCCESS 0xfffffff0
2343 #define SEARCH_DISCARD 0
2344 #define SEARCH_SNAPSHOT 1
2345
2346 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2347 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2348 {
2349         int i;
2350         if (!priv->snapshot[0])
2351                 return;
2352         for (i = 0; i < 0x30; i++)
2353                 kfree(priv->snapshot[i]);
2354         priv->snapshot[0] = NULL;
2355 }
2356
2357 #ifdef IPW2100_DEBUG_C3
2358 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2359 {
2360         int i;
2361         if (priv->snapshot[0])
2362                 return 1;
2363         for (i = 0; i < 0x30; i++) {
2364                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2365                 if (!priv->snapshot[i]) {
2366                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2367                                        "buffer %d\n", priv->net_dev->name, i);
2368                         while (i > 0)
2369                                 kfree(priv->snapshot[--i]);
2370                         priv->snapshot[0] = NULL;
2371                         return 0;
2372                 }
2373         }
2374
2375         return 1;
2376 }
2377
2378 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2379                                     size_t len, int mode)
2380 {
2381         u32 i, j;
2382         u32 tmp;
2383         u8 *s, *d;
2384         u32 ret;
2385
2386         s = in_buf;
2387         if (mode == SEARCH_SNAPSHOT) {
2388                 if (!ipw2100_snapshot_alloc(priv))
2389                         mode = SEARCH_DISCARD;
2390         }
2391
2392         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2393                 read_nic_dword(priv->net_dev, i, &tmp);
2394                 if (mode == SEARCH_SNAPSHOT)
2395                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2396                 if (ret == SEARCH_FAIL) {
2397                         d = (u8 *) & tmp;
2398                         for (j = 0; j < 4; j++) {
2399                                 if (*s != *d) {
2400                                         s = in_buf;
2401                                         continue;
2402                                 }
2403
2404                                 s++;
2405                                 d++;
2406
2407                                 if ((s - in_buf) == len)
2408                                         ret = (i + j) - len + 1;
2409                         }
2410                 } else if (mode == SEARCH_DISCARD)
2411                         return ret;
2412         }
2413
2414         return ret;
2415 }
2416 #endif
2417
2418 /*
2419  *
2420  * 0) Disconnect the SKB from the firmware (just unmap)
2421  * 1) Pack the ETH header into the SKB
2422  * 2) Pass the SKB to the network stack
2423  *
2424  * When packet is provided by the firmware, it contains the following:
2425  *
2426  * .  libipw_hdr
2427  * .  libipw_snap_hdr
2428  *
2429  * The size of the constructed ethernet
2430  *
2431  */
2432 #ifdef IPW2100_RX_DEBUG
2433 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2434 #endif
2435
2436 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2437 {
2438 #ifdef IPW2100_DEBUG_C3
2439         struct ipw2100_status *status = &priv->status_queue.drv[i];
2440         u32 match, reg;
2441         int j;
2442 #endif
2443
2444         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2445                        i * sizeof(struct ipw2100_status));
2446
2447 #ifdef IPW2100_DEBUG_C3
2448         /* Halt the firmware so we can get a good image */
2449         write_register(priv->net_dev, IPW_REG_RESET_REG,
2450                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2451         j = 5;
2452         do {
2453                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2454                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2455
2456                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2457                         break;
2458         } while (j--);
2459
2460         match = ipw2100_match_buf(priv, (u8 *) status,
2461                                   sizeof(struct ipw2100_status),
2462                                   SEARCH_SNAPSHOT);
2463         if (match < SEARCH_SUCCESS)
2464                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2465                                "offset 0x%06X, length %d:\n",
2466                                priv->net_dev->name, match,
2467                                sizeof(struct ipw2100_status));
2468         else
2469                 IPW_DEBUG_INFO("%s: No DMA status match in "
2470                                "Firmware.\n", priv->net_dev->name);
2471
2472         printk_buf((u8 *) priv->status_queue.drv,
2473                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2474 #endif
2475
2476         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2477         priv->net_dev->stats.rx_errors++;
2478         schedule_reset(priv);
2479 }
2480
2481 static void isr_rx(struct ipw2100_priv *priv, int i,
2482                           struct libipw_rx_stats *stats)
2483 {
2484         struct net_device *dev = priv->net_dev;
2485         struct ipw2100_status *status = &priv->status_queue.drv[i];
2486         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2487
2488         IPW_DEBUG_RX("Handler...\n");
2489
2490         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2491                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2492                                "  Dropping.\n",
2493                                dev->name,
2494                                status->frame_size, skb_tailroom(packet->skb));
2495                 dev->stats.rx_errors++;
2496                 return;
2497         }
2498
2499         if (unlikely(!netif_running(dev))) {
2500                 dev->stats.rx_errors++;
2501                 priv->wstats.discard.misc++;
2502                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2503                 return;
2504         }
2505
2506         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2507                      !(priv->status & STATUS_ASSOCIATED))) {
2508                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2509                 priv->wstats.discard.misc++;
2510                 return;
2511         }
2512
2513         pci_unmap_single(priv->pci_dev,
2514                          packet->dma_addr,
2515                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2516
2517         skb_put(packet->skb, status->frame_size);
2518
2519 #ifdef IPW2100_RX_DEBUG
2520         /* Make a copy of the frame so we can dump it to the logs if
2521          * libipw_rx fails */
2522         skb_copy_from_linear_data(packet->skb, packet_data,
2523                                   min_t(u32, status->frame_size,
2524                                              IPW_RX_NIC_BUFFER_LENGTH));
2525 #endif
2526
2527         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2528 #ifdef IPW2100_RX_DEBUG
2529                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2530                                dev->name);
2531                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2532 #endif
2533                 dev->stats.rx_errors++;
2534
2535                 /* libipw_rx failed, so it didn't free the SKB */
2536                 dev_kfree_skb_any(packet->skb);
2537                 packet->skb = NULL;
2538         }
2539
2540         /* We need to allocate a new SKB and attach it to the RDB. */
2541         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2542                 printk(KERN_WARNING DRV_NAME ": "
2543                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2544                        "adapter.\n", dev->name);
2545                 /* TODO: schedule adapter shutdown */
2546                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2547         }
2548
2549         /* Update the RDB entry */
2550         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2551 }
2552
2553 #ifdef CONFIG_IPW2100_MONITOR
2554
2555 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2556                    struct libipw_rx_stats *stats)
2557 {
2558         struct net_device *dev = priv->net_dev;
2559         struct ipw2100_status *status = &priv->status_queue.drv[i];
2560         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2561
2562         /* Magic struct that slots into the radiotap header -- no reason
2563          * to build this manually element by element, we can write it much
2564          * more efficiently than we can parse it. ORDER MATTERS HERE */
2565         struct ipw_rt_hdr {
2566                 struct ieee80211_radiotap_header rt_hdr;
2567                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2568         } *ipw_rt;
2569
2570         IPW_DEBUG_RX("Handler...\n");
2571
2572         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2573                                 sizeof(struct ipw_rt_hdr))) {
2574                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2575                                "  Dropping.\n",
2576                                dev->name,
2577                                status->frame_size,
2578                                skb_tailroom(packet->skb));
2579                 dev->stats.rx_errors++;
2580                 return;
2581         }
2582
2583         if (unlikely(!netif_running(dev))) {
2584                 dev->stats.rx_errors++;
2585                 priv->wstats.discard.misc++;
2586                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2587                 return;
2588         }
2589
2590         if (unlikely(priv->config & CFG_CRC_CHECK &&
2591                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2592                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2593                 dev->stats.rx_errors++;
2594                 return;
2595         }
2596
2597         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2598                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2599         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2600                 packet->skb->data, status->frame_size);
2601
2602         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2603
2604         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2605         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2606         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2607
2608         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2609
2610         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2611
2612         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2613
2614         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2615                 dev->stats.rx_errors++;
2616
2617                 /* libipw_rx failed, so it didn't free the SKB */
2618                 dev_kfree_skb_any(packet->skb);
2619                 packet->skb = NULL;
2620         }
2621
2622         /* We need to allocate a new SKB and attach it to the RDB. */
2623         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2624                 IPW_DEBUG_WARNING(
2625                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2626                         "adapter.\n", dev->name);
2627                 /* TODO: schedule adapter shutdown */
2628                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2629         }
2630
2631         /* Update the RDB entry */
2632         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2633 }
2634
2635 #endif
2636
2637 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2638 {
2639         struct ipw2100_status *status = &priv->status_queue.drv[i];
2640         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2641         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2642
2643         switch (frame_type) {
2644         case COMMAND_STATUS_VAL:
2645                 return (status->frame_size != sizeof(u->rx_data.command));
2646         case STATUS_CHANGE_VAL:
2647                 return (status->frame_size != sizeof(u->rx_data.status));
2648         case HOST_NOTIFICATION_VAL:
2649                 return (status->frame_size < sizeof(u->rx_data.notification));
2650         case P80211_DATA_VAL:
2651         case P8023_DATA_VAL:
2652 #ifdef CONFIG_IPW2100_MONITOR
2653                 return 0;
2654 #else
2655                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2656                 case IEEE80211_FTYPE_MGMT:
2657                 case IEEE80211_FTYPE_CTL:
2658                         return 0;
2659                 case IEEE80211_FTYPE_DATA:
2660                         return (status->frame_size >
2661                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2662                 }
2663 #endif
2664         }
2665
2666         return 1;
2667 }
2668
2669 /*
2670  * ipw2100 interrupts are disabled at this point, and the ISR
2671  * is the only code that calls this method.  So, we do not need
2672  * to play with any locks.
2673  *
2674  * RX Queue works as follows:
2675  *
2676  * Read index - firmware places packet in entry identified by the
2677  *              Read index and advances Read index.  In this manner,
2678  *              Read index will always point to the next packet to
2679  *              be filled--but not yet valid.
2680  *
2681  * Write index - driver fills this entry with an unused RBD entry.
2682  *               This entry has not filled by the firmware yet.
2683  *
2684  * In between the W and R indexes are the RBDs that have been received
2685  * but not yet processed.
2686  *
2687  * The process of handling packets will start at WRITE + 1 and advance
2688  * until it reaches the READ index.
2689  *
2690  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2691  *
2692  */
2693 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2694 {
2695         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2696         struct ipw2100_status_queue *sq = &priv->status_queue;
2697         struct ipw2100_rx_packet *packet;
2698         u16 frame_type;
2699         u32 r, w, i, s;
2700         struct ipw2100_rx *u;
2701         struct libipw_rx_stats stats = {
2702                 .mac_time = jiffies,
2703         };
2704
2705         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2706         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2707
2708         if (r >= rxq->entries) {
2709                 IPW_DEBUG_RX("exit - bad read index\n");
2710                 return;
2711         }
2712
2713         i = (rxq->next + 1) % rxq->entries;
2714         s = i;
2715         while (i != r) {
2716                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2717                    r, rxq->next, i); */
2718
2719                 packet = &priv->rx_buffers[i];
2720
2721                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2722                  * the correct values */
2723                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2724                                             sq->nic +
2725                                             sizeof(struct ipw2100_status) * i,
2726                                             sizeof(struct ipw2100_status),
2727                                             PCI_DMA_FROMDEVICE);
2728
2729                 /* Sync the DMA for the RX buffer so CPU is sure to get
2730                  * the correct values */
2731                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2732                                             sizeof(struct ipw2100_rx),
2733                                             PCI_DMA_FROMDEVICE);
2734
2735                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2736                         ipw2100_corruption_detected(priv, i);
2737                         goto increment;
2738                 }
2739
2740                 u = packet->rxp;
2741                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2742                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2743                 stats.len = sq->drv[i].frame_size;
2744
2745                 stats.mask = 0;
2746                 if (stats.rssi != 0)
2747                         stats.mask |= LIBIPW_STATMASK_RSSI;
2748                 stats.freq = LIBIPW_24GHZ_BAND;
2749
2750                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2751                              priv->net_dev->name, frame_types[frame_type],
2752                              stats.len);
2753
2754                 switch (frame_type) {
2755                 case COMMAND_STATUS_VAL:
2756                         /* Reset Rx watchdog */
2757                         isr_rx_complete_command(priv, &u->rx_data.command);
2758                         break;
2759
2760                 case STATUS_CHANGE_VAL:
2761                         isr_status_change(priv, u->rx_data.status);
2762                         break;
2763
2764                 case P80211_DATA_VAL:
2765                 case P8023_DATA_VAL:
2766 #ifdef CONFIG_IPW2100_MONITOR
2767                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2768                                 isr_rx_monitor(priv, i, &stats);
2769                                 break;
2770                         }
2771 #endif
2772                         if (stats.len < sizeof(struct libipw_hdr_3addr))
2773                                 break;
2774                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2775                         case IEEE80211_FTYPE_MGMT:
2776                                 libipw_rx_mgt(priv->ieee,
2777                                                  &u->rx_data.header, &stats);
2778                                 break;
2779
2780                         case IEEE80211_FTYPE_CTL:
2781                                 break;
2782
2783                         case IEEE80211_FTYPE_DATA:
2784                                 isr_rx(priv, i, &stats);
2785                                 break;
2786
2787                         }
2788                         break;
2789                 }
2790
2791               increment:
2792                 /* clear status field associated with this RBD */
2793                 rxq->drv[i].status.info.field = 0;
2794
2795                 i = (i + 1) % rxq->entries;
2796         }
2797
2798         if (i != s) {
2799                 /* backtrack one entry, wrapping to end if at 0 */
2800                 rxq->next = (i ? i : rxq->entries) - 1;
2801
2802                 write_register(priv->net_dev,
2803                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2804         }
2805 }
2806
2807 /*
2808  * __ipw2100_tx_process
2809  *
2810  * This routine will determine whether the next packet on
2811  * the fw_pend_list has been processed by the firmware yet.
2812  *
2813  * If not, then it does nothing and returns.
2814  *
2815  * If so, then it removes the item from the fw_pend_list, frees
2816  * any associated storage, and places the item back on the
2817  * free list of its source (either msg_free_list or tx_free_list)
2818  *
2819  * TX Queue works as follows:
2820  *
2821  * Read index - points to the next TBD that the firmware will
2822  *              process.  The firmware will read the data, and once
2823  *              done processing, it will advance the Read index.
2824  *
2825  * Write index - driver fills this entry with an constructed TBD
2826  *               entry.  The Write index is not advanced until the
2827  *               packet has been configured.
2828  *
2829  * In between the W and R indexes are the TBDs that have NOT been
2830  * processed.  Lagging behind the R index are packets that have
2831  * been processed but have not been freed by the driver.
2832  *
2833  * In order to free old storage, an internal index will be maintained
2834  * that points to the next packet to be freed.  When all used
2835  * packets have been freed, the oldest index will be the same as the
2836  * firmware's read index.
2837  *
2838  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2839  *
2840  * Because the TBD structure can not contain arbitrary data, the
2841  * driver must keep an internal queue of cached allocations such that
2842  * it can put that data back into the tx_free_list and msg_free_list
2843  * for use by future command and data packets.
2844  *
2845  */
2846 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2847 {
2848         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2849         struct ipw2100_bd *tbd;
2850         struct list_head *element;
2851         struct ipw2100_tx_packet *packet;
2852         int descriptors_used;
2853         int e, i;
2854         u32 r, w, frag_num = 0;
2855
2856         if (list_empty(&priv->fw_pend_list))
2857                 return 0;
2858
2859         element = priv->fw_pend_list.next;
2860
2861         packet = list_entry(element, struct ipw2100_tx_packet, list);
2862         tbd = &txq->drv[packet->index];
2863
2864         /* Determine how many TBD entries must be finished... */
2865         switch (packet->type) {
2866         case COMMAND:
2867                 /* COMMAND uses only one slot; don't advance */
2868                 descriptors_used = 1;
2869                 e = txq->oldest;
2870                 break;
2871
2872         case DATA:
2873                 /* DATA uses two slots; advance and loop position. */
2874                 descriptors_used = tbd->num_fragments;
2875                 frag_num = tbd->num_fragments - 1;
2876                 e = txq->oldest + frag_num;
2877                 e %= txq->entries;
2878                 break;
2879
2880         default:
2881                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2882                        priv->net_dev->name);
2883                 return 0;
2884         }
2885
2886         /* if the last TBD is not done by NIC yet, then packet is
2887          * not ready to be released.
2888          *
2889          */
2890         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2891                       &r);
2892         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2893                       &w);
2894         if (w != txq->next)
2895                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2896                        priv->net_dev->name);
2897
2898         /*
2899          * txq->next is the index of the last packet written txq->oldest is
2900          * the index of the r is the index of the next packet to be read by
2901          * firmware
2902          */
2903
2904         /*
2905          * Quick graphic to help you visualize the following
2906          * if / else statement
2907          *
2908          * ===>|                     s---->|===============
2909          *                               e>|
2910          * | a | b | c | d | e | f | g | h | i | j | k | l
2911          *       r---->|
2912          *               w
2913          *
2914          * w - updated by driver
2915          * r - updated by firmware
2916          * s - start of oldest BD entry (txq->oldest)
2917          * e - end of oldest BD entry
2918          *
2919          */
2920         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2921                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2922                 return 0;
2923         }
2924
2925         list_del(element);
2926         DEC_STAT(&priv->fw_pend_stat);
2927
2928 #ifdef CONFIG_IPW2100_DEBUG
2929         {
2930                 i = txq->oldest;
2931                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2932                              &txq->drv[i],
2933                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2934                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2935
2936                 if (packet->type == DATA) {
2937                         i = (i + 1) % txq->entries;
2938
2939                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2940                                      &txq->drv[i],
2941                                      (u32) (txq->nic + i *
2942                                             sizeof(struct ipw2100_bd)),
2943                                      (u32) txq->drv[i].host_addr,
2944                                      txq->drv[i].buf_length);
2945                 }
2946         }
2947 #endif
2948
2949         switch (packet->type) {
2950         case DATA:
2951                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2952                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2953                                "Expecting DATA TBD but pulled "
2954                                "something else: ids %d=%d.\n",
2955                                priv->net_dev->name, txq->oldest, packet->index);
2956
2957                 /* DATA packet; we have to unmap and free the SKB */
2958                 for (i = 0; i < frag_num; i++) {
2959                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2960
2961                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2962                                      (packet->index + 1 + i) % txq->entries,
2963                                      tbd->host_addr, tbd->buf_length);
2964
2965                         pci_unmap_single(priv->pci_dev,
2966                                          tbd->host_addr,
2967                                          tbd->buf_length, PCI_DMA_TODEVICE);
2968                 }
2969
2970                 libipw_txb_free(packet->info.d_struct.txb);
2971                 packet->info.d_struct.txb = NULL;
2972
2973                 list_add_tail(element, &priv->tx_free_list);
2974                 INC_STAT(&priv->tx_free_stat);
2975
2976                 /* We have a free slot in the Tx queue, so wake up the
2977                  * transmit layer if it is stopped. */
2978                 if (priv->status & STATUS_ASSOCIATED)
2979                         netif_wake_queue(priv->net_dev);
2980
2981                 /* A packet was processed by the hardware, so update the
2982                  * watchdog */
2983                 priv->net_dev->trans_start = jiffies;
2984
2985                 break;
2986
2987         case COMMAND:
2988                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2989                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2990                                "Expecting COMMAND TBD but pulled "
2991                                "something else: ids %d=%d.\n",
2992                                priv->net_dev->name, txq->oldest, packet->index);
2993
2994 #ifdef CONFIG_IPW2100_DEBUG
2995                 if (packet->info.c_struct.cmd->host_command_reg <
2996                     ARRAY_SIZE(command_types))
2997                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2998                                      command_types[packet->info.c_struct.cmd->
2999                                                    host_command_reg],
3000                                      packet->info.c_struct.cmd->
3001                                      host_command_reg,
3002                                      packet->info.c_struct.cmd->cmd_status_reg);
3003 #endif
3004
3005                 list_add_tail(element, &priv->msg_free_list);
3006                 INC_STAT(&priv->msg_free_stat);
3007                 break;
3008         }
3009
3010         /* advance oldest used TBD pointer to start of next entry */
3011         txq->oldest = (e + 1) % txq->entries;
3012         /* increase available TBDs number */
3013         txq->available += descriptors_used;
3014         SET_STAT(&priv->txq_stat, txq->available);
3015
3016         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
3017                      jiffies - packet->jiffy_start);
3018
3019         return (!list_empty(&priv->fw_pend_list));
3020 }
3021
3022 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3023 {
3024         int i = 0;
3025
3026         while (__ipw2100_tx_process(priv) && i < 200)
3027                 i++;
3028
3029         if (i == 200) {
3030                 printk(KERN_WARNING DRV_NAME ": "
3031                        "%s: Driver is running slow (%d iters).\n",
3032                        priv->net_dev->name, i);
3033         }
3034 }
3035
3036 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3037 {
3038         struct list_head *element;
3039         struct ipw2100_tx_packet *packet;
3040         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3041         struct ipw2100_bd *tbd;
3042         int next = txq->next;
3043
3044         while (!list_empty(&priv->msg_pend_list)) {
3045                 /* if there isn't enough space in TBD queue, then
3046                  * don't stuff a new one in.
3047                  * NOTE: 3 are needed as a command will take one,
3048                  *       and there is a minimum of 2 that must be
3049                  *       maintained between the r and w indexes
3050                  */
3051                 if (txq->available <= 3) {
3052                         IPW_DEBUG_TX("no room in tx_queue\n");
3053                         break;
3054                 }
3055
3056                 element = priv->msg_pend_list.next;
3057                 list_del(element);
3058                 DEC_STAT(&priv->msg_pend_stat);
3059
3060                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3061
3062                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
3063                              &txq->drv[txq->next],
3064                              (void *)(txq->nic + txq->next *
3065                                       sizeof(struct ipw2100_bd)));
3066
3067                 packet->index = txq->next;
3068
3069                 tbd = &txq->drv[txq->next];
3070
3071                 /* initialize TBD */
3072                 tbd->host_addr = packet->info.c_struct.cmd_phys;
3073                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3074                 /* not marking number of fragments causes problems
3075                  * with f/w debug version */
3076                 tbd->num_fragments = 1;
3077                 tbd->status.info.field =
3078                     IPW_BD_STATUS_TX_FRAME_COMMAND |
3079                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3080
3081                 /* update TBD queue counters */
3082                 txq->next++;
3083                 txq->next %= txq->entries;
3084                 txq->available--;
3085                 DEC_STAT(&priv->txq_stat);
3086
3087                 list_add_tail(element, &priv->fw_pend_list);
3088                 INC_STAT(&priv->fw_pend_stat);
3089         }
3090
3091         if (txq->next != next) {
3092                 /* kick off the DMA by notifying firmware the
3093                  * write index has moved; make sure TBD stores are sync'd */
3094                 wmb();
3095                 write_register(priv->net_dev,
3096                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3097                                txq->next);
3098         }
3099 }
3100
3101 /*
3102  * ipw2100_tx_send_data
3103  *
3104  */
3105 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3106 {
3107         struct list_head *element;
3108         struct ipw2100_tx_packet *packet;
3109         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3110         struct ipw2100_bd *tbd;
3111         int next = txq->next;
3112         int i = 0;
3113         struct ipw2100_data_header *ipw_hdr;
3114         struct libipw_hdr_3addr *hdr;
3115
3116         while (!list_empty(&priv->tx_pend_list)) {
3117                 /* if there isn't enough space in TBD queue, then
3118                  * don't stuff a new one in.
3119                  * NOTE: 4 are needed as a data will take two,
3120                  *       and there is a minimum of 2 that must be
3121                  *       maintained between the r and w indexes
3122                  */
3123                 element = priv->tx_pend_list.next;
3124                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3125
3126                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3127                              IPW_MAX_BDS)) {
3128                         /* TODO: Support merging buffers if more than
3129                          * IPW_MAX_BDS are used */
3130                         IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3131                                        "Increase fragmentation level.\n",
3132                                        priv->net_dev->name);
3133                 }
3134
3135                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3136                         IPW_DEBUG_TX("no room in tx_queue\n");
3137                         break;
3138                 }
3139
3140                 list_del(element);
3141                 DEC_STAT(&priv->tx_pend_stat);
3142
3143                 tbd = &txq->drv[txq->next];
3144
3145                 packet->index = txq->next;
3146
3147                 ipw_hdr = packet->info.d_struct.data;
3148                 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3149                     fragments[0]->data;
3150
3151                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3152                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3153                            Addr3 = DA */
3154                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3155                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3156                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3157                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3158                            Addr3 = BSSID */
3159                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3160                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3161                 }
3162
3163                 ipw_hdr->host_command_reg = SEND;
3164                 ipw_hdr->host_command_reg1 = 0;
3165
3166                 /* For now we only support host based encryption */
3167                 ipw_hdr->needs_encryption = 0;
3168                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3169                 if (packet->info.d_struct.txb->nr_frags > 1)
3170                         ipw_hdr->fragment_size =
3171                             packet->info.d_struct.txb->frag_size -
3172                             LIBIPW_3ADDR_LEN;
3173                 else
3174                         ipw_hdr->fragment_size = 0;
3175
3176                 tbd->host_addr = packet->info.d_struct.data_phys;
3177                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3178                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3179                 tbd->status.info.field =
3180                     IPW_BD_STATUS_TX_FRAME_802_3 |
3181                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3182                 txq->next++;
3183                 txq->next %= txq->entries;
3184
3185                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3186                              packet->index, tbd->host_addr, tbd->buf_length);
3187 #ifdef CONFIG_IPW2100_DEBUG
3188                 if (packet->info.d_struct.txb->nr_frags > 1)
3189                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3190                                        packet->info.d_struct.txb->nr_frags);
3191 #endif
3192
3193                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3194                         tbd = &txq->drv[txq->next];
3195                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3196                                 tbd->status.info.field =
3197                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3198                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3199                         else
3200                                 tbd->status.info.field =
3201                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3202                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3203
3204                         tbd->buf_length = packet->info.d_struct.txb->
3205                             fragments[i]->len - LIBIPW_3ADDR_LEN;
3206
3207                         tbd->host_addr = pci_map_single(priv->pci_dev,
3208                                                         packet->info.d_struct.
3209                                                         txb->fragments[i]->
3210                                                         data +
3211                                                         LIBIPW_3ADDR_LEN,
3212                                                         tbd->buf_length,
3213                                                         PCI_DMA_TODEVICE);
3214
3215                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3216                                      txq->next, tbd->host_addr,
3217                                      tbd->buf_length);
3218
3219                         pci_dma_sync_single_for_device(priv->pci_dev,
3220                                                        tbd->host_addr,
3221                                                        tbd->buf_length,
3222                                                        PCI_DMA_TODEVICE);
3223
3224                         txq->next++;
3225                         txq->next %= txq->entries;
3226                 }
3227
3228                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3229                 SET_STAT(&priv->txq_stat, txq->available);
3230
3231                 list_add_tail(element, &priv->fw_pend_list);
3232                 INC_STAT(&priv->fw_pend_stat);
3233         }
3234
3235         if (txq->next != next) {
3236                 /* kick off the DMA by notifying firmware the
3237                  * write index has moved; make sure TBD stores are sync'd */
3238                 write_register(priv->net_dev,
3239                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3240                                txq->next);
3241         }
3242         return;
3243 }
3244
3245 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3246 {
3247         struct net_device *dev = priv->net_dev;
3248         unsigned long flags;
3249         u32 inta, tmp;
3250
3251         spin_lock_irqsave(&priv->low_lock, flags);
3252         ipw2100_disable_interrupts(priv);
3253
3254         read_register(dev, IPW_REG_INTA, &inta);
3255
3256         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3257                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3258
3259         priv->in_isr++;
3260         priv->interrupts++;
3261
3262         /* We do not loop and keep polling for more interrupts as this
3263          * is frowned upon and doesn't play nicely with other potentially
3264          * chained IRQs */
3265         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3266                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3267
3268         if (inta & IPW2100_INTA_FATAL_ERROR) {
3269                 printk(KERN_WARNING DRV_NAME
3270                        ": Fatal interrupt. Scheduling firmware restart.\n");
3271                 priv->inta_other++;
3272                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3273
3274                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3275                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3276                                priv->net_dev->name, priv->fatal_error);
3277
3278                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3279                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3280                                priv->net_dev->name, tmp);
3281
3282                 /* Wake up any sleeping jobs */
3283                 schedule_reset(priv);
3284         }
3285
3286         if (inta & IPW2100_INTA_PARITY_ERROR) {
3287                 printk(KERN_ERR DRV_NAME
3288                        ": ***** PARITY ERROR INTERRUPT !!!! \n");
3289                 priv->inta_other++;
3290                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3291         }
3292
3293         if (inta & IPW2100_INTA_RX_TRANSFER) {
3294                 IPW_DEBUG_ISR("RX interrupt\n");
3295
3296                 priv->rx_interrupts++;
3297
3298                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3299
3300                 __ipw2100_rx_process(priv);
3301                 __ipw2100_tx_complete(priv);
3302         }
3303
3304         if (inta & IPW2100_INTA_TX_TRANSFER) {
3305                 IPW_DEBUG_ISR("TX interrupt\n");
3306
3307                 priv->tx_interrupts++;
3308
3309                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3310
3311                 __ipw2100_tx_complete(priv);
3312                 ipw2100_tx_send_commands(priv);
3313                 ipw2100_tx_send_data(priv);
3314         }
3315
3316         if (inta & IPW2100_INTA_TX_COMPLETE) {
3317                 IPW_DEBUG_ISR("TX complete\n");
3318                 priv->inta_other++;
3319                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3320
3321                 __ipw2100_tx_complete(priv);
3322         }
3323
3324         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3325                 /* ipw2100_handle_event(dev); */
3326                 priv->inta_other++;
3327                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3328         }
3329
3330         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3331                 IPW_DEBUG_ISR("FW init done interrupt\n");
3332                 priv->inta_other++;
3333
3334                 read_register(dev, IPW_REG_INTA, &tmp);
3335                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3336                            IPW2100_INTA_PARITY_ERROR)) {
3337                         write_register(dev, IPW_REG_INTA,
3338                                        IPW2100_INTA_FATAL_ERROR |
3339                                        IPW2100_INTA_PARITY_ERROR);
3340                 }
3341
3342                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3343         }
3344
3345         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3346                 IPW_DEBUG_ISR("Status change interrupt\n");
3347                 priv->inta_other++;
3348                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3349         }
3350
3351         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3352                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3353                 priv->inta_other++;
3354                 write_register(dev, IPW_REG_INTA,
3355                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3356         }
3357
3358         priv->in_isr--;
3359         ipw2100_enable_interrupts(priv);
3360
3361         spin_unlock_irqrestore(&priv->low_lock, flags);
3362
3363         IPW_DEBUG_ISR("exit\n");
3364 }
3365
3366 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3367 {
3368         struct ipw2100_priv *priv = data;
3369         u32 inta, inta_mask;
3370
3371         if (!data)
3372                 return IRQ_NONE;
3373
3374         spin_lock(&priv->low_lock);
3375
3376         /* We check to see if we should be ignoring interrupts before
3377          * we touch the hardware.  During ucode load if we try and handle
3378          * an interrupt we can cause keyboard problems as well as cause
3379          * the ucode to fail to initialize */
3380         if (!(priv->status & STATUS_INT_ENABLED)) {
3381                 /* Shared IRQ */
3382                 goto none;
3383         }
3384
3385         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3386         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3387
3388         if (inta == 0xFFFFFFFF) {
3389                 /* Hardware disappeared */
3390                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3391                 goto none;
3392         }
3393
3394         inta &= IPW_INTERRUPT_MASK;
3395
3396         if (!(inta & inta_mask)) {
3397                 /* Shared interrupt */
3398                 goto none;
3399         }
3400
3401         /* We disable the hardware interrupt here just to prevent unneeded
3402          * calls to be made.  We disable this again within the actual
3403          * work tasklet, so if another part of the code re-enables the
3404          * interrupt, that is fine */
3405         ipw2100_disable_interrupts(priv);
3406
3407         tasklet_schedule(&priv->irq_tasklet);
3408         spin_unlock(&priv->low_lock);
3409
3410         return IRQ_HANDLED;
3411       none:
3412         spin_unlock(&priv->low_lock);
3413         return IRQ_NONE;
3414 }
3415
3416 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3417                               struct net_device *dev, int pri)
3418 {
3419         struct ipw2100_priv *priv = libipw_priv(dev);
3420         struct list_head *element;
3421         struct ipw2100_tx_packet *packet;
3422         unsigned long flags;
3423
3424         spin_lock_irqsave(&priv->low_lock, flags);
3425
3426         if (!(priv->status & STATUS_ASSOCIATED)) {
3427                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3428                 priv->net_dev->stats.tx_carrier_errors++;
3429                 netif_stop_queue(dev);
3430                 goto fail_unlock;
3431         }
3432
3433         if (list_empty(&priv->tx_free_list))
3434                 goto fail_unlock;
3435
3436         element = priv->tx_free_list.next;
3437         packet = list_entry(element, struct ipw2100_tx_packet, list);
3438
3439         packet->info.d_struct.txb = txb;
3440
3441         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3442         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3443
3444         packet->jiffy_start = jiffies;
3445
3446         list_del(element);
3447         DEC_STAT(&priv->tx_free_stat);
3448
3449         list_add_tail(element, &priv->tx_pend_list);
3450         INC_STAT(&priv->tx_pend_stat);
3451
3452         ipw2100_tx_send_data(priv);
3453
3454         spin_unlock_irqrestore(&priv->low_lock, flags);
3455         return NETDEV_TX_OK;
3456
3457 fail_unlock:
3458         netif_stop_queue(dev);
3459         spin_unlock_irqrestore(&priv->low_lock, flags);
3460         return NETDEV_TX_BUSY;
3461 }
3462
3463 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3464 {
3465         int i, j, err = -EINVAL;
3466         void *v;
3467         dma_addr_t p;
3468
3469         priv->msg_buffers =
3470             (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3471                                                 sizeof(struct
3472                                                        ipw2100_tx_packet),
3473                                                 GFP_KERNEL);
3474         if (!priv->msg_buffers) {
3475                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3476                        "buffers.\n", priv->net_dev->name);
3477                 return -ENOMEM;
3478         }
3479
3480         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3481                 v = pci_alloc_consistent(priv->pci_dev,
3482                                          sizeof(struct ipw2100_cmd_header), &p);
3483                 if (!v) {
3484                         printk(KERN_ERR DRV_NAME ": "
3485                                "%s: PCI alloc failed for msg "
3486                                "buffers.\n", priv->net_dev->name);
3487                         err = -ENOMEM;
3488                         break;
3489                 }
3490
3491                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3492
3493                 priv->msg_buffers[i].type = COMMAND;
3494                 priv->msg_buffers[i].info.c_struct.cmd =
3495                     (struct ipw2100_cmd_header *)v;
3496                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3497         }
3498
3499         if (i == IPW_COMMAND_POOL_SIZE)
3500                 return 0;
3501
3502         for (j = 0; j < i; j++) {
3503                 pci_free_consistent(priv->pci_dev,
3504                                     sizeof(struct ipw2100_cmd_header),
3505                                     priv->msg_buffers[j].info.c_struct.cmd,
3506                                     priv->msg_buffers[j].info.c_struct.
3507                                     cmd_phys);
3508         }
3509
3510         kfree(priv->msg_buffers);
3511         priv->msg_buffers = NULL;
3512
3513         return err;
3514 }
3515
3516 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3517 {
3518         int i;
3519
3520         INIT_LIST_HEAD(&priv->msg_free_list);
3521         INIT_LIST_HEAD(&priv->msg_pend_list);
3522
3523         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3524                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3525         SET_STAT(&priv->msg_free_stat, i);
3526
3527         return 0;
3528 }
3529
3530 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3531 {
3532         int i;
3533
3534         if (!priv->msg_buffers)
3535                 return;
3536
3537         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3538                 pci_free_consistent(priv->pci_dev,
3539                                     sizeof(struct ipw2100_cmd_header),
3540                                     priv->msg_buffers[i].info.c_struct.cmd,
3541                                     priv->msg_buffers[i].info.c_struct.
3542                                     cmd_phys);
3543         }
3544
3545         kfree(priv->msg_buffers);
3546         priv->msg_buffers = NULL;
3547 }
3548
3549 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3550                         char *buf)
3551 {
3552         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3553         char *out = buf;
3554         int i, j;
3555         u32 val;
3556
3557         for (i = 0; i < 16; i++) {
3558                 out += sprintf(out, "[%08X] ", i * 16);
3559                 for (j = 0; j < 16; j += 4) {
3560                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3561                         out += sprintf(out, "%08X ", val);
3562                 }
3563                 out += sprintf(out, "\n");
3564         }
3565
3566         return out - buf;
3567 }
3568
3569 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3570
3571 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3572                         char *buf)
3573 {
3574         struct ipw2100_priv *p = dev_get_drvdata(d);
3575         return sprintf(buf, "0x%08x\n", (int)p->config);
3576 }
3577
3578 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3579
3580 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3581                            char *buf)
3582 {
3583         struct ipw2100_priv *p = dev_get_drvdata(d);
3584         return sprintf(buf, "0x%08x\n", (int)p->status);
3585 }
3586
3587 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3588
3589 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3590                                char *buf)
3591 {
3592         struct ipw2100_priv *p = dev_get_drvdata(d);
3593         return sprintf(buf, "0x%08x\n", (int)p->capability);
3594 }
3595
3596 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3597
3598 #define IPW2100_REG(x) { IPW_ ##x, #x }
3599 static const struct {
3600         u32 addr;
3601         const char *name;
3602 } hw_data[] = {
3603 IPW2100_REG(REG_GP_CNTRL),
3604             IPW2100_REG(REG_GPIO),
3605             IPW2100_REG(REG_INTA),
3606             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3607 #define IPW2100_NIC(x, s) { x, #x, s }
3608 static const struct {
3609         u32 addr;
3610         const char *name;
3611         size_t size;
3612 } nic_data[] = {
3613 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3614             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3615 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3616 static const struct {
3617         u8 index;
3618         const char *name;
3619         const char *desc;
3620 } ord_data[] = {
3621 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3622             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3623                                 "successful Host Tx's (MSDU)"),
3624             IPW2100_ORD(STAT_TX_DIR_DATA,
3625                                 "successful Directed Tx's (MSDU)"),
3626             IPW2100_ORD(STAT_TX_DIR_DATA1,
3627                                 "successful Directed Tx's (MSDU) @ 1MB"),
3628             IPW2100_ORD(STAT_TX_DIR_DATA2,
3629                                 "successful Directed Tx's (MSDU) @ 2MB"),
3630             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3631                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3632             IPW2100_ORD(STAT_TX_DIR_DATA11,
3633                                 "successful Directed Tx's (MSDU) @ 11MB"),
3634             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3635                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3636             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3637                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3638             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3639                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3640             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3641                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3642             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3643             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3644             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3645             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3646             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3647             IPW2100_ORD(STAT_TX_ASSN_RESP,
3648                                 "successful Association response Tx's"),
3649             IPW2100_ORD(STAT_TX_REASSN,
3650                                 "successful Reassociation Tx's"),
3651             IPW2100_ORD(STAT_TX_REASSN_RESP,
3652                                 "successful Reassociation response Tx's"),
3653             IPW2100_ORD(STAT_TX_PROBE,
3654                                 "probes successfully transmitted"),
3655             IPW2100_ORD(STAT_TX_PROBE_RESP,
3656                                 "probe responses successfully transmitted"),
3657             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3658             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3659             IPW2100_ORD(STAT_TX_DISASSN,
3660                                 "successful Disassociation TX"),
3661             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3662             IPW2100_ORD(STAT_TX_DEAUTH,
3663                                 "successful Deauthentication TX"),
3664             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3665                                 "Total successful Tx data bytes"),
3666             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3667             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3668             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3669             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3670             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3671             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3672             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3673                                 "times max tries in a hop failed"),
3674             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3675                                 "times disassociation failed"),
3676             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3677             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3678             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3679             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3680             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3681             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3682             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3683                                 "directed packets at 5.5MB"),
3684             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3685             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3686             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3687                                 "nondirected packets at 1MB"),
3688             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3689                                 "nondirected packets at 2MB"),
3690             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3691                                 "nondirected packets at 5.5MB"),
3692             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3693                                 "nondirected packets at 11MB"),
3694             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3695             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3696                                                                     "Rx CTS"),
3697             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3698             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3699             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3700             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3701             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3702             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3703             IPW2100_ORD(STAT_RX_REASSN_RESP,
3704                                 "Reassociation response Rx's"),
3705             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3706             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3707             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3708             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3709             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3710             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3711             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3712             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3713                                 "Total rx data bytes received"),
3714             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3715             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3716             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3717             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3718             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3719             IPW2100_ORD(STAT_RX_DUPLICATE1,
3720                                 "duplicate rx packets at 1MB"),
3721             IPW2100_ORD(STAT_RX_DUPLICATE2,
3722                                 "duplicate rx packets at 2MB"),
3723             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3724                                 "duplicate rx packets at 5.5MB"),
3725             IPW2100_ORD(STAT_RX_DUPLICATE11,
3726                                 "duplicate rx packets at 11MB"),
3727             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3728             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3729             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3730             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3731             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3732                                 "rx frames with invalid protocol"),
3733             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3734             IPW2100_ORD(STAT_RX_NO_BUFFER,
3735                                 "rx frames rejected due to no buffer"),
3736             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3737                                 "rx frames dropped due to missing fragment"),
3738             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3739                                 "rx frames dropped due to non-sequential fragment"),
3740             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3741                                 "rx frames dropped due to unmatched 1st frame"),
3742             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3743                                 "rx frames dropped due to uncompleted frame"),
3744             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3745                                 "ICV errors during decryption"),
3746             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3747             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3748             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3749                                 "poll response timeouts"),
3750             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3751                                 "timeouts waiting for last {broad,multi}cast pkt"),
3752             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3753             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3754             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3755             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3756             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3757                                 "current calculation of % missed beacons"),
3758             IPW2100_ORD(STAT_PERCENT_RETRIES,
3759                                 "current calculation of % missed tx retries"),
3760             IPW2100_ORD(ASSOCIATED_AP_PTR,
3761                                 "0 if not associated, else pointer to AP table entry"),
3762             IPW2100_ORD(AVAILABLE_AP_CNT,
3763                                 "AP's decsribed in the AP table"),
3764             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3765             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3766             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3767             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3768                                 "failures due to response fail"),
3769             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3770             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3771             IPW2100_ORD(STAT_ROAM_INHIBIT,
3772                                 "times roaming was inhibited due to activity"),
3773             IPW2100_ORD(RSSI_AT_ASSN,
3774                                 "RSSI of associated AP at time of association"),
3775             IPW2100_ORD(STAT_ASSN_CAUSE1,
3776                                 "reassociation: no probe response or TX on hop"),
3777             IPW2100_ORD(STAT_ASSN_CAUSE2,
3778                                 "reassociation: poor tx/rx quality"),
3779             IPW2100_ORD(STAT_ASSN_CAUSE3,
3780                                 "reassociation: tx/rx quality (excessive AP load"),
3781             IPW2100_ORD(STAT_ASSN_CAUSE4,
3782                                 "reassociation: AP RSSI level"),
3783             IPW2100_ORD(STAT_ASSN_CAUSE5,
3784                                 "reassociations due to load leveling"),
3785             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3786             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3787                                 "times authentication response failed"),
3788             IPW2100_ORD(STATION_TABLE_CNT,
3789                                 "entries in association table"),
3790             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3791             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3792             IPW2100_ORD(COUNTRY_CODE,
3793                                 "IEEE country code as recv'd from beacon"),
3794             IPW2100_ORD(COUNTRY_CHANNELS,
3795                                 "channels suported by country"),
3796             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3797             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3798             IPW2100_ORD(ANTENNA_DIVERSITY,
3799                                 "TRUE if antenna diversity is disabled"),
3800             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3801             IPW2100_ORD(OUR_FREQ,
3802                                 "current radio freq lower digits - channel ID"),
3803             IPW2100_ORD(RTC_TIME, "current RTC time"),
3804             IPW2100_ORD(PORT_TYPE, "operating mode"),
3805             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3806             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3807             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3808             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3809             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3810             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3811             IPW2100_ORD(CAPABILITIES,
3812                                 "Management frame capability field"),
3813             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3814             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3815             IPW2100_ORD(RTS_THRESHOLD,
3816                                 "Min packet length for RTS handshaking"),
3817             IPW2100_ORD(INT_MODE, "International mode"),
3818             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3819                                 "protocol frag threshold"),
3820             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3821                                 "EEPROM offset in SRAM"),
3822             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3823                                 "EEPROM size in SRAM"),
3824             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3825             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3826                                 "EEPROM IBSS 11b channel set"),
3827             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3828             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3829             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3830             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3831             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3832
3833 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3834                               char *buf)
3835 {
3836         int i;
3837         struct ipw2100_priv *priv = dev_get_drvdata(d);
3838         struct net_device *dev = priv->net_dev;
3839         char *out = buf;
3840         u32 val = 0;
3841
3842         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3843
3844         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3845                 read_register(dev, hw_data[i].addr, &val);
3846                 out += sprintf(out, "%30s [%08X] : %08X\n",
3847                                hw_data[i].name, hw_data[i].addr, val);
3848         }
3849
3850         return out - buf;
3851 }
3852
3853 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3854
3855 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3856                              char *buf)
3857 {
3858         struct ipw2100_priv *priv = dev_get_drvdata(d);
3859         struct net_device *dev = priv->net_dev;
3860         char *out = buf;
3861         int i;
3862
3863         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3864
3865         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3866                 u8 tmp8;
3867                 u16 tmp16;
3868                 u32 tmp32;
3869
3870                 switch (nic_data[i].size) {
3871                 case 1:
3872                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3873                         out += sprintf(out, "%30s [%08X] : %02X\n",
3874                                        nic_data[i].name, nic_data[i].addr,
3875                                        tmp8);
3876                         break;
3877                 case 2:
3878                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3879                         out += sprintf(out, "%30s [%08X] : %04X\n",
3880                                        nic_data[i].name, nic_data[i].addr,
3881                                        tmp16);
3882                         break;
3883                 case 4:
3884                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3885                         out += sprintf(out, "%30s [%08X] : %08X\n",
3886                                        nic_data[i].name, nic_data[i].addr,
3887                                        tmp32);
3888                         break;
3889                 }
3890         }
3891         return out - buf;
3892 }
3893
3894 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3895
3896 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3897                            char *buf)
3898 {
3899         struct ipw2100_priv *priv = dev_get_drvdata(d);
3900         struct net_device *dev = priv->net_dev;
3901         static unsigned long loop = 0;
3902         int len = 0;
3903         u32 buffer[4];
3904         int i;
3905         char line[81];
3906
3907         if (loop >= 0x30000)
3908                 loop = 0;
3909
3910         /* sysfs provides us PAGE_SIZE buffer */
3911         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3912
3913                 if (priv->snapshot[0])
3914                         for (i = 0; i < 4; i++)
3915                                 buffer[i] =
3916                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3917                 else
3918                         for (i = 0; i < 4; i++)
3919                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3920
3921                 if (priv->dump_raw)
3922                         len += sprintf(buf + len,
3923                                        "%c%c%c%c"
3924                                        "%c%c%c%c"
3925                                        "%c%c%c%c"
3926                                        "%c%c%c%c",
3927                                        ((u8 *) buffer)[0x0],
3928                                        ((u8 *) buffer)[0x1],
3929                                        ((u8 *) buffer)[0x2],
3930                                        ((u8 *) buffer)[0x3],
3931                                        ((u8 *) buffer)[0x4],
3932                                        ((u8 *) buffer)[0x5],
3933                                        ((u8 *) buffer)[0x6],
3934                                        ((u8 *) buffer)[0x7],
3935                                        ((u8 *) buffer)[0x8],
3936                                        ((u8 *) buffer)[0x9],
3937                                        ((u8 *) buffer)[0xa],
3938                                        ((u8 *) buffer)[0xb],
3939                                        ((u8 *) buffer)[0xc],
3940                                        ((u8 *) buffer)[0xd],
3941                                        ((u8 *) buffer)[0xe],
3942                                        ((u8 *) buffer)[0xf]);
3943                 else
3944                         len += sprintf(buf + len, "%s\n",
3945                                        snprint_line(line, sizeof(line),
3946                                                     (u8 *) buffer, 16, loop));
3947                 loop += 16;
3948         }
3949
3950         return len;
3951 }
3952
3953 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3954                             const char *buf, size_t count)
3955 {
3956         struct ipw2100_priv *priv = dev_get_drvdata(d);
3957         struct net_device *dev = priv->net_dev;
3958         const char *p = buf;
3959
3960         (void)dev;              /* kill unused-var warning for debug-only code */
3961
3962         if (count < 1)
3963                 return count;
3964
3965         if (p[0] == '1' ||
3966             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3967                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3968                                dev->name);
3969                 priv->dump_raw = 1;
3970
3971         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3972                                    tolower(p[1]) == 'f')) {
3973                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3974                                dev->name);
3975                 priv->dump_raw = 0;
3976
3977         } else if (tolower(p[0]) == 'r') {
3978                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3979                 ipw2100_snapshot_free(priv);
3980
3981         } else
3982                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3983                                "reset = clear memory snapshot\n", dev->name);
3984
3985         return count;
3986 }
3987
3988 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3989
3990 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3991                              char *buf)
3992 {
3993         struct ipw2100_priv *priv = dev_get_drvdata(d);
3994         u32 val = 0;
3995         int len = 0;
3996         u32 val_len;
3997         static int loop = 0;
3998
3999         if (priv->status & STATUS_RF_KILL_MASK)
4000                 return 0;
4001
4002         if (loop >= ARRAY_SIZE(ord_data))
4003                 loop = 0;
4004
4005         /* sysfs provides us PAGE_SIZE buffer */
4006         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
4007                 val_len = sizeof(u32);
4008
4009                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
4010                                         &val_len))
4011                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
4012                                        ord_data[loop].index,
4013                                        ord_data[loop].desc);
4014                 else
4015                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
4016                                        ord_data[loop].index, val,
4017                                        ord_data[loop].desc);
4018                 loop++;
4019         }
4020
4021         return len;
4022 }
4023
4024 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
4025
4026 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
4027                           char *buf)
4028 {
4029         struct ipw2100_priv *priv = dev_get_drvdata(d);
4030         char *out = buf;
4031
4032         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4033                        priv->interrupts, priv->tx_interrupts,
4034                        priv->rx_interrupts, priv->inta_other);
4035         out += sprintf(out, "firmware resets: %d\n", priv->resets);
4036         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4037 #ifdef CONFIG_IPW2100_DEBUG
4038         out += sprintf(out, "packet mismatch image: %s\n",
4039                        priv->snapshot[0] ? "YES" : "NO");
4040 #endif
4041
4042         return out - buf;
4043 }
4044
4045 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4046
4047 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4048 {
4049         int err;
4050
4051         if (mode == priv->ieee->iw_mode)
4052                 return 0;
4053
4054         err = ipw2100_disable_adapter(priv);
4055         if (err) {
4056                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4057                        priv->net_dev->name, err);
4058                 return err;
4059         }
4060
4061         switch (mode) {
4062         case IW_MODE_INFRA:
4063                 priv->net_dev->type = ARPHRD_ETHER;
4064                 break;
4065         case IW_MODE_ADHOC:
4066                 priv->net_dev->type = ARPHRD_ETHER;
4067                 break;
4068 #ifdef CONFIG_IPW2100_MONITOR
4069         case IW_MODE_MONITOR:
4070                 priv->last_mode = priv->ieee->iw_mode;
4071                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4072                 break;
4073 #endif                          /* CONFIG_IPW2100_MONITOR */
4074         }
4075
4076         priv->ieee->iw_mode = mode;
4077
4078 #ifdef CONFIG_PM
4079         /* Indicate ipw2100_download_firmware download firmware
4080          * from disk instead of memory. */
4081         ipw2100_firmware.version = 0;
4082 #endif
4083
4084         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
4085         priv->reset_backoff = 0;
4086         schedule_reset(priv);
4087
4088         return 0;
4089 }
4090
4091 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4092                               char *buf)
4093 {
4094         struct ipw2100_priv *priv = dev_get_drvdata(d);
4095         int len = 0;
4096
4097 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4098
4099         if (priv->status & STATUS_ASSOCIATED)
4100                 len += sprintf(buf + len, "connected: %lu\n",
4101                                get_seconds() - priv->connect_start);
4102         else
4103                 len += sprintf(buf + len, "not connected\n");
4104
4105         DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4106         DUMP_VAR(status, "08lx");
4107         DUMP_VAR(config, "08lx");
4108         DUMP_VAR(capability, "08lx");
4109
4110         len +=
4111             sprintf(buf + len, "last_rtc: %lu\n",
4112                     (unsigned long)priv->last_rtc);
4113
4114         DUMP_VAR(fatal_error, "d");
4115         DUMP_VAR(stop_hang_check, "d");
4116         DUMP_VAR(stop_rf_kill, "d");
4117         DUMP_VAR(messages_sent, "d");
4118
4119         DUMP_VAR(tx_pend_stat.value, "d");
4120         DUMP_VAR(tx_pend_stat.hi, "d");
4121
4122         DUMP_VAR(tx_free_stat.value, "d");
4123         DUMP_VAR(tx_free_stat.lo, "d");
4124
4125         DUMP_VAR(msg_free_stat.value, "d");
4126         DUMP_VAR(msg_free_stat.lo, "d");
4127
4128         DUMP_VAR(msg_pend_stat.value, "d");
4129         DUMP_VAR(msg_pend_stat.hi, "d");
4130
4131         DUMP_VAR(fw_pend_stat.value, "d");
4132         DUMP_VAR(fw_pend_stat.hi, "d");
4133
4134         DUMP_VAR(txq_stat.value, "d");
4135         DUMP_VAR(txq_stat.lo, "d");
4136
4137         DUMP_VAR(ieee->scans, "d");
4138         DUMP_VAR(reset_backoff, "d");
4139
4140         return len;
4141 }
4142
4143 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4144
4145 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4146                             char *buf)
4147 {
4148         struct ipw2100_priv *priv = dev_get_drvdata(d);
4149         char essid[IW_ESSID_MAX_SIZE + 1];
4150         u8 bssid[ETH_ALEN];
4151         u32 chan = 0;
4152         char *out = buf;
4153         unsigned int length;
4154         int ret;
4155
4156         if (priv->status & STATUS_RF_KILL_MASK)
4157                 return 0;
4158
4159         memset(essid, 0, sizeof(essid));
4160         memset(bssid, 0, sizeof(bssid));
4161
4162         length = IW_ESSID_MAX_SIZE;
4163         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4164         if (ret)
4165                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4166                                __LINE__);
4167
4168         length = sizeof(bssid);
4169         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4170                                   bssid, &length);
4171         if (ret)
4172                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4173                                __LINE__);
4174
4175         length = sizeof(u32);
4176         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4177         if (ret)
4178                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4179                                __LINE__);
4180
4181         out += sprintf(out, "ESSID: %s\n", essid);
4182         out += sprintf(out, "BSSID:   %pM\n", bssid);
4183         out += sprintf(out, "Channel: %d\n", chan);
4184
4185         return out - buf;
4186 }
4187
4188 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4189
4190 #ifdef CONFIG_IPW2100_DEBUG
4191 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4192 {
4193         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4194 }
4195
4196 static ssize_t store_debug_level(struct device_driver *d,
4197                                  const char *buf, size_t count)
4198 {
4199         char *p = (char *)buf;
4200         u32 val;
4201
4202         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4203                 p++;
4204                 if (p[0] == 'x' || p[0] == 'X')
4205                         p++;
4206                 val = simple_strtoul(p, &p, 16);
4207         } else
4208                 val = simple_strtoul(p, &p, 10);
4209         if (p == buf)
4210                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4211         else
4212                 ipw2100_debug_level = val;
4213
4214         return strnlen(buf, count);
4215 }
4216
4217 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4218                    store_debug_level);
4219 #endif                          /* CONFIG_IPW2100_DEBUG */
4220
4221 static ssize_t show_fatal_error(struct device *d,
4222                                 struct device_attribute *attr, char *buf)
4223 {
4224         struct ipw2100_priv *priv = dev_get_drvdata(d);
4225         char *out = buf;
4226         int i;
4227
4228         if (priv->fatal_error)
4229                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4230         else
4231                 out += sprintf(out, "0\n");
4232
4233         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4234                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4235                                         IPW2100_ERROR_QUEUE])
4236                         continue;
4237
4238                 out += sprintf(out, "%d. 0x%08X\n", i,
4239                                priv->fatal_errors[(priv->fatal_index - i) %
4240                                                   IPW2100_ERROR_QUEUE]);
4241         }
4242
4243         return out - buf;
4244 }
4245
4246 static ssize_t store_fatal_error(struct device *d,
4247                                  struct device_attribute *attr, const char *buf,
4248                                  size_t count)
4249 {
4250         struct ipw2100_priv *priv = dev_get_drvdata(d);
4251         schedule_reset(priv);
4252         return count;
4253 }
4254
4255 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4256                    store_fatal_error);
4257
4258 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4259                              char *buf)
4260 {
4261         struct ipw2100_priv *priv = dev_get_drvdata(d);
4262         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4263 }
4264
4265 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4266                               const char *buf, size_t count)
4267 {
4268         struct ipw2100_priv *priv = dev_get_drvdata(d);
4269         struct net_device *dev = priv->net_dev;
4270         char buffer[] = "00000000";
4271         unsigned long len =
4272             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4273         unsigned long val;
4274         char *p = buffer;
4275
4276         (void)dev;              /* kill unused-var warning for debug-only code */
4277
4278         IPW_DEBUG_INFO("enter\n");
4279
4280         strncpy(buffer, buf, len);
4281         buffer[len] = 0;
4282
4283         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4284                 p++;
4285                 if (p[0] == 'x' || p[0] == 'X')
4286                         p++;
4287                 val = simple_strtoul(p, &p, 16);
4288         } else
4289                 val = simple_strtoul(p, &p, 10);
4290         if (p == buffer) {
4291                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4292         } else {
4293                 priv->ieee->scan_age = val;
4294                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4295         }
4296
4297         IPW_DEBUG_INFO("exit\n");
4298         return len;
4299 }
4300
4301 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4302
4303 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4304                             char *buf)
4305 {
4306         /* 0 - RF kill not enabled
4307            1 - SW based RF kill active (sysfs)
4308            2 - HW based RF kill active
4309            3 - Both HW and SW baed RF kill active */
4310         struct ipw2100_priv *priv = dev_get_drvdata(d);
4311         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4312             (rf_kill_active(priv) ? 0x2 : 0x0);
4313         return sprintf(buf, "%i\n", val);
4314 }
4315
4316 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4317 {
4318         if ((disable_radio ? 1 : 0) ==
4319             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4320                 return 0;
4321
4322         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4323                           disable_radio ? "OFF" : "ON");
4324
4325         mutex_lock(&priv->action_mutex);
4326
4327         if (disable_radio) {
4328                 priv->status |= STATUS_RF_KILL_SW;
4329                 ipw2100_down(priv);
4330         } else {
4331                 priv->status &= ~STATUS_RF_KILL_SW;
4332                 if (rf_kill_active(priv)) {
4333                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4334                                           "disabled by HW switch\n");
4335                         /* Make sure the RF_KILL check timer is running */
4336                         priv->stop_rf_kill = 0;
4337                         cancel_delayed_work(&priv->rf_kill);
4338                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
4339                                            round_jiffies_relative(HZ));
4340                 } else
4341                         schedule_reset(priv);
4342         }
4343
4344         mutex_unlock(&priv->action_mutex);
4345         return 1;
4346 }
4347
4348 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4349                              const char *buf, size_t count)
4350 {
4351         struct ipw2100_priv *priv = dev_get_drvdata(d);
4352         ipw_radio_kill_sw(priv, buf[0] == '1');
4353         return count;
4354 }
4355
4356 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4357
4358 static struct attribute *ipw2100_sysfs_entries[] = {
4359         &dev_attr_hardware.attr,
4360         &dev_attr_registers.attr,
4361         &dev_attr_ordinals.attr,
4362         &dev_attr_pci.attr,
4363         &dev_attr_stats.attr,
4364         &dev_attr_internals.attr,
4365         &dev_attr_bssinfo.attr,
4366         &dev_attr_memory.attr,
4367         &dev_attr_scan_age.attr,
4368         &dev_attr_fatal_error.attr,
4369         &dev_attr_rf_kill.attr,
4370         &dev_attr_cfg.attr,
4371         &dev_attr_status.attr,
4372         &dev_attr_capability.attr,
4373         NULL,
4374 };
4375
4376 static struct attribute_group ipw2100_attribute_group = {
4377         .attrs = ipw2100_sysfs_entries,
4378 };
4379
4380 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4381 {
4382         struct ipw2100_status_queue *q = &priv->status_queue;
4383
4384         IPW_DEBUG_INFO("enter\n");
4385
4386         q->size = entries * sizeof(struct ipw2100_status);
4387         q->drv =
4388             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4389                                                           q->size, &q->nic);
4390         if (!q->drv) {
4391                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4392                 return -ENOMEM;
4393         }
4394
4395         memset(q->drv, 0, q->size);
4396
4397         IPW_DEBUG_INFO("exit\n");
4398
4399         return 0;
4400 }
4401
4402 static void status_queue_free(struct ipw2100_priv *priv)
4403 {
4404         IPW_DEBUG_INFO("enter\n");
4405
4406         if (priv->status_queue.drv) {
4407                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4408                                     priv->status_queue.drv,
4409                                     priv->status_queue.nic);
4410                 priv->status_queue.drv = NULL;
4411         }
4412
4413         IPW_DEBUG_INFO("exit\n");
4414 }
4415
4416 static int bd_queue_allocate(struct ipw2100_priv *priv,
4417                              struct ipw2100_bd_queue *q, int entries)
4418 {
4419         IPW_DEBUG_INFO("enter\n");
4420
4421         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4422
4423         q->entries = entries;
4424         q->size = entries * sizeof(struct ipw2100_bd);
4425         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4426         if (!q->drv) {
4427                 IPW_DEBUG_INFO
4428                     ("can't allocate shared memory for buffer descriptors\n");
4429                 return -ENOMEM;
4430         }
4431         memset(q->drv, 0, q->size);
4432
4433         IPW_DEBUG_INFO("exit\n");
4434
4435         return 0;
4436 }
4437
4438 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4439 {
4440         IPW_DEBUG_INFO("enter\n");
4441
4442         if (!q)
4443                 return;
4444
4445         if (q->drv) {
4446                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4447                 q->drv = NULL;
4448         }
4449
4450         IPW_DEBUG_INFO("exit\n");
4451 }
4452
4453 static void bd_queue_initialize(struct ipw2100_priv *priv,
4454                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4455                                 u32 r, u32 w)
4456 {
4457         IPW_DEBUG_INFO("enter\n");
4458
4459         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4460                        (u32) q->nic);
4461
4462         write_register(priv->net_dev, base, q->nic);
4463         write_register(priv->net_dev, size, q->entries);
4464         write_register(priv->net_dev, r, q->oldest);
4465         write_register(priv->net_dev, w, q->next);
4466
4467         IPW_DEBUG_INFO("exit\n");
4468 }
4469
4470 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4471 {
4472         if (priv->workqueue) {
4473                 priv->stop_rf_kill = 1;
4474                 priv->stop_hang_check = 1;
4475                 cancel_delayed_work(&priv->reset_work);
4476                 cancel_delayed_work(&priv->security_work);
4477                 cancel_delayed_work(&priv->wx_event_work);
4478                 cancel_delayed_work(&priv->hang_check);
4479                 cancel_delayed_work(&priv->rf_kill);
4480                 cancel_delayed_work(&priv->scan_event_later);
4481                 destroy_workqueue(priv->workqueue);
4482                 priv->workqueue = NULL;
4483         }
4484 }
4485
4486 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4487 {
4488         int i, j, err = -EINVAL;
4489         void *v;
4490         dma_addr_t p;
4491
4492         IPW_DEBUG_INFO("enter\n");
4493
4494         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4495         if (err) {
4496                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4497                                 priv->net_dev->name);
4498                 return err;
4499         }
4500
4501         priv->tx_buffers =
4502             (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4503                                                 sizeof(struct
4504                                                        ipw2100_tx_packet),
4505                                                 GFP_ATOMIC);
4506         if (!priv->tx_buffers) {
4507                 printk(KERN_ERR DRV_NAME
4508                        ": %s: alloc failed form tx buffers.\n",
4509                        priv->net_dev->name);
4510                 bd_queue_free(priv, &priv->tx_queue);
4511                 return -ENOMEM;
4512         }
4513
4514         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4515                 v = pci_alloc_consistent(priv->pci_dev,
4516                                          sizeof(struct ipw2100_data_header),
4517                                          &p);
4518                 if (!v) {
4519                         printk(KERN_ERR DRV_NAME
4520                                ": %s: PCI alloc failed for tx " "buffers.\n",
4521                                priv->net_dev->name);
4522                         err = -ENOMEM;
4523                         break;
4524                 }
4525
4526                 priv->tx_buffers[i].type = DATA;
4527                 priv->tx_buffers[i].info.d_struct.data =
4528                     (struct ipw2100_data_header *)v;
4529                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4530                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4531         }
4532
4533         if (i == TX_PENDED_QUEUE_LENGTH)
4534                 return 0;
4535
4536         for (j = 0; j < i; j++) {
4537                 pci_free_consistent(priv->pci_dev,
4538                                     sizeof(struct ipw2100_data_header),
4539                                     priv->tx_buffers[j].info.d_struct.data,
4540                                     priv->tx_buffers[j].info.d_struct.
4541                                     data_phys);
4542         }
4543
4544         kfree(priv->tx_buffers);
4545         priv->tx_buffers = NULL;
4546
4547         return err;
4548 }
4549
4550 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4551 {
4552         int i;
4553
4554         IPW_DEBUG_INFO("enter\n");
4555
4556         /*
4557          * reinitialize packet info lists
4558          */
4559         INIT_LIST_HEAD(&priv->fw_pend_list);
4560         INIT_STAT(&priv->fw_pend_stat);
4561
4562         /*
4563          * reinitialize lists
4564          */
4565         INIT_LIST_HEAD(&priv->tx_pend_list);
4566         INIT_LIST_HEAD(&priv->tx_free_list);
4567         INIT_STAT(&priv->tx_pend_stat);
4568         INIT_STAT(&priv->tx_free_stat);
4569
4570         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4571                 /* We simply drop any SKBs that have been queued for
4572                  * transmit */
4573                 if (priv->tx_buffers[i].info.d_struct.txb) {
4574                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4575                                            txb);
4576                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4577                 }
4578
4579                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4580         }
4581
4582         SET_STAT(&priv->tx_free_stat, i);
4583
4584         priv->tx_queue.oldest = 0;
4585         priv->tx_queue.available = priv->tx_queue.entries;
4586         priv->tx_queue.next = 0;
4587         INIT_STAT(&priv->txq_stat);
4588         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4589
4590         bd_queue_initialize(priv, &priv->tx_queue,
4591                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4592                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4593                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4594                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4595
4596         IPW_DEBUG_INFO("exit\n");
4597
4598 }
4599
4600 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4601 {
4602         int i;
4603
4604         IPW_DEBUG_INFO("enter\n");
4605
4606         bd_queue_free(priv, &priv->tx_queue);
4607
4608         if (!priv->tx_buffers)
4609                 return;
4610
4611         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4612                 if (priv->tx_buffers[i].info.d_struct.txb) {
4613                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4614                                            txb);
4615                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4616                 }
4617                 if (priv->tx_buffers[i].info.d_struct.data)
4618                         pci_free_consistent(priv->pci_dev,
4619                                             sizeof(struct ipw2100_data_header),
4620                                             priv->tx_buffers[i].info.d_struct.
4621                                             data,
4622                                             priv->tx_buffers[i].info.d_struct.
4623                                             data_phys);
4624         }
4625
4626         kfree(priv->tx_buffers);
4627         priv->tx_buffers = NULL;
4628
4629         IPW_DEBUG_INFO("exit\n");
4630 }
4631
4632 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4633 {
4634         int i, j, err = -EINVAL;
4635
4636         IPW_DEBUG_INFO("enter\n");
4637
4638         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4639         if (err) {
4640                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4641                 return err;
4642         }
4643
4644         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4645         if (err) {
4646                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4647                 bd_queue_free(priv, &priv->rx_queue);
4648                 return err;
4649         }
4650
4651         /*
4652          * allocate packets
4653          */
4654         priv->rx_buffers = (struct ipw2100_rx_packet *)
4655             kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4656                     GFP_KERNEL);
4657         if (!priv->rx_buffers) {
4658                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4659
4660                 bd_queue_free(priv, &priv->rx_queue);
4661
4662                 status_queue_free(priv);
4663
4664                 return -ENOMEM;
4665         }
4666
4667         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4668                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4669
4670                 err = ipw2100_alloc_skb(priv, packet);
4671                 if (unlikely(err)) {
4672                         err = -ENOMEM;
4673                         break;
4674                 }
4675
4676                 /* The BD holds the cache aligned address */
4677                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4678                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4679                 priv->status_queue.drv[i].status_fields = 0;
4680         }
4681
4682         if (i == RX_QUEUE_LENGTH)
4683                 return 0;
4684
4685         for (j = 0; j < i; j++) {
4686                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4687                                  sizeof(struct ipw2100_rx_packet),
4688                                  PCI_DMA_FROMDEVICE);
4689                 dev_kfree_skb(priv->rx_buffers[j].skb);
4690         }
4691
4692         kfree(priv->rx_buffers);
4693         priv->rx_buffers = NULL;
4694
4695         bd_queue_free(priv, &priv->rx_queue);
4696
4697         status_queue_free(priv);
4698
4699         return err;
4700 }
4701
4702 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4703 {
4704         IPW_DEBUG_INFO("enter\n");
4705
4706         priv->rx_queue.oldest = 0;
4707         priv->rx_queue.available = priv->rx_queue.entries - 1;
4708         priv->rx_queue.next = priv->rx_queue.entries - 1;
4709
4710         INIT_STAT(&priv->rxq_stat);
4711         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4712
4713         bd_queue_initialize(priv, &priv->rx_queue,
4714                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4715                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4716                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4717                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4718
4719         /* set up the status queue */
4720         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4721                        priv->status_queue.nic);
4722
4723         IPW_DEBUG_INFO("exit\n");
4724 }
4725
4726 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4727 {
4728         int i;
4729
4730         IPW_DEBUG_INFO("enter\n");
4731
4732         bd_queue_free(priv, &priv->rx_queue);
4733         status_queue_free(priv);
4734
4735         if (!priv->rx_buffers)
4736                 return;
4737
4738         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4739                 if (priv->rx_buffers[i].rxp) {
4740                         pci_unmap_single(priv->pci_dev,
4741                                          priv->rx_buffers[i].dma_addr,
4742                                          sizeof(struct ipw2100_rx),
4743                                          PCI_DMA_FROMDEVICE);
4744                         dev_kfree_skb(priv->rx_buffers[i].skb);
4745                 }
4746         }
4747
4748         kfree(priv->rx_buffers);
4749         priv->rx_buffers = NULL;
4750
4751         IPW_DEBUG_INFO("exit\n");
4752 }
4753
4754 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4755 {
4756         u32 length = ETH_ALEN;
4757         u8 addr[ETH_ALEN];
4758
4759         int err;
4760
4761         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4762         if (err) {
4763                 IPW_DEBUG_INFO("MAC address read failed\n");
4764                 return -EIO;
4765         }
4766
4767         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4768         IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4769
4770         return 0;
4771 }
4772
4773 /********************************************************************
4774  *
4775  * Firmware Commands
4776  *
4777  ********************************************************************/
4778
4779 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4780 {
4781         struct host_command cmd = {
4782                 .host_command = ADAPTER_ADDRESS,
4783                 .host_command_sequence = 0,
4784                 .host_command_length = ETH_ALEN
4785         };
4786         int err;
4787
4788         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4789
4790         IPW_DEBUG_INFO("enter\n");
4791
4792         if (priv->config & CFG_CUSTOM_MAC) {
4793                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4794                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4795         } else
4796                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4797                        ETH_ALEN);
4798
4799         err = ipw2100_hw_send_command(priv, &cmd);
4800
4801         IPW_DEBUG_INFO("exit\n");
4802         return err;
4803 }
4804
4805 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4806                                  int batch_mode)
4807 {
4808         struct host_command cmd = {
4809                 .host_command = PORT_TYPE,
4810                 .host_command_sequence = 0,
4811                 .host_command_length = sizeof(u32)
4812         };
4813         int err;
4814
4815         switch (port_type) {
4816         case IW_MODE_INFRA:
4817                 cmd.host_command_parameters[0] = IPW_BSS;
4818                 break;
4819         case IW_MODE_ADHOC:
4820                 cmd.host_command_parameters[0] = IPW_IBSS;
4821                 break;
4822         }
4823
4824         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4825                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4826
4827         if (!batch_mode) {
4828                 err = ipw2100_disable_adapter(priv);
4829                 if (err) {
4830                         printk(KERN_ERR DRV_NAME
4831                                ": %s: Could not disable adapter %d\n",
4832                                priv->net_dev->name, err);
4833                         return err;
4834                 }
4835         }
4836
4837         /* send cmd to firmware */
4838         err = ipw2100_hw_send_command(priv, &cmd);
4839
4840         if (!batch_mode)
4841                 ipw2100_enable_adapter(priv);
4842
4843         return err;
4844 }
4845
4846 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4847                                int batch_mode)
4848 {
4849         struct host_command cmd = {
4850                 .host_command = CHANNEL,
4851                 .host_command_sequence = 0,
4852                 .host_command_length = sizeof(u32)
4853         };
4854         int err;
4855
4856         cmd.host_command_parameters[0] = channel;
4857
4858         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4859
4860         /* If BSS then we don't support channel selection */
4861         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4862                 return 0;
4863
4864         if ((channel != 0) &&
4865             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4866                 return -EINVAL;
4867
4868         if (!batch_mode) {
4869                 err = ipw2100_disable_adapter(priv);
4870                 if (err)
4871                         return err;
4872         }
4873
4874         err = ipw2100_hw_send_command(priv, &cmd);
4875         if (err) {
4876                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4877                 return err;
4878         }
4879
4880         if (channel)
4881                 priv->config |= CFG_STATIC_CHANNEL;
4882         else
4883                 priv->config &= ~CFG_STATIC_CHANNEL;
4884
4885         priv->channel = channel;
4886
4887         if (!batch_mode) {
4888                 err = ipw2100_enable_adapter(priv);
4889                 if (err)
4890                         return err;
4891         }
4892
4893         return 0;
4894 }
4895
4896 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4897 {
4898         struct host_command cmd = {
4899                 .host_command = SYSTEM_CONFIG,
4900                 .host_command_sequence = 0,
4901                 .host_command_length = 12,
4902         };
4903         u32 ibss_mask, len = sizeof(u32);
4904         int err;
4905
4906         /* Set system configuration */
4907
4908         if (!batch_mode) {
4909                 err = ipw2100_disable_adapter(priv);
4910                 if (err)
4911                         return err;
4912         }
4913
4914         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4915                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4916
4917         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4918             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4919
4920         if (!(priv->config & CFG_LONG_PREAMBLE))
4921                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4922
4923         err = ipw2100_get_ordinal(priv,
4924                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4925                                   &ibss_mask, &len);
4926         if (err)
4927                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4928
4929         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4930         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4931
4932         /* 11b only */
4933         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4934
4935         err = ipw2100_hw_send_command(priv, &cmd);
4936         if (err)
4937                 return err;
4938
4939 /* If IPv6 is configured in the kernel then we don't want to filter out all
4940  * of the multicast packets as IPv6 needs some. */
4941 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4942         cmd.host_command = ADD_MULTICAST;
4943         cmd.host_command_sequence = 0;
4944         cmd.host_command_length = 0;
4945
4946         ipw2100_hw_send_command(priv, &cmd);
4947 #endif
4948         if (!batch_mode) {
4949                 err = ipw2100_enable_adapter(priv);
4950                 if (err)
4951                         return err;
4952         }
4953
4954         return 0;
4955 }
4956
4957 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4958                                 int batch_mode)
4959 {
4960         struct host_command cmd = {
4961                 .host_command = BASIC_TX_RATES,
4962                 .host_command_sequence = 0,
4963                 .host_command_length = 4
4964         };
4965         int err;
4966
4967         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4968
4969         if (!batch_mode) {
4970                 err = ipw2100_disable_adapter(priv);
4971                 if (err)
4972                         return err;
4973         }
4974
4975         /* Set BASIC TX Rate first */
4976         ipw2100_hw_send_command(priv, &cmd);
4977
4978         /* Set TX Rate */
4979         cmd.host_command = TX_RATES;
4980         ipw2100_hw_send_command(priv, &cmd);
4981
4982         /* Set MSDU TX Rate */
4983         cmd.host_command = MSDU_TX_RATES;
4984         ipw2100_hw_send_command(priv, &cmd);
4985
4986         if (!batch_mode) {
4987                 err = ipw2100_enable_adapter(priv);
4988                 if (err)
4989                         return err;
4990         }
4991
4992         priv->tx_rates = rate;
4993
4994         return 0;
4995 }
4996
4997 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4998 {
4999         struct host_command cmd = {
5000                 .host_command = POWER_MODE,
5001                 .host_command_sequence = 0,
5002                 .host_command_length = 4
5003         };
5004         int err;
5005
5006         cmd.host_command_parameters[0] = power_level;
5007
5008         err = ipw2100_hw_send_command(priv, &cmd);
5009         if (err)
5010                 return err;
5011
5012         if (power_level == IPW_POWER_MODE_CAM)
5013                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
5014         else
5015                 priv->power_mode = IPW_POWER_ENABLED | power_level;
5016
5017 #ifdef IPW2100_TX_POWER
5018         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
5019                 /* Set beacon interval */
5020                 cmd.host_command = TX_POWER_INDEX;
5021                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
5022
5023                 err = ipw2100_hw_send_command(priv, &cmd);
5024                 if (err)
5025                         return err;
5026         }
5027 #endif
5028
5029         return 0;
5030 }
5031
5032 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
5033 {
5034         struct host_command cmd = {
5035                 .host_command = RTS_THRESHOLD,
5036                 .host_command_sequence = 0,
5037                 .host_command_length = 4
5038         };
5039         int err;
5040
5041         if (threshold & RTS_DISABLED)
5042                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
5043         else
5044                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
5045
5046         err = ipw2100_hw_send_command(priv, &cmd);
5047         if (err)
5048                 return err;
5049
5050         priv->rts_threshold = threshold;
5051
5052         return 0;
5053 }
5054
5055 #if 0
5056 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
5057                                         u32 threshold, int batch_mode)
5058 {
5059         struct host_command cmd = {
5060                 .host_command = FRAG_THRESHOLD,
5061                 .host_command_sequence = 0,
5062                 .host_command_length = 4,
5063                 .host_command_parameters[0] = 0,
5064         };
5065         int err;
5066
5067         if (!batch_mode) {
5068                 err = ipw2100_disable_adapter(priv);
5069                 if (err)
5070                         return err;
5071         }
5072
5073         if (threshold == 0)
5074                 threshold = DEFAULT_FRAG_THRESHOLD;
5075         else {
5076                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5077                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5078         }
5079
5080         cmd.host_command_parameters[0] = threshold;
5081
5082         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5083
5084         err = ipw2100_hw_send_command(priv, &cmd);
5085
5086         if (!batch_mode)
5087                 ipw2100_enable_adapter(priv);
5088
5089         if (!err)
5090                 priv->frag_threshold = threshold;
5091
5092         return err;
5093 }
5094 #endif
5095
5096 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5097 {
5098         struct host_command cmd = {
5099                 .host_command = SHORT_RETRY_LIMIT,
5100                 .host_command_sequence = 0,
5101                 .host_command_length = 4
5102         };
5103         int err;
5104
5105         cmd.host_command_parameters[0] = retry;
5106
5107         err = ipw2100_hw_send_command(priv, &cmd);
5108         if (err)
5109                 return err;
5110
5111         priv->short_retry_limit = retry;
5112
5113         return 0;
5114 }
5115
5116 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5117 {
5118         struct host_command cmd = {
5119                 .host_command = LONG_RETRY_LIMIT,
5120                 .host_command_sequence = 0,
5121                 .host_command_length = 4
5122         };
5123         int err;
5124
5125         cmd.host_command_parameters[0] = retry;
5126
5127         err = ipw2100_hw_send_command(priv, &cmd);
5128         if (err)
5129                 return err;
5130
5131         priv->long_retry_limit = retry;
5132
5133         return 0;
5134 }
5135
5136 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5137                                        int batch_mode)
5138 {
5139         struct host_command cmd = {
5140                 .host_command = MANDATORY_BSSID,
5141                 .host_command_sequence = 0,
5142                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5143         };
5144         int err;
5145
5146 #ifdef CONFIG_IPW2100_DEBUG
5147         if (bssid != NULL)
5148                 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5149         else
5150                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5151 #endif
5152         /* if BSSID is empty then we disable mandatory bssid mode */
5153         if (bssid != NULL)
5154                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5155
5156         if (!batch_mode) {
5157                 err = ipw2100_disable_adapter(priv);
5158                 if (err)
5159                         return err;
5160         }
5161
5162         err = ipw2100_hw_send_command(priv, &cmd);
5163
5164         if (!batch_mode)
5165                 ipw2100_enable_adapter(priv);
5166
5167         return err;
5168 }
5169
5170 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5171 {
5172         struct host_command cmd = {
5173                 .host_command = DISASSOCIATION_BSSID,
5174                 .host_command_sequence = 0,
5175                 .host_command_length = ETH_ALEN
5176         };
5177         int err;
5178         int len;
5179
5180         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5181
5182         len = ETH_ALEN;
5183         /* The Firmware currently ignores the BSSID and just disassociates from
5184          * the currently associated AP -- but in the off chance that a future
5185          * firmware does use the BSSID provided here, we go ahead and try and
5186          * set it to the currently associated AP's BSSID */
5187         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5188
5189         err = ipw2100_hw_send_command(priv, &cmd);
5190
5191         return err;
5192 }
5193
5194 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5195                               struct ipw2100_wpa_assoc_frame *, int)
5196     __attribute__ ((unused));
5197
5198 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5199                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5200                               int batch_mode)
5201 {
5202         struct host_command cmd = {
5203                 .host_command = SET_WPA_IE,
5204                 .host_command_sequence = 0,
5205                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5206         };
5207         int err;
5208
5209         IPW_DEBUG_HC("SET_WPA_IE\n");
5210
5211         if (!batch_mode) {
5212                 err = ipw2100_disable_adapter(priv);
5213                 if (err)
5214                         return err;
5215         }
5216
5217         memcpy(cmd.host_command_parameters, wpa_frame,
5218                sizeof(struct ipw2100_wpa_assoc_frame));
5219
5220         err = ipw2100_hw_send_command(priv, &cmd);
5221
5222         if (!batch_mode) {
5223                 if (ipw2100_enable_adapter(priv))
5224                         err = -EIO;
5225         }
5226
5227         return err;
5228 }
5229
5230 struct security_info_params {
5231         u32 allowed_ciphers;
5232         u16 version;
5233         u8 auth_mode;
5234         u8 replay_counters_number;
5235         u8 unicast_using_group;
5236 } __attribute__ ((packed));
5237
5238 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5239                                             int auth_mode,
5240                                             int security_level,
5241                                             int unicast_using_group,
5242                                             int batch_mode)
5243 {
5244         struct host_command cmd = {
5245                 .host_command = SET_SECURITY_INFORMATION,
5246                 .host_command_sequence = 0,
5247                 .host_command_length = sizeof(struct security_info_params)
5248         };
5249         struct security_info_params *security =
5250             (struct security_info_params *)&cmd.host_command_parameters;
5251         int err;
5252         memset(security, 0, sizeof(*security));
5253
5254         /* If shared key AP authentication is turned on, then we need to
5255          * configure the firmware to try and use it.
5256          *
5257          * Actual data encryption/decryption is handled by the host. */
5258         security->auth_mode = auth_mode;
5259         security->unicast_using_group = unicast_using_group;
5260
5261         switch (security_level) {
5262         default:
5263         case SEC_LEVEL_0:
5264                 security->allowed_ciphers = IPW_NONE_CIPHER;
5265                 break;
5266         case SEC_LEVEL_1:
5267                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5268                     IPW_WEP104_CIPHER;
5269                 break;
5270         case SEC_LEVEL_2:
5271                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5272                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5273                 break;
5274         case SEC_LEVEL_2_CKIP:
5275                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5276                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5277                 break;
5278         case SEC_LEVEL_3:
5279                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5280                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5281                 break;
5282         }
5283
5284         IPW_DEBUG_HC
5285             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5286              security->auth_mode, security->allowed_ciphers, security_level);
5287
5288         security->replay_counters_number = 0;
5289
5290         if (!batch_mode) {
5291                 err = ipw2100_disable_adapter(priv);
5292                 if (err)
5293                         return err;
5294         }
5295
5296         err = ipw2100_hw_send_command(priv, &cmd);
5297
5298         if (!batch_mode)
5299                 ipw2100_enable_adapter(priv);
5300
5301         return err;
5302 }
5303
5304 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5305 {
5306         struct host_command cmd = {
5307                 .host_command = TX_POWER_INDEX,
5308                 .host_command_sequence = 0,
5309                 .host_command_length = 4
5310         };
5311         int err = 0;
5312         u32 tmp = tx_power;
5313
5314         if (tx_power != IPW_TX_POWER_DEFAULT)
5315                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5316                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5317
5318         cmd.host_command_parameters[0] = tmp;
5319
5320         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5321                 err = ipw2100_hw_send_command(priv, &cmd);
5322         if (!err)
5323                 priv->tx_power = tx_power;
5324
5325         return 0;
5326 }
5327
5328 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5329                                             u32 interval, int batch_mode)
5330 {
5331         struct host_command cmd = {
5332                 .host_command = BEACON_INTERVAL,
5333                 .host_command_sequence = 0,
5334                 .host_command_length = 4
5335         };
5336         int err;
5337
5338         cmd.host_command_parameters[0] = interval;
5339
5340         IPW_DEBUG_INFO("enter\n");
5341
5342         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5343                 if (!batch_mode) {
5344                         err = ipw2100_disable_adapter(priv);
5345                         if (err)
5346                                 return err;
5347                 }
5348
5349                 ipw2100_hw_send_command(priv, &cmd);
5350
5351                 if (!batch_mode) {
5352                         err = ipw2100_enable_adapter(priv);
5353                         if (err)
5354                                 return err;
5355                 }
5356         }
5357
5358         IPW_DEBUG_INFO("exit\n");
5359
5360         return 0;
5361 }
5362
5363 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5364 {
5365         ipw2100_tx_initialize(priv);
5366         ipw2100_rx_initialize(priv);
5367         ipw2100_msg_initialize(priv);
5368 }
5369
5370 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5371 {
5372         ipw2100_tx_free(priv);
5373         ipw2100_rx_free(priv);
5374         ipw2100_msg_free(priv);
5375 }
5376
5377 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5378 {
5379         if (ipw2100_tx_allocate(priv) ||
5380             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5381                 goto fail;
5382
5383         return 0;
5384
5385       fail:
5386         ipw2100_tx_free(priv);
5387         ipw2100_rx_free(priv);
5388         ipw2100_msg_free(priv);
5389         return -ENOMEM;
5390 }
5391
5392 #define IPW_PRIVACY_CAPABLE 0x0008
5393
5394 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5395                                  int batch_mode)
5396 {
5397         struct host_command cmd = {
5398                 .host_command = WEP_FLAGS,
5399                 .host_command_sequence = 0,
5400                 .host_command_length = 4
5401         };
5402         int err;
5403
5404         cmd.host_command_parameters[0] = flags;
5405
5406         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5407
5408         if (!batch_mode) {
5409                 err = ipw2100_disable_adapter(priv);
5410                 if (err) {
5411                         printk(KERN_ERR DRV_NAME
5412                                ": %s: Could not disable adapter %d\n",
5413                                priv->net_dev->name, err);
5414                         return err;
5415                 }
5416         }
5417
5418         /* send cmd to firmware */
5419         err = ipw2100_hw_send_command(priv, &cmd);
5420
5421         if (!batch_mode)
5422                 ipw2100_enable_adapter(priv);
5423
5424         return err;
5425 }
5426
5427 struct ipw2100_wep_key {
5428         u8 idx;
5429         u8 len;
5430         u8 key[13];
5431 };
5432
5433 /* Macros to ease up priting WEP keys */
5434 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5435 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5436 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5437 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5438
5439 /**
5440  * Set a the wep key
5441  *
5442  * @priv: struct to work on
5443  * @idx: index of the key we want to set
5444  * @key: ptr to the key data to set
5445  * @len: length of the buffer at @key
5446  * @batch_mode: FIXME perform the operation in batch mode, not
5447  *              disabling the device.
5448  *
5449  * @returns 0 if OK, < 0 errno code on error.
5450  *
5451  * Fill out a command structure with the new wep key, length an
5452  * index and send it down the wire.
5453  */
5454 static int ipw2100_set_key(struct ipw2100_priv *priv,
5455                            int idx, char *key, int len, int batch_mode)
5456 {
5457         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5458         struct host_command cmd = {
5459                 .host_command = WEP_KEY_INFO,
5460                 .host_command_sequence = 0,
5461                 .host_command_length = sizeof(struct ipw2100_wep_key),
5462         };
5463         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5464         int err;
5465
5466         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5467                      idx, keylen, len);
5468
5469         /* NOTE: We don't check cached values in case the firmware was reset
5470          * or some other problem is occurring.  If the user is setting the key,
5471          * then we push the change */
5472
5473         wep_key->idx = idx;
5474         wep_key->len = keylen;
5475
5476         if (keylen) {
5477                 memcpy(wep_key->key, key, len);
5478                 memset(wep_key->key + len, 0, keylen - len);
5479         }
5480
5481         /* Will be optimized out on debug not being configured in */
5482         if (keylen == 0)
5483                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5484                               priv->net_dev->name, wep_key->idx);
5485         else if (keylen == 5)
5486                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5487                               priv->net_dev->name, wep_key->idx, wep_key->len,
5488                               WEP_STR_64(wep_key->key));
5489         else
5490                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5491                               "\n",
5492                               priv->net_dev->name, wep_key->idx, wep_key->len,
5493                               WEP_STR_128(wep_key->key));
5494
5495         if (!batch_mode) {
5496                 err = ipw2100_disable_adapter(priv);
5497                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5498                 if (err) {
5499                         printk(KERN_ERR DRV_NAME
5500                                ": %s: Could not disable adapter %d\n",
5501                                priv->net_dev->name, err);
5502                         return err;
5503                 }
5504         }
5505
5506         /* send cmd to firmware */
5507         err = ipw2100_hw_send_command(priv, &cmd);
5508
5509         if (!batch_mode) {
5510                 int err2 = ipw2100_enable_adapter(priv);
5511                 if (err == 0)
5512                         err = err2;
5513         }
5514         return err;
5515 }
5516
5517 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5518                                  int idx, int batch_mode)
5519 {
5520         struct host_command cmd = {
5521                 .host_command = WEP_KEY_INDEX,
5522                 .host_command_sequence = 0,
5523                 .host_command_length = 4,
5524                 .host_command_parameters = {idx},
5525         };
5526         int err;
5527
5528         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5529
5530         if (idx < 0 || idx > 3)
5531                 return -EINVAL;
5532
5533         if (!batch_mode) {
5534                 err = ipw2100_disable_adapter(priv);
5535                 if (err) {
5536                         printk(KERN_ERR DRV_NAME
5537                                ": %s: Could not disable adapter %d\n",
5538                                priv->net_dev->name, err);
5539                         return err;
5540                 }
5541         }
5542
5543         /* send cmd to firmware */
5544         err = ipw2100_hw_send_command(priv, &cmd);
5545
5546         if (!batch_mode)
5547                 ipw2100_enable_adapter(priv);
5548
5549         return err;
5550 }
5551
5552 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5553 {
5554         int i, err, auth_mode, sec_level, use_group;
5555
5556         if (!(priv->status & STATUS_RUNNING))
5557                 return 0;
5558
5559         if (!batch_mode) {
5560                 err = ipw2100_disable_adapter(priv);
5561                 if (err)
5562                         return err;
5563         }
5564
5565         if (!priv->ieee->sec.enabled) {
5566                 err =
5567                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5568                                                      SEC_LEVEL_0, 0, 1);
5569         } else {
5570                 auth_mode = IPW_AUTH_OPEN;
5571                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5572                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5573                                 auth_mode = IPW_AUTH_SHARED;
5574                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5575                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5576                 }
5577
5578                 sec_level = SEC_LEVEL_0;
5579                 if (priv->ieee->sec.flags & SEC_LEVEL)
5580                         sec_level = priv->ieee->sec.level;
5581
5582                 use_group = 0;
5583                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5584                         use_group = priv->ieee->sec.unicast_uses_group;
5585
5586                 err =
5587                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5588                                                      use_group, 1);
5589         }
5590
5591         if (err)
5592                 goto exit;
5593
5594         if (priv->ieee->sec.enabled) {
5595                 for (i = 0; i < 4; i++) {
5596                         if (!(priv->ieee->sec.flags & (1 << i))) {
5597                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5598                                 priv->ieee->sec.key_sizes[i] = 0;
5599                         } else {
5600                                 err = ipw2100_set_key(priv, i,
5601                                                       priv->ieee->sec.keys[i],
5602                                                       priv->ieee->sec.
5603                                                       key_sizes[i], 1);
5604                                 if (err)
5605                                         goto exit;
5606                         }
5607                 }
5608
5609                 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5610         }
5611
5612         /* Always enable privacy so the Host can filter WEP packets if
5613          * encrypted data is sent up */
5614         err =
5615             ipw2100_set_wep_flags(priv,
5616                                   priv->ieee->sec.
5617                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5618         if (err)
5619                 goto exit;
5620
5621         priv->status &= ~STATUS_SECURITY_UPDATED;
5622
5623       exit:
5624         if (!batch_mode)
5625                 ipw2100_enable_adapter(priv);
5626
5627         return err;
5628 }
5629
5630 static void ipw2100_security_work(struct work_struct *work)
5631 {
5632         struct ipw2100_priv *priv =
5633                 container_of(work, struct ipw2100_priv, security_work.work);
5634
5635         /* If we happen to have reconnected before we get a chance to
5636          * process this, then update the security settings--which causes
5637          * a disassociation to occur */
5638         if (!(priv->status & STATUS_ASSOCIATED) &&
5639             priv->status & STATUS_SECURITY_UPDATED)
5640                 ipw2100_configure_security(priv, 0);
5641 }
5642
5643 static void shim__set_security(struct net_device *dev,
5644                                struct libipw_security *sec)
5645 {
5646         struct ipw2100_priv *priv = libipw_priv(dev);
5647         int i, force_update = 0;
5648
5649         mutex_lock(&priv->action_mutex);
5650         if (!(priv->status & STATUS_INITIALIZED))
5651                 goto done;
5652
5653         for (i = 0; i < 4; i++) {
5654                 if (sec->flags & (1 << i)) {
5655                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5656                         if (sec->key_sizes[i] == 0)
5657                                 priv->ieee->sec.flags &= ~(1 << i);
5658                         else
5659                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5660                                        sec->key_sizes[i]);
5661                         if (sec->level == SEC_LEVEL_1) {
5662                                 priv->ieee->sec.flags |= (1 << i);
5663                                 priv->status |= STATUS_SECURITY_UPDATED;
5664                         } else
5665                                 priv->ieee->sec.flags &= ~(1 << i);
5666                 }
5667         }
5668
5669         if ((sec->flags & SEC_ACTIVE_KEY) &&
5670             priv->ieee->sec.active_key != sec->active_key) {
5671                 if (sec->active_key <= 3) {
5672                         priv->ieee->sec.active_key = sec->active_key;
5673                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5674                 } else
5675                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5676
5677                 priv->status |= STATUS_SECURITY_UPDATED;
5678         }
5679
5680         if ((sec->flags & SEC_AUTH_MODE) &&
5681             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5682                 priv->ieee->sec.auth_mode = sec->auth_mode;
5683                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5684                 priv->status |= STATUS_SECURITY_UPDATED;
5685         }
5686
5687         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5688                 priv->ieee->sec.flags |= SEC_ENABLED;
5689                 priv->ieee->sec.enabled = sec->enabled;
5690                 priv->status |= STATUS_SECURITY_UPDATED;
5691                 force_update = 1;
5692         }
5693
5694         if (sec->flags & SEC_ENCRYPT)
5695                 priv->ieee->sec.encrypt = sec->encrypt;
5696
5697         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5698                 priv->ieee->sec.level = sec->level;
5699                 priv->ieee->sec.flags |= SEC_LEVEL;
5700                 priv->status |= STATUS_SECURITY_UPDATED;
5701         }
5702
5703         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5704                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5705                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5706                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5707                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5708                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5709                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5710                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5711                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5712                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5713
5714 /* As a temporary work around to enable WPA until we figure out why
5715  * wpa_supplicant toggles the security capability of the driver, which
5716  * forces a disassocation with force_update...
5717  *
5718  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5719         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5720                 ipw2100_configure_security(priv, 0);
5721       done:
5722         mutex_unlock(&priv->action_mutex);
5723 }
5724
5725 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5726 {
5727         int err;
5728         int batch_mode = 1;
5729         u8 *bssid;
5730
5731         IPW_DEBUG_INFO("enter\n");
5732
5733         err = ipw2100_disable_adapter(priv);
5734         if (err)
5735                 return err;
5736 #ifdef CONFIG_IPW2100_MONITOR
5737         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5738                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5739                 if (err)
5740                         return err;
5741
5742                 IPW_DEBUG_INFO("exit\n");
5743
5744                 return 0;
5745         }
5746 #endif                          /* CONFIG_IPW2100_MONITOR */
5747
5748         err = ipw2100_read_mac_address(priv);
5749         if (err)
5750                 return -EIO;
5751
5752         err = ipw2100_set_mac_address(priv, batch_mode);
5753         if (err)
5754                 return err;
5755
5756         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5757         if (err)
5758                 return err;
5759
5760         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5761                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5762                 if (err)
5763                         return err;
5764         }
5765
5766         err = ipw2100_system_config(priv, batch_mode);
5767         if (err)
5768                 return err;
5769
5770         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5771         if (err)
5772                 return err;
5773
5774         /* Default to power mode OFF */
5775         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5776         if (err)
5777                 return err;
5778
5779         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5780         if (err)
5781                 return err;
5782
5783         if (priv->config & CFG_STATIC_BSSID)
5784                 bssid = priv->bssid;
5785         else
5786                 bssid = NULL;
5787         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5788         if (err)
5789                 return err;
5790
5791         if (priv->config & CFG_STATIC_ESSID)
5792                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5793                                         batch_mode);
5794         else
5795                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5796         if (err)
5797                 return err;
5798
5799         err = ipw2100_configure_security(priv, batch_mode);
5800         if (err)
5801                 return err;
5802
5803         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5804                 err =
5805                     ipw2100_set_ibss_beacon_interval(priv,
5806                                                      priv->beacon_interval,
5807                                                      batch_mode);
5808                 if (err)
5809                         return err;
5810
5811                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5812                 if (err)
5813                         return err;
5814         }
5815
5816         /*
5817            err = ipw2100_set_fragmentation_threshold(
5818            priv, priv->frag_threshold, batch_mode);
5819            if (err)
5820            return err;
5821          */
5822
5823         IPW_DEBUG_INFO("exit\n");
5824
5825         return 0;
5826 }
5827
5828 /*************************************************************************
5829  *
5830  * EXTERNALLY CALLED METHODS
5831  *
5832  *************************************************************************/
5833
5834 /* This method is called by the network layer -- not to be confused with
5835  * ipw2100_set_mac_address() declared above called by this driver (and this
5836  * method as well) to talk to the firmware */
5837 static int ipw2100_set_address(struct net_device *dev, void *p)
5838 {
5839         struct ipw2100_priv *priv = libipw_priv(dev);
5840         struct sockaddr *addr = p;
5841         int err = 0;
5842
5843         if (!is_valid_ether_addr(addr->sa_data))
5844                 return -EADDRNOTAVAIL;
5845
5846         mutex_lock(&priv->action_mutex);
5847
5848         priv->config |= CFG_CUSTOM_MAC;
5849         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5850
5851         err = ipw2100_set_mac_address(priv, 0);
5852         if (err)
5853                 goto done;
5854
5855         priv->reset_backoff = 0;
5856         mutex_unlock(&priv->action_mutex);
5857         ipw2100_reset_adapter(&priv->reset_work.work);
5858         return 0;
5859
5860       done:
5861         mutex_unlock(&priv->action_mutex);
5862         return err;
5863 }
5864
5865 static int ipw2100_open(struct net_device *dev)
5866 {
5867         struct ipw2100_priv *priv = libipw_priv(dev);
5868         unsigned long flags;
5869         IPW_DEBUG_INFO("dev->open\n");
5870
5871         spin_lock_irqsave(&priv->low_lock, flags);
5872         if (priv->status & STATUS_ASSOCIATED) {
5873                 netif_carrier_on(dev);
5874                 netif_start_queue(dev);
5875         }
5876         spin_unlock_irqrestore(&priv->low_lock, flags);
5877
5878         return 0;
5879 }
5880
5881 static int ipw2100_close(struct net_device *dev)
5882 {
5883         struct ipw2100_priv *priv = libipw_priv(dev);
5884         unsigned long flags;
5885         struct list_head *element;
5886         struct ipw2100_tx_packet *packet;
5887
5888         IPW_DEBUG_INFO("enter\n");
5889
5890         spin_lock_irqsave(&priv->low_lock, flags);
5891
5892         if (priv->status & STATUS_ASSOCIATED)
5893                 netif_carrier_off(dev);
5894         netif_stop_queue(dev);
5895
5896         /* Flush the TX queue ... */
5897         while (!list_empty(&priv->tx_pend_list)) {
5898                 element = priv->tx_pend_list.next;
5899                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5900
5901                 list_del(element);
5902                 DEC_STAT(&priv->tx_pend_stat);
5903
5904                 libipw_txb_free(packet->info.d_struct.txb);
5905                 packet->info.d_struct.txb = NULL;
5906
5907                 list_add_tail(element, &priv->tx_free_list);
5908                 INC_STAT(&priv->tx_free_stat);
5909         }
5910         spin_unlock_irqrestore(&priv->low_lock, flags);
5911
5912         IPW_DEBUG_INFO("exit\n");
5913
5914         return 0;
5915 }
5916
5917 /*
5918  * TODO:  Fix this function... its just wrong
5919  */
5920 static void ipw2100_tx_timeout(struct net_device *dev)
5921 {
5922         struct ipw2100_priv *priv = libipw_priv(dev);
5923
5924         dev->stats.tx_errors++;
5925
5926 #ifdef CONFIG_IPW2100_MONITOR
5927         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5928                 return;
5929 #endif
5930
5931         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5932                        dev->name);
5933         schedule_reset(priv);
5934 }
5935
5936 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5937 {
5938         /* This is called when wpa_supplicant loads and closes the driver
5939          * interface. */
5940         priv->ieee->wpa_enabled = value;
5941         return 0;
5942 }
5943
5944 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5945 {
5946
5947         struct libipw_device *ieee = priv->ieee;
5948         struct libipw_security sec = {
5949                 .flags = SEC_AUTH_MODE,
5950         };
5951         int ret = 0;
5952
5953         if (value & IW_AUTH_ALG_SHARED_KEY) {
5954                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5955                 ieee->open_wep = 0;
5956         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5957                 sec.auth_mode = WLAN_AUTH_OPEN;
5958                 ieee->open_wep = 1;
5959         } else if (value & IW_AUTH_ALG_LEAP) {
5960                 sec.auth_mode = WLAN_AUTH_LEAP;
5961                 ieee->open_wep = 1;
5962         } else
5963                 return -EINVAL;
5964
5965         if (ieee->set_security)
5966                 ieee->set_security(ieee->dev, &sec);
5967         else
5968                 ret = -EOPNOTSUPP;
5969
5970         return ret;
5971 }
5972
5973 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5974                                     char *wpa_ie, int wpa_ie_len)
5975 {
5976
5977         struct ipw2100_wpa_assoc_frame frame;
5978
5979         frame.fixed_ie_mask = 0;
5980
5981         /* copy WPA IE */
5982         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5983         frame.var_ie_len = wpa_ie_len;
5984
5985         /* make sure WPA is enabled */
5986         ipw2100_wpa_enable(priv, 1);
5987         ipw2100_set_wpa_ie(priv, &frame, 0);
5988 }
5989
5990 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5991                                     struct ethtool_drvinfo *info)
5992 {
5993         struct ipw2100_priv *priv = libipw_priv(dev);
5994         char fw_ver[64], ucode_ver[64];
5995
5996         strcpy(info->driver, DRV_NAME);
5997         strcpy(info->version, DRV_VERSION);
5998
5999         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
6000         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
6001
6002         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
6003                  fw_ver, priv->eeprom_version, ucode_ver);
6004
6005         strcpy(info->bus_info, pci_name(priv->pci_dev));
6006 }
6007
6008 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
6009 {
6010         struct ipw2100_priv *priv = libipw_priv(dev);
6011         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
6012 }
6013
6014 static const struct ethtool_ops ipw2100_ethtool_ops = {
6015         .get_link = ipw2100_ethtool_get_link,
6016         .get_drvinfo = ipw_ethtool_get_drvinfo,
6017 };
6018
6019 static void ipw2100_hang_check(struct work_struct *work)
6020 {
6021         struct ipw2100_priv *priv =
6022                 container_of(work, struct ipw2100_priv, hang_check.work);
6023         unsigned long flags;
6024         u32 rtc = 0xa5a5a5a5;
6025         u32 len = sizeof(rtc);
6026         int restart = 0;
6027
6028         spin_lock_irqsave(&priv->low_lock, flags);
6029
6030         if (priv->fatal_error != 0) {
6031                 /* If fatal_error is set then we need to restart */
6032                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
6033                                priv->net_dev->name);
6034
6035                 restart = 1;
6036         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
6037                    (rtc == priv->last_rtc)) {
6038                 /* Check if firmware is hung */
6039                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6040                                priv->net_dev->name);
6041
6042                 restart = 1;
6043         }
6044
6045         if (restart) {
6046                 /* Kill timer */
6047                 priv->stop_hang_check = 1;
6048                 priv->hangs++;
6049
6050                 /* Restart the NIC */
6051  &nb