carl9170: remove lost-frame workaround
[linux-3.10.git] / drivers / net / wireless / ath / carl9170 / tx.c
1 /*
2  * Atheros CARL9170 driver
3  *
4  * 802.11 xmit & status routines
5  *
6  * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
7  * Copyright 2009, 2010, Christian Lamparter <chunkeey@googlemail.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; see the file COPYING.  If not, see
21  * http://www.gnu.org/licenses/.
22  *
23  * This file incorporates work covered by the following copyright and
24  * permission notice:
25  *    Copyright (c) 2007-2008 Atheros Communications, Inc.
26  *
27  *    Permission to use, copy, modify, and/or distribute this software for any
28  *    purpose with or without fee is hereby granted, provided that the above
29  *    copyright notice and this permission notice appear in all copies.
30  *
31  *    THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
32  *    WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
33  *    MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
34  *    ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
35  *    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
36  *    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
37  *    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
38  */
39
40 #include <linux/init.h>
41 #include <linux/slab.h>
42 #include <linux/module.h>
43 #include <linux/etherdevice.h>
44 #include <net/mac80211.h>
45 #include "carl9170.h"
46 #include "hw.h"
47 #include "cmd.h"
48
49 static inline unsigned int __carl9170_get_queue(struct ar9170 *ar,
50                                                 unsigned int queue)
51 {
52         if (unlikely(modparam_noht)) {
53                 return queue;
54         } else {
55                 /*
56                  * This is just another workaround, until
57                  * someone figures out how to get QoS and
58                  * AMPDU to play nicely together.
59                  */
60
61                 return 2;               /* AC_BE */
62         }
63 }
64
65 static inline unsigned int carl9170_get_queue(struct ar9170 *ar,
66                                               struct sk_buff *skb)
67 {
68         return __carl9170_get_queue(ar, skb_get_queue_mapping(skb));
69 }
70
71 static bool is_mem_full(struct ar9170 *ar)
72 {
73         return (DIV_ROUND_UP(IEEE80211_MAX_FRAME_LEN, ar->fw.mem_block_size) >
74                 atomic_read(&ar->mem_free_blocks));
75 }
76
77 static void carl9170_tx_accounting(struct ar9170 *ar, struct sk_buff *skb)
78 {
79         int queue, i;
80         bool mem_full;
81
82         atomic_inc(&ar->tx_total_queued);
83
84         queue = skb_get_queue_mapping(skb);
85         spin_lock_bh(&ar->tx_stats_lock);
86
87         /*
88          * The driver has to accept the frame, regardless if the queue is
89          * full to the brim, or not. We have to do the queuing internally,
90          * since mac80211 assumes that a driver which can operate with
91          * aggregated frames does not reject frames for this reason.
92          */
93         ar->tx_stats[queue].len++;
94         ar->tx_stats[queue].count++;
95
96         mem_full = is_mem_full(ar);
97         for (i = 0; i < ar->hw->queues; i++) {
98                 if (mem_full || ar->tx_stats[i].len >= ar->tx_stats[i].limit) {
99                         ieee80211_stop_queue(ar->hw, i);
100                         ar->queue_stop_timeout[i] = jiffies;
101                 }
102         }
103
104         spin_unlock_bh(&ar->tx_stats_lock);
105 }
106
107 static void carl9170_tx_accounting_free(struct ar9170 *ar, struct sk_buff *skb)
108 {
109         struct ieee80211_tx_info *txinfo;
110         int queue;
111
112         txinfo = IEEE80211_SKB_CB(skb);
113         queue = skb_get_queue_mapping(skb);
114
115         spin_lock_bh(&ar->tx_stats_lock);
116
117         ar->tx_stats[queue].len--;
118
119         if (!is_mem_full(ar)) {
120                 unsigned int i;
121                 for (i = 0; i < ar->hw->queues; i++) {
122                         if (ar->tx_stats[i].len >= CARL9170_NUM_TX_LIMIT_SOFT)
123                                 continue;
124
125                         if (ieee80211_queue_stopped(ar->hw, i)) {
126                                 unsigned long tmp;
127
128                                 tmp = jiffies - ar->queue_stop_timeout[i];
129                                 if (tmp > ar->max_queue_stop_timeout[i])
130                                         ar->max_queue_stop_timeout[i] = tmp;
131                         }
132
133                         ieee80211_wake_queue(ar->hw, i);
134                 }
135         }
136
137         spin_unlock_bh(&ar->tx_stats_lock);
138         if (atomic_dec_and_test(&ar->tx_total_queued))
139                 complete(&ar->tx_flush);
140 }
141
142 static int carl9170_alloc_dev_space(struct ar9170 *ar, struct sk_buff *skb)
143 {
144         struct _carl9170_tx_superframe *super = (void *) skb->data;
145         unsigned int chunks;
146         int cookie = -1;
147
148         atomic_inc(&ar->mem_allocs);
149
150         chunks = DIV_ROUND_UP(skb->len, ar->fw.mem_block_size);
151         if (unlikely(atomic_sub_return(chunks, &ar->mem_free_blocks) < 0)) {
152                 atomic_add(chunks, &ar->mem_free_blocks);
153                 return -ENOSPC;
154         }
155
156         spin_lock_bh(&ar->mem_lock);
157         cookie = bitmap_find_free_region(ar->mem_bitmap, ar->fw.mem_blocks, 0);
158         spin_unlock_bh(&ar->mem_lock);
159
160         if (unlikely(cookie < 0)) {
161                 atomic_add(chunks, &ar->mem_free_blocks);
162                 return -ENOSPC;
163         }
164
165         super = (void *) skb->data;
166
167         /*
168          * Cookie #0 serves two special purposes:
169          *  1. The firmware might use it generate BlockACK frames
170          *     in responds of an incoming BlockAckReqs.
171          *
172          *  2. Prevent double-free bugs.
173          */
174         super->s.cookie = (u8) cookie + 1;
175         return 0;
176 }
177
178 static void carl9170_release_dev_space(struct ar9170 *ar, struct sk_buff *skb)
179 {
180         struct _carl9170_tx_superframe *super = (void *) skb->data;
181         int cookie;
182
183         /* make a local copy of the cookie */
184         cookie = super->s.cookie;
185         /* invalidate cookie */
186         super->s.cookie = 0;
187
188         /*
189          * Do a out-of-bounds check on the cookie:
190          *
191          *  * cookie "0" is reserved and won't be assigned to any
192          *    out-going frame. Internally however, it is used to
193          *    mark no longer/un-accounted frames and serves as a
194          *    cheap way of preventing frames from being freed
195          *    twice by _accident_. NB: There is a tiny race...
196          *
197          *  * obviously, cookie number is limited by the amount
198          *    of available memory blocks, so the number can
199          *    never execeed the mem_blocks count.
200          */
201         if (unlikely(WARN_ON_ONCE(cookie == 0) ||
202             WARN_ON_ONCE(cookie > ar->fw.mem_blocks)))
203                 return;
204
205         atomic_add(DIV_ROUND_UP(skb->len, ar->fw.mem_block_size),
206                    &ar->mem_free_blocks);
207
208         spin_lock_bh(&ar->mem_lock);
209         bitmap_release_region(ar->mem_bitmap, cookie - 1, 0);
210         spin_unlock_bh(&ar->mem_lock);
211 }
212
213 /* Called from any context */
214 static void carl9170_tx_release(struct kref *ref)
215 {
216         struct ar9170 *ar;
217         struct carl9170_tx_info *arinfo;
218         struct ieee80211_tx_info *txinfo;
219         struct sk_buff *skb;
220
221         arinfo = container_of(ref, struct carl9170_tx_info, ref);
222         txinfo = container_of((void *) arinfo, struct ieee80211_tx_info,
223                               rate_driver_data);
224         skb = container_of((void *) txinfo, struct sk_buff, cb);
225
226         ar = arinfo->ar;
227         if (WARN_ON_ONCE(!ar))
228                 return;
229
230         BUILD_BUG_ON(
231             offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23);
232
233         memset(&txinfo->status.ampdu_ack_len, 0,
234                sizeof(struct ieee80211_tx_info) -
235                offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
236
237         if (atomic_read(&ar->tx_total_queued))
238                 ar->tx_schedule = true;
239
240         if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) {
241                 if (!atomic_read(&ar->tx_ampdu_upload))
242                         ar->tx_ampdu_schedule = true;
243
244                 if (txinfo->flags & IEEE80211_TX_STAT_AMPDU) {
245                         txinfo->status.ampdu_len = txinfo->pad[0];
246                         txinfo->status.ampdu_ack_len = txinfo->pad[1];
247                         txinfo->pad[0] = txinfo->pad[1] = 0;
248                 } else if (txinfo->flags & IEEE80211_TX_STAT_ACK) {
249                         /*
250                          * drop redundant tx_status reports:
251                          *
252                          * 1. ampdu_ack_len of the final tx_status does
253                          *    include the feedback of this particular frame.
254                          *
255                          * 2. tx_status_irqsafe only queues up to 128
256                          *    tx feedback reports and discards the rest.
257                          *
258                          * 3. minstrel_ht is picky, it only accepts
259                          *    reports of frames with the TX_STATUS_AMPDU flag.
260                          */
261
262                         dev_kfree_skb_any(skb);
263                         return;
264                 } else {
265                         /*
266                          * Frame has failed, but we want to keep it in
267                          * case it was lost due to a power-state
268                          * transition.
269                          */
270                 }
271         }
272
273         skb_pull(skb, sizeof(struct _carl9170_tx_superframe));
274         ieee80211_tx_status_irqsafe(ar->hw, skb);
275 }
276
277 void carl9170_tx_get_skb(struct sk_buff *skb)
278 {
279         struct carl9170_tx_info *arinfo = (void *)
280                 (IEEE80211_SKB_CB(skb))->rate_driver_data;
281         kref_get(&arinfo->ref);
282 }
283
284 int carl9170_tx_put_skb(struct sk_buff *skb)
285 {
286         struct carl9170_tx_info *arinfo = (void *)
287                 (IEEE80211_SKB_CB(skb))->rate_driver_data;
288
289         return kref_put(&arinfo->ref, carl9170_tx_release);
290 }
291
292 /* Caller must hold the tid_info->lock & rcu_read_lock */
293 static void carl9170_tx_shift_bm(struct ar9170 *ar,
294         struct carl9170_sta_tid *tid_info, u16 seq)
295 {
296         u16 off;
297
298         off = SEQ_DIFF(seq, tid_info->bsn);
299
300         if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS))
301                 return;
302
303         /*
304          * Sanity check. For each MPDU we set the bit in bitmap and
305          * clear it once we received the tx_status.
306          * But if the bit is already cleared then we've been bitten
307          * by a bug.
308          */
309         WARN_ON_ONCE(!test_and_clear_bit(off, tid_info->bitmap));
310
311         off = SEQ_DIFF(tid_info->snx, tid_info->bsn);
312         if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS))
313                 return;
314
315         if (!bitmap_empty(tid_info->bitmap, off))
316                 off = find_first_bit(tid_info->bitmap, off);
317
318         tid_info->bsn += off;
319         tid_info->bsn &= 0x0fff;
320
321         bitmap_shift_right(tid_info->bitmap, tid_info->bitmap,
322                            off, CARL9170_BAW_BITS);
323 }
324
325 static void carl9170_tx_status_process_ampdu(struct ar9170 *ar,
326         struct sk_buff *skb, struct ieee80211_tx_info *txinfo)
327 {
328         struct _carl9170_tx_superframe *super = (void *) skb->data;
329         struct ieee80211_hdr *hdr = (void *) super->frame_data;
330         struct ieee80211_tx_info *tx_info;
331         struct carl9170_tx_info *ar_info;
332         struct carl9170_sta_info *sta_info;
333         struct ieee80211_sta *sta;
334         struct carl9170_sta_tid *tid_info;
335         struct ieee80211_vif *vif;
336         unsigned int vif_id;
337         u8 tid;
338
339         if (!(txinfo->flags & IEEE80211_TX_CTL_AMPDU) ||
340             txinfo->flags & IEEE80211_TX_CTL_INJECTED)
341                 return;
342
343         tx_info = IEEE80211_SKB_CB(skb);
344         ar_info = (void *) tx_info->rate_driver_data;
345
346         vif_id = (super->s.misc & CARL9170_TX_SUPER_MISC_VIF_ID) >>
347                  CARL9170_TX_SUPER_MISC_VIF_ID_S;
348
349         if (WARN_ON_ONCE(vif_id >= AR9170_MAX_VIRTUAL_MAC))
350                 return;
351
352         rcu_read_lock();
353         vif = rcu_dereference(ar->vif_priv[vif_id].vif);
354         if (unlikely(!vif))
355                 goto out_rcu;
356
357         /*
358          * Normally we should use wrappers like ieee80211_get_DA to get
359          * the correct peer ieee80211_sta.
360          *
361          * But there is a problem with indirect traffic (broadcasts, or
362          * data which is designated for other stations) in station mode.
363          * The frame will be directed to the AP for distribution and not
364          * to the actual destination.
365          */
366         sta = ieee80211_find_sta(vif, hdr->addr1);
367         if (unlikely(!sta))
368                 goto out_rcu;
369
370         tid = get_tid_h(hdr);
371
372         sta_info = (void *) sta->drv_priv;
373         tid_info = rcu_dereference(sta_info->agg[tid]);
374         if (!tid_info)
375                 goto out_rcu;
376
377         spin_lock_bh(&tid_info->lock);
378         if (likely(tid_info->state >= CARL9170_TID_STATE_IDLE))
379                 carl9170_tx_shift_bm(ar, tid_info, get_seq_h(hdr));
380
381         if (sta_info->stats[tid].clear) {
382                 sta_info->stats[tid].clear = false;
383                 sta_info->stats[tid].ampdu_len = 0;
384                 sta_info->stats[tid].ampdu_ack_len = 0;
385         }
386
387         sta_info->stats[tid].ampdu_len++;
388         if (txinfo->status.rates[0].count == 1)
389                 sta_info->stats[tid].ampdu_ack_len++;
390
391         if (super->f.mac_control & cpu_to_le16(AR9170_TX_MAC_IMM_BA)) {
392                 txinfo->pad[0] = sta_info->stats[tid].ampdu_len;
393                 txinfo->pad[1] = sta_info->stats[tid].ampdu_ack_len;
394                 txinfo->flags |= IEEE80211_TX_STAT_AMPDU;
395                 sta_info->stats[tid].clear = true;
396         }
397         spin_unlock_bh(&tid_info->lock);
398
399 out_rcu:
400         rcu_read_unlock();
401 }
402
403 void carl9170_tx_status(struct ar9170 *ar, struct sk_buff *skb,
404                         const bool success)
405 {
406         struct ieee80211_tx_info *txinfo;
407
408         carl9170_tx_accounting_free(ar, skb);
409
410         txinfo = IEEE80211_SKB_CB(skb);
411
412         if (success)
413                 txinfo->flags |= IEEE80211_TX_STAT_ACK;
414         else
415                 ar->tx_ack_failures++;
416
417         if (txinfo->flags & IEEE80211_TX_CTL_AMPDU)
418                 carl9170_tx_status_process_ampdu(ar, skb, txinfo);
419
420         carl9170_tx_put_skb(skb);
421 }
422
423 /* This function may be called form any context */
424 void carl9170_tx_callback(struct ar9170 *ar, struct sk_buff *skb)
425 {
426         struct ieee80211_tx_info *txinfo = IEEE80211_SKB_CB(skb);
427
428         atomic_dec(&ar->tx_total_pending);
429
430         if (txinfo->flags & IEEE80211_TX_CTL_AMPDU)
431                 atomic_dec(&ar->tx_ampdu_upload);
432
433         if (carl9170_tx_put_skb(skb))
434                 tasklet_hi_schedule(&ar->usb_tasklet);
435 }
436
437 static struct sk_buff *carl9170_get_queued_skb(struct ar9170 *ar, u8 cookie,
438                                                struct sk_buff_head *queue)
439 {
440         struct sk_buff *skb;
441
442         spin_lock_bh(&queue->lock);
443         skb_queue_walk(queue, skb) {
444                 struct _carl9170_tx_superframe *txc = (void *) skb->data;
445
446                 if (txc->s.cookie != cookie)
447                         continue;
448
449                 __skb_unlink(skb, queue);
450                 spin_unlock_bh(&queue->lock);
451
452                 carl9170_release_dev_space(ar, skb);
453                 return skb;
454         }
455         spin_unlock_bh(&queue->lock);
456
457         return NULL;
458 }
459
460 static void carl9170_tx_fill_rateinfo(struct ar9170 *ar, unsigned int rix,
461         unsigned int tries, struct ieee80211_tx_info *txinfo)
462 {
463         unsigned int i;
464
465         for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
466                 if (txinfo->status.rates[i].idx < 0)
467                         break;
468
469                 if (i == rix) {
470                         txinfo->status.rates[i].count = tries;
471                         i++;
472                         break;
473                 }
474         }
475
476         for (; i < IEEE80211_TX_MAX_RATES; i++) {
477                 txinfo->status.rates[i].idx = -1;
478                 txinfo->status.rates[i].count = 0;
479         }
480 }
481
482 static void carl9170_check_queue_stop_timeout(struct ar9170 *ar)
483 {
484         int i;
485         struct sk_buff *skb;
486         struct ieee80211_tx_info *txinfo;
487         struct carl9170_tx_info *arinfo;
488         bool restart = false;
489
490         for (i = 0; i < ar->hw->queues; i++) {
491                 spin_lock_bh(&ar->tx_status[i].lock);
492
493                 skb = skb_peek(&ar->tx_status[i]);
494
495                 if (!skb)
496                         goto next;
497
498                 txinfo = IEEE80211_SKB_CB(skb);
499                 arinfo = (void *) txinfo->rate_driver_data;
500
501                 if (time_is_before_jiffies(arinfo->timeout +
502                     msecs_to_jiffies(CARL9170_QUEUE_STUCK_TIMEOUT)) == true)
503                         restart = true;
504
505 next:
506                 spin_unlock_bh(&ar->tx_status[i].lock);
507         }
508
509         if (restart) {
510                 /*
511                  * At least one queue has been stuck for long enough.
512                  * Give the device a kick and hope it gets back to
513                  * work.
514                  *
515                  * possible reasons may include:
516                  *  - frames got lost/corrupted (bad connection to the device)
517                  *  - stalled rx processing/usb controller hiccups
518                  *  - firmware errors/bugs
519                  *  - every bug you can think of.
520                  *  - all bugs you can't...
521                  *  - ...
522                  */
523                 carl9170_restart(ar, CARL9170_RR_STUCK_TX);
524         }
525 }
526
527 void carl9170_tx_janitor(struct work_struct *work)
528 {
529         struct ar9170 *ar = container_of(work, struct ar9170,
530                                          tx_janitor.work);
531         if (!IS_STARTED(ar))
532                 return;
533
534         ar->tx_janitor_last_run = jiffies;
535
536         carl9170_check_queue_stop_timeout(ar);
537
538         if (!atomic_read(&ar->tx_total_queued))
539                 return;
540
541         ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor,
542                 msecs_to_jiffies(CARL9170_TX_TIMEOUT));
543 }
544
545 static void __carl9170_tx_process_status(struct ar9170 *ar,
546         const uint8_t cookie, const uint8_t info)
547 {
548         struct sk_buff *skb;
549         struct ieee80211_tx_info *txinfo;
550         struct carl9170_tx_info *arinfo;
551         unsigned int r, t, q;
552         bool success = true;
553
554         q = ar9170_qmap[info & CARL9170_TX_STATUS_QUEUE];
555
556         skb = carl9170_get_queued_skb(ar, cookie, &ar->tx_status[q]);
557         if (!skb) {
558                 /*
559                  * We have lost the race to another thread.
560                  */
561
562                 return ;
563         }
564
565         txinfo = IEEE80211_SKB_CB(skb);
566         arinfo = (void *) txinfo->rate_driver_data;
567
568         if (!(info & CARL9170_TX_STATUS_SUCCESS))
569                 success = false;
570
571         r = (info & CARL9170_TX_STATUS_RIX) >> CARL9170_TX_STATUS_RIX_S;
572         t = (info & CARL9170_TX_STATUS_TRIES) >> CARL9170_TX_STATUS_TRIES_S;
573
574         carl9170_tx_fill_rateinfo(ar, r, t, txinfo);
575         carl9170_tx_status(ar, skb, success);
576 }
577
578 void carl9170_tx_process_status(struct ar9170 *ar,
579                                 const struct carl9170_rsp *cmd)
580 {
581         unsigned int i;
582
583         for (i = 0;  i < cmd->hdr.ext; i++) {
584                 if (WARN_ON(i > ((cmd->hdr.len / 2) + 1))) {
585                         print_hex_dump_bytes("UU:", DUMP_PREFIX_NONE,
586                                              (void *) cmd, cmd->hdr.len + 4);
587                         break;
588                 }
589
590                 __carl9170_tx_process_status(ar, cmd->_tx_status[i].cookie,
591                                              cmd->_tx_status[i].info);
592         }
593 }
594
595 static __le32 carl9170_tx_physet(struct ar9170 *ar,
596         struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate)
597 {
598         struct ieee80211_rate *rate = NULL;
599         u32 power, chains;
600         __le32 tmp;
601
602         tmp = cpu_to_le32(0);
603
604         if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
605                 tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ <<
606                         AR9170_TX_PHY_BW_S);
607         /* this works because 40 MHz is 2 and dup is 3 */
608         if (txrate->flags & IEEE80211_TX_RC_DUP_DATA)
609                 tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ_DUP <<
610                         AR9170_TX_PHY_BW_S);
611
612         if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
613                 tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_GI);
614
615         if (txrate->flags & IEEE80211_TX_RC_MCS) {
616                 u32 r = txrate->idx;
617                 u8 *txpower;
618
619                 /* heavy clip control */
620                 tmp |= cpu_to_le32((r & 0x7) <<
621                         AR9170_TX_PHY_TX_HEAVY_CLIP_S);
622
623                 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
624                         if (info->band == IEEE80211_BAND_5GHZ)
625                                 txpower = ar->power_5G_ht40;
626                         else
627                                 txpower = ar->power_2G_ht40;
628                 } else {
629                         if (info->band == IEEE80211_BAND_5GHZ)
630                                 txpower = ar->power_5G_ht20;
631                         else
632                                 txpower = ar->power_2G_ht20;
633                 }
634
635                 power = txpower[r & 7];
636
637                 /* +1 dBm for HT40 */
638                 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
639                         power += 2;
640
641                 r <<= AR9170_TX_PHY_MCS_S;
642                 BUG_ON(r & ~AR9170_TX_PHY_MCS);
643
644                 tmp |= cpu_to_le32(r & AR9170_TX_PHY_MCS);
645                 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_HT);
646
647                 /*
648                  * green field preamble does not work.
649                  *
650                  * if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
651                  * tmp |= cpu_to_le32(AR9170_TX_PHY_GREENFIELD);
652                  */
653         } else {
654                 u8 *txpower;
655                 u32 mod;
656                 u32 phyrate;
657                 u8 idx = txrate->idx;
658
659                 if (info->band != IEEE80211_BAND_2GHZ) {
660                         idx += 4;
661                         txpower = ar->power_5G_leg;
662                         mod = AR9170_TX_PHY_MOD_OFDM;
663                 } else {
664                         if (idx < 4) {
665                                 txpower = ar->power_2G_cck;
666                                 mod = AR9170_TX_PHY_MOD_CCK;
667                         } else {
668                                 mod = AR9170_TX_PHY_MOD_OFDM;
669                                 txpower = ar->power_2G_ofdm;
670                         }
671                 }
672
673                 rate = &__carl9170_ratetable[idx];
674
675                 phyrate = rate->hw_value & 0xF;
676                 power = txpower[(rate->hw_value & 0x30) >> 4];
677                 phyrate <<= AR9170_TX_PHY_MCS_S;
678
679                 tmp |= cpu_to_le32(mod);
680                 tmp |= cpu_to_le32(phyrate);
681
682                 /*
683                  * short preamble seems to be broken too.
684                  *
685                  * if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
686                  *      tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_PREAMBLE);
687                  */
688         }
689         power <<= AR9170_TX_PHY_TX_PWR_S;
690         power &= AR9170_TX_PHY_TX_PWR;
691         tmp |= cpu_to_le32(power);
692
693         /* set TX chains */
694         if (ar->eeprom.tx_mask == 1) {
695                 chains = AR9170_TX_PHY_TXCHAIN_1;
696         } else {
697                 chains = AR9170_TX_PHY_TXCHAIN_2;
698
699                 /* >= 36M legacy OFDM - use only one chain */
700                 if (rate && rate->bitrate >= 360 &&
701                     !(txrate->flags & IEEE80211_TX_RC_MCS))
702                         chains = AR9170_TX_PHY_TXCHAIN_1;
703         }
704         tmp |= cpu_to_le32(chains << AR9170_TX_PHY_TXCHAIN_S);
705
706         return tmp;
707 }
708
709 static bool carl9170_tx_rts_check(struct ar9170 *ar,
710                                   struct ieee80211_tx_rate *rate,
711                                   bool ampdu, bool multi)
712 {
713         switch (ar->erp_mode) {
714         case CARL9170_ERP_AUTO:
715                 if (ampdu)
716                         break;
717
718         case CARL9170_ERP_MAC80211:
719                 if (!(rate->flags & IEEE80211_TX_RC_USE_RTS_CTS))
720                         break;
721
722         case CARL9170_ERP_RTS:
723                 if (likely(!multi))
724                         return true;
725
726         default:
727                 break;
728         }
729
730         return false;
731 }
732
733 static bool carl9170_tx_cts_check(struct ar9170 *ar,
734                                   struct ieee80211_tx_rate *rate)
735 {
736         switch (ar->erp_mode) {
737         case CARL9170_ERP_AUTO:
738         case CARL9170_ERP_MAC80211:
739                 if (!(rate->flags & IEEE80211_TX_RC_USE_CTS_PROTECT))
740                         break;
741
742         case CARL9170_ERP_CTS:
743                 return true;
744
745         default:
746                 break;
747         }
748
749         return false;
750 }
751
752 static int carl9170_tx_prepare(struct ar9170 *ar, struct sk_buff *skb)
753 {
754         struct ieee80211_hdr *hdr;
755         struct _carl9170_tx_superframe *txc;
756         struct carl9170_vif_info *cvif;
757         struct ieee80211_tx_info *info;
758         struct ieee80211_tx_rate *txrate;
759         struct ieee80211_sta *sta;
760         struct carl9170_tx_info *arinfo;
761         unsigned int hw_queue;
762         int i;
763         u16 keytype = 0;
764         u16 len, icv = 0;
765         bool ampdu, no_ack;
766
767         BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data));
768         BUILD_BUG_ON(sizeof(struct _carl9170_tx_superdesc) !=
769                      CARL9170_TX_SUPERDESC_LEN);
770
771         BUILD_BUG_ON(sizeof(struct _ar9170_tx_hwdesc) !=
772                      AR9170_TX_HWDESC_LEN);
773
774         BUILD_BUG_ON(IEEE80211_TX_MAX_RATES < CARL9170_TX_MAX_RATES);
775
776         hw_queue = ar9170_qmap[carl9170_get_queue(ar, skb)];
777
778         hdr = (void *)skb->data;
779         info = IEEE80211_SKB_CB(skb);
780         len = skb->len;
781
782         /*
783          * Note: If the frame was sent through a monitor interface,
784          * the ieee80211_vif pointer can be NULL.
785          */
786         if (likely(info->control.vif))
787                 cvif = (void *) info->control.vif->drv_priv;
788         else
789                 cvif = NULL;
790
791         sta = info->control.sta;
792
793         txc = (void *)skb_push(skb, sizeof(*txc));
794         memset(txc, 0, sizeof(*txc));
795
796         ampdu = !!(info->flags & IEEE80211_TX_CTL_AMPDU);
797         no_ack = !!(info->flags & IEEE80211_TX_CTL_NO_ACK);
798
799         if (info->control.hw_key) {
800                 icv = info->control.hw_key->icv_len;
801
802                 switch (info->control.hw_key->cipher) {
803                 case WLAN_CIPHER_SUITE_WEP40:
804                 case WLAN_CIPHER_SUITE_WEP104:
805                 case WLAN_CIPHER_SUITE_TKIP:
806                         keytype = AR9170_TX_MAC_ENCR_RC4;
807                         break;
808                 case WLAN_CIPHER_SUITE_CCMP:
809                         keytype = AR9170_TX_MAC_ENCR_AES;
810                         break;
811                 default:
812                         WARN_ON(1);
813                         goto err_out;
814                 }
815         }
816
817         BUILD_BUG_ON(AR9170_MAX_VIRTUAL_MAC >
818                 ((CARL9170_TX_SUPER_MISC_VIF_ID >>
819                  CARL9170_TX_SUPER_MISC_VIF_ID_S) + 1));
820
821         txc->s.len = cpu_to_le16(len + sizeof(*txc));
822         txc->f.length = cpu_to_le16(len + icv + 4);
823         SET_VAL(CARL9170_TX_SUPER_MISC_VIF_ID, txc->s.misc,
824                 cvif ? cvif->id : 0);
825
826         txc->f.mac_control = cpu_to_le16(AR9170_TX_MAC_HW_DURATION |
827                                          AR9170_TX_MAC_BACKOFF);
828
829         SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, txc->s.misc, hw_queue);
830
831         txc->f.mac_control |= cpu_to_le16(hw_queue << AR9170_TX_MAC_QOS_S);
832         txc->f.mac_control |= cpu_to_le16(keytype);
833         txc->f.phy_control = cpu_to_le32(0);
834
835         if (no_ack)
836                 txc->f.mac_control |= cpu_to_le16(AR9170_TX_MAC_NO_ACK);
837
838         if (info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM)
839                 txc->s.misc |= CARL9170_TX_SUPER_MISC_CAB;
840
841         txrate = &info->control.rates[0];
842         if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack))
843                 txc->f.mac_control |= cpu_to_le16(AR9170_TX_MAC_PROT_RTS);
844         else if (carl9170_tx_cts_check(ar, txrate))
845                 txc->f.mac_control |= cpu_to_le16(AR9170_TX_MAC_PROT_CTS);
846
847         SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[0], txrate->count);
848         txc->f.phy_control |= carl9170_tx_physet(ar, info, txrate);
849
850         if (info->flags & IEEE80211_TX_CTL_AMPDU) {
851                 for (i = 1; i < CARL9170_TX_MAX_RATES; i++) {
852                         txrate = &info->control.rates[i];
853                         if (txrate->idx >= 0)
854                                 continue;
855
856                         txrate->idx = 0;
857                         txrate->count = ar->hw->max_rate_tries;
858                 }
859         }
860
861         /*
862          * NOTE: For the first rate, the ERP & AMPDU flags are directly
863          * taken from mac_control. For all fallback rate, the firmware
864          * updates the mac_control flags from the rate info field.
865          */
866         for (i = 1; i < CARL9170_TX_MAX_RATES; i++) {
867                 txrate = &info->control.rates[i];
868                 if (txrate->idx < 0)
869                         break;
870
871                 SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[i],
872                         txrate->count);
873
874                 if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack))
875                         txc->s.ri[i] |= (AR9170_TX_MAC_PROT_RTS <<
876                                 CARL9170_TX_SUPER_RI_ERP_PROT_S);
877                 else if (carl9170_tx_cts_check(ar, txrate))
878                         txc->s.ri[i] |= (AR9170_TX_MAC_PROT_CTS <<
879                                 CARL9170_TX_SUPER_RI_ERP_PROT_S);
880
881                 /*
882                  * unaggregated fallback, in case aggregation
883                  * proves to be unsuccessful and unreliable.
884                  */
885                 if (ampdu && i < 3)
886                         txc->s.ri[i] |= CARL9170_TX_SUPER_RI_AMPDU;
887
888                 txc->s.rr[i - 1] = carl9170_tx_physet(ar, info, txrate);
889         }
890
891         if (ieee80211_is_probe_resp(hdr->frame_control))
892                 txc->s.misc |= CARL9170_TX_SUPER_MISC_FILL_IN_TSF;
893
894         if (ampdu) {
895                 unsigned int density, factor;
896
897                 if (unlikely(!sta || !cvif))
898                         goto err_out;
899
900                 density = info->control.sta->ht_cap.ampdu_density;
901                 factor = info->control.sta->ht_cap.ampdu_factor;
902
903                 if (density) {
904                         /*
905                          * Watch out!
906                          *
907                          * Otus uses slightly different density values than
908                          * those from the 802.11n spec.
909                          */
910
911                         density = max_t(unsigned int, density + 1, 7u);
912                 }
913
914                 factor = min_t(unsigned int, 1u, factor);
915
916                 SET_VAL(CARL9170_TX_SUPER_AMPDU_DENSITY,
917                         txc->s.ampdu_settings, density);
918
919                 SET_VAL(CARL9170_TX_SUPER_AMPDU_FACTOR,
920                         txc->s.ampdu_settings, factor);
921
922                 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS) {
923                         txc->f.mac_control |= cpu_to_le16(AR9170_TX_MAC_AGGR);
924                 } else {
925                         /*
926                          * Not sure if it's even possible to aggregate
927                          * non-ht rates with this HW.
928                          */
929                         WARN_ON_ONCE(1);
930                 }
931         }
932
933         arinfo = (void *)info->rate_driver_data;
934         arinfo->timeout = jiffies;
935         arinfo->ar = ar;
936         kref_init(&arinfo->ref);
937         return 0;
938
939 err_out:
940         skb_pull(skb, sizeof(*txc));
941         return -EINVAL;
942 }
943
944 static void carl9170_set_immba(struct ar9170 *ar, struct sk_buff *skb)
945 {
946         struct _carl9170_tx_superframe *super;
947
948         super = (void *) skb->data;
949         super->f.mac_control |= cpu_to_le16(AR9170_TX_MAC_IMM_BA);
950 }
951
952 static void carl9170_set_ampdu_params(struct ar9170 *ar, struct sk_buff *skb)
953 {
954         struct _carl9170_tx_superframe *super;
955         int tmp;
956
957         super = (void *) skb->data;
958
959         tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_DENSITY) <<
960                 CARL9170_TX_SUPER_AMPDU_DENSITY_S;
961
962         /*
963          * If you haven't noticed carl9170_tx_prepare has already filled
964          * in all ampdu spacing & factor parameters.
965          * Now it's the time to check whenever the settings have to be
966          * updated by the firmware, or if everything is still the same.
967          *
968          * There's no sane way to handle different density values with
969          * this hardware, so we may as well just do the compare in the
970          * driver.
971          */
972
973         if (tmp != ar->current_density) {
974                 ar->current_density = tmp;
975                 super->s.ampdu_settings |=
976                         CARL9170_TX_SUPER_AMPDU_COMMIT_DENSITY;
977         }
978
979         tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_FACTOR) <<
980                 CARL9170_TX_SUPER_AMPDU_FACTOR_S;
981
982         if (tmp != ar->current_factor) {
983                 ar->current_factor = tmp;
984                 super->s.ampdu_settings |=
985                         CARL9170_TX_SUPER_AMPDU_COMMIT_FACTOR;
986         }
987 }
988
989 static bool carl9170_tx_rate_check(struct ar9170 *ar, struct sk_buff *_dest,
990                                    struct sk_buff *_src)
991 {
992         struct _carl9170_tx_superframe *dest, *src;
993
994         dest = (void *) _dest->data;
995         src = (void *) _src->data;
996
997         /*
998          * The mac80211 rate control algorithm expects that all MPDUs in
999          * an AMPDU share the same tx vectors.
1000          * This is not really obvious right now, because the hardware
1001          * does the AMPDU setup according to its own rulebook.
1002          * Our nicely assembled, strictly monotonic increasing mpdu
1003          * chains will be broken up, mashed back together...
1004          */
1005
1006         return (dest->f.phy_control == src->f.phy_control);
1007 }
1008
1009 static void carl9170_tx_ampdu(struct ar9170 *ar)
1010 {
1011         struct sk_buff_head agg;
1012         struct carl9170_sta_tid *tid_info;
1013         struct sk_buff *skb, *first;
1014         unsigned int i = 0, done_ampdus = 0;
1015         u16 seq, queue, tmpssn;
1016
1017         atomic_inc(&ar->tx_ampdu_scheduler);
1018         ar->tx_ampdu_schedule = false;
1019
1020         if (atomic_read(&ar->tx_ampdu_upload))
1021                 return;
1022
1023         if (!ar->tx_ampdu_list_len)
1024                 return;
1025
1026         __skb_queue_head_init(&agg);
1027
1028         rcu_read_lock();
1029         tid_info = rcu_dereference(ar->tx_ampdu_iter);
1030         if (WARN_ON_ONCE(!tid_info)) {
1031                 rcu_read_unlock();
1032                 return;
1033         }
1034
1035 retry:
1036         list_for_each_entry_continue_rcu(tid_info, &ar->tx_ampdu_list, list) {
1037                 i++;
1038
1039                 if (tid_info->state < CARL9170_TID_STATE_PROGRESS)
1040                         continue;
1041
1042                 queue = TID_TO_WME_AC(tid_info->tid);
1043
1044                 spin_lock_bh(&tid_info->lock);
1045                 if (tid_info->state != CARL9170_TID_STATE_XMIT)
1046                         goto processed;
1047
1048                 tid_info->counter++;
1049                 first = skb_peek(&tid_info->queue);
1050                 tmpssn = carl9170_get_seq(first);
1051                 seq = tid_info->snx;
1052
1053                 if (unlikely(tmpssn != seq)) {
1054                         tid_info->state = CARL9170_TID_STATE_IDLE;
1055
1056                         goto processed;
1057                 }
1058
1059                 while ((skb = skb_peek(&tid_info->queue))) {
1060                         /* strict 0, 1, ..., n - 1, n frame sequence order */
1061                         if (unlikely(carl9170_get_seq(skb) != seq))
1062                                 break;
1063
1064                         /* don't upload more than AMPDU FACTOR allows. */
1065                         if (unlikely(SEQ_DIFF(tid_info->snx, tid_info->bsn) >=
1066                             (tid_info->max - 1)))
1067                                 break;
1068
1069                         if (!carl9170_tx_rate_check(ar, skb, first))
1070                                 break;
1071
1072                         atomic_inc(&ar->tx_ampdu_upload);
1073                         tid_info->snx = seq = SEQ_NEXT(seq);
1074                         __skb_unlink(skb, &tid_info->queue);
1075
1076                         __skb_queue_tail(&agg, skb);
1077
1078                         if (skb_queue_len(&agg) >= CARL9170_NUM_TX_AGG_MAX)
1079                                 break;
1080                 }
1081
1082                 if (skb_queue_empty(&tid_info->queue) ||
1083                     carl9170_get_seq(skb_peek(&tid_info->queue)) !=
1084                     tid_info->snx) {
1085                         /*
1086                          * stop TID, if A-MPDU frames are still missing,
1087                          * or whenever the queue is empty.
1088                          */
1089
1090                         tid_info->state = CARL9170_TID_STATE_IDLE;
1091                 }
1092                 done_ampdus++;
1093
1094 processed:
1095                 spin_unlock_bh(&tid_info->lock);
1096
1097                 if (skb_queue_empty(&agg))
1098                         continue;
1099
1100                 /* apply ampdu spacing & factor settings */
1101                 carl9170_set_ampdu_params(ar, skb_peek(&agg));
1102
1103                 /* set aggregation push bit */
1104                 carl9170_set_immba(ar, skb_peek_tail(&agg));
1105
1106                 spin_lock_bh(&ar->tx_pending[queue].lock);
1107                 skb_queue_splice_tail_init(&agg, &ar->tx_pending[queue]);
1108                 spin_unlock_bh(&ar->tx_pending[queue].lock);
1109                 ar->tx_schedule = true;
1110         }
1111         if ((done_ampdus++ == 0) && (i++ == 0))
1112                 goto retry;
1113
1114         rcu_assign_pointer(ar->tx_ampdu_iter, tid_info);
1115         rcu_read_unlock();
1116 }
1117
1118 static struct sk_buff *carl9170_tx_pick_skb(struct ar9170 *ar,
1119                                             struct sk_buff_head *queue)
1120 {
1121         struct sk_buff *skb;
1122         struct ieee80211_tx_info *info;
1123         struct carl9170_tx_info *arinfo;
1124
1125         BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data));
1126
1127         spin_lock_bh(&queue->lock);
1128         skb = skb_peek(queue);
1129         if (unlikely(!skb))
1130                 goto err_unlock;
1131
1132         if (carl9170_alloc_dev_space(ar, skb))
1133                 goto err_unlock;
1134
1135         __skb_unlink(skb, queue);
1136         spin_unlock_bh(&queue->lock);
1137
1138         info = IEEE80211_SKB_CB(skb);
1139         arinfo = (void *) info->rate_driver_data;
1140
1141         arinfo->timeout = jiffies;
1142
1143         /*
1144          * increase ref count to "2".
1145          * Ref counting is the easiest way to solve the race between
1146          * the the urb's completion routine: carl9170_tx_callback and
1147          * wlan tx status functions: carl9170_tx_status/janitor.
1148          */
1149         carl9170_tx_get_skb(skb);
1150
1151         return skb;
1152
1153 err_unlock:
1154         spin_unlock_bh(&queue->lock);
1155         return NULL;
1156 }
1157
1158 void carl9170_tx_drop(struct ar9170 *ar, struct sk_buff *skb)
1159 {
1160         struct _carl9170_tx_superframe *super;
1161         uint8_t q = 0;
1162
1163         ar->tx_dropped++;
1164
1165         super = (void *)skb->data;
1166         SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, q,
1167                 ar9170_qmap[carl9170_get_queue(ar, skb)]);
1168         __carl9170_tx_process_status(ar, super->s.cookie, q);
1169 }
1170
1171 static void carl9170_tx(struct ar9170 *ar)
1172 {
1173         struct sk_buff *skb;
1174         unsigned int i, q;
1175         bool schedule_garbagecollector = false;
1176
1177         ar->tx_schedule = false;
1178
1179         if (unlikely(!IS_STARTED(ar)))
1180                 return;
1181
1182         carl9170_usb_handle_tx_err(ar);
1183
1184         for (i = 0; i < ar->hw->queues; i++) {
1185                 while (!skb_queue_empty(&ar->tx_pending[i])) {
1186                         skb = carl9170_tx_pick_skb(ar, &ar->tx_pending[i]);
1187                         if (unlikely(!skb))
1188                                 break;
1189
1190                         atomic_inc(&ar->tx_total_pending);
1191
1192                         q = __carl9170_get_queue(ar, i);
1193                         /*
1194                          * NB: tx_status[i] vs. tx_status[q],
1195                          * TODO: Move into pick_skb or alloc_dev_space.
1196                          */
1197                         skb_queue_tail(&ar->tx_status[q], skb);
1198
1199                         carl9170_usb_tx(ar, skb);
1200                         schedule_garbagecollector = true;
1201                 }
1202         }
1203
1204         if (!schedule_garbagecollector)
1205                 return;
1206
1207         ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor,
1208                 msecs_to_jiffies(CARL9170_TX_TIMEOUT));
1209 }
1210
1211 static bool carl9170_tx_ampdu_queue(struct ar9170 *ar,
1212         struct ieee80211_sta *sta, struct sk_buff *skb)
1213 {
1214         struct carl9170_sta_info *sta_info;
1215         struct carl9170_sta_tid *agg;
1216         struct sk_buff *iter;
1217         unsigned int max;
1218         u16 tid, seq, qseq, off;
1219         bool run = false;
1220
1221         tid = carl9170_get_tid(skb);
1222         seq = carl9170_get_seq(skb);
1223         sta_info = (void *) sta->drv_priv;
1224
1225         rcu_read_lock();
1226         agg = rcu_dereference(sta_info->agg[tid]);
1227         max = sta_info->ampdu_max_len;
1228
1229         if (!agg)
1230                 goto err_unlock_rcu;
1231
1232         spin_lock_bh(&agg->lock);
1233         if (unlikely(agg->state < CARL9170_TID_STATE_IDLE))
1234                 goto err_unlock;
1235
1236         /* check if sequence is within the BA window */
1237         if (unlikely(!BAW_WITHIN(agg->bsn, CARL9170_BAW_BITS, seq)))
1238                 goto err_unlock;
1239
1240         if (WARN_ON_ONCE(!BAW_WITHIN(agg->snx, CARL9170_BAW_BITS, seq)))
1241                 goto err_unlock;
1242
1243         off = SEQ_DIFF(seq, agg->bsn);
1244         if (WARN_ON_ONCE(test_and_set_bit(off, agg->bitmap)))
1245                 goto err_unlock;
1246
1247         if (likely(BAW_WITHIN(agg->hsn, CARL9170_BAW_BITS, seq))) {
1248                 __skb_queue_tail(&agg->queue, skb);
1249                 agg->hsn = seq;
1250                 goto queued;
1251         }
1252
1253         skb_queue_reverse_walk(&agg->queue, iter) {
1254                 qseq = carl9170_get_seq(iter);
1255
1256                 if (BAW_WITHIN(qseq, CARL9170_BAW_BITS, seq)) {
1257                         __skb_queue_after(&agg->queue, iter, skb);
1258                         goto queued;
1259                 }
1260         }
1261
1262         __skb_queue_head(&agg->queue, skb);
1263 queued:
1264
1265         if (unlikely(agg->state != CARL9170_TID_STATE_XMIT)) {
1266                 if (agg->snx == carl9170_get_seq(skb_peek(&agg->queue))) {
1267                         agg->state = CARL9170_TID_STATE_XMIT;
1268                         run = true;
1269                 }
1270         }
1271
1272         spin_unlock_bh(&agg->lock);
1273         rcu_read_unlock();
1274
1275         return run;
1276
1277 err_unlock:
1278         spin_unlock_bh(&agg->lock);
1279
1280 err_unlock_rcu:
1281         rcu_read_unlock();
1282         carl9170_tx_status(ar, skb, false);
1283         ar->tx_dropped++;
1284         return false;
1285 }
1286
1287 int carl9170_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
1288 {
1289         struct ar9170 *ar = hw->priv;
1290         struct ieee80211_tx_info *info;
1291         struct ieee80211_sta *sta;
1292         bool run;
1293
1294         if (unlikely(!IS_STARTED(ar)))
1295                 goto err_free;
1296
1297         info = IEEE80211_SKB_CB(skb);
1298         sta = info->control.sta;
1299
1300         if (unlikely(carl9170_tx_prepare(ar, skb)))
1301                 goto err_free;
1302
1303         carl9170_tx_accounting(ar, skb);
1304         /*
1305          * from now on, one has to use carl9170_tx_status to free
1306          * all ressouces which are associated with the frame.
1307          */
1308
1309         if (info->flags & IEEE80211_TX_CTL_AMPDU) {
1310                 if (WARN_ON_ONCE(!sta))
1311                         goto err_free;
1312
1313                 run = carl9170_tx_ampdu_queue(ar, sta, skb);
1314                 if (run)
1315                         carl9170_tx_ampdu(ar);
1316
1317         } else {
1318                 unsigned int queue = skb_get_queue_mapping(skb);
1319
1320                 skb_queue_tail(&ar->tx_pending[queue], skb);
1321         }
1322
1323         carl9170_tx(ar);
1324         return NETDEV_TX_OK;
1325
1326 err_free:
1327         ar->tx_dropped++;
1328         dev_kfree_skb_any(skb);
1329         return NETDEV_TX_OK;
1330 }
1331
1332 void carl9170_tx_scheduler(struct ar9170 *ar)
1333 {
1334
1335         if (ar->tx_ampdu_schedule)
1336                 carl9170_tx_ampdu(ar);
1337
1338         if (ar->tx_schedule)
1339                 carl9170_tx(ar);
1340 }