]> nv-tegra.nvidia Code Review - linux-3.10.git/blob - drivers/net/ethernet/intel/igb/igb_main.c
igb: reset PHY after recovering from PHY power down
[linux-3.10.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2011 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/bitops.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/netdevice.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/pci.h>
47 #include <linux/pci-aspm.h>
48 #include <linux/delay.h>
49 #include <linux/interrupt.h>
50 #include <linux/ip.h>
51 #include <linux/tcp.h>
52 #include <linux/sctp.h>
53 #include <linux/if_ether.h>
54 #include <linux/aer.h>
55 #include <linux/prefetch.h>
56 #include <linux/pm_runtime.h>
57 #ifdef CONFIG_IGB_DCA
58 #include <linux/dca.h>
59 #endif
60 #include "igb.h"
61
62 #define MAJ 3
63 #define MIN 2
64 #define BUILD 10
65 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
66 __stringify(BUILD) "-k"
67 char igb_driver_name[] = "igb";
68 char igb_driver_version[] = DRV_VERSION;
69 static const char igb_driver_string[] =
70                                 "Intel(R) Gigabit Ethernet Network Driver";
71 static const char igb_copyright[] = "Copyright (c) 2007-2011 Intel Corporation.";
72
73 static const struct e1000_info *igb_info_tbl[] = {
74         [board_82575] = &e1000_82575_info,
75 };
76
77 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
78         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
79         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
99         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
103         /* required last entry */
104         {0, }
105 };
106
107 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
108
109 void igb_reset(struct igb_adapter *);
110 static int igb_setup_all_tx_resources(struct igb_adapter *);
111 static int igb_setup_all_rx_resources(struct igb_adapter *);
112 static void igb_free_all_tx_resources(struct igb_adapter *);
113 static void igb_free_all_rx_resources(struct igb_adapter *);
114 static void igb_setup_mrqc(struct igb_adapter *);
115 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
116 static void __devexit igb_remove(struct pci_dev *pdev);
117 static void igb_init_hw_timer(struct igb_adapter *adapter);
118 static int igb_sw_init(struct igb_adapter *);
119 static int igb_open(struct net_device *);
120 static int igb_close(struct net_device *);
121 static void igb_configure_tx(struct igb_adapter *);
122 static void igb_configure_rx(struct igb_adapter *);
123 static void igb_clean_all_tx_rings(struct igb_adapter *);
124 static void igb_clean_all_rx_rings(struct igb_adapter *);
125 static void igb_clean_tx_ring(struct igb_ring *);
126 static void igb_clean_rx_ring(struct igb_ring *);
127 static void igb_set_rx_mode(struct net_device *);
128 static void igb_update_phy_info(unsigned long);
129 static void igb_watchdog(unsigned long);
130 static void igb_watchdog_task(struct work_struct *);
131 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
132 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
133                                                  struct rtnl_link_stats64 *stats);
134 static int igb_change_mtu(struct net_device *, int);
135 static int igb_set_mac(struct net_device *, void *);
136 static void igb_set_uta(struct igb_adapter *adapter);
137 static irqreturn_t igb_intr(int irq, void *);
138 static irqreturn_t igb_intr_msi(int irq, void *);
139 static irqreturn_t igb_msix_other(int irq, void *);
140 static irqreturn_t igb_msix_ring(int irq, void *);
141 #ifdef CONFIG_IGB_DCA
142 static void igb_update_dca(struct igb_q_vector *);
143 static void igb_setup_dca(struct igb_adapter *);
144 #endif /* CONFIG_IGB_DCA */
145 static int igb_poll(struct napi_struct *, int);
146 static bool igb_clean_tx_irq(struct igb_q_vector *);
147 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
148 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
149 static void igb_tx_timeout(struct net_device *);
150 static void igb_reset_task(struct work_struct *);
151 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
152 static int igb_vlan_rx_add_vid(struct net_device *, u16);
153 static int igb_vlan_rx_kill_vid(struct net_device *, u16);
154 static void igb_restore_vlan(struct igb_adapter *);
155 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
156 static void igb_ping_all_vfs(struct igb_adapter *);
157 static void igb_msg_task(struct igb_adapter *);
158 static void igb_vmm_control(struct igb_adapter *);
159 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
160 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
161 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
162 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
163                                int vf, u16 vlan, u8 qos);
164 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
165 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
166                                  struct ifla_vf_info *ivi);
167 static void igb_check_vf_rate_limit(struct igb_adapter *);
168
169 #ifdef CONFIG_PCI_IOV
170 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
171 static int igb_find_enabled_vfs(struct igb_adapter *adapter);
172 static int igb_check_vf_assignment(struct igb_adapter *adapter);
173 #endif
174
175 #ifdef CONFIG_PM
176 static int igb_suspend(struct device *);
177 static int igb_resume(struct device *);
178 #ifdef CONFIG_PM_RUNTIME
179 static int igb_runtime_suspend(struct device *dev);
180 static int igb_runtime_resume(struct device *dev);
181 static int igb_runtime_idle(struct device *dev);
182 #endif
183 static const struct dev_pm_ops igb_pm_ops = {
184         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
185         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
186                         igb_runtime_idle)
187 };
188 #endif
189 static void igb_shutdown(struct pci_dev *);
190 #ifdef CONFIG_IGB_DCA
191 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
192 static struct notifier_block dca_notifier = {
193         .notifier_call  = igb_notify_dca,
194         .next           = NULL,
195         .priority       = 0
196 };
197 #endif
198 #ifdef CONFIG_NET_POLL_CONTROLLER
199 /* for netdump / net console */
200 static void igb_netpoll(struct net_device *);
201 #endif
202 #ifdef CONFIG_PCI_IOV
203 static unsigned int max_vfs = 0;
204 module_param(max_vfs, uint, 0);
205 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
206                  "per physical function");
207 #endif /* CONFIG_PCI_IOV */
208
209 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
210                      pci_channel_state_t);
211 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
212 static void igb_io_resume(struct pci_dev *);
213
214 static struct pci_error_handlers igb_err_handler = {
215         .error_detected = igb_io_error_detected,
216         .slot_reset = igb_io_slot_reset,
217         .resume = igb_io_resume,
218 };
219
220 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
221
222 static struct pci_driver igb_driver = {
223         .name     = igb_driver_name,
224         .id_table = igb_pci_tbl,
225         .probe    = igb_probe,
226         .remove   = __devexit_p(igb_remove),
227 #ifdef CONFIG_PM
228         .driver.pm = &igb_pm_ops,
229 #endif
230         .shutdown = igb_shutdown,
231         .err_handler = &igb_err_handler
232 };
233
234 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
235 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
236 MODULE_LICENSE("GPL");
237 MODULE_VERSION(DRV_VERSION);
238
239 struct igb_reg_info {
240         u32 ofs;
241         char *name;
242 };
243
244 static const struct igb_reg_info igb_reg_info_tbl[] = {
245
246         /* General Registers */
247         {E1000_CTRL, "CTRL"},
248         {E1000_STATUS, "STATUS"},
249         {E1000_CTRL_EXT, "CTRL_EXT"},
250
251         /* Interrupt Registers */
252         {E1000_ICR, "ICR"},
253
254         /* RX Registers */
255         {E1000_RCTL, "RCTL"},
256         {E1000_RDLEN(0), "RDLEN"},
257         {E1000_RDH(0), "RDH"},
258         {E1000_RDT(0), "RDT"},
259         {E1000_RXDCTL(0), "RXDCTL"},
260         {E1000_RDBAL(0), "RDBAL"},
261         {E1000_RDBAH(0), "RDBAH"},
262
263         /* TX Registers */
264         {E1000_TCTL, "TCTL"},
265         {E1000_TDBAL(0), "TDBAL"},
266         {E1000_TDBAH(0), "TDBAH"},
267         {E1000_TDLEN(0), "TDLEN"},
268         {E1000_TDH(0), "TDH"},
269         {E1000_TDT(0), "TDT"},
270         {E1000_TXDCTL(0), "TXDCTL"},
271         {E1000_TDFH, "TDFH"},
272         {E1000_TDFT, "TDFT"},
273         {E1000_TDFHS, "TDFHS"},
274         {E1000_TDFPC, "TDFPC"},
275
276         /* List Terminator */
277         {}
278 };
279
280 /*
281  * igb_regdump - register printout routine
282  */
283 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
284 {
285         int n = 0;
286         char rname[16];
287         u32 regs[8];
288
289         switch (reginfo->ofs) {
290         case E1000_RDLEN(0):
291                 for (n = 0; n < 4; n++)
292                         regs[n] = rd32(E1000_RDLEN(n));
293                 break;
294         case E1000_RDH(0):
295                 for (n = 0; n < 4; n++)
296                         regs[n] = rd32(E1000_RDH(n));
297                 break;
298         case E1000_RDT(0):
299                 for (n = 0; n < 4; n++)
300                         regs[n] = rd32(E1000_RDT(n));
301                 break;
302         case E1000_RXDCTL(0):
303                 for (n = 0; n < 4; n++)
304                         regs[n] = rd32(E1000_RXDCTL(n));
305                 break;
306         case E1000_RDBAL(0):
307                 for (n = 0; n < 4; n++)
308                         regs[n] = rd32(E1000_RDBAL(n));
309                 break;
310         case E1000_RDBAH(0):
311                 for (n = 0; n < 4; n++)
312                         regs[n] = rd32(E1000_RDBAH(n));
313                 break;
314         case E1000_TDBAL(0):
315                 for (n = 0; n < 4; n++)
316                         regs[n] = rd32(E1000_RDBAL(n));
317                 break;
318         case E1000_TDBAH(0):
319                 for (n = 0; n < 4; n++)
320                         regs[n] = rd32(E1000_TDBAH(n));
321                 break;
322         case E1000_TDLEN(0):
323                 for (n = 0; n < 4; n++)
324                         regs[n] = rd32(E1000_TDLEN(n));
325                 break;
326         case E1000_TDH(0):
327                 for (n = 0; n < 4; n++)
328                         regs[n] = rd32(E1000_TDH(n));
329                 break;
330         case E1000_TDT(0):
331                 for (n = 0; n < 4; n++)
332                         regs[n] = rd32(E1000_TDT(n));
333                 break;
334         case E1000_TXDCTL(0):
335                 for (n = 0; n < 4; n++)
336                         regs[n] = rd32(E1000_TXDCTL(n));
337                 break;
338         default:
339                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
340                 return;
341         }
342
343         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
344         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
345                 regs[2], regs[3]);
346 }
347
348 /*
349  * igb_dump - Print registers, tx-rings and rx-rings
350  */
351 static void igb_dump(struct igb_adapter *adapter)
352 {
353         struct net_device *netdev = adapter->netdev;
354         struct e1000_hw *hw = &adapter->hw;
355         struct igb_reg_info *reginfo;
356         struct igb_ring *tx_ring;
357         union e1000_adv_tx_desc *tx_desc;
358         struct my_u0 { u64 a; u64 b; } *u0;
359         struct igb_ring *rx_ring;
360         union e1000_adv_rx_desc *rx_desc;
361         u32 staterr;
362         u16 i, n;
363
364         if (!netif_msg_hw(adapter))
365                 return;
366
367         /* Print netdevice Info */
368         if (netdev) {
369                 dev_info(&adapter->pdev->dev, "Net device Info\n");
370                 pr_info("Device Name     state            trans_start      "
371                         "last_rx\n");
372                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
373                         netdev->state, netdev->trans_start, netdev->last_rx);
374         }
375
376         /* Print Registers */
377         dev_info(&adapter->pdev->dev, "Register Dump\n");
378         pr_info(" Register Name   Value\n");
379         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
380              reginfo->name; reginfo++) {
381                 igb_regdump(hw, reginfo);
382         }
383
384         /* Print TX Ring Summary */
385         if (!netdev || !netif_running(netdev))
386                 goto exit;
387
388         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
389         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
390         for (n = 0; n < adapter->num_tx_queues; n++) {
391                 struct igb_tx_buffer *buffer_info;
392                 tx_ring = adapter->tx_ring[n];
393                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
394                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
395                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
396                         (u64)buffer_info->dma,
397                         buffer_info->length,
398                         buffer_info->next_to_watch,
399                         (u64)buffer_info->time_stamp);
400         }
401
402         /* Print TX Rings */
403         if (!netif_msg_tx_done(adapter))
404                 goto rx_ring_summary;
405
406         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
407
408         /* Transmit Descriptor Formats
409          *
410          * Advanced Transmit Descriptor
411          *   +--------------------------------------------------------------+
412          * 0 |         Buffer Address [63:0]                                |
413          *   +--------------------------------------------------------------+
414          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
415          *   +--------------------------------------------------------------+
416          *   63      46 45    40 39 38 36 35 32 31   24             15       0
417          */
418
419         for (n = 0; n < adapter->num_tx_queues; n++) {
420                 tx_ring = adapter->tx_ring[n];
421                 pr_info("------------------------------------\n");
422                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
423                 pr_info("------------------------------------\n");
424                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
425                         "[bi->dma       ] leng  ntw timestamp        "
426                         "bi->skb\n");
427
428                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
429                         const char *next_desc;
430                         struct igb_tx_buffer *buffer_info;
431                         tx_desc = IGB_TX_DESC(tx_ring, i);
432                         buffer_info = &tx_ring->tx_buffer_info[i];
433                         u0 = (struct my_u0 *)tx_desc;
434                         if (i == tx_ring->next_to_use &&
435                             i == tx_ring->next_to_clean)
436                                 next_desc = " NTC/U";
437                         else if (i == tx_ring->next_to_use)
438                                 next_desc = " NTU";
439                         else if (i == tx_ring->next_to_clean)
440                                 next_desc = " NTC";
441                         else
442                                 next_desc = "";
443
444                         pr_info("T [0x%03X]    %016llX %016llX %016llX"
445                                 " %04X  %p %016llX %p%s\n", i,
446                                 le64_to_cpu(u0->a),
447                                 le64_to_cpu(u0->b),
448                                 (u64)buffer_info->dma,
449                                 buffer_info->length,
450                                 buffer_info->next_to_watch,
451                                 (u64)buffer_info->time_stamp,
452                                 buffer_info->skb, next_desc);
453
454                         if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
455                                 print_hex_dump(KERN_INFO, "",
456                                         DUMP_PREFIX_ADDRESS,
457                                         16, 1, phys_to_virt(buffer_info->dma),
458                                         buffer_info->length, true);
459                 }
460         }
461
462         /* Print RX Rings Summary */
463 rx_ring_summary:
464         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
465         pr_info("Queue [NTU] [NTC]\n");
466         for (n = 0; n < adapter->num_rx_queues; n++) {
467                 rx_ring = adapter->rx_ring[n];
468                 pr_info(" %5d %5X %5X\n",
469                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
470         }
471
472         /* Print RX Rings */
473         if (!netif_msg_rx_status(adapter))
474                 goto exit;
475
476         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
477
478         /* Advanced Receive Descriptor (Read) Format
479          *    63                                           1        0
480          *    +-----------------------------------------------------+
481          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
482          *    +----------------------------------------------+------+
483          *  8 |       Header Buffer Address [63:1]           |  DD  |
484          *    +-----------------------------------------------------+
485          *
486          *
487          * Advanced Receive Descriptor (Write-Back) Format
488          *
489          *   63       48 47    32 31  30      21 20 17 16   4 3     0
490          *   +------------------------------------------------------+
491          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
492          *   | Checksum   Ident  |   |           |    | Type | Type |
493          *   +------------------------------------------------------+
494          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
495          *   +------------------------------------------------------+
496          *   63       48 47    32 31            20 19               0
497          */
498
499         for (n = 0; n < adapter->num_rx_queues; n++) {
500                 rx_ring = adapter->rx_ring[n];
501                 pr_info("------------------------------------\n");
502                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
503                 pr_info("------------------------------------\n");
504                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
505                         "[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
506                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
507                         "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
508
509                 for (i = 0; i < rx_ring->count; i++) {
510                         const char *next_desc;
511                         struct igb_rx_buffer *buffer_info;
512                         buffer_info = &rx_ring->rx_buffer_info[i];
513                         rx_desc = IGB_RX_DESC(rx_ring, i);
514                         u0 = (struct my_u0 *)rx_desc;
515                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
516
517                         if (i == rx_ring->next_to_use)
518                                 next_desc = " NTU";
519                         else if (i == rx_ring->next_to_clean)
520                                 next_desc = " NTC";
521                         else
522                                 next_desc = "";
523
524                         if (staterr & E1000_RXD_STAT_DD) {
525                                 /* Descriptor Done */
526                                 pr_info("%s[0x%03X]     %016llX %016llX -------"
527                                         "--------- %p%s\n", "RWB", i,
528                                         le64_to_cpu(u0->a),
529                                         le64_to_cpu(u0->b),
530                                         buffer_info->skb, next_desc);
531                         } else {
532                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX"
533                                         " %p%s\n", "R  ", i,
534                                         le64_to_cpu(u0->a),
535                                         le64_to_cpu(u0->b),
536                                         (u64)buffer_info->dma,
537                                         buffer_info->skb, next_desc);
538
539                                 if (netif_msg_pktdata(adapter)) {
540                                         print_hex_dump(KERN_INFO, "",
541                                                 DUMP_PREFIX_ADDRESS,
542                                                 16, 1,
543                                                 phys_to_virt(buffer_info->dma),
544                                                 IGB_RX_HDR_LEN, true);
545                                         print_hex_dump(KERN_INFO, "",
546                                           DUMP_PREFIX_ADDRESS,
547                                           16, 1,
548                                           phys_to_virt(
549                                             buffer_info->page_dma +
550                                             buffer_info->page_offset),
551                                           PAGE_SIZE/2, true);
552                                 }
553                         }
554                 }
555         }
556
557 exit:
558         return;
559 }
560
561
562 /**
563  * igb_read_clock - read raw cycle counter (to be used by time counter)
564  */
565 static cycle_t igb_read_clock(const struct cyclecounter *tc)
566 {
567         struct igb_adapter *adapter =
568                 container_of(tc, struct igb_adapter, cycles);
569         struct e1000_hw *hw = &adapter->hw;
570         u64 stamp = 0;
571         int shift = 0;
572
573         /*
574          * The timestamp latches on lowest register read. For the 82580
575          * the lowest register is SYSTIMR instead of SYSTIML.  However we never
576          * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
577          */
578         if (hw->mac.type >= e1000_82580) {
579                 stamp = rd32(E1000_SYSTIMR) >> 8;
580                 shift = IGB_82580_TSYNC_SHIFT;
581         }
582
583         stamp |= (u64)rd32(E1000_SYSTIML) << shift;
584         stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
585         return stamp;
586 }
587
588 /**
589  * igb_get_hw_dev - return device
590  * used by hardware layer to print debugging information
591  **/
592 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
593 {
594         struct igb_adapter *adapter = hw->back;
595         return adapter->netdev;
596 }
597
598 /**
599  * igb_init_module - Driver Registration Routine
600  *
601  * igb_init_module is the first routine called when the driver is
602  * loaded. All it does is register with the PCI subsystem.
603  **/
604 static int __init igb_init_module(void)
605 {
606         int ret;
607         pr_info("%s - version %s\n",
608                igb_driver_string, igb_driver_version);
609
610         pr_info("%s\n", igb_copyright);
611
612 #ifdef CONFIG_IGB_DCA
613         dca_register_notify(&dca_notifier);
614 #endif
615         ret = pci_register_driver(&igb_driver);
616         return ret;
617 }
618
619 module_init(igb_init_module);
620
621 /**
622  * igb_exit_module - Driver Exit Cleanup Routine
623  *
624  * igb_exit_module is called just before the driver is removed
625  * from memory.
626  **/
627 static void __exit igb_exit_module(void)
628 {
629 #ifdef CONFIG_IGB_DCA
630         dca_unregister_notify(&dca_notifier);
631 #endif
632         pci_unregister_driver(&igb_driver);
633 }
634
635 module_exit(igb_exit_module);
636
637 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
638 /**
639  * igb_cache_ring_register - Descriptor ring to register mapping
640  * @adapter: board private structure to initialize
641  *
642  * Once we know the feature-set enabled for the device, we'll cache
643  * the register offset the descriptor ring is assigned to.
644  **/
645 static void igb_cache_ring_register(struct igb_adapter *adapter)
646 {
647         int i = 0, j = 0;
648         u32 rbase_offset = adapter->vfs_allocated_count;
649
650         switch (adapter->hw.mac.type) {
651         case e1000_82576:
652                 /* The queues are allocated for virtualization such that VF 0
653                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
654                  * In order to avoid collision we start at the first free queue
655                  * and continue consuming queues in the same sequence
656                  */
657                 if (adapter->vfs_allocated_count) {
658                         for (; i < adapter->rss_queues; i++)
659                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
660                                                                Q_IDX_82576(i);
661                 }
662         case e1000_82575:
663         case e1000_82580:
664         case e1000_i350:
665         default:
666                 for (; i < adapter->num_rx_queues; i++)
667                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
668                 for (; j < adapter->num_tx_queues; j++)
669                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
670                 break;
671         }
672 }
673
674 static void igb_free_queues(struct igb_adapter *adapter)
675 {
676         int i;
677
678         for (i = 0; i < adapter->num_tx_queues; i++) {
679                 kfree(adapter->tx_ring[i]);
680                 adapter->tx_ring[i] = NULL;
681         }
682         for (i = 0; i < adapter->num_rx_queues; i++) {
683                 kfree(adapter->rx_ring[i]);
684                 adapter->rx_ring[i] = NULL;
685         }
686         adapter->num_rx_queues = 0;
687         adapter->num_tx_queues = 0;
688 }
689
690 /**
691  * igb_alloc_queues - Allocate memory for all rings
692  * @adapter: board private structure to initialize
693  *
694  * We allocate one ring per queue at run-time since we don't know the
695  * number of queues at compile-time.
696  **/
697 static int igb_alloc_queues(struct igb_adapter *adapter)
698 {
699         struct igb_ring *ring;
700         int i;
701         int orig_node = adapter->node;
702
703         for (i = 0; i < adapter->num_tx_queues; i++) {
704                 if (orig_node == -1) {
705                         int cur_node = next_online_node(adapter->node);
706                         if (cur_node == MAX_NUMNODES)
707                                 cur_node = first_online_node;
708                         adapter->node = cur_node;
709                 }
710                 ring = kzalloc_node(sizeof(struct igb_ring), GFP_KERNEL,
711                                     adapter->node);
712                 if (!ring)
713                         ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
714                 if (!ring)
715                         goto err;
716                 ring->count = adapter->tx_ring_count;
717                 ring->queue_index = i;
718                 ring->dev = &adapter->pdev->dev;
719                 ring->netdev = adapter->netdev;
720                 ring->numa_node = adapter->node;
721                 /* For 82575, context index must be unique per ring. */
722                 if (adapter->hw.mac.type == e1000_82575)
723                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
724                 adapter->tx_ring[i] = ring;
725         }
726         /* Restore the adapter's original node */
727         adapter->node = orig_node;
728
729         for (i = 0; i < adapter->num_rx_queues; i++) {
730                 if (orig_node == -1) {
731                         int cur_node = next_online_node(adapter->node);
732                         if (cur_node == MAX_NUMNODES)
733                                 cur_node = first_online_node;
734                         adapter->node = cur_node;
735                 }
736                 ring = kzalloc_node(sizeof(struct igb_ring), GFP_KERNEL,
737                                     adapter->node);
738                 if (!ring)
739                         ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
740                 if (!ring)
741                         goto err;
742                 ring->count = adapter->rx_ring_count;
743                 ring->queue_index = i;
744                 ring->dev = &adapter->pdev->dev;
745                 ring->netdev = adapter->netdev;
746                 ring->numa_node = adapter->node;
747                 /* set flag indicating ring supports SCTP checksum offload */
748                 if (adapter->hw.mac.type >= e1000_82576)
749                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
750
751                 /* On i350, loopback VLAN packets have the tag byte-swapped. */
752                 if (adapter->hw.mac.type == e1000_i350)
753                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
754
755                 adapter->rx_ring[i] = ring;
756         }
757         /* Restore the adapter's original node */
758         adapter->node = orig_node;
759
760         igb_cache_ring_register(adapter);
761
762         return 0;
763
764 err:
765         /* Restore the adapter's original node */
766         adapter->node = orig_node;
767         igb_free_queues(adapter);
768
769         return -ENOMEM;
770 }
771
772 /**
773  *  igb_write_ivar - configure ivar for given MSI-X vector
774  *  @hw: pointer to the HW structure
775  *  @msix_vector: vector number we are allocating to a given ring
776  *  @index: row index of IVAR register to write within IVAR table
777  *  @offset: column offset of in IVAR, should be multiple of 8
778  *
779  *  This function is intended to handle the writing of the IVAR register
780  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
781  *  each containing an cause allocation for an Rx and Tx ring, and a
782  *  variable number of rows depending on the number of queues supported.
783  **/
784 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
785                            int index, int offset)
786 {
787         u32 ivar = array_rd32(E1000_IVAR0, index);
788
789         /* clear any bits that are currently set */
790         ivar &= ~((u32)0xFF << offset);
791
792         /* write vector and valid bit */
793         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
794
795         array_wr32(E1000_IVAR0, index, ivar);
796 }
797
798 #define IGB_N0_QUEUE -1
799 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
800 {
801         struct igb_adapter *adapter = q_vector->adapter;
802         struct e1000_hw *hw = &adapter->hw;
803         int rx_queue = IGB_N0_QUEUE;
804         int tx_queue = IGB_N0_QUEUE;
805         u32 msixbm = 0;
806
807         if (q_vector->rx.ring)
808                 rx_queue = q_vector->rx.ring->reg_idx;
809         if (q_vector->tx.ring)
810                 tx_queue = q_vector->tx.ring->reg_idx;
811
812         switch (hw->mac.type) {
813         case e1000_82575:
814                 /* The 82575 assigns vectors using a bitmask, which matches the
815                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
816                    or more queues to a vector, we write the appropriate bits
817                    into the MSIXBM register for that vector. */
818                 if (rx_queue > IGB_N0_QUEUE)
819                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
820                 if (tx_queue > IGB_N0_QUEUE)
821                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
822                 if (!adapter->msix_entries && msix_vector == 0)
823                         msixbm |= E1000_EIMS_OTHER;
824                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
825                 q_vector->eims_value = msixbm;
826                 break;
827         case e1000_82576:
828                 /*
829                  * 82576 uses a table that essentially consists of 2 columns
830                  * with 8 rows.  The ordering is column-major so we use the
831                  * lower 3 bits as the row index, and the 4th bit as the
832                  * column offset.
833                  */
834                 if (rx_queue > IGB_N0_QUEUE)
835                         igb_write_ivar(hw, msix_vector,
836                                        rx_queue & 0x7,
837                                        (rx_queue & 0x8) << 1);
838                 if (tx_queue > IGB_N0_QUEUE)
839                         igb_write_ivar(hw, msix_vector,
840                                        tx_queue & 0x7,
841                                        ((tx_queue & 0x8) << 1) + 8);
842                 q_vector->eims_value = 1 << msix_vector;
843                 break;
844         case e1000_82580:
845         case e1000_i350:
846                 /*
847                  * On 82580 and newer adapters the scheme is similar to 82576
848                  * however instead of ordering column-major we have things
849                  * ordered row-major.  So we traverse the table by using
850                  * bit 0 as the column offset, and the remaining bits as the
851                  * row index.
852                  */
853                 if (rx_queue > IGB_N0_QUEUE)
854                         igb_write_ivar(hw, msix_vector,
855                                        rx_queue >> 1,
856                                        (rx_queue & 0x1) << 4);
857                 if (tx_queue > IGB_N0_QUEUE)
858                         igb_write_ivar(hw, msix_vector,
859                                        tx_queue >> 1,
860                                        ((tx_queue & 0x1) << 4) + 8);
861                 q_vector->eims_value = 1 << msix_vector;
862                 break;
863         default:
864                 BUG();
865                 break;
866         }
867
868         /* add q_vector eims value to global eims_enable_mask */
869         adapter->eims_enable_mask |= q_vector->eims_value;
870
871         /* configure q_vector to set itr on first interrupt */
872         q_vector->set_itr = 1;
873 }
874
875 /**
876  * igb_configure_msix - Configure MSI-X hardware
877  *
878  * igb_configure_msix sets up the hardware to properly
879  * generate MSI-X interrupts.
880  **/
881 static void igb_configure_msix(struct igb_adapter *adapter)
882 {
883         u32 tmp;
884         int i, vector = 0;
885         struct e1000_hw *hw = &adapter->hw;
886
887         adapter->eims_enable_mask = 0;
888
889         /* set vector for other causes, i.e. link changes */
890         switch (hw->mac.type) {
891         case e1000_82575:
892                 tmp = rd32(E1000_CTRL_EXT);
893                 /* enable MSI-X PBA support*/
894                 tmp |= E1000_CTRL_EXT_PBA_CLR;
895
896                 /* Auto-Mask interrupts upon ICR read. */
897                 tmp |= E1000_CTRL_EXT_EIAME;
898                 tmp |= E1000_CTRL_EXT_IRCA;
899
900                 wr32(E1000_CTRL_EXT, tmp);
901
902                 /* enable msix_other interrupt */
903                 array_wr32(E1000_MSIXBM(0), vector++,
904                                       E1000_EIMS_OTHER);
905                 adapter->eims_other = E1000_EIMS_OTHER;
906
907                 break;
908
909         case e1000_82576:
910         case e1000_82580:
911         case e1000_i350:
912                 /* Turn on MSI-X capability first, or our settings
913                  * won't stick.  And it will take days to debug. */
914                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
915                                 E1000_GPIE_PBA | E1000_GPIE_EIAME |
916                                 E1000_GPIE_NSICR);
917
918                 /* enable msix_other interrupt */
919                 adapter->eims_other = 1 << vector;
920                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
921
922                 wr32(E1000_IVAR_MISC, tmp);
923                 break;
924         default:
925                 /* do nothing, since nothing else supports MSI-X */
926                 break;
927         } /* switch (hw->mac.type) */
928
929         adapter->eims_enable_mask |= adapter->eims_other;
930
931         for (i = 0; i < adapter->num_q_vectors; i++)
932                 igb_assign_vector(adapter->q_vector[i], vector++);
933
934         wrfl();
935 }
936
937 /**
938  * igb_request_msix - Initialize MSI-X interrupts
939  *
940  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
941  * kernel.
942  **/
943 static int igb_request_msix(struct igb_adapter *adapter)
944 {
945         struct net_device *netdev = adapter->netdev;
946         struct e1000_hw *hw = &adapter->hw;
947         int i, err = 0, vector = 0;
948
949         err = request_irq(adapter->msix_entries[vector].vector,
950                           igb_msix_other, 0, netdev->name, adapter);
951         if (err)
952                 goto out;
953         vector++;
954
955         for (i = 0; i < adapter->num_q_vectors; i++) {
956                 struct igb_q_vector *q_vector = adapter->q_vector[i];
957
958                 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
959
960                 if (q_vector->rx.ring && q_vector->tx.ring)
961                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
962                                 q_vector->rx.ring->queue_index);
963                 else if (q_vector->tx.ring)
964                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
965                                 q_vector->tx.ring->queue_index);
966                 else if (q_vector->rx.ring)
967                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
968                                 q_vector->rx.ring->queue_index);
969                 else
970                         sprintf(q_vector->name, "%s-unused", netdev->name);
971
972                 err = request_irq(adapter->msix_entries[vector].vector,
973                                   igb_msix_ring, 0, q_vector->name,
974                                   q_vector);
975                 if (err)
976                         goto out;
977                 vector++;
978         }
979
980         igb_configure_msix(adapter);
981         return 0;
982 out:
983         return err;
984 }
985
986 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
987 {
988         if (adapter->msix_entries) {
989                 pci_disable_msix(adapter->pdev);
990                 kfree(adapter->msix_entries);
991                 adapter->msix_entries = NULL;
992         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
993                 pci_disable_msi(adapter->pdev);
994         }
995 }
996
997 /**
998  * igb_free_q_vectors - Free memory allocated for interrupt vectors
999  * @adapter: board private structure to initialize
1000  *
1001  * This function frees the memory allocated to the q_vectors.  In addition if
1002  * NAPI is enabled it will delete any references to the NAPI struct prior
1003  * to freeing the q_vector.
1004  **/
1005 static void igb_free_q_vectors(struct igb_adapter *adapter)
1006 {
1007         int v_idx;
1008
1009         for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1010                 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1011                 adapter->q_vector[v_idx] = NULL;
1012                 if (!q_vector)
1013                         continue;
1014                 netif_napi_del(&q_vector->napi);
1015                 kfree(q_vector);
1016         }
1017         adapter->num_q_vectors = 0;
1018 }
1019
1020 /**
1021  * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1022  *
1023  * This function resets the device so that it has 0 rx queues, tx queues, and
1024  * MSI-X interrupts allocated.
1025  */
1026 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1027 {
1028         igb_free_queues(adapter);
1029         igb_free_q_vectors(adapter);
1030         igb_reset_interrupt_capability(adapter);
1031 }
1032
1033 /**
1034  * igb_set_interrupt_capability - set MSI or MSI-X if supported
1035  *
1036  * Attempt to configure interrupts using the best available
1037  * capabilities of the hardware and kernel.
1038  **/
1039 static int igb_set_interrupt_capability(struct igb_adapter *adapter)
1040 {
1041         int err;
1042         int numvecs, i;
1043
1044         /* Number of supported queues. */
1045         adapter->num_rx_queues = adapter->rss_queues;
1046         if (adapter->vfs_allocated_count)
1047                 adapter->num_tx_queues = 1;
1048         else
1049                 adapter->num_tx_queues = adapter->rss_queues;
1050
1051         /* start with one vector for every rx queue */
1052         numvecs = adapter->num_rx_queues;
1053
1054         /* if tx handler is separate add 1 for every tx queue */
1055         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1056                 numvecs += adapter->num_tx_queues;
1057
1058         /* store the number of vectors reserved for queues */
1059         adapter->num_q_vectors = numvecs;
1060
1061         /* add 1 vector for link status interrupts */
1062         numvecs++;
1063         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1064                                         GFP_KERNEL);
1065         if (!adapter->msix_entries)
1066                 goto msi_only;
1067
1068         for (i = 0; i < numvecs; i++)
1069                 adapter->msix_entries[i].entry = i;
1070
1071         err = pci_enable_msix(adapter->pdev,
1072                               adapter->msix_entries,
1073                               numvecs);
1074         if (err == 0)
1075                 goto out;
1076
1077         igb_reset_interrupt_capability(adapter);
1078
1079         /* If we can't do MSI-X, try MSI */
1080 msi_only:
1081 #ifdef CONFIG_PCI_IOV
1082         /* disable SR-IOV for non MSI-X configurations */
1083         if (adapter->vf_data) {
1084                 struct e1000_hw *hw = &adapter->hw;
1085                 /* disable iov and allow time for transactions to clear */
1086                 pci_disable_sriov(adapter->pdev);
1087                 msleep(500);
1088
1089                 kfree(adapter->vf_data);
1090                 adapter->vf_data = NULL;
1091                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1092                 wrfl();
1093                 msleep(100);
1094                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1095         }
1096 #endif
1097         adapter->vfs_allocated_count = 0;
1098         adapter->rss_queues = 1;
1099         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1100         adapter->num_rx_queues = 1;
1101         adapter->num_tx_queues = 1;
1102         adapter->num_q_vectors = 1;
1103         if (!pci_enable_msi(adapter->pdev))
1104                 adapter->flags |= IGB_FLAG_HAS_MSI;
1105 out:
1106         /* Notify the stack of the (possibly) reduced queue counts. */
1107         netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
1108         return netif_set_real_num_rx_queues(adapter->netdev,
1109                                             adapter->num_rx_queues);
1110 }
1111
1112 /**
1113  * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1114  * @adapter: board private structure to initialize
1115  *
1116  * We allocate one q_vector per queue interrupt.  If allocation fails we
1117  * return -ENOMEM.
1118  **/
1119 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1120 {
1121         struct igb_q_vector *q_vector;
1122         struct e1000_hw *hw = &adapter->hw;
1123         int v_idx;
1124         int orig_node = adapter->node;
1125
1126         for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1127                 if ((adapter->num_q_vectors == (adapter->num_rx_queues +
1128                                                 adapter->num_tx_queues)) &&
1129                     (adapter->num_rx_queues == v_idx))
1130                         adapter->node = orig_node;
1131                 if (orig_node == -1) {
1132                         int cur_node = next_online_node(adapter->node);
1133                         if (cur_node == MAX_NUMNODES)
1134                                 cur_node = first_online_node;
1135                         adapter->node = cur_node;
1136                 }
1137                 q_vector = kzalloc_node(sizeof(struct igb_q_vector), GFP_KERNEL,
1138                                         adapter->node);
1139                 if (!q_vector)
1140                         q_vector = kzalloc(sizeof(struct igb_q_vector),
1141                                            GFP_KERNEL);
1142                 if (!q_vector)
1143                         goto err_out;
1144                 q_vector->adapter = adapter;
1145                 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1146                 q_vector->itr_val = IGB_START_ITR;
1147                 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1148                 adapter->q_vector[v_idx] = q_vector;
1149         }
1150         /* Restore the adapter's original node */
1151         adapter->node = orig_node;
1152
1153         return 0;
1154
1155 err_out:
1156         /* Restore the adapter's original node */
1157         adapter->node = orig_node;
1158         igb_free_q_vectors(adapter);
1159         return -ENOMEM;
1160 }
1161
1162 static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1163                                       int ring_idx, int v_idx)
1164 {
1165         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1166
1167         q_vector->rx.ring = adapter->rx_ring[ring_idx];
1168         q_vector->rx.ring->q_vector = q_vector;
1169         q_vector->rx.count++;
1170         q_vector->itr_val = adapter->rx_itr_setting;
1171         if (q_vector->itr_val && q_vector->itr_val <= 3)
1172                 q_vector->itr_val = IGB_START_ITR;
1173 }
1174
1175 static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1176                                       int ring_idx, int v_idx)
1177 {
1178         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1179
1180         q_vector->tx.ring = adapter->tx_ring[ring_idx];
1181         q_vector->tx.ring->q_vector = q_vector;
1182         q_vector->tx.count++;
1183         q_vector->itr_val = adapter->tx_itr_setting;
1184         q_vector->tx.work_limit = adapter->tx_work_limit;
1185         if (q_vector->itr_val && q_vector->itr_val <= 3)
1186                 q_vector->itr_val = IGB_START_ITR;
1187 }
1188
1189 /**
1190  * igb_map_ring_to_vector - maps allocated queues to vectors
1191  *
1192  * This function maps the recently allocated queues to vectors.
1193  **/
1194 static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1195 {
1196         int i;
1197         int v_idx = 0;
1198
1199         if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1200             (adapter->num_q_vectors < adapter->num_tx_queues))
1201                 return -ENOMEM;
1202
1203         if (adapter->num_q_vectors >=
1204             (adapter->num_rx_queues + adapter->num_tx_queues)) {
1205                 for (i = 0; i < adapter->num_rx_queues; i++)
1206                         igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1207                 for (i = 0; i < adapter->num_tx_queues; i++)
1208                         igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1209         } else {
1210                 for (i = 0; i < adapter->num_rx_queues; i++) {
1211                         if (i < adapter->num_tx_queues)
1212                                 igb_map_tx_ring_to_vector(adapter, i, v_idx);
1213                         igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1214                 }
1215                 for (; i < adapter->num_tx_queues; i++)
1216                         igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1217         }
1218         return 0;
1219 }
1220
1221 /**
1222  * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1223  *
1224  * This function initializes the interrupts and allocates all of the queues.
1225  **/
1226 static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1227 {
1228         struct pci_dev *pdev = adapter->pdev;
1229         int err;
1230
1231         err = igb_set_interrupt_capability(adapter);
1232         if (err)
1233                 return err;
1234
1235         err = igb_alloc_q_vectors(adapter);
1236         if (err) {
1237                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1238                 goto err_alloc_q_vectors;
1239         }
1240
1241         err = igb_alloc_queues(adapter);
1242         if (err) {
1243                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1244                 goto err_alloc_queues;
1245         }
1246
1247         err = igb_map_ring_to_vector(adapter);
1248         if (err) {
1249                 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1250                 goto err_map_queues;
1251         }
1252
1253
1254         return 0;
1255 err_map_queues:
1256         igb_free_queues(adapter);
1257 err_alloc_queues:
1258         igb_free_q_vectors(adapter);
1259 err_alloc_q_vectors:
1260         igb_reset_interrupt_capability(adapter);
1261         return err;
1262 }
1263
1264 /**
1265  * igb_request_irq - initialize interrupts
1266  *
1267  * Attempts to configure interrupts using the best available
1268  * capabilities of the hardware and kernel.
1269  **/
1270 static int igb_request_irq(struct igb_adapter *adapter)
1271 {
1272         struct net_device *netdev = adapter->netdev;
1273         struct pci_dev *pdev = adapter->pdev;
1274         int err = 0;
1275
1276         if (adapter->msix_entries) {
1277                 err = igb_request_msix(adapter);
1278                 if (!err)
1279                         goto request_done;
1280                 /* fall back to MSI */
1281                 igb_clear_interrupt_scheme(adapter);
1282                 if (!pci_enable_msi(pdev))
1283                         adapter->flags |= IGB_FLAG_HAS_MSI;
1284                 igb_free_all_tx_resources(adapter);
1285                 igb_free_all_rx_resources(adapter);
1286                 adapter->num_tx_queues = 1;
1287                 adapter->num_rx_queues = 1;
1288                 adapter->num_q_vectors = 1;
1289                 err = igb_alloc_q_vectors(adapter);
1290                 if (err) {
1291                         dev_err(&pdev->dev,
1292                                 "Unable to allocate memory for vectors\n");
1293                         goto request_done;
1294                 }
1295                 err = igb_alloc_queues(adapter);
1296                 if (err) {
1297                         dev_err(&pdev->dev,
1298                                 "Unable to allocate memory for queues\n");
1299                         igb_free_q_vectors(adapter);
1300                         goto request_done;
1301                 }
1302                 igb_setup_all_tx_resources(adapter);
1303                 igb_setup_all_rx_resources(adapter);
1304         }
1305
1306         igb_assign_vector(adapter->q_vector[0], 0);
1307
1308         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1309                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1310                                   netdev->name, adapter);
1311                 if (!err)
1312                         goto request_done;
1313
1314                 /* fall back to legacy interrupts */
1315                 igb_reset_interrupt_capability(adapter);
1316                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1317         }
1318
1319         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1320                           netdev->name, adapter);
1321
1322         if (err)
1323                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1324                         err);
1325
1326 request_done:
1327         return err;
1328 }
1329
1330 static void igb_free_irq(struct igb_adapter *adapter)
1331 {
1332         if (adapter->msix_entries) {
1333                 int vector = 0, i;
1334
1335                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1336
1337                 for (i = 0; i < adapter->num_q_vectors; i++)
1338                         free_irq(adapter->msix_entries[vector++].vector,
1339                                  adapter->q_vector[i]);
1340         } else {
1341                 free_irq(adapter->pdev->irq, adapter);
1342         }
1343 }
1344
1345 /**
1346  * igb_irq_disable - Mask off interrupt generation on the NIC
1347  * @adapter: board private structure
1348  **/
1349 static void igb_irq_disable(struct igb_adapter *adapter)
1350 {
1351         struct e1000_hw *hw = &adapter->hw;
1352
1353         /*
1354          * we need to be careful when disabling interrupts.  The VFs are also
1355          * mapped into these registers and so clearing the bits can cause
1356          * issues on the VF drivers so we only need to clear what we set
1357          */
1358         if (adapter->msix_entries) {
1359                 u32 regval = rd32(E1000_EIAM);
1360                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1361                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1362                 regval = rd32(E1000_EIAC);
1363                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1364         }
1365
1366         wr32(E1000_IAM, 0);
1367         wr32(E1000_IMC, ~0);
1368         wrfl();
1369         if (adapter->msix_entries) {
1370                 int i;
1371                 for (i = 0; i < adapter->num_q_vectors; i++)
1372                         synchronize_irq(adapter->msix_entries[i].vector);
1373         } else {
1374                 synchronize_irq(adapter->pdev->irq);
1375         }
1376 }
1377
1378 /**
1379  * igb_irq_enable - Enable default interrupt generation settings
1380  * @adapter: board private structure
1381  **/
1382 static void igb_irq_enable(struct igb_adapter *adapter)
1383 {
1384         struct e1000_hw *hw = &adapter->hw;
1385
1386         if (adapter->msix_entries) {
1387                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1388                 u32 regval = rd32(E1000_EIAC);
1389                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1390                 regval = rd32(E1000_EIAM);
1391                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1392                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1393                 if (adapter->vfs_allocated_count) {
1394                         wr32(E1000_MBVFIMR, 0xFF);
1395                         ims |= E1000_IMS_VMMB;
1396                 }
1397                 wr32(E1000_IMS, ims);
1398         } else {
1399                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1400                                 E1000_IMS_DRSTA);
1401                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1402                                 E1000_IMS_DRSTA);
1403         }
1404 }
1405
1406 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1407 {
1408         struct e1000_hw *hw = &adapter->hw;
1409         u16 vid = adapter->hw.mng_cookie.vlan_id;
1410         u16 old_vid = adapter->mng_vlan_id;
1411
1412         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1413                 /* add VID to filter table */
1414                 igb_vfta_set(hw, vid, true);
1415                 adapter->mng_vlan_id = vid;
1416         } else {
1417                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1418         }
1419
1420         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1421             (vid != old_vid) &&
1422             !test_bit(old_vid, adapter->active_vlans)) {
1423                 /* remove VID from filter table */
1424                 igb_vfta_set(hw, old_vid, false);
1425         }
1426 }
1427
1428 /**
1429  * igb_release_hw_control - release control of the h/w to f/w
1430  * @adapter: address of board private structure
1431  *
1432  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1433  * For ASF and Pass Through versions of f/w this means that the
1434  * driver is no longer loaded.
1435  *
1436  **/
1437 static void igb_release_hw_control(struct igb_adapter *adapter)
1438 {
1439         struct e1000_hw *hw = &adapter->hw;
1440         u32 ctrl_ext;
1441
1442         /* Let firmware take over control of h/w */
1443         ctrl_ext = rd32(E1000_CTRL_EXT);
1444         wr32(E1000_CTRL_EXT,
1445                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1446 }
1447
1448 /**
1449  * igb_get_hw_control - get control of the h/w from f/w
1450  * @adapter: address of board private structure
1451  *
1452  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1453  * For ASF and Pass Through versions of f/w this means that
1454  * the driver is loaded.
1455  *
1456  **/
1457 static void igb_get_hw_control(struct igb_adapter *adapter)
1458 {
1459         struct e1000_hw *hw = &adapter->hw;
1460         u32 ctrl_ext;
1461
1462         /* Let firmware know the driver has taken over */
1463         ctrl_ext = rd32(E1000_CTRL_EXT);
1464         wr32(E1000_CTRL_EXT,
1465                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1466 }
1467
1468 /**
1469  * igb_configure - configure the hardware for RX and TX
1470  * @adapter: private board structure
1471  **/
1472 static void igb_configure(struct igb_adapter *adapter)
1473 {
1474         struct net_device *netdev = adapter->netdev;
1475         int i;
1476
1477         igb_get_hw_control(adapter);
1478         igb_set_rx_mode(netdev);
1479
1480         igb_restore_vlan(adapter);
1481
1482         igb_setup_tctl(adapter);
1483         igb_setup_mrqc(adapter);
1484         igb_setup_rctl(adapter);
1485
1486         igb_configure_tx(adapter);
1487         igb_configure_rx(adapter);
1488
1489         igb_rx_fifo_flush_82575(&adapter->hw);
1490
1491         /* call igb_desc_unused which always leaves
1492          * at least 1 descriptor unused to make sure
1493          * next_to_use != next_to_clean */
1494         for (i = 0; i < adapter->num_rx_queues; i++) {
1495                 struct igb_ring *ring = adapter->rx_ring[i];
1496                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1497         }
1498 }
1499
1500 /**
1501  * igb_power_up_link - Power up the phy/serdes link
1502  * @adapter: address of board private structure
1503  **/
1504 void igb_power_up_link(struct igb_adapter *adapter)
1505 {
1506         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1507                 igb_power_up_phy_copper(&adapter->hw);
1508         else
1509                 igb_power_up_serdes_link_82575(&adapter->hw);
1510         igb_reset_phy(&adapter->hw);
1511 }
1512
1513 /**
1514  * igb_power_down_link - Power down the phy/serdes link
1515  * @adapter: address of board private structure
1516  */
1517 static void igb_power_down_link(struct igb_adapter *adapter)
1518 {
1519         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1520                 igb_power_down_phy_copper_82575(&adapter->hw);
1521         else
1522                 igb_shutdown_serdes_link_82575(&adapter->hw);
1523 }
1524
1525 /**
1526  * igb_up - Open the interface and prepare it to handle traffic
1527  * @adapter: board private structure
1528  **/
1529 int igb_up(struct igb_adapter *adapter)
1530 {
1531         struct e1000_hw *hw = &adapter->hw;
1532         int i;
1533
1534         /* hardware has been reset, we need to reload some things */
1535         igb_configure(adapter);
1536
1537         clear_bit(__IGB_DOWN, &adapter->state);
1538
1539         for (i = 0; i < adapter->num_q_vectors; i++)
1540                 napi_enable(&(adapter->q_vector[i]->napi));
1541
1542         if (adapter->msix_entries)
1543                 igb_configure_msix(adapter);
1544         else
1545                 igb_assign_vector(adapter->q_vector[0], 0);
1546
1547         /* Clear any pending interrupts. */
1548         rd32(E1000_ICR);
1549         igb_irq_enable(adapter);
1550
1551         /* notify VFs that reset has been completed */
1552         if (adapter->vfs_allocated_count) {
1553                 u32 reg_data = rd32(E1000_CTRL_EXT);
1554                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1555                 wr32(E1000_CTRL_EXT, reg_data);
1556         }
1557
1558         netif_tx_start_all_queues(adapter->netdev);
1559
1560         /* start the watchdog. */
1561         hw->mac.get_link_status = 1;
1562         schedule_work(&adapter->watchdog_task);
1563
1564         return 0;
1565 }
1566
1567 void igb_down(struct igb_adapter *adapter)
1568 {
1569         struct net_device *netdev = adapter->netdev;
1570         struct e1000_hw *hw = &adapter->hw;
1571         u32 tctl, rctl;
1572         int i;
1573
1574         /* signal that we're down so the interrupt handler does not
1575          * reschedule our watchdog timer */
1576         set_bit(__IGB_DOWN, &adapter->state);
1577
1578         /* disable receives in the hardware */
1579         rctl = rd32(E1000_RCTL);
1580         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1581         /* flush and sleep below */
1582
1583         netif_tx_stop_all_queues(netdev);
1584
1585         /* disable transmits in the hardware */
1586         tctl = rd32(E1000_TCTL);
1587         tctl &= ~E1000_TCTL_EN;
1588         wr32(E1000_TCTL, tctl);
1589         /* flush both disables and wait for them to finish */
1590         wrfl();
1591         msleep(10);
1592
1593         for (i = 0; i < adapter->num_q_vectors; i++)
1594                 napi_disable(&(adapter->q_vector[i]->napi));
1595
1596         igb_irq_disable(adapter);
1597
1598         del_timer_sync(&adapter->watchdog_timer);
1599         del_timer_sync(&adapter->phy_info_timer);
1600
1601         netif_carrier_off(netdev);
1602
1603         /* record the stats before reset*/
1604         spin_lock(&adapter->stats64_lock);
1605         igb_update_stats(adapter, &adapter->stats64);
1606         spin_unlock(&adapter->stats64_lock);
1607
1608         adapter->link_speed = 0;
1609         adapter->link_duplex = 0;
1610
1611         if (!pci_channel_offline(adapter->pdev))
1612                 igb_reset(adapter);
1613         igb_clean_all_tx_rings(adapter);
1614         igb_clean_all_rx_rings(adapter);
1615 #ifdef CONFIG_IGB_DCA
1616
1617         /* since we reset the hardware DCA settings were cleared */
1618         igb_setup_dca(adapter);
1619 #endif
1620 }
1621
1622 void igb_reinit_locked(struct igb_adapter *adapter)
1623 {
1624         WARN_ON(in_interrupt());
1625         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1626                 msleep(1);
1627         igb_down(adapter);
1628         igb_up(adapter);
1629         clear_bit(__IGB_RESETTING, &adapter->state);
1630 }
1631
1632 void igb_reset(struct igb_adapter *adapter)
1633 {
1634         struct pci_dev *pdev = adapter->pdev;
1635         struct e1000_hw *hw = &adapter->hw;
1636         struct e1000_mac_info *mac = &hw->mac;
1637         struct e1000_fc_info *fc = &hw->fc;
1638         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1639         u16 hwm;
1640
1641         /* Repartition Pba for greater than 9k mtu
1642          * To take effect CTRL.RST is required.
1643          */
1644         switch (mac->type) {
1645         case e1000_i350:
1646         case e1000_82580:
1647                 pba = rd32(E1000_RXPBS);
1648                 pba = igb_rxpbs_adjust_82580(pba);
1649                 break;
1650         case e1000_82576:
1651                 pba = rd32(E1000_RXPBS);
1652                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1653                 break;
1654         case e1000_82575:
1655         default:
1656                 pba = E1000_PBA_34K;
1657                 break;
1658         }
1659
1660         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1661             (mac->type < e1000_82576)) {
1662                 /* adjust PBA for jumbo frames */
1663                 wr32(E1000_PBA, pba);
1664
1665                 /* To maintain wire speed transmits, the Tx FIFO should be
1666                  * large enough to accommodate two full transmit packets,
1667                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1668                  * the Rx FIFO should be large enough to accommodate at least
1669                  * one full receive packet and is similarly rounded up and
1670                  * expressed in KB. */
1671                 pba = rd32(E1000_PBA);
1672                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1673                 tx_space = pba >> 16;
1674                 /* lower 16 bits has Rx packet buffer allocation size in KB */
1675                 pba &= 0xffff;
1676                 /* the tx fifo also stores 16 bytes of information about the tx
1677                  * but don't include ethernet FCS because hardware appends it */
1678                 min_tx_space = (adapter->max_frame_size +
1679                                 sizeof(union e1000_adv_tx_desc) -
1680                                 ETH_FCS_LEN) * 2;
1681                 min_tx_space = ALIGN(min_tx_space, 1024);
1682                 min_tx_space >>= 10;
1683                 /* software strips receive CRC, so leave room for it */
1684                 min_rx_space = adapter->max_frame_size;
1685                 min_rx_space = ALIGN(min_rx_space, 1024);
1686                 min_rx_space >>= 10;
1687
1688                 /* If current Tx allocation is less than the min Tx FIFO size,
1689                  * and the min Tx FIFO size is less than the current Rx FIFO
1690                  * allocation, take space away from current Rx allocation */
1691                 if (tx_space < min_tx_space &&
1692                     ((min_tx_space - tx_space) < pba)) {
1693                         pba = pba - (min_tx_space - tx_space);
1694
1695                         /* if short on rx space, rx wins and must trump tx
1696                          * adjustment */
1697                         if (pba < min_rx_space)
1698                                 pba = min_rx_space;
1699                 }
1700                 wr32(E1000_PBA, pba);
1701         }
1702
1703         /* flow control settings */
1704         /* The high water mark must be low enough to fit one full frame
1705          * (or the size used for early receive) above it in the Rx FIFO.
1706          * Set it to the lower of:
1707          * - 90% of the Rx FIFO size, or
1708          * - the full Rx FIFO size minus one full frame */
1709         hwm = min(((pba << 10) * 9 / 10),
1710                         ((pba << 10) - 2 * adapter->max_frame_size));
1711
1712         fc->high_water = hwm & 0xFFF0;  /* 16-byte granularity */
1713         fc->low_water = fc->high_water - 16;
1714         fc->pause_time = 0xFFFF;
1715         fc->send_xon = 1;
1716         fc->current_mode = fc->requested_mode;
1717
1718         /* disable receive for all VFs and wait one second */
1719         if (adapter->vfs_allocated_count) {
1720                 int i;
1721                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1722                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1723
1724                 /* ping all the active vfs to let them know we are going down */
1725                 igb_ping_all_vfs(adapter);
1726
1727                 /* disable transmits and receives */
1728                 wr32(E1000_VFRE, 0);
1729                 wr32(E1000_VFTE, 0);
1730         }
1731
1732         /* Allow time for pending master requests to run */
1733         hw->mac.ops.reset_hw(hw);
1734         wr32(E1000_WUC, 0);
1735
1736         if (hw->mac.ops.init_hw(hw))
1737                 dev_err(&pdev->dev, "Hardware Error\n");
1738
1739         igb_init_dmac(adapter, pba);
1740         if (!netif_running(adapter->netdev))
1741                 igb_power_down_link(adapter);
1742
1743         igb_update_mng_vlan(adapter);
1744
1745         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1746         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1747
1748         igb_get_phy_info(hw);
1749 }
1750
1751 static netdev_features_t igb_fix_features(struct net_device *netdev,
1752         netdev_features_t features)
1753 {
1754         /*
1755          * Since there is no support for separate rx/tx vlan accel
1756          * enable/disable make sure tx flag is always in same state as rx.
1757          */
1758         if (features & NETIF_F_HW_VLAN_RX)
1759                 features |= NETIF_F_HW_VLAN_TX;
1760         else
1761                 features &= ~NETIF_F_HW_VLAN_TX;
1762
1763         return features;
1764 }
1765
1766 static int igb_set_features(struct net_device *netdev,
1767         netdev_features_t features)
1768 {
1769         netdev_features_t changed = netdev->features ^ features;
1770
1771         if (changed & NETIF_F_HW_VLAN_RX)
1772                 igb_vlan_mode(netdev, features);
1773
1774         return 0;
1775 }
1776
1777 static const struct net_device_ops igb_netdev_ops = {
1778         .ndo_open               = igb_open,
1779         .ndo_stop               = igb_close,
1780         .ndo_start_xmit         = igb_xmit_frame,
1781         .ndo_get_stats64        = igb_get_stats64,
1782         .ndo_set_rx_mode        = igb_set_rx_mode,
1783         .ndo_set_mac_address    = igb_set_mac,
1784         .ndo_change_mtu         = igb_change_mtu,
1785         .ndo_do_ioctl           = igb_ioctl,
1786         .ndo_tx_timeout         = igb_tx_timeout,
1787         .ndo_validate_addr      = eth_validate_addr,
1788         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
1789         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
1790         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
1791         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
1792         .ndo_set_vf_tx_rate     = igb_ndo_set_vf_bw,
1793         .ndo_get_vf_config      = igb_ndo_get_vf_config,
1794 #ifdef CONFIG_NET_POLL_CONTROLLER
1795         .ndo_poll_controller    = igb_netpoll,
1796 #endif
1797         .ndo_fix_features       = igb_fix_features,
1798         .ndo_set_features       = igb_set_features,
1799 };
1800
1801 /**
1802  * igb_probe - Device Initialization Routine
1803  * @pdev: PCI device information struct
1804  * @ent: entry in igb_pci_tbl
1805  *
1806  * Returns 0 on success, negative on failure
1807  *
1808  * igb_probe initializes an adapter identified by a pci_dev structure.
1809  * The OS initialization, configuring of the adapter private structure,
1810  * and a hardware reset occur.
1811  **/
1812 static int __devinit igb_probe(struct pci_dev *pdev,
1813                                const struct pci_device_id *ent)
1814 {
1815         struct net_device *netdev;
1816         struct igb_adapter *adapter;
1817         struct e1000_hw *hw;
1818         u16 eeprom_data = 0;
1819         s32 ret_val;
1820         static int global_quad_port_a; /* global quad port a indication */
1821         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1822         unsigned long mmio_start, mmio_len;
1823         int err, pci_using_dac;
1824         u16 eeprom_apme_mask = IGB_EEPROM_APME;
1825         u8 part_str[E1000_PBANUM_LENGTH];
1826
1827         /* Catch broken hardware that put the wrong VF device ID in
1828          * the PCIe SR-IOV capability.
1829          */
1830         if (pdev->is_virtfn) {
1831                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1832                      pci_name(pdev), pdev->vendor, pdev->device);
1833                 return -EINVAL;
1834         }
1835
1836         err = pci_enable_device_mem(pdev);
1837         if (err)
1838                 return err;
1839
1840         pci_using_dac = 0;
1841         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1842         if (!err) {
1843                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1844                 if (!err)
1845                         pci_using_dac = 1;
1846         } else {
1847                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1848                 if (err) {
1849                         err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1850                         if (err) {
1851                                 dev_err(&pdev->dev, "No usable DMA "
1852                                         "configuration, aborting\n");
1853                                 goto err_dma;
1854                         }
1855                 }
1856         }
1857
1858         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1859                                            IORESOURCE_MEM),
1860                                            igb_driver_name);
1861         if (err)
1862                 goto err_pci_reg;
1863
1864         pci_enable_pcie_error_reporting(pdev);
1865
1866         pci_set_master(pdev);
1867         pci_save_state(pdev);
1868
1869         err = -ENOMEM;
1870         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1871                                    IGB_MAX_TX_QUEUES);
1872         if (!netdev)
1873                 goto err_alloc_etherdev;
1874
1875         SET_NETDEV_DEV(netdev, &pdev->dev);
1876
1877         pci_set_drvdata(pdev, netdev);
1878         adapter = netdev_priv(netdev);
1879         adapter->netdev = netdev;
1880         adapter->pdev = pdev;
1881         hw = &adapter->hw;
1882         hw->back = adapter;
1883         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1884
1885         mmio_start = pci_resource_start(pdev, 0);
1886         mmio_len = pci_resource_len(pdev, 0);
1887
1888         err = -EIO;
1889         hw->hw_addr = ioremap(mmio_start, mmio_len);
1890         if (!hw->hw_addr)
1891                 goto err_ioremap;
1892
1893         netdev->netdev_ops = &igb_netdev_ops;
1894         igb_set_ethtool_ops(netdev);
1895         netdev->watchdog_timeo = 5 * HZ;
1896
1897         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1898
1899         netdev->mem_start = mmio_start;
1900         netdev->mem_end = mmio_start + mmio_len;
1901
1902         /* PCI config space info */
1903         hw->vendor_id = pdev->vendor;
1904         hw->device_id = pdev->device;
1905         hw->revision_id = pdev->revision;
1906         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1907         hw->subsystem_device_id = pdev->subsystem_device;
1908
1909         /* Copy the default MAC, PHY and NVM function pointers */
1910         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1911         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1912         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1913         /* Initialize skew-specific constants */
1914         err = ei->get_invariants(hw);
1915         if (err)
1916                 goto err_sw_init;
1917
1918         /* setup the private structure */
1919         err = igb_sw_init(adapter);
1920         if (err)
1921                 goto err_sw_init;
1922
1923         igb_get_bus_info_pcie(hw);
1924
1925         hw->phy.autoneg_wait_to_complete = false;
1926
1927         /* Copper options */
1928         if (hw->phy.media_type == e1000_media_type_copper) {
1929                 hw->phy.mdix = AUTO_ALL_MODES;
1930                 hw->phy.disable_polarity_correction = false;
1931                 hw->phy.ms_type = e1000_ms_hw_default;
1932         }
1933
1934         if (igb_check_reset_block(hw))
1935                 dev_info(&pdev->dev,
1936                         "PHY reset is blocked due to SOL/IDER session.\n");
1937
1938         /*
1939          * features is initialized to 0 in allocation, it might have bits
1940          * set by igb_sw_init so we should use an or instead of an
1941          * assignment.
1942          */
1943         netdev->features |= NETIF_F_SG |
1944                             NETIF_F_IP_CSUM |
1945                             NETIF_F_IPV6_CSUM |
1946                             NETIF_F_TSO |
1947                             NETIF_F_TSO6 |
1948                             NETIF_F_RXHASH |
1949                             NETIF_F_RXCSUM |
1950                             NETIF_F_HW_VLAN_RX |
1951                             NETIF_F_HW_VLAN_TX;
1952
1953         /* copy netdev features into list of user selectable features */
1954         netdev->hw_features |= netdev->features;
1955
1956         /* set this bit last since it cannot be part of hw_features */
1957         netdev->features |= NETIF_F_HW_VLAN_FILTER;
1958
1959         netdev->vlan_features |= NETIF_F_TSO |
1960                                  NETIF_F_TSO6 |
1961                                  NETIF_F_IP_CSUM |
1962                                  NETIF_F_IPV6_CSUM |
1963                                  NETIF_F_SG;
1964
1965         if (pci_using_dac) {
1966                 netdev->features |= NETIF_F_HIGHDMA;
1967                 netdev->vlan_features |= NETIF_F_HIGHDMA;
1968         }
1969
1970         if (hw->mac.type >= e1000_82576) {
1971                 netdev->hw_features |= NETIF_F_SCTP_CSUM;
1972                 netdev->features |= NETIF_F_SCTP_CSUM;
1973         }
1974
1975         netdev->priv_flags |= IFF_UNICAST_FLT;
1976
1977         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1978
1979         /* before reading the NVM, reset the controller to put the device in a
1980          * known good starting state */
1981         hw->mac.ops.reset_hw(hw);
1982
1983         /* make sure the NVM is good */
1984         if (hw->nvm.ops.validate(hw) < 0) {
1985                 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1986                 err = -EIO;
1987                 goto err_eeprom;
1988         }
1989
1990         /* copy the MAC address out of the NVM */
1991         if (hw->mac.ops.read_mac_addr(hw))
1992                 dev_err(&pdev->dev, "NVM Read Error\n");
1993
1994         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1995         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1996
1997         if (!is_valid_ether_addr(netdev->perm_addr)) {
1998                 dev_err(&pdev->dev, "Invalid MAC Address\n");
1999                 err = -EIO;
2000                 goto err_eeprom;
2001         }
2002
2003         setup_timer(&adapter->watchdog_timer, igb_watchdog,
2004                     (unsigned long) adapter);
2005         setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2006                     (unsigned long) adapter);
2007
2008         INIT_WORK(&adapter->reset_task, igb_reset_task);
2009         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2010
2011         /* Initialize link properties that are user-changeable */
2012         adapter->fc_autoneg = true;
2013         hw->mac.autoneg = true;
2014         hw->phy.autoneg_advertised = 0x2f;
2015
2016         hw->fc.requested_mode = e1000_fc_default;
2017         hw->fc.current_mode = e1000_fc_default;
2018
2019         igb_validate_mdi_setting(hw);
2020
2021         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
2022          * enable the ACPI Magic Packet filter
2023          */
2024
2025         if (hw->bus.func == 0)
2026                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
2027         else if (hw->mac.type >= e1000_82580)
2028                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2029                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2030                                  &eeprom_data);
2031         else if (hw->bus.func == 1)
2032                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2033
2034         if (eeprom_data & eeprom_apme_mask)
2035                 adapter->eeprom_wol |= E1000_WUFC_MAG;
2036
2037         /* now that we have the eeprom settings, apply the special cases where
2038          * the eeprom may be wrong or the board simply won't support wake on
2039          * lan on a particular port */
2040         switch (pdev->device) {
2041         case E1000_DEV_ID_82575GB_QUAD_COPPER:
2042                 adapter->eeprom_wol = 0;
2043                 break;
2044         case E1000_DEV_ID_82575EB_FIBER_SERDES:
2045         case E1000_DEV_ID_82576_FIBER:
2046         case E1000_DEV_ID_82576_SERDES:
2047                 /* Wake events only supported on port A for dual fiber
2048                  * regardless of eeprom setting */
2049                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2050                         adapter->eeprom_wol = 0;
2051                 break;
2052         case E1000_DEV_ID_82576_QUAD_COPPER:
2053         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2054                 /* if quad port adapter, disable WoL on all but port A */
2055                 if (global_quad_port_a != 0)
2056                         adapter->eeprom_wol = 0;
2057                 else
2058                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2059                 /* Reset for multiple quad port adapters */
2060                 if (++global_quad_port_a == 4)
2061                         global_quad_port_a = 0;
2062                 break;
2063         }
2064
2065         /* initialize the wol settings based on the eeprom settings */
2066         adapter->wol = adapter->eeprom_wol;
2067         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2068
2069         /* reset the hardware with the new settings */
2070         igb_reset(adapter);
2071
2072         /* let the f/w know that the h/w is now under the control of the
2073          * driver. */
2074         igb_get_hw_control(adapter);
2075
2076         strcpy(netdev->name, "eth%d");
2077         err = register_netdev(netdev);
2078         if (err)
2079                 goto err_register;
2080
2081         /* carrier off reporting is important to ethtool even BEFORE open */
2082         netif_carrier_off(netdev);
2083
2084 #ifdef CONFIG_IGB_DCA
2085         if (dca_add_requester(&pdev->dev) == 0) {
2086                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2087                 dev_info(&pdev->dev, "DCA enabled\n");
2088                 igb_setup_dca(adapter);
2089         }
2090
2091 #endif
2092         /* do hw tstamp init after resetting */
2093         igb_init_hw_timer(adapter);
2094
2095         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2096         /* print bus type/speed/width info */
2097         dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2098                  netdev->name,
2099                  ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2100                   (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2101                                                             "unknown"),
2102                  ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2103                   (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2104                   (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2105                    "unknown"),
2106                  netdev->dev_addr);
2107
2108         ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2109         if (ret_val)
2110                 strcpy(part_str, "Unknown");
2111         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2112         dev_info(&pdev->dev,
2113                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2114                 adapter->msix_entries ? "MSI-X" :
2115                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2116                 adapter->num_rx_queues, adapter->num_tx_queues);
2117         switch (hw->mac.type) {
2118         case e1000_i350:
2119                 igb_set_eee_i350(hw);
2120                 break;
2121         default:
2122                 break;
2123         }
2124
2125         pm_runtime_put_noidle(&pdev->dev);
2126         return 0;
2127
2128 err_register:
2129         igb_release_hw_control(adapter);
2130 err_eeprom:
2131         if (!igb_check_reset_block(hw))
2132                 igb_reset_phy(hw);
2133
2134         if (hw->flash_address)
2135                 iounmap(hw->flash_address);
2136 err_sw_init:
2137         igb_clear_interrupt_scheme(adapter);
2138         iounmap(hw->hw_addr);
2139 err_ioremap:
2140         free_netdev(netdev);
2141 err_alloc_etherdev:
2142         pci_release_selected_regions(pdev,
2143                                      pci_select_bars(pdev, IORESOURCE_MEM));
2144 err_pci_reg:
2145 err_dma:
2146         pci_disable_device(pdev);
2147         return err;
2148 }
2149
2150 /**
2151  * igb_remove - Device Removal Routine
2152  * @pdev: PCI device information struct
2153  *
2154  * igb_remove is called by the PCI subsystem to alert the driver
2155  * that it should release a PCI device.  The could be caused by a
2156  * Hot-Plug event, or because the driver is going to be removed from
2157  * memory.
2158  **/
2159 static void __devexit igb_remove(struct pci_dev *pdev)
2160 {
2161         struct net_device *netdev = pci_get_drvdata(pdev);
2162         struct igb_adapter *adapter = netdev_priv(netdev);
2163         struct e1000_hw *hw = &adapter->hw;
2164
2165         pm_runtime_get_noresume(&pdev->dev);
2166
2167         /*
2168          * The watchdog timer may be rescheduled, so explicitly
2169          * disable watchdog from being rescheduled.
2170          */
2171         set_bit(__IGB_DOWN, &adapter->state);
2172         del_timer_sync(&adapter->watchdog_timer);
2173         del_timer_sync(&adapter->phy_info_timer);
2174
2175         cancel_work_sync(&adapter->reset_task);
2176         cancel_work_sync(&adapter->watchdog_task);
2177
2178 #ifdef CONFIG_IGB_DCA
2179         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2180                 dev_info(&pdev->dev, "DCA disabled\n");
2181                 dca_remove_requester(&pdev->dev);
2182                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2183                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2184         }
2185 #endif
2186
2187         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
2188          * would have already happened in close and is redundant. */
2189         igb_release_hw_control(adapter);
2190
2191         unregister_netdev(netdev);
2192
2193         igb_clear_interrupt_scheme(adapter);
2194
2195 #ifdef CONFIG_PCI_IOV
2196         /* reclaim resources allocated to VFs */
2197         if (adapter->vf_data) {
2198                 /* disable iov and allow time for transactions to clear */
2199                 if (!igb_check_vf_assignment(adapter)) {
2200                         pci_disable_sriov(pdev);
2201                         msleep(500);
2202                 } else {
2203                         dev_info(&pdev->dev, "VF(s) assigned to guests!\n");
2204                 }
2205
2206                 kfree(adapter->vf_data);
2207                 adapter->vf_data = NULL;
2208                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2209                 wrfl();
2210                 msleep(100);
2211                 dev_info(&pdev->dev, "IOV Disabled\n");
2212         }
2213 #endif
2214
2215         iounmap(hw->hw_addr);
2216         if (hw->flash_address)
2217                 iounmap(hw->flash_address);
2218         pci_release_selected_regions(pdev,
2219                                      pci_select_bars(pdev, IORESOURCE_MEM));
2220
2221         kfree(adapter->shadow_vfta);
2222         free_netdev(netdev);
2223
2224         pci_disable_pcie_error_reporting(pdev);
2225
2226         pci_disable_device(pdev);
2227 }
2228
2229 /**
2230  * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2231  * @adapter: board private structure to initialize
2232  *
2233  * This function initializes the vf specific data storage and then attempts to
2234  * allocate the VFs.  The reason for ordering it this way is because it is much
2235  * mor expensive time wise to disable SR-IOV than it is to allocate and free
2236  * the memory for the VFs.
2237  **/
2238 static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2239 {
2240 #ifdef CONFIG_PCI_IOV
2241         struct pci_dev *pdev = adapter->pdev;
2242         int old_vfs = igb_find_enabled_vfs(adapter);
2243         int i;
2244
2245         if (old_vfs) {
2246                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override "
2247                          "max_vfs setting of %d\n", old_vfs, max_vfs);
2248                 adapter->vfs_allocated_count = old_vfs;
2249         }
2250
2251         if (!adapter->vfs_allocated_count)
2252                 return;
2253
2254         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2255                                 sizeof(struct vf_data_storage), GFP_KERNEL);
2256         /* if allocation failed then we do not support SR-IOV */
2257         if (!adapter->vf_data) {
2258                 adapter->vfs_allocated_count = 0;
2259                 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2260                         "Data Storage\n");
2261                 goto out;
2262         }
2263
2264         if (!old_vfs) {
2265                 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count))
2266                         goto err_out;
2267         }
2268         dev_info(&pdev->dev, "%d VFs allocated\n",
2269                  adapter->vfs_allocated_count);
2270         for (i = 0; i < adapter->vfs_allocated_count; i++)
2271                 igb_vf_configure(adapter, i);
2272
2273         /* DMA Coalescing is not supported in IOV mode. */
2274         adapter->flags &= ~IGB_FLAG_DMAC;
2275         goto out;
2276 err_out:
2277         kfree(adapter->vf_data);
2278         adapter->vf_data = NULL;
2279         adapter->vfs_allocated_count = 0;
2280 out:
2281         return;
2282 #endif /* CONFIG_PCI_IOV */
2283 }
2284
2285 /**
2286  * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
2287  * @adapter: board private structure to initialize
2288  *
2289  * igb_init_hw_timer initializes the function pointer and values for the hw
2290  * timer found in hardware.
2291  **/
2292 static void igb_init_hw_timer(struct igb_adapter *adapter)
2293 {
2294         struct e1000_hw *hw = &adapter->hw;
2295
2296         switch (hw->mac.type) {
2297         case e1000_i350:
2298         case e1000_82580:
2299                 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2300                 adapter->cycles.read = igb_read_clock;
2301                 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2302                 adapter->cycles.mult = 1;
2303                 /*
2304                  * The 82580 timesync updates the system timer every 8ns by 8ns
2305                  * and the value cannot be shifted.  Instead we need to shift
2306                  * the registers to generate a 64bit timer value.  As a result
2307                  * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
2308                  * 24 in order to generate a larger value for synchronization.
2309                  */
2310                 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
2311                 /* disable system timer temporarily by setting bit 31 */
2312                 wr32(E1000_TSAUXC, 0x80000000);
2313                 wrfl();
2314
2315                 /* Set registers so that rollover occurs soon to test this. */
2316                 wr32(E1000_SYSTIMR, 0x00000000);
2317                 wr32(E1000_SYSTIML, 0x80000000);
2318                 wr32(E1000_SYSTIMH, 0x000000FF);
2319                 wrfl();
2320
2321                 /* enable system timer by clearing bit 31 */
2322                 wr32(E1000_TSAUXC, 0x0);
2323                 wrfl();
2324
2325                 timecounter_init(&adapter->clock,
2326                                  &adapter->cycles,
2327                                  ktime_to_ns(ktime_get_real()));
2328                 /*
2329                  * Synchronize our NIC clock against system wall clock. NIC
2330                  * time stamp reading requires ~3us per sample, each sample
2331                  * was pretty stable even under load => only require 10
2332                  * samples for each offset comparison.
2333                  */
2334                 memset(&adapter->compare, 0, sizeof(adapter->compare));
2335                 adapter->compare.source = &adapter->clock;
2336                 adapter->compare.target = ktime_get_real;
2337                 adapter->compare.num_samples = 10;
2338                 timecompare_update(&adapter->compare, 0);
2339                 break;
2340         case e1000_82576:
2341                 /*
2342                  * Initialize hardware timer: we keep it running just in case
2343                  * that some program needs it later on.
2344                  */
2345                 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2346                 adapter->cycles.read = igb_read_clock;
2347                 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2348                 adapter->cycles.mult = 1;
2349                 /**
2350                  * Scale the NIC clock cycle by a large factor so that
2351                  * relatively small clock corrections can be added or
2352                  * subtracted at each clock tick. The drawbacks of a large
2353                  * factor are a) that the clock register overflows more quickly
2354                  * (not such a big deal) and b) that the increment per tick has
2355                  * to fit into 24 bits.  As a result we need to use a shift of
2356                  * 19 so we can fit a value of 16 into the TIMINCA register.
2357                  */
2358                 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
2359                 wr32(E1000_TIMINCA,
2360                                 (1 << E1000_TIMINCA_16NS_SHIFT) |
2361                                 (16 << IGB_82576_TSYNC_SHIFT));
2362
2363                 /* Set registers so that rollover occurs soon to test this. */
2364                 wr32(E1000_SYSTIML, 0x00000000);
2365                 wr32(E1000_SYSTIMH, 0xFF800000);
2366                 wrfl();
2367
2368                 timecounter_init(&adapter->clock,
2369                                  &adapter->cycles,
2370                                  ktime_to_ns(ktime_get_real()));
2371                 /*
2372                  * Synchronize our NIC clock against system wall clock. NIC
2373                  * time stamp reading requires ~3us per sample, each sample
2374                  * was pretty stable even under load => only require 10
2375                  * samples for each offset comparison.
2376                  */
2377                 memset(&adapter->compare, 0, sizeof(adapter->compare));
2378                 adapter->compare.source = &adapter->clock;
2379                 adapter->compare.target = ktime_get_real;
2380                 adapter->compare.num_samples = 10;
2381                 timecompare_update(&adapter->compare, 0);
2382                 break;
2383         case e1000_82575:
2384                 /* 82575 does not support timesync */
2385         default:
2386                 break;
2387         }
2388
2389 }
2390
2391 /**
2392  * igb_sw_init - Initialize general software structures (struct igb_adapter)
2393  * @adapter: board private structure to initialize
2394  *
2395  * igb_sw_init initializes the Adapter private data structure.
2396  * Fields are initialized based on PCI device information and
2397  * OS network device settings (MTU size).
2398  **/
2399 static int __devinit igb_sw_init(struct igb_adapter *adapter)
2400 {
2401         struct e1000_hw *hw = &adapter->hw;
2402         struct net_device *netdev = adapter->netdev;
2403         struct pci_dev *pdev = adapter->pdev;
2404
2405         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2406
2407         /* set default ring sizes */
2408         adapter->tx_ring_count = IGB_DEFAULT_TXD;
2409         adapter->rx_ring_count = IGB_DEFAULT_RXD;
2410
2411         /* set default ITR values */
2412         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2413         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2414
2415         /* set default work limits */
2416         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2417
2418         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2419                                   VLAN_HLEN;
2420         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2421
2422         adapter->node = -1;
2423
2424         spin_lock_init(&adapter->stats64_lock);
2425 #ifdef CONFIG_PCI_IOV
2426         switch (hw->mac.type) {
2427         case e1000_82576:
2428         case e1000_i350:
2429                 if (max_vfs > 7) {
2430                         dev_warn(&pdev->dev,
2431                                  "Maximum of 7 VFs per PF, using max\n");
2432                         adapter->vfs_allocated_count = 7;
2433                 } else
2434                         adapter->vfs_allocated_count = max_vfs;
2435                 break;
2436         default:
2437                 break;
2438         }
2439 #endif /* CONFIG_PCI_IOV */
2440         adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
2441         /* i350 cannot do RSS and SR-IOV at the same time */
2442         if (hw->mac.type == e1000_i350 && adapter->vfs_allocated_count)
2443                 adapter->rss_queues = 1;
2444
2445         /*
2446          * if rss_queues > 4 or vfs are going to be allocated with rss_queues
2447          * then we should combine the queues into a queue pair in order to
2448          * conserve interrupts due to limited supply
2449          */
2450         if ((adapter->rss_queues > 4) ||
2451             ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
2452                 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2453
2454         /* Setup and initialize a copy of the hw vlan table array */
2455         adapter->shadow_vfta = kzalloc(sizeof(u32) *
2456                                 E1000_VLAN_FILTER_TBL_SIZE,
2457                                 GFP_ATOMIC);
2458
2459         /* This call may decrease the number of queues */
2460         if (igb_init_interrupt_scheme(adapter)) {
2461                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2462                 return -ENOMEM;
2463         }
2464
2465         igb_probe_vfs(adapter);
2466
2467         /* Explicitly disable IRQ since the NIC can be in any state. */
2468         igb_irq_disable(adapter);
2469
2470         if (hw->mac.type == e1000_i350)
2471                 adapter->flags &= ~IGB_FLAG_DMAC;
2472
2473         set_bit(__IGB_DOWN, &adapter->state);
2474         return 0;
2475 }
2476
2477 /**
2478  * igb_open - Called when a network interface is made active
2479  * @netdev: network interface device structure
2480  *
2481  * Returns 0 on success, negative value on failure
2482  *
2483  * The open entry point is called when a network interface is made
2484  * active by the system (IFF_UP).  At this point all resources needed
2485  * for transmit and receive operations are allocated, the interrupt
2486  * handler is registered with the OS, the watchdog timer is started,
2487  * and the stack is notified that the interface is ready.
2488  **/
2489 static int __igb_open(struct net_device *netdev, bool resuming)
2490 {
2491         struct igb_adapter *adapter = netdev_priv(netdev);
2492         struct e1000_hw *hw = &adapter->hw;
2493         struct pci_dev *pdev = adapter->pdev;
2494         int err;
2495         int i;
2496
2497         /* disallow open during test */
2498         if (test_bit(__IGB_TESTING, &adapter->state)) {
2499                 WARN_ON(resuming);
2500                 return -EBUSY;
2501         }
2502
2503         if (!resuming)
2504                 pm_runtime_get_sync(&pdev->dev);
2505
2506         netif_carrier_off(netdev);
2507
2508         /* allocate transmit descriptors */
2509         err = igb_setup_all_tx_resources(adapter);
2510         if (err)
2511                 goto err_setup_tx;
2512
2513         /* allocate receive descriptors */
2514         err = igb_setup_all_rx_resources(adapter);
2515         if (err)
2516                 goto err_setup_rx;
2517
2518         igb_power_up_link(adapter);
2519
2520         /* before we allocate an interrupt, we must be ready to handle it.
2521          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2522          * as soon as we call pci_request_irq, so we have to setup our
2523          * clean_rx handler before we do so.  */
2524         igb_configure(adapter);
2525
2526         err = igb_request_irq(adapter);
2527         if (err)
2528                 goto err_req_irq;
2529
2530         /* From here on the code is the same as igb_up() */
2531         clear_bit(__IGB_DOWN, &adapter->state);
2532
2533         for (i = 0; i < adapter->num_q_vectors; i++)
2534                 napi_enable(&(adapter->q_vector[i]->napi));
2535
2536         /* Clear any pending interrupts. */
2537         rd32(E1000_ICR);
2538
2539         igb_irq_enable(adapter);
2540
2541         /* notify VFs that reset has been completed */
2542         if (adapter->vfs_allocated_count) {
2543                 u32 reg_data = rd32(E1000_CTRL_EXT);
2544                 reg_data |= E1000_CTRL_EXT_PFRSTD;
2545                 wr32(E1000_CTRL_EXT, reg_data);
2546         }
2547
2548         netif_tx_start_all_queues(netdev);
2549
2550         if (!resuming)
2551                 pm_runtime_put(&pdev->dev);
2552
2553         /* start the watchdog. */
2554         hw->mac.get_link_status = 1;
2555         schedule_work(&adapter->watchdog_task);
2556
2557         return 0;
2558
2559 err_req_irq:
2560         igb_release_hw_control(adapter);
2561         igb_power_down_link(adapter);
2562         igb_free_all_rx_resources(adapter);
2563 err_setup_rx:
2564         igb_free_all_tx_resources(adapter);
2565 err_setup_tx:
2566         igb_reset(adapter);
2567         if (!resuming)
2568                 pm_runtime_put(&pdev->dev);
2569
2570         return err;
2571 }
2572
2573 static int igb_open(struct net_device *netdev)
2574 {
2575         return __igb_open(netdev, false);
2576 }
2577
2578 /**
2579  * igb_close - Disables a network interface
2580  * @netdev: network interface device structure
2581  *
2582  * Returns 0, this is not allowed to fail
2583  *
2584  * The close entry point is called when an interface is de-activated
2585  * by the OS.  The hardware is still under the driver's control, but
2586  * needs to be disabled.  A global MAC reset is issued to stop the
2587  * hardware, and all transmit and receive resources are freed.
2588  **/
2589 static int __igb_close(struct net_device *netdev, bool suspending)
2590 {
2591         struct igb_adapter *adapter = netdev_priv(netdev);
2592         struct pci_dev *pdev = adapter->pdev;
2593
2594         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2595
2596         if (!suspending)
2597                 pm_runtime_get_sync(&pdev->dev);
2598
2599         igb_down(adapter);
2600         igb_free_irq(adapter);
2601
2602         igb_free_all_tx_resources(adapter);
2603         igb_free_all_rx_resources(adapter);
2604
2605         if (!suspending)
2606                 pm_runtime_put_sync(&pdev->dev);
2607         return 0;
2608 }
2609
2610 static int igb_close(struct net_device *netdev)
2611 {
2612         return __igb_close(netdev, false);
2613 }
2614
2615 /**
2616  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2617  * @tx_ring: tx descriptor ring (for a specific queue) to setup
2618  *
2619  * Return 0 on success, negative on failure
2620  **/
2621 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2622 {
2623         struct device *dev = tx_ring->dev;
2624         int orig_node = dev_to_node(dev);
2625         int size;
2626
2627         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2628         tx_ring->tx_buffer_info = vzalloc_node(size, tx_ring->numa_node);
2629         if (!tx_ring->tx_buffer_info)
2630                 tx_ring->tx_buffer_info = vzalloc(size);
2631         if (!tx_ring->tx_buffer_info)
2632                 goto err;
2633
2634         /* round up to nearest 4K */
2635         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2636         tx_ring->size = ALIGN(tx_ring->size, 4096);
2637
2638         set_dev_node(dev, tx_ring->numa_node);
2639         tx_ring->desc = dma_alloc_coherent(dev,
2640                                            tx_ring->size,
2641                                            &tx_ring->dma,
2642                                            GFP_KERNEL);
2643         set_dev_node(dev, orig_node);
2644         if (!tx_ring->desc)
2645                 tx_ring->desc = dma_alloc_coherent(dev,
2646                                                    tx_ring->size,
2647                                                    &tx_ring->dma,
2648                                                    GFP_KERNEL);
2649
2650         if (!tx_ring->desc)
2651                 goto err;
2652
2653         tx_ring->next_to_use = 0;
2654         tx_ring->next_to_clean = 0;
2655
2656         return 0;
2657
2658 err:
2659         vfree(tx_ring->tx_buffer_info);
2660         dev_err(dev,
2661                 "Unable to allocate memory for the transmit descriptor ring\n");
2662         return -ENOMEM;
2663 }
2664
2665 /**
2666  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2667  *                                (Descriptors) for all queues
2668  * @adapter: board private structure
2669  *
2670  * Return 0 on success, negative on failure
2671  **/
2672 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2673 {
2674         struct pci_dev *pdev = adapter->pdev;
2675         int i, err = 0;
2676
2677         for (i = 0; i < adapter->num_tx_queues; i++) {
2678                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
2679                 if (err) {
2680                         dev_err(&pdev->dev,
2681                                 "Allocation for Tx Queue %u failed\n", i);
2682                         for (i--; i >= 0; i--)
2683                                 igb_free_tx_resources(adapter->tx_ring[i]);
2684                         break;
2685                 }
2686         }
2687
2688         return err;
2689 }
2690
2691 /**
2692  * igb_setup_tctl - configure the transmit control registers
2693  * @adapter: Board private structure
2694  **/
2695 void igb_setup_tctl(struct igb_adapter *adapter)
2696 {
2697         struct e1000_hw *hw = &adapter->hw;
2698         u32 tctl;
2699
2700         /* disable queue 0 which is enabled by default on 82575 and 82576 */
2701         wr32(E1000_TXDCTL(0), 0);
2702
2703         /* Program the Transmit Control Register */
2704         tctl = rd32(E1000_TCTL);
2705         tctl &= ~E1000_TCTL_CT;
2706         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2707                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2708
2709         igb_config_collision_dist(hw);
2710
2711         /* Enable transmits */
2712         tctl |= E1000_TCTL_EN;
2713
2714         wr32(E1000_TCTL, tctl);
2715 }
2716
2717 /**
2718  * igb_configure_tx_ring - Configure transmit ring after Reset
2719  * @adapter: board private structure
2720  * @ring: tx ring to configure
2721  *
2722  * Configure a transmit ring after a reset.
2723  **/
2724 void igb_configure_tx_ring(struct igb_adapter *adapter,
2725                            struct igb_ring *ring)
2726 {
2727         struct e1000_hw *hw = &adapter->hw;
2728         u32 txdctl = 0;
2729         u64 tdba = ring->dma;
2730         int reg_idx = ring->reg_idx;
2731
2732         /* disable the queue */
2733         wr32(E1000_TXDCTL(reg_idx), 0);
2734         wrfl();
2735         mdelay(10);
2736
2737         wr32(E1000_TDLEN(reg_idx),
2738                         ring->count * sizeof(union e1000_adv_tx_desc));
2739         wr32(E1000_TDBAL(reg_idx),
2740                         tdba & 0x00000000ffffffffULL);
2741         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2742
2743         ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2744         wr32(E1000_TDH(reg_idx), 0);
2745         writel(0, ring->tail);
2746
2747         txdctl |= IGB_TX_PTHRESH;
2748         txdctl |= IGB_TX_HTHRESH << 8;
2749         txdctl |= IGB_TX_WTHRESH << 16;
2750
2751         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2752         wr32(E1000_TXDCTL(reg_idx), txdctl);
2753 }
2754
2755 /**
2756  * igb_configure_tx - Configure transmit Unit after Reset
2757  * @adapter: board private structure
2758  *
2759  * Configure the Tx unit of the MAC after a reset.
2760  **/
2761 static void igb_configure_tx(struct igb_adapter *adapter)
2762 {
2763         int i;
2764
2765         for (i = 0; i < adapter->num_tx_queues; i++)
2766                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2767 }
2768
2769 /**
2770  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2771  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2772  *
2773  * Returns 0 on success, negative on failure
2774  **/
2775 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2776 {
2777         struct device *dev = rx_ring->dev;
2778         int orig_node = dev_to_node(dev);
2779         int size, desc_len;
2780
2781         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
2782         rx_ring->rx_buffer_info = vzalloc_node(size, rx_ring->numa_node);
2783         if (!rx_ring->rx_buffer_info)
2784                 rx_ring->rx_buffer_info = vzalloc(size);
2785         if (!rx_ring->rx_buffer_info)
2786                 goto err;
2787
2788         desc_len = sizeof(union e1000_adv_rx_desc);
2789
2790         /* Round up to nearest 4K */
2791         rx_ring->size = rx_ring->count * desc_len;
2792         rx_ring->size = ALIGN(rx_ring->size, 4096);
2793
2794         set_dev_node(dev, rx_ring->numa_node);
2795         rx_ring->desc = dma_alloc_coherent(dev,
2796                                            rx_ring->size,
2797                                            &rx_ring->dma,
2798                                            GFP_KERNEL);
2799         set_dev_node(dev, orig_node);
2800         if (!rx_ring->desc)
2801                 rx_ring->desc = dma_alloc_coherent(dev,
2802                                                    rx_ring->size,
2803                                                    &rx_ring->dma,
2804                                                    GFP_KERNEL);
2805
2806         if (!rx_ring->desc)
2807                 goto err;
2808
2809         rx_ring->next_to_clean = 0;
2810         rx_ring->next_to_use = 0;
2811
2812         return 0;
2813
2814 err:
2815         vfree(rx_ring->rx_buffer_info);
2816         rx_ring->rx_buffer_info = NULL;
2817         dev_err(dev, "Unable to allocate memory for the receive descriptor"
2818                 " ring\n");
2819         return -ENOMEM;
2820 }
2821
2822 /**
2823  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2824  *                                (Descriptors) for all queues
2825  * @adapter: board private structure
2826  *
2827  * Return 0 on success, negative on failure
2828  **/
2829 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2830 {
2831         struct pci_dev *pdev = adapter->pdev;
2832         int i, err = 0;
2833
2834         for (i = 0; i < adapter->num_rx_queues; i++) {
2835                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
2836                 if (err) {
2837                         dev_err(&pdev->dev,
2838                                 "Allocation for Rx Queue %u failed\n", i);
2839                         for (i--; i >= 0; i--)
2840                                 igb_free_rx_resources(adapter->rx_ring[i]);
2841                         break;
2842                 }
2843         }
2844
2845         return err;
2846 }
2847
2848 /**
2849  * igb_setup_mrqc - configure the multiple receive queue control registers
2850  * @adapter: Board private structure
2851  **/
2852 static void igb_setup_mrqc(struct igb_adapter *adapter)
2853 {
2854         struct e1000_hw *hw = &adapter->hw;
2855         u32 mrqc, rxcsum;
2856         u32 j, num_rx_queues, shift = 0, shift2 = 0;
2857         union e1000_reta {
2858                 u32 dword;
2859                 u8  bytes[4];
2860         } reta;
2861         static const u8 rsshash[40] = {
2862                 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2863                 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2864                 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2865                 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2866
2867         /* Fill out hash function seeds */
2868         for (j = 0; j < 10; j++) {
2869                 u32 rsskey = rsshash[(j * 4)];
2870                 rsskey |= rsshash[(j * 4) + 1] << 8;
2871                 rsskey |= rsshash[(j * 4) + 2] << 16;
2872                 rsskey |= rsshash[(j * 4) + 3] << 24;
2873                 array_wr32(E1000_RSSRK(0), j, rsskey);
2874         }
2875
2876         num_rx_queues = adapter->rss_queues;
2877
2878         if (adapter->vfs_allocated_count) {
2879                 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2880                 switch (hw->mac.type) {
2881                 case e1000_i350:
2882                 case e1000_82580:
2883                         num_rx_queues = 1;
2884                         shift = 0;
2885                         break;
2886                 case e1000_82576:
2887                         shift = 3;
2888                         num_rx_queues = 2;
2889                         break;
2890                 case e1000_82575:
2891                         shift = 2;
2892                         shift2 = 6;
2893                 default:
2894                         break;
2895                 }
2896         } else {
2897                 if (hw->mac.type == e1000_82575)
2898                         shift = 6;
2899         }
2900
2901         for (j = 0; j < (32 * 4); j++) {
2902                 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2903                 if (shift2)
2904                         reta.bytes[j & 3] |= num_rx_queues << shift2;
2905                 if ((j & 3) == 3)
2906                         wr32(E1000_RETA(j >> 2), reta.dword);
2907         }
2908
2909         /*
2910          * Disable raw packet checksumming so that RSS hash is placed in
2911          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
2912          * offloads as they are enabled by default
2913          */
2914         rxcsum = rd32(E1000_RXCSUM);
2915         rxcsum |= E1000_RXCSUM_PCSD;
2916
2917         if (adapter->hw.mac.type >= e1000_82576)
2918                 /* Enable Receive Checksum Offload for SCTP */
2919                 rxcsum |= E1000_RXCSUM_CRCOFL;
2920
2921         /* Don't need to set TUOFL or IPOFL, they default to 1 */
2922         wr32(E1000_RXCSUM, rxcsum);
2923
2924         /* If VMDq is enabled then we set the appropriate mode for that, else
2925          * we default to RSS so that an RSS hash is calculated per packet even
2926          * if we are only using one queue */
2927         if (adapter->vfs_allocated_count) {
2928                 if (hw->mac.type > e1000_82575) {
2929                         /* Set the default pool for the PF's first queue */
2930                         u32 vtctl = rd32(E1000_VT_CTL);
2931                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2932                                    E1000_VT_CTL_DISABLE_DEF_POOL);
2933                         vtctl |= adapter->vfs_allocated_count <<
2934                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2935                         wr32(E1000_VT_CTL, vtctl);
2936                 }
2937                 if (adapter->rss_queues > 1)
2938                         mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2939                 else
2940                         mrqc = E1000_MRQC_ENABLE_VMDQ;
2941         } else {
2942                 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2943         }
2944         igb_vmm_control(adapter);
2945
2946         /*
2947          * Generate RSS hash based on TCP port numbers and/or
2948          * IPv4/v6 src and dst addresses since UDP cannot be
2949          * hashed reliably due to IP fragmentation
2950          */
2951         mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2952                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2953                 E1000_MRQC_RSS_FIELD_IPV6 |
2954                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
2955                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
2956
2957         wr32(E1000_MRQC, mrqc);
2958 }
2959
2960 /**
2961  * igb_setup_rctl - configure the receive control registers
2962  * @adapter: Board private structure
2963  **/
2964 void igb_setup_rctl(struct igb_adapter *adapter)
2965 {
2966         struct e1000_hw *hw = &adapter->hw;
2967         u32 rctl;
2968
2969         rctl = rd32(E1000_RCTL);
2970
2971         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2972         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2973
2974         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2975                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2976
2977         /*
2978          * enable stripping of CRC. It's unlikely this will break BMC
2979          * redirection as it did with e1000. Newer features require
2980          * that the HW strips the CRC.
2981          */
2982         rctl |= E1000_RCTL_SECRC;
2983
2984         /* disable store bad packets and clear size bits. */
2985         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2986
2987         /* enable LPE to prevent packets larger than max_frame_size */
2988         rctl |= E1000_RCTL_LPE;
2989
2990         /* disable queue 0 to prevent tail write w/o re-config */
2991         wr32(E1000_RXDCTL(0), 0);
2992
2993         /* Attention!!!  For SR-IOV PF driver operations you must enable
2994          * queue drop for all VF and PF queues to prevent head of line blocking
2995          * if an un-trusted VF does not provide descriptors to hardware.
2996          */
2997         if (adapter->vfs_allocated_count) {
2998                 /* set all queue drop enable bits */
2999                 wr32(E1000_QDE, ALL_QUEUES);
3000         }
3001
3002         wr32(E1000_RCTL, rctl);
3003 }
3004
3005 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3006                                    int vfn)
3007 {
3008         struct e1000_hw *hw = &adapter->hw;
3009         u32 vmolr;
3010
3011         /* if it isn't the PF check to see if VFs are enabled and
3012          * increase the size to support vlan tags */
3013         if (vfn < adapter->vfs_allocated_count &&
3014             adapter->vf_data[vfn].vlans_enabled)
3015                 size += VLAN_TAG_SIZE;
3016
3017         vmolr = rd32(E1000_VMOLR(vfn));
3018         vmolr &= ~E1000_VMOLR_RLPML_MASK;
3019         vmolr |= size | E1000_VMOLR_LPE;
3020         wr32(E1000_VMOLR(vfn), vmolr);
3021
3022         return 0;
3023 }
3024
3025 /**
3026  * igb_rlpml_set - set maximum receive packet size
3027  * @adapter: board private structure
3028  *
3029  * Configure maximum receivable packet size.
3030  **/
3031 static void igb_rlpml_set(struct igb_adapter *adapter)
3032 {
3033         u32 max_frame_size = adapter->max_frame_size;
3034         struct e1000_hw *hw = &adapter->hw;
3035         u16 pf_id = adapter->vfs_allocated_count;
3036
3037         if (pf_id) {
3038                 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3039                 /*
3040                  * If we're in VMDQ or SR-IOV mode, then set global RLPML
3041                  * to our max jumbo frame size, in case we need to enable
3042                  * jumbo frames on one of the rings later.
3043                  * This will not pass over-length frames into the default
3044                  * queue because it's gated by the VMOLR.RLPML.
3045                  */
3046                 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3047         }
3048
3049         wr32(E1000_RLPML, max_frame_size);
3050 }
3051
3052 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3053                                  int vfn, bool aupe)
3054 {
3055         struct e1000_hw *hw = &adapter->hw;
3056         u32 vmolr;
3057
3058         /*
3059          * This register exists only on 82576 and newer so if we are older then
3060          * we should exit and do nothing
3061          */
3062         if (hw->mac.type < e1000_82576)
3063                 return;
3064
3065         vmolr = rd32(E1000_VMOLR(vfn));
3066         vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
3067         if (aupe)
3068                 vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
3069         else
3070                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3071
3072         /* clear all bits that might not be set */
3073         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3074
3075         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3076                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3077         /*
3078          * for VMDq only allow the VFs and pool 0 to accept broadcast and
3079          * multicast packets
3080          */
3081         if (vfn <= adapter->vfs_allocated_count)
3082                 vmolr |= E1000_VMOLR_BAM;          /* Accept broadcast */
3083
3084         wr32(E1000_VMOLR(vfn), vmolr);
3085 }
3086
3087 /**
3088  * igb_configure_rx_ring - Configure a receive ring after Reset
3089  * @adapter: board private structure
3090  * @ring: receive ring to be configured
3091  *
3092  * Configure the Rx unit of the MAC after a reset.
3093  **/
3094 void igb_configure_rx_ring(struct igb_adapter *adapter,
3095                            struct igb_ring *ring)
3096 {
3097         struct e1000_hw *hw = &adapter->hw;
3098         u64 rdba = ring->dma;
3099         int reg_idx = ring->reg_idx;
3100         u32 srrctl = 0, rxdctl = 0;
3101
3102         /* disable the queue */
3103         wr32(E1000_RXDCTL(reg_idx), 0);
3104
3105         /* Set DMA base address registers */
3106         wr32(E1000_RDBAL(reg_idx),
3107              rdba & 0x00000000ffffffffULL);
3108         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3109         wr32(E1000_RDLEN(reg_idx),
3110                        ring->count * sizeof(union e1000_adv_rx_desc));
3111
3112         /* initialize head and tail */
3113         ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3114         wr32(E1000_RDH(reg_idx), 0);
3115         writel(0, ring->tail);
3116
3117         /* set descriptor configuration */
3118         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3119 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3120         srrctl |= IGB_RXBUFFER_16384 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3121 #else
3122         srrctl |= (PAGE_SIZE / 2) >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3123 #endif
3124         srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
3125         if (hw->mac.type >= e1000_82580)
3126                 srrctl |= E1000_SRRCTL_TIMESTAMP;
3127         /* Only set Drop Enable if we are supporting multiple queues */
3128         if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3129                 srrctl |= E1000_SRRCTL_DROP_EN;
3130
3131         wr32(E1000_SRRCTL(reg_idx), srrctl);
3132
3133         /* set filtering for VMDQ pools */
3134         igb_set_vmolr(adapter, reg_idx & 0x7, true);
3135
3136         rxdctl |= IGB_RX_PTHRESH;
3137         rxdctl |= IGB_RX_HTHRESH << 8;
3138         rxdctl |= IGB_RX_WTHRESH << 16;
3139
3140         /* enable receive descriptor fetching */
3141         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3142         wr32(E1000_RXDCTL(reg_idx), rxdctl);
3143 }
3144
3145 /**
3146  * igb_configure_rx - Configure receive Unit after Reset
3147  * @adapter: board private structure
3148  *
3149  * Configure the Rx unit of the MAC after a reset.
3150  **/
3151 static void igb_configure_rx(struct igb_adapter *adapter)
3152 {
3153         int i;
3154
3155         /* set UTA to appropriate mode */
3156         igb_set_uta(adapter);
3157
3158         /* set the correct pool for the PF default MAC address in entry 0 */
3159         igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3160                          adapter->vfs_allocated_count);
3161
3162         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3163          * the Base and Length of the Rx Descriptor Ring */
3164         for (i = 0; i < adapter->num_rx_queues; i++)
3165                 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3166 }
3167
3168 /**
3169  * igb_free_tx_resources - Free Tx Resources per Queue
3170  * @tx_ring: Tx descriptor ring for a specific queue
3171  *
3172  * Free all transmit software resources
3173  **/
3174 void igb_free_tx_resources(struct igb_ring *tx_ring)
3175 {
3176         igb_clean_tx_ring(tx_ring);
3177
3178         vfree(tx_ring->tx_buffer_info);
3179         tx_ring->tx_buffer_info = NULL;
3180
3181         /* if not set, then don't free */
3182         if (!tx_ring->desc)
3183                 return;
3184
3185         dma_free_coherent(tx_ring->dev, tx_ring->size,
3186                           tx_ring->desc, tx_ring->dma);
3187
3188         tx_ring->desc = NULL;
3189 }
3190
3191 /**
3192  * igb_free_all_tx_resources - Free Tx Resources for All Queues
3193  * @adapter: board private structure
3194  *
3195  * Free all transmit software resources
3196  **/
3197 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3198 {
3199         int i;
3200
3201         for (i = 0; i < adapter->num_tx_queues; i++)
3202                 igb_free_tx_resources(adapter->tx_ring[i]);
3203 }
3204
3205 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3206                                     struct igb_tx_buffer *tx_buffer)
3207 {
3208         if (tx_buffer->skb) {
3209                 dev_kfree_skb_any(tx_buffer->skb);
3210                 if (tx_buffer->dma)
3211                         dma_unmap_single(ring->dev,
3212                                          tx_buffer->dma,
3213                                          tx_buffer->length,
3214                                          DMA_TO_DEVICE);
3215         } else if (tx_buffer->dma) {
3216                 dma_unmap_page(ring->dev,
3217                                tx_buffer->dma,
3218                                tx_buffer->length,
3219                                DMA_TO_DEVICE);
3220         }
3221         tx_buffer->next_to_watch = NULL;
3222         tx_buffer->skb = NULL;
3223         tx_buffer->dma = 0;
3224         /* buffer_info must be completely set up in the transmit path */
3225 }
3226
3227 /**
3228  * igb_clean_tx_ring - Free Tx Buffers
3229  * @tx_ring: ring to be cleaned
3230  **/
3231 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3232 {
3233         struct igb_tx_buffer *buffer_info;
3234         unsigned long size;
3235         u16 i;
3236
3237         if (!tx_ring->tx_buffer_info)
3238                 return;
3239         /* Free all the Tx ring sk_buffs */
3240
3241         for (i = 0; i < tx_ring->count; i++) {
3242                 buffer_info = &tx_ring->tx_buffer_info[i];
3243                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3244         }
3245         netdev_tx_reset_queue(txring_txq(tx_ring));
3246
3247         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3248         memset(tx_ring->tx_buffer_info, 0, size);
3249
3250         /* Zero out the descriptor ring */
3251         memset(tx_ring->desc, 0, tx_ring->size);
3252
3253         tx_ring->next_to_use = 0;
3254         tx_ring->next_to_clean = 0;
3255 }
3256
3257 /**
3258  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3259  * @adapter: board private structure
3260  **/
3261 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3262 {
3263         int i;
3264
3265         for (i = 0; i < adapter->num_tx_queues; i++)
3266                 igb_clean_tx_ring(adapter->tx_ring[i]);
3267 }
3268
3269 /**
3270  * igb_free_rx_resources - Free Rx Resources
3271  * @rx_ring: ring to clean the resources from
3272  *
3273  * Free all receive software resources
3274  **/
3275 void igb_free_rx_resources(struct igb_ring *rx_ring)
3276 {
3277         igb_clean_rx_ring(rx_ring);
3278
3279         vfree(rx_ring->rx_buffer_info);
3280         rx_ring->rx_buffer_info = NULL;
3281
3282         /* if not set, then don't free */
3283         if (!rx_ring->desc)
3284                 return;
3285
3286         dma_free_coherent(rx_ring->dev, rx_ring->size,
3287                           rx_ring->desc, rx_ring->dma);
3288
3289         rx_ring->desc = NULL;
3290 }
3291
3292 /**
3293  * igb_free_all_rx_resources - Free Rx Resources for All Queues
3294  * @adapter: board private structure
3295  *
3296  * Free all receive software resources
3297  **/
3298 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3299 {
3300         int i;
3301
3302         for (i = 0; i < adapter->num_rx_queues; i++)
3303                 igb_free_rx_resources(adapter->rx_ring[i]);
3304 }
3305
3306 /**
3307  * igb_clean_rx_ring - Free Rx Buffers per Queue
3308  * @rx_ring: ring to free buffers from
3309  **/
3310 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3311 {
3312         unsigned long size;
3313         u16 i;
3314
3315         if (!rx_ring->rx_buffer_info)
3316                 return;
3317
3318         /* Free all the Rx ring sk_buffs */
3319         for (i = 0; i < rx_ring->count; i++) {
3320                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3321                 if (buffer_info->dma) {
3322                         dma_unmap_single(rx_ring->dev,
3323                                          buffer_info->dma,
3324                                          IGB_RX_HDR_LEN,
3325                                          DMA_FROM_DEVICE);
3326                         buffer_info->dma = 0;
3327                 }
3328
3329                 if (buffer_info->skb) {
3330                         dev_kfree_skb(buffer_info->skb);
3331                         buffer_info->skb = NULL;
3332                 }
3333                 if (buffer_info->page_dma) {
3334                         dma_unmap_page(rx_ring->dev,
3335                                        buffer_info->page_dma,
3336                                        PAGE_SIZE / 2,
3337                                        DMA_FROM_DEVICE);
3338                         buffer_info->page_dma = 0;
3339                 }
3340                 if (buffer_info->page) {
3341                         put_page(buffer_info->page);
3342                         buffer_info->page = NULL;
3343                         buffer_info->page_offset = 0;
3344                 }
3345         }
3346
3347         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3348         memset(rx_ring->rx_buffer_info, 0, size);
3349
3350         /* Zero out the descriptor ring */
3351         memset(rx_ring->desc, 0, rx_ring->size);
3352
3353         rx_ring->next_to_clean = 0;
3354         rx_ring->next_to_use = 0;
3355 }
3356
3357 /**
3358  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3359  * @adapter: board private structure
3360  **/
3361 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3362 {
3363         int i;
3364
3365         for (i = 0; i < adapter->num_rx_queues; i++)
3366                 igb_clean_rx_ring(adapter->rx_ring[i]);
3367 }
3368
3369 /**
3370  * igb_set_mac - Change the Ethernet Address of the NIC
3371  * @netdev: network interface device structure
3372  * @p: pointer to an address structure
3373  *
3374  * Returns 0 on success, negative on failure
3375  **/
3376 static int igb_set_mac(struct net_device *netdev, void *p)
3377 {
3378         struct igb_adapter *adapter = netdev_priv(netdev);
3379         struct e1000_hw *hw = &adapter->hw;
3380         struct sockaddr *addr = p;
3381
3382         if (!is_valid_ether_addr(addr->sa_data))
3383                 return -EADDRNOTAVAIL;
3384
3385         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3386         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3387
3388         /* set the correct pool for the new PF MAC address in entry 0 */
3389         igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3390                          adapter->vfs_allocated_count);
3391
3392         return 0;
3393 }
3394
3395 /**
3396  * igb_write_mc_addr_list - write multicast addresses to MTA
3397  * @netdev: network interface device structure
3398  *
3399  * Writes multicast address list to the MTA hash table.
3400  * Returns: -ENOMEM on failure
3401  *                0 on no addresses written
3402  *                X on writing X addresses to MTA
3403  **/
3404 static int igb_write_mc_addr_list(struct net_device *netdev)
3405 {
3406         struct igb_adapter *adapter = netdev_priv(netdev);
3407         struct e1000_hw *hw = &adapter->hw;
3408         struct netdev_hw_addr *ha;
3409         u8  *mta_list;
3410         int i;
3411
3412         if (netdev_mc_empty(netdev)) {
3413                 /* nothing to program, so clear mc list */
3414                 igb_update_mc_addr_list(hw, NULL, 0);
3415                 igb_restore_vf_multicasts(adapter);
3416                 return 0;
3417         }
3418
3419         mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3420         if (!mta_list)
3421                 return -ENOMEM;
3422
3423         /* The shared function expects a packed array of only addresses. */
3424         i = 0;
3425         netdev_for_each_mc_addr(ha, netdev)
3426                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3427
3428         igb_update_mc_addr_list(hw, mta_list, i);
3429         kfree(mta_list);
3430
3431         return netdev_mc_count(netdev);
3432 }
3433
3434 /**
3435  * igb_write_uc_addr_list - write unicast addresses to RAR table
3436  * @netdev: network interface device structure
3437  *
3438  * Writes unicast address list to the RAR table.
3439  * Returns: -ENOMEM on failure/insufficient address space
3440  *                0 on no addresses written
3441  *                X on writing X addresses to the RAR table
3442  **/
3443 static int igb_write_uc_addr_list(struct net_device *netdev)
3444 {
3445         struct igb_adapter *adapter = netdev_priv(netdev);
3446         struct e1000_hw *hw = &adapter->hw;
3447         unsigned int vfn = adapter->vfs_allocated_count;
3448         unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3449         int count = 0;
3450
3451         /* return ENOMEM indicating insufficient memory for addresses */
3452         if (netdev_uc_count(netdev) > rar_entries)
3453                 return -ENOMEM;
3454
3455         if (!netdev_uc_empty(netdev) && rar_entries) {
3456                 struct netdev_hw_addr *ha;
3457
3458                 netdev_for_each_uc_addr(ha, netdev) {
3459                         if (!rar_entries)
3460                                 break;
3461                         igb_rar_set_qsel(adapter, ha->addr,
3462                                          rar_entries--,
3463                                          vfn);
3464                         count++;
3465                 }
3466         }
3467         /* write the addresses in reverse order to avoid write combining */
3468         for (; rar_entries > 0 ; rar_entries--) {
3469                 wr32(E1000_RAH(rar_entries), 0);
3470                 wr32(E1000_RAL(rar_entries), 0);
3471         }
3472         wrfl();
3473
3474         return count;
3475 }
3476
3477 /**
3478  * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3479  * @netdev: network interface device structure
3480  *
3481  * The set_rx_mode entry point is called whenever the unicast or multicast
3482  * address lists or the network interface flags are updated.  This routine is
3483  * responsible for configuring the hardware for proper unicast, multicast,
3484  * promiscuous mode, and all-multi behavior.
3485  **/
3486 static void igb_set_rx_mode(struct net_device *netdev)
3487 {
3488         struct igb_adapter *adapter = netdev_priv(netdev);
3489         struct e1000_hw *hw = &adapter->hw;
3490         unsigned int vfn = adapter->vfs_allocated_count;
3491         u32 rctl, vmolr = 0;
3492         int count;
3493
3494         /* Check for Promiscuous and All Multicast modes */
3495         rctl = rd32(E1000_RCTL);
3496
3497         /* clear the effected bits */
3498         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3499
3500         if (netdev->flags & IFF_PROMISC) {
3501                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3502                 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3503         } else {
3504                 if (netdev->flags & IFF_ALLMULTI) {
3505                         rctl |= E1000_RCTL_MPE;
3506                         vmolr |= E1000_VMOLR_MPME;
3507                 } else {
3508                         /*
3509                          * Write addresses to the MTA, if the attempt fails
3510                          * then we should just turn on promiscuous mode so
3511                          * that we can at least receive multicast traffic
3512                          */
3513                         count = igb_write_mc_addr_list(netdev);
3514                         if (count < 0) {
3515                                 rctl |= E1000_RCTL_MPE;
3516                                 vmolr |= E1000_VMOLR_MPME;
3517                         } else if (count) {
3518                                 vmolr |= E1000_VMOLR_ROMPE;
3519                         }
3520                 }
3521                 /*
3522                  * Write addresses to available RAR registers, if there is not
3523                  * sufficient space to store all the addresses then enable
3524                  * unicast promiscuous mode
3525                  */
3526                 count = igb_write_uc_addr_list(netdev);
3527                 if (count < 0) {
3528                         rctl |= E1000_RCTL_UPE;
3529                         vmolr |= E1000_VMOLR_ROPE;
3530                 }
3531                 rctl |= E1000_RCTL_VFE;
3532         }
3533         wr32(E1000_RCTL, rctl);
3534
3535         /*
3536          * In order to support SR-IOV and eventually VMDq it is necessary to set
3537          * the VMOLR to enable the appropriate modes.  Without this workaround
3538          * we will have issues with VLAN tag stripping not being done for frames
3539          * that are only arriving because we are the default pool
3540          */
3541         if (hw->mac.type < e1000_82576)
3542                 return;
3543
3544         vmolr |= rd32(E1000_VMOLR(vfn)) &
3545                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3546         wr32(E1000_VMOLR(vfn), vmolr);
3547         igb_restore_vf_multicasts(adapter);
3548 }
3549
3550 static void igb_check_wvbr(struct igb_adapter *adapter)
3551 {
3552         struct e1000_hw *hw = &adapter->hw;
3553         u32 wvbr = 0;
3554
3555         switch (hw->mac.type) {
3556         case e1000_82576:
3557         case e1000_i350:
3558                 if (!(wvbr = rd32(E1000_WVBR)))
3559                         return;
3560                 break;
3561         default:
3562                 break;
3563         }
3564
3565         adapter->wvbr |= wvbr;
3566 }
3567
3568 #define IGB_STAGGERED_QUEUE_OFFSET 8
3569
3570 static void igb_spoof_check(struct igb_adapter *adapter)
3571 {
3572         int j;
3573
3574         if (!adapter->wvbr)
3575                 return;
3576
3577         for(j = 0; j < adapter->vfs_allocated_count; j++) {
3578                 if (adapter->wvbr & (1 << j) ||
3579                     adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3580                         dev_warn(&adapter->pdev->dev,
3581                                 "Spoof event(s) detected on VF %d\n", j);
3582                         adapter->wvbr &=
3583                                 ~((1 << j) |
3584                                   (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3585                 }
3586         }
3587 }
3588
3589 /* Need to wait a few seconds after link up to get diagnostic information from
3590  * the phy */
3591 static void igb_update_phy_info(unsigned long data)
3592 {
3593         struct igb_adapter *adapter = (struct igb_adapter *) data;
3594         igb_get_phy_info(&adapter->hw);
3595 }
3596
3597 /**
3598  * igb_has_link - check shared code for link and determine up/down
3599  * @adapter: pointer to driver private info
3600  **/
3601 bool igb_has_link(struct igb_adapter *adapter)
3602 {
3603         struct e1000_hw *hw = &adapter->hw;
3604         bool link_active = false;
3605         s32 ret_val = 0;
3606
3607         /* get_link_status is set on LSC (link status) interrupt or
3608          * rx sequence error interrupt.  get_link_status will stay
3609          * false until the e1000_check_for_link establishes link
3610          * for copper adapters ONLY
3611          */
3612         switch (hw->phy.media_type) {
3613         case e1000_media_type_copper:
3614                 if (hw->mac.get_link_status) {
3615                         ret_val = hw->mac.ops.check_for_link(hw);
3616                         link_active = !hw->mac.get_link_status;
3617                 } else {
3618                         link_active = true;
3619                 }
3620                 break;
3621         case e1000_media_type_internal_serdes:
3622                 ret_val = hw->mac.ops.check_for_link(hw);
3623                 link_active = hw->mac.serdes_has_link;
3624                 break;
3625         default:
3626         case e1000_media_type_unknown:
3627                 break;
3628         }
3629
3630         return link_active;
3631 }
3632
3633 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3634 {
3635         bool ret = false;
3636         u32 ctrl_ext, thstat;
3637
3638         /* check for thermal sensor event on i350, copper only */
3639         if (hw->mac.type == e1000_i350) {
3640                 thstat = rd32(E1000_THSTAT);
3641                 ctrl_ext = rd32(E1000_CTRL_EXT);
3642
3643                 if ((hw->phy.media_type == e1000_media_type_copper) &&
3644                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3645                         ret = !!(thstat & event);
3646                 }
3647         }
3648
3649         return ret;
3650 }
3651
3652 /**
3653  * igb_watchdog - Timer Call-back
3654  * @data: pointer to adapter cast into an unsigned long
3655  **/
3656 static void igb_watchdog(unsigned long data)
3657 {
3658         struct igb_adapter *adapter = (struct igb_adapter *)data;
3659         /* Do the rest outside of interrupt context */
3660         schedule_work(&adapter->watchdog_task);
3661 }
3662
3663 static void igb_watchdog_task(struct work_struct *work)
3664 {
3665         struct igb_adapter *adapter = container_of(work,
3666                                                    struct igb_adapter,
3667                                                    watchdog_task);
3668         struct e1000_hw *hw = &adapter->hw;
3669         struct net_device *netdev = adapter->netdev;
3670         u32 link;
3671         int i;
3672
3673         link = igb_has_link(adapter);
3674         if (link) {
3675                 /* Cancel scheduled suspend requests. */
3676                 pm_runtime_resume(netdev->dev.parent);
3677
3678                 if (!netif_carrier_ok(netdev)) {
3679                         u32 ctrl;
3680                         hw->mac.ops.get_speed_and_duplex(hw,
3681                                                          &adapter->link_speed,
3682                                                          &adapter->link_duplex);
3683
3684                         ctrl = rd32(E1000_CTRL);
3685                         /* Links status message must follow this format */
3686                         printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3687                                "Duplex, Flow Control: %s\n",
3688                                netdev->name,
3689                                adapter->link_speed,
3690                                adapter->link_duplex == FULL_DUPLEX ?
3691                                "Full" : "Half",
3692                                (ctrl & E1000_CTRL_TFCE) &&
3693                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3694                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
3695                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3696
3697                         /* check for thermal sensor event */
3698                         if (igb_thermal_sensor_event(hw,
3699                             E1000_THSTAT_LINK_THROTTLE)) {
3700                                 netdev_info(netdev, "The network adapter link "
3701                                             "speed was downshifted because it "
3702                                             "overheated\n");
3703                         }
3704
3705                         /* adjust timeout factor according to speed/duplex */
3706                         adapter->tx_timeout_factor = 1;
3707                         switch (adapter->link_speed) {
3708                         case SPEED_10:
3709                                 adapter->tx_timeout_factor = 14;
3710                                 break;
3711                         case SPEED_100:
3712                                 /* maybe add some timeout factor ? */
3713                                 break;
3714                         }
3715
3716                         netif_carrier_on(netdev);
3717
3718                         igb_ping_all_vfs(adapter);
3719                         igb_check_vf_rate_limit(adapter);
3720
3721                         /* link state has changed, schedule phy info update */
3722                         if (!test_bit(__IGB_DOWN, &adapter->state))
3723                                 mod_timer(&adapter->phy_info_timer,
3724                                           round_jiffies(jiffies + 2 * HZ));
3725                 }
3726         } else {
3727                 if (netif_carrier_ok(netdev)) {
3728                         adapter->link_speed = 0;
3729                         adapter->link_duplex = 0;
3730
3731                         /* check for thermal sensor event */
3732                         if (igb_thermal_sensor_event(hw,
3733                             E1000_THSTAT_PWR_DOWN)) {
3734                                 netdev_err(netdev, "The network adapter was "
3735                                            "stopped because it overheated\n");
3736                         }
3737
3738                         /* Links status message must follow this format */
3739                         printk(KERN_INFO "igb: %s NIC Link is Down\n",
3740                                netdev->name);
3741                         netif_carrier_off(netdev);
3742
3743                         igb_ping_all_vfs(adapter);
3744
3745                         /* link state has changed, schedule phy info update */
3746                         if (!test_bit(__IGB_DOWN, &adapter->state))
3747                                 mod_timer(&adapter->phy_info_timer,
3748                                           round_jiffies(jiffies + 2 * HZ));
3749
3750                         pm_schedule_suspend(netdev->dev.parent,
3751                                             MSEC_PER_SEC * 5);
3752                 }
3753         }
3754
3755         spin_lock(&adapter->stats64_lock);
3756         igb_update_stats(adapter, &adapter->stats64);
3757         spin_unlock(&adapter->stats64_lock);
3758
3759         for (i = 0; i < adapter->num_tx_queues; i++) {
3760                 struct igb_ring *tx_ring = adapter->tx_ring[i];
3761                 if (!netif_carrier_ok(netdev)) {
3762                         /* We've lost link, so the controller stops DMA,
3763                          * but we've got queued Tx work that's never going
3764                          * to get done, so reset controller to flush Tx.
3765                          * (Do the reset outside of interrupt context). */
3766                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3767                                 adapter->tx_timeout_count++;
3768                                 schedule_work(&adapter->reset_task);
3769                                 /* return immediately since reset is imminent */
3770                                 return;
3771                         }
3772                 }
3773
3774                 /* Force detection of hung controller every watchdog period */
3775                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3776         }
3777
3778         /* Cause software interrupt to ensure rx ring is cleaned */
3779         if (adapter->msix_entries) {
3780                 u32 eics = 0;
3781                 for (i = 0; i < adapter->num_q_vectors; i++)
3782                         eics |= adapter->q_vector[i]->eims_value;
3783                 wr32(E1000_EICS, eics);
3784         } else {
3785                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3786         }
3787
3788         igb_spoof_check(adapter);
3789
3790         /* Reset the timer */
3791         if (!test_bit(__IGB_DOWN, &adapter->state))
3792                 mod_timer(&adapter->watchdog_timer,
3793                           round_jiffies(jiffies + 2 * HZ));
3794 }
3795
3796 enum latency_range {
3797         lowest_latency = 0,
3798         low_latency = 1,
3799         bulk_latency = 2,
3800         latency_invalid = 255
3801 };
3802
3803 /**
3804  * igb_update_ring_itr - update the dynamic ITR value based on packet size
3805  *
3806  *      Stores a new ITR value based on strictly on packet size.  This
3807  *      algorithm is less sophisticated than that used in igb_update_itr,
3808  *      due to the difficulty of synchronizing statistics across multiple
3809  *      receive rings.  The divisors and thresholds used by this function
3810  *      were determined based on theoretical maximum wire speed and testing
3811  *      data, in order to minimize response time while increasing bulk
3812  *      throughput.
3813  *      This functionality is controlled by the InterruptThrottleRate module
3814  *      parameter (see igb_param.c)
3815  *      NOTE:  This function is called only when operating in a multiqueue
3816  *             receive environment.
3817  * @q_vector: pointer to q_vector
3818  **/
3819 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3820 {
3821         int new_val = q_vector->itr_val;
3822         int avg_wire_size = 0;
3823         struct igb_adapter *adapter = q_vector->adapter;
3824         unsigned int packets;
3825
3826         /* For non-gigabit speeds, just fix the interrupt rate at 4000
3827          * ints/sec - ITR timer value of 120 ticks.
3828          */
3829         if (adapter->link_speed != SPEED_1000) {
3830                 new_val = IGB_4K_ITR;
3831                 goto set_itr_val;
3832         }
3833
3834         packets = q_vector->rx.total_packets;
3835         if (packets)
3836                 avg_wire_size = q_vector->rx.total_bytes / packets;
3837
3838         packets = q_vector->tx.total_packets;
3839         if (packets)
3840                 avg_wire_size = max_t(u32, avg_wire_size,
3841                                       q_vector->tx.total_bytes / packets);
3842
3843         /* if avg_wire_size isn't set no work was done */
3844         if (!avg_wire_size)
3845                 goto clear_counts;
3846
3847         /* Add 24 bytes to size to account for CRC, preamble, and gap */
3848         avg_wire_size += 24;
3849
3850         /* Don't starve jumbo frames */
3851         avg_wire_size = min(avg_wire_size, 3000);
3852
3853         /* Give a little boost to mid-size frames */
3854         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3855                 new_val = avg_wire_size / 3;
3856         else
3857                 new_val = avg_wire_size / 2;
3858
3859         /* conservative mode (itr 3) eliminates the lowest_latency setting */
3860         if (new_val < IGB_20K_ITR &&
3861             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3862              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3863                 new_val = IGB_20K_ITR;
3864
3865 set_itr_val:
3866         if (new_val != q_vector->itr_val) {
3867                 q_vector->itr_val = new_val;
3868                 q_vector->set_itr = 1;
3869         }
3870 clear_counts:
3871         q_vector->rx.total_bytes = 0;
3872         q_vector->rx.total_packets = 0;
3873         q_vector->tx.total_bytes = 0;
3874         q_vector->tx.total_packets = 0;
3875 }
3876
3877 /**
3878  * igb_update_itr - update the dynamic ITR value based on statistics
3879  *      Stores a new ITR value based on packets and byte
3880  *      counts during the last interrupt.  The advantage of per interrupt
3881  *      computation is faster updates and more accurate ITR for the current
3882  *      traffic pattern.  Constants in this function were computed
3883  *      based on theoretical maximum wire speed and thresholds were set based
3884  *      on testing data as well as attempting to minimize response time
3885  *      while increasing bulk throughput.
3886  *      this functionality is controlled by the InterruptThrottleRate module
3887  *      parameter (see igb_param.c)
3888  *      NOTE:  These calculations are only valid when operating in a single-
3889  *             queue environment.
3890  * @q_vector: pointer to q_vector
3891  * @ring_container: ring info to update the itr for
3892  **/
3893 static void igb_update_itr(struct igb_q_vector *q_vector,
3894                            struct igb_ring_container *ring_container)
3895 {
3896         unsigned int packets = ring_container->total_packets;
3897         unsigned int bytes = ring_container->total_bytes;
3898         u8 itrval = ring_container->itr;
3899
3900         /* no packets, exit with status unchanged */
3901         if (packets == 0)
3902                 return;
3903
3904         switch (itrval) {
3905         case lowest_latency:
3906                 /* handle TSO and jumbo frames */
3907                 if (bytes/packets > 8000)
3908                         itrval = bulk_latency;
3909                 else if ((packets < 5) && (bytes > 512))
3910                         itrval = low_latency;
3911                 break;
3912         case low_latency:  /* 50 usec aka 20000 ints/s */
3913                 if (bytes > 10000) {
3914                         /* this if handles the TSO accounting */
3915                         if (bytes/packets > 8000) {
3916                                 itrval = bulk_latency;
3917                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3918                                 itrval = bulk_latency;
3919                         } else if ((packets > 35)) {
3920                                 itrval = lowest_latency;
3921                         }
3922                 } else if (bytes/packets > 2000) {
3923                         itrval = bulk_latency;
3924                 } else if (packets <= 2 && bytes < 512) {
3925                         itrval = lowest_latency;
3926                 }
3927                 break;
3928         case bulk_latency: /* 250 usec aka 4000 ints/s */
3929                 if (bytes > 25000) {
3930                         if (packets > 35)
3931                                 itrval = low_latency;
3932                 } else if (bytes < 1500) {
3933                         itrval = low_latency;
3934                 }
3935                 break;
3936         }
3937
3938         /* clear work counters since we have the values we need */
3939         ring_container->total_bytes = 0;
3940         ring_container->total_packets = 0;
3941
3942         /* write updated itr to ring container */
3943         ring_container->itr = itrval;
3944 }
3945
3946 static void igb_set_itr(struct igb_q_vector *q_vector)
3947 {
3948         struct igb_adapter *adapter = q_vector->adapter;
3949         u32 new_itr = q_vector->itr_val;
3950         u8 current_itr = 0;
3951
3952         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3953         if (adapter->link_speed != SPEED_1000) {
3954                 current_itr = 0;
3955                 new_itr = IGB_4K_ITR;
3956                 goto set_itr_now;
3957         }
3958
3959         igb_update_itr(q_vector, &q_vector->tx);
3960         igb_update_itr(q_vector, &q_vector->rx);
3961
3962         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3963
3964         /* conservative mode (itr 3) eliminates the lowest_latency setting */
3965         if (current_itr == lowest_latency &&
3966             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3967              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3968                 current_itr = low_latency;
3969
3970         switch (current_itr) {
3971         /* counts and packets in update_itr are dependent on these numbers */
3972         case lowest_latency:
3973                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
3974                 break;
3975         case low_latency:
3976                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
3977                 break;
3978         case bulk_latency:
3979                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
3980                 break;
3981         default:
3982                 break;
3983         }
3984
3985 set_itr_now:
3986         if (new_itr != q_vector->itr_val) {
3987                 /* this attempts to bias the interrupt rate towards Bulk
3988                  * by adding intermediate steps when interrupt rate is
3989                  * increasing */
3990                 new_itr = new_itr > q_vector->itr_val ?
3991                              max((new_itr * q_vector->itr_val) /
3992                                  (new_itr + (q_vector->itr_val >> 2)),
3993                                  new_itr) :
3994                              new_itr;
3995                 /* Don't write the value here; it resets the adapter's
3996                  * internal timer, and causes us to delay far longer than
3997                  * we should between interrupts.  Instead, we write the ITR
3998                  * value at the beginning of the next interrupt so the timing
3999                  * ends up being correct.
4000                  */
4001                 q_vector->itr_val = new_itr;
4002                 q_vector->set_itr = 1;
4003         }
4004 }
4005
4006 void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4007                      u32 type_tucmd, u32 mss_l4len_idx)
4008 {
4009         struct e1000_adv_tx_context_desc *context_desc;
4010         u16 i = tx_ring->next_to_use;
4011
4012         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4013
4014         i++;
4015         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4016
4017         /* set bits to identify this as an advanced context descriptor */
4018         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4019
4020         /* For 82575, context index must be unique per ring. */
4021         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4022                 mss_l4len_idx |= tx_ring->reg_idx << 4;
4023
4024         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
4025         context_desc->seqnum_seed       = 0;
4026         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
4027         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
4028 }
4029
4030 static int igb_tso(struct igb_ring *tx_ring,
4031                    struct igb_tx_buffer *first,
4032                    u8 *hdr_len)
4033 {
4034         struct sk_buff *skb = first->skb;
4035         u32 vlan_macip_lens, type_tucmd;
4036         u32 mss_l4len_idx, l4len;
4037
4038         if (!skb_is_gso(skb))
4039                 return 0;
4040
4041         if (skb_header_cloned(skb)) {
4042                 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4043                 if (err)
4044                         return err;
4045         }
4046
4047         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4048         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4049
4050         if (first->protocol == __constant_htons(ETH_P_IP)) {
4051                 struct iphdr *iph = ip_hdr(skb);
4052                 iph->tot_len = 0;
4053                 iph->check = 0;
4054                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4055                                                          iph->daddr, 0,
4056                                                          IPPROTO_TCP,
4057                                                          0);
4058                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4059                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4060                                    IGB_TX_FLAGS_CSUM |
4061                                    IGB_TX_FLAGS_IPV4;
4062         } else if (skb_is_gso_v6(skb)) {
4063                 ipv6_hdr(skb)->payload_len = 0;
4064                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4065                                                        &ipv6_hdr(skb)->daddr,
4066                                                        0, IPPROTO_TCP, 0);
4067                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4068                                    IGB_TX_FLAGS_CSUM;
4069         }
4070
4071         /* compute header lengths */
4072         l4len = tcp_hdrlen(skb);
4073         *hdr_len = skb_transport_offset(skb) + l4len;
4074
4075         /* update gso size and bytecount with header size */
4076         first->gso_segs = skb_shinfo(skb)->gso_segs;
4077         first->bytecount += (first->gso_segs - 1) * *hdr_len;
4078
4079         /* MSS L4LEN IDX */
4080         mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4081         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4082
4083         /* VLAN MACLEN IPLEN */
4084         vlan_macip_lens = skb_network_header_len(skb);
4085         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4086         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4087
4088         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4089
4090         return 1;
4091 }
4092
4093 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4094 {
4095         struct sk_buff *skb = first->skb;
4096         u32 vlan_macip_lens = 0;
4097         u32 mss_l4len_idx = 0;
4098         u32 type_tucmd = 0;
4099
4100         if (skb->ip_summed != CHECKSUM_PARTIAL) {
4101                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4102                         return;
4103         } else {
4104                 u8 l4_hdr = 0;
4105                 switch (first->protocol) {
4106                 case __constant_htons(ETH_P_IP):
4107                         vlan_macip_lens |= skb_network_header_len(skb);
4108                         type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4109                         l4_hdr = ip_hdr(skb)->protocol;
4110                         break;
4111                 case __constant_htons(ETH_P_IPV6):
4112                         vlan_macip_lens |= skb_network_header_len(skb);
4113                         l4_hdr = ipv6_hdr(skb)->nexthdr;
4114                         break;
4115                 default:
4116                         if (unlikely(net_ratelimit())) {
4117                                 dev_warn(tx_ring->dev,
4118                                  "partial checksum but proto=%x!\n",
4119                                  first->protocol);
4120                         }
4121                         break;
4122                 }
4123
4124                 switch (l4_hdr) {
4125                 case IPPROTO_TCP:
4126                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4127                         mss_l4len_idx = tcp_hdrlen(skb) <<
4128                                         E1000_ADVTXD_L4LEN_SHIFT;
4129                         break;
4130                 case IPPROTO_SCTP:
4131                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4132                         mss_l4len_idx = sizeof(struct sctphdr) <<
4133                                         E1000_ADVTXD_L4LEN_SHIFT;
4134                         break;
4135                 case IPPROTO_UDP:
4136                         mss_l4len_idx = sizeof(struct udphdr) <<
4137                                         E1000_ADVTXD_L4LEN_SHIFT;
4138                         break;
4139                 default:
4140                         if (unlikely(net_ratelimit())) {
4141                                 dev_warn(tx_ring->dev,
4142                                  "partial checksum but l4 proto=%x!\n",
4143                                  l4_hdr);
4144                         }
4145                         break;
4146                 }
4147
4148                 /* update TX checksum flag */
4149                 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4150         }
4151
4152         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4153         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4154
4155         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4156 }
4157
4158 static __le32 igb_tx_cmd_type(u32 tx_flags)
4159 {
4160         /* set type for advanced descriptor with frame checksum insertion */
4161         __le32 cmd_type = cpu_to_le32(E1000_ADVTXD_DTYP_DATA |
4162                                       E1000_ADVTXD_DCMD_IFCS |
4163                                       E1000_ADVTXD_DCMD_DEXT);
4164
4165         /* set HW vlan bit if vlan is present */
4166         if (tx_flags & IGB_TX_FLAGS_VLAN)
4167                 cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_VLE);
4168
4169         /* set timestamp bit if present */
4170         if (tx_flags & IGB_TX_FLAGS_TSTAMP)
4171                 cmd_type |= cpu_to_le32(E1000_ADVTXD_MAC_TSTAMP);
4172
4173         /* set segmentation bits for TSO */
4174         if (tx_flags & IGB_TX_FLAGS_TSO)
4175                 cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_TSE);
4176
4177         return cmd_type;
4178 }
4179
4180 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4181                                  union e1000_adv_tx_desc *tx_desc,
4182                                  u32 tx_flags, unsigned int paylen)
4183 {
4184         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4185
4186         /* 82575 requires a unique index per ring if any offload is enabled */
4187         if ((tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_VLAN)) &&
4188             test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4189                 olinfo_status |= tx_ring->reg_idx << 4;
4190
4191         /* insert L4 checksum */
4192         if (tx_flags & IGB_TX_FLAGS_CSUM) {
4193                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4194
4195                 /* insert IPv4 checksum */
4196                 if (tx_flags & IGB_TX_FLAGS_IPV4)
4197                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4198         }
4199
4200         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4201 }
4202
4203 /*
4204  * The largest size we can write to the descriptor is 65535.  In order to
4205  * maintain a power of two alignment we have to limit ourselves to 32K.
4206  */
4207 #define IGB_MAX_TXD_PWR 15
4208 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
4209
4210 static void igb_tx_map(struct igb_ring *tx_ring,
4211                        struct igb_tx_buffer *first,
4212                        const u8 hdr_len)
4213 {
4214         struct sk_buff *skb = first->skb;
4215         struct igb_tx_buffer *tx_buffer_info;
4216         union e1000_adv_tx_desc *tx_desc;
4217         dma_addr_t dma;
4218         struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
4219         unsigned int data_len = skb->data_len;
4220         unsigned int size = skb_headlen(skb);
4221         unsigned int paylen = skb->len - hdr_len;
4222         __le32 cmd_type;
4223         u32 tx_flags = first->tx_flags;
4224         u16 i = tx_ring->next_to_use;
4225
4226         tx_desc = IGB_TX_DESC(tx_ring, i);
4227
4228         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, paylen);
4229         cmd_type = igb_tx_cmd_type(tx_flags);
4230
4231         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4232         if (dma_mapping_error(tx_ring->dev, dma))
4233                 goto dma_error;
4234
4235         /* record length, and DMA address */
4236         first->length = size;
4237         first->dma = dma;
4238         tx_desc->read.buffer_addr = cpu_to_le64(dma);
4239
4240         for (;;) {
4241                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4242                         tx_desc->read.cmd_type_len =
4243                                 cmd_type | cpu_to_le32(IGB_MAX_DATA_PER_TXD);
4244
4245                         i++;
4246                         tx_desc++;
4247                         if (i == tx_ring->count) {
4248                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
4249                                 i = 0;
4250                         }
4251
4252                         dma += IGB_MAX_DATA_PER_TXD;
4253                         size -= IGB_MAX_DATA_PER_TXD;
4254
4255                         tx_desc->read.olinfo_status = 0;
4256                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
4257                 }
4258
4259                 if (likely(!data_len))
4260                         break;
4261
4262                 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
4263
4264                 i++;
4265                 tx_desc++;
4266                 if (i == tx_ring->count) {
4267                         tx_desc = IGB_TX_DESC(tx_ring, 0);
4268                         i = 0;
4269                 }
4270
4271                 size = skb_frag_size(frag);
4272                 data_len -= size;
4273
4274                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4275                                    size, DMA_TO_DEVICE);
4276                 if (dma_mapping_error(tx_ring->dev, dma))
4277                         goto dma_error;
4278
4279                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
4280                 tx_buffer_info->length = size;
4281                 tx_buffer_info->dma = dma;
4282
4283                 tx_desc->read.olinfo_status = 0;
4284                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4285
4286                 frag++;
4287         }
4288
4289         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4290
4291         /* write last descriptor with RS and EOP bits */
4292         cmd_type |= cpu_to_le32(size) | cpu_to_le32(IGB_TXD_DCMD);
4293         tx_desc->read.cmd_type_len = cmd_type;
4294
4295         /* set the timestamp */
4296         first->time_stamp = jiffies;
4297
4298         /*
4299          * Force memory writes to complete before letting h/w know there
4300          * are new descriptors to fetch.  (Only applicable for weak-ordered
4301          * memory model archs, such as IA-64).
4302          *
4303          * We also need this memory barrier to make certain all of the
4304          * status bits have been updated before next_to_watch is written.
4305          */
4306         wmb();
4307
4308         /* set next_to_watch value indicating a packet is present */
4309         first->next_to_watch = tx_desc;
4310
4311         i++;
4312         if (i == tx_ring->count)
4313                 i = 0;
4314
4315         tx_ring->next_to_use = i;
4316
4317         writel(i, tx_ring->tail);
4318
4319         /* we need this if more than one processor can write to our tail
4320          * at a time, it syncronizes IO on IA64/Altix systems */
4321         mmiowb();
4322
4323         return;
4324
4325 dma_error:
4326         dev_err(tx_ring->dev, "TX DMA map failed\n");
4327
4328         /* clear dma mappings for failed tx_buffer_info map */
4329         for (;;) {
4330                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
4331                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
4332                 if (tx_buffer_info == first)
4333                         break;
4334                 if (i == 0)
4335                         i = tx_ring->count;
4336                 i--;
4337         }
4338
4339         tx_ring->next_to_use = i;
4340 }
4341
4342 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4343 {
4344         struct net_device *netdev = tx_ring->netdev;
4345
4346         netif_stop_subqueue(netdev, tx_ring->queue_index);
4347
4348         /* Herbert's original patch had:
4349          *  smp_mb__after_netif_stop_queue();
4350          * but since that doesn't exist yet, just open code it. */
4351         smp_mb();
4352
4353         /* We need to check again in a case another CPU has just
4354          * made room available. */
4355         if (igb_desc_unused(tx_ring) < size)
4356                 return -EBUSY;
4357
4358         /* A reprieve! */
4359         netif_wake_subqueue(netdev, tx_ring->queue_index);
4360
4361         u64_stats_update_begin(&tx_ring->tx_syncp2);
4362         tx_ring->tx_stats.restart_queue2++;
4363         u64_stats_update_end(&tx_ring->tx_syncp2);
4364
4365         return 0;
4366 }
4367
4368 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4369 {
4370         if (igb_desc_unused(tx_ring) >= size)
4371                 return 0;
4372         return __igb_maybe_stop_tx(tx_ring, size);
4373 }
4374
4375 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4376                                 struct igb_ring *tx_ring)
4377 {
4378         struct igb_tx_buffer *first;
4379         int tso;
4380         u32 tx_flags = 0;
4381         __be16 protocol = vlan_get_protocol(skb);
4382         u8 hdr_len = 0;
4383
4384         /* need: 1 descriptor per page,
4385          *       + 2 desc gap to keep tail from touching head,
4386          *       + 1 desc for skb->data,
4387          *       + 1 desc for context descriptor,
4388          * otherwise try next time */
4389         if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4390                 /* this is a hard error */
4391                 return NETDEV_TX_BUSY;
4392         }
4393
4394         /* record the location of the first descriptor for this packet */
4395         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4396         first->skb = skb;
4397         first->bytecount = skb->len;
4398         first->gso_segs = 1;
4399
4400         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4401                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4402                 tx_flags |= IGB_TX_FLAGS_TSTAMP;
4403         }
4404
4405         if (vlan_tx_tag_present(skb)) {
4406                 tx_flags |= IGB_TX_FLAGS_VLAN;
4407                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4408         }
4409
4410         /* record initial flags and protocol */
4411         first->tx_flags = tx_flags;
4412         first->protocol = protocol;
4413
4414         tso = igb_tso(tx_ring, first, &hdr_len);
4415         if (tso < 0)
4416                 goto out_drop;
4417         else if (!tso)
4418                 igb_tx_csum(tx_ring, first);
4419
4420         igb_tx_map(tx_ring, first, hdr_len);
4421
4422         /* Make sure there is space in the ring for the next send. */
4423         igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4424
4425         return NETDEV_TX_OK;
4426
4427 out_drop:
4428         igb_unmap_and_free_tx_resource(tx_ring, first);
4429
4430         return NETDEV_TX_OK;
4431 }
4432
4433 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4434                                                     struct sk_buff *skb)
4435 {
4436         unsigned int r_idx = skb->queue_mapping;
4437
4438         if (r_idx >= adapter->num_tx_queues)
4439                 r_idx = r_idx % adapter->num_tx_queues;
4440
4441         return adapter->tx_ring[r_idx];
4442 }
4443
4444 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4445                                   struct net_device *netdev)
4446 {
4447         struct igb_adapter *adapter = netdev_priv(netdev);
4448
4449         if (test_bit(__IGB_DOWN, &adapter->state)) {
4450                 dev_kfree_skb_any(skb);
4451                 return NETDEV_TX_OK;
4452         }
4453
4454         if (skb->len <= 0) {
4455                 dev_kfree_skb_any(skb);
4456                 return NETDEV_TX_OK;
4457         }
4458
4459         /*
4460          * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4461          * in order to meet this minimum size requirement.
4462          */
4463         if (skb->len < 17) {
4464                 if (skb_padto(skb, 17))
4465                         return NETDEV_TX_OK;
4466                 skb->len = 17;
4467         }
4468
4469         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4470 }
4471
4472 /**
4473  * igb_tx_timeout - Respond to a Tx Hang
4474  * @netdev: network interface device structure
4475  **/
4476 static void igb_tx_timeout(struct net_device *netdev)
4477 {
4478         struct igb_adapter *adapter = netdev_priv(netdev);
4479         struct e1000_hw *hw = &adapter->hw;
4480
4481         /* Do the reset outside of interrupt context */
4482         adapter->tx_timeout_count++;
4483
4484         if (hw->mac.type >= e1000_82580)
4485                 hw->dev_spec._82575.global_device_reset = true;
4486
4487         schedule_work(&adapter->reset_task);
4488         wr32(E1000_EICS,
4489              (adapter->eims_enable_mask & ~adapter->eims_other));
4490 }
4491
4492 static void igb_reset_task(struct work_struct *work)
4493 {
4494         struct igb_adapter *adapter;
4495         adapter = container_of(work, struct igb_adapter, reset_task);
4496
4497         igb_dump(adapter);
4498         netdev_err(adapter->netdev, "Reset adapter\n");
4499         igb_reinit_locked(adapter);
4500 }
4501
4502 /**
4503  * igb_get_stats64 - Get System Network Statistics
4504  * @netdev: network interface device structure
4505  * @stats: rtnl_link_stats64 pointer
4506  *
4507  **/
4508 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4509                                                  struct rtnl_link_stats64 *stats)
4510 {
4511         struct igb_adapter *adapter = netdev_priv(netdev);
4512
4513         spin_lock(&adapter->stats64_lock);
4514         igb_update_stats(adapter, &adapter->stats64);
4515         memcpy(stats, &adapter->stats64, sizeof(*stats));
4516         spin_unlock(&adapter->stats64_lock);
4517
4518         return stats;
4519 }
4520
4521 /**
4522  * igb_change_mtu - Change the Maximum Transfer Unit
4523  * @netdev: network interface device structure
4524  * @new_mtu: new value for maximum frame size
4525  *
4526  * Returns 0 on success, negative on failure
4527  **/
4528 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4529 {
4530         struct igb_adapter *adapter = netdev_priv(netdev);
4531         struct pci_dev *pdev = adapter->pdev;
4532         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4533
4534         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4535                 dev_err(&pdev->dev, "Invalid MTU setting\n");
4536                 return -EINVAL;
4537         }
4538
4539 #define MAX_STD_JUMBO_FRAME_SIZE 9238
4540         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4541                 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4542                 return -EINVAL;
4543         }
4544
4545         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4546                 msleep(1);
4547
4548         /* igb_down has a dependency on max_frame_size */
4549         adapter->max_frame_size = max_frame;
4550
4551         if (netif_running(netdev))
4552                 igb_down(adapter);
4553
4554         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4555                  netdev->mtu, new_mtu);
4556         netdev->mtu = new_mtu;
4557
4558         if (netif_running(netdev))
4559                 igb_up(adapter);
4560         else
4561                 igb_reset(adapter);
4562
4563         clear_bit(__IGB_RESETTING, &adapter->state);
4564
4565         return 0;
4566 }
4567
4568 /**
4569  * igb_update_stats - Update the board statistics counters
4570  * @adapter: board private structure
4571  **/
4572
4573 void igb_update_stats(struct igb_adapter *adapter,
4574                       struct rtnl_link_stats64 *net_stats)
4575 {
4576         struct e1000_hw *hw = &adapter->hw;
4577         struct pci_dev *pdev = adapter->pdev;
4578         u32 reg, mpc;
4579         u16 phy_tmp;
4580         int i;
4581         u64 bytes, packets;
4582         unsigned int start;
4583         u64 _bytes, _packets;
4584
4585 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4586
4587         /*
4588          * Prevent stats update while adapter is being reset, or if the pci
4589          * connection is down.
4590          */
4591         if (adapter->link_speed == 0)
4592                 return;
4593         if (pci_channel_offline(pdev))
4594                 return;
4595
4596         bytes = 0;
4597         packets = 0;
4598         for (i = 0; i < adapter->num_rx_queues; i++) {
4599                 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
4600                 struct igb_ring *ring = adapter->rx_ring[i];
4601
4602                 ring->rx_stats.drops += rqdpc_tmp;
4603                 net_stats->rx_fifo_errors += rqdpc_tmp;
4604
4605                 do {
4606                         start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4607                         _bytes = ring->rx_stats.bytes;
4608                         _packets = ring->rx_stats.packets;
4609                 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4610                 bytes += _bytes;
4611                 packets += _packets;
4612         }
4613
4614         net_stats->rx_bytes = bytes;
4615         net_stats->rx_packets = packets;
4616
4617         bytes = 0;
4618         packets = 0;
4619         for (i = 0; i < adapter->num_tx_queues; i++) {
4620                 struct igb_ring *ring = adapter->tx_ring[i];
4621                 do {
4622                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4623                         _bytes = ring->tx_stats.bytes;
4624                         _packets = ring->tx_stats.packets;
4625                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4626                 bytes += _bytes;
4627                 packets += _packets;
4628         }
4629         net_stats->tx_bytes = bytes;
4630         net_stats->tx_packets = packets;
4631
4632         /* read stats registers */
4633         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4634         adapter->stats.gprc += rd32(E1000_GPRC);
4635         adapter->stats.gorc += rd32(E1000_GORCL);
4636         rd32(E1000_GORCH); /* clear GORCL */
4637         adapter->stats.bprc += rd32(E1000_BPRC);
4638         adapter->stats.mprc += rd32(E1000_MPRC);
4639         adapter->stats.roc += rd32(E1000_ROC);
4640
4641         adapter->stats.prc64 += rd32(E1000_PRC64);
4642         adapter->stats.prc127 += rd32(E1000_PRC127);
4643         adapter->stats.prc255 += rd32(E1000_PRC255);
4644         adapter->stats.prc511 += rd32(E1000_PRC511);
4645         adapter->stats.prc1023 += rd32(E1000_PRC1023);
4646         adapter->stats.prc1522 += rd32(E1000_PRC1522);
4647         adapter->stats.symerrs += rd32(E1000_SYMERRS);
4648         adapter->stats.sec += rd32(E1000_SEC);
4649
4650         mpc = rd32(E1000_MPC);
4651         adapter->stats.mpc += mpc;
4652         net_stats->rx_fifo_errors += mpc;
4653         adapter->stats.scc += rd32(E1000_SCC);
4654         adapter->stats.ecol += rd32(E1000_ECOL);
4655         adapter->stats.mcc += rd32(E1000_MCC);
4656         adapter->stats.latecol += rd32(E1000_LATECOL);
4657         adapter->stats.dc += rd32(E1000_DC);
4658         adapter->stats.rlec += rd32(E1000_RLEC);
4659         adapter->stats.xonrxc += rd32(E1000_XONRXC);
4660         adapter->stats.xontxc += rd32(E1000_XONTXC);
4661         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4662         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4663         adapter->stats.fcruc += rd32(E1000_FCRUC);
4664         adapter->stats.gptc += rd32(E1000_GPTC);
4665         adapter->stats.gotc += rd32(E1000_GOTCL);
4666         rd32(E1000_GOTCH); /* clear GOTCL */
4667         adapter->stats.rnbc += rd32(E1000_RNBC);
4668         adapter->stats.ruc += rd32(E1000_RUC);
4669         adapter->stats.rfc += rd32(E1000_RFC);
4670         adapter->stats.rjc += rd32(E1000_RJC);
4671         adapter->stats.tor += rd32(E1000_TORH);
4672         adapter->stats.tot += rd32(E1000_TOTH);
4673         adapter->stats.tpr += rd32(E1000_TPR);
4674
4675         adapter->stats.ptc64 += rd32(E1000_PTC64);
4676         adapter->stats.ptc127 += rd32(E1000_PTC127);
4677         adapter->stats.ptc255 += rd32(E1000_PTC255);
4678         adapter->stats.ptc511 += rd32(E1000_PTC511);
4679         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4680         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4681
4682         adapter->stats.mptc += rd32(E1000_MPTC);
4683         adapter->stats.bptc += rd32(E1000_BPTC);
4684
4685         adapter->stats.tpt += rd32(E1000_TPT);
4686         adapter->stats.colc += rd32(E1000_COLC);
4687
4688         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4689         /* read internal phy specific stats */
4690         reg = rd32(E1000_CTRL_EXT);
4691         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4692                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4693                 adapter->stats.tncrs += rd32(E1000_TNCRS);
4694         }
4695
4696         adapter->stats.tsctc += rd32(E1000_TSCTC);
4697         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4698
4699         adapter->stats.iac += rd32(E1000_IAC);
4700         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4701         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4702         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4703         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4704         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4705         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4706         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4707         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4708
4709         /* Fill out the OS statistics structure */
4710         net_stats->multicast = adapter->stats.mprc;
4711         net_stats->collisions = adapter->stats.colc;
4712
4713         /* Rx Errors */
4714
4715         /* RLEC on some newer hardware can be incorrect so build
4716          * our own version based on RUC and ROC */
4717         net_stats->rx_errors = adapter->stats.rxerrc +
4718                 adapter->stats.crcerrs + adapter->stats.algnerrc +
4719                 adapter->stats.ruc + adapter->stats.roc +
4720                 adapter->stats.cexterr;
4721         net_stats->rx_length_errors = adapter->stats.ruc +
4722                                       adapter->stats.roc;
4723         net_stats->rx_crc_errors = adapter->stats.crcerrs;
4724         net_stats->rx_frame_errors = adapter->stats.algnerrc;
4725         net_stats->rx_missed_errors = adapter->stats.mpc;
4726
4727         /* Tx Errors */
4728         net_stats->tx_errors = adapter->stats.ecol +
4729                                adapter->stats.latecol;
4730         net_stats->tx_aborted_errors = adapter->stats.ecol;
4731         net_stats->tx_window_errors = adapter->stats.latecol;
4732         net_stats->tx_carrier_errors = adapter->stats.tncrs;
4733
4734         /* Tx Dropped needs to be maintained elsewhere */
4735
4736         /* Phy Stats */
4737         if (hw->phy.media_type == e1000_media_type_copper) {
4738                 if ((adapter->link_speed == SPEED_1000) &&
4739                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4740                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4741                         adapter->phy_stats.idle_errors += phy_tmp;
4742                 }
4743         }
4744
4745         /* Management Stats */
4746         adapter->stats.mgptc += rd32(E1000_MGTPTC);
4747         adapter->stats.mgprc += rd32(E1000_MGTPRC);
4748         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4749
4750         /* OS2BMC Stats */
4751         reg = rd32(E1000_MANC);
4752         if (reg & E1000_MANC_EN_BMC2OS) {
4753                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4754                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4755                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4756                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4757         }
4758 }
4759
4760 static irqreturn_t igb_msix_other(int irq, void *data)
4761 {
4762         struct igb_adapter *adapter = data;
4763         struct e1000_hw *hw = &adapter->hw;
4764         u32 icr = rd32(E1000_ICR);
4765         /* reading ICR causes bit 31 of EICR to be cleared */
4766
4767         if (icr & E1000_ICR_DRSTA)
4768                 schedule_work(&adapter->reset_task);
4769
4770         if (icr & E1000_ICR_DOUTSYNC) {
4771                 /* HW is reporting DMA is out of sync */
4772                 adapter->stats.doosync++;
4773                 /* The DMA Out of Sync is also indication of a spoof event
4774                  * in IOV mode. Check the Wrong VM Behavior register to
4775                  * see if it is really a spoof event. */
4776                 igb_check_wvbr(adapter);
4777         }
4778
4779         /* Check for a mailbox event */
4780         if (icr & E1000_ICR_VMMB)
4781                 igb_msg_task(adapter);
4782
4783         if (icr & E1000_ICR_LSC) {
4784                 hw->mac.get_link_status = 1;
4785                 /* guard against interrupt when we're going down */
4786                 if (!test_bit(__IGB_DOWN, &adapter->state))
4787                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4788         }
4789
4790         wr32(E1000_EIMS, adapter->eims_other);
4791
4792         return IRQ_HANDLED;
4793 }
4794
4795 static void igb_write_itr(struct igb_q_vector *q_vector)
4796 {
4797         struct igb_adapter *adapter = q_vector->adapter;
4798         u32 itr_val = q_vector->itr_val & 0x7FFC;
4799
4800         if (!q_vector->set_itr)
4801                 return;
4802
4803         if (!itr_val)
4804                 itr_val = 0x4;
4805
4806         if (adapter->hw.mac.type == e1000_82575)
4807                 itr_val |= itr_val << 16;
4808         else
4809                 itr_val |= E1000_EITR_CNT_IGNR;
4810
4811         writel(itr_val, q_vector->itr_register);
4812         q_vector->set_itr = 0;
4813 }
4814
4815 static irqreturn_t igb_msix_ring(int irq, void *data)
4816 {
4817         struct igb_q_vector *q_vector = data;
4818
4819         /* Write the ITR value calculated from the previous interrupt. */
4820         igb_write_itr(q_vector);
4821
4822         napi_schedule(&q_vector->napi);
4823
4824         return IRQ_HANDLED;
4825 }
4826
4827 #ifdef CONFIG_IGB_DCA
4828 static void igb_update_dca(struct igb_q_vector *q_vector)
4829 {
4830         struct igb_adapter *adapter = q_vector->adapter;
4831         struct e1000_hw *hw = &adapter->hw;
4832         int cpu = get_cpu();
4833
4834         if (q_vector->cpu == cpu)
4835                 goto out_no_update;
4836
4837         if (q_vector->tx.ring) {
4838                 int q = q_vector->tx.ring->reg_idx;
4839                 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4840                 if (hw->mac.type == e1000_82575) {
4841                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4842                         dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4843                 } else {
4844                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4845                         dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4846                                       E1000_DCA_TXCTRL_CPUID_SHIFT;
4847                 }
4848                 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4849                 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4850         }
4851         if (q_vector->rx.ring) {
4852                 int q = q_vector->rx.ring->reg_idx;
4853                 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4854                 if (hw->mac.type == e1000_82575) {
4855                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
4856                         dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4857                 } else {
4858                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4859                         dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4860                                       E1000_DCA_RXCTRL_CPUID_SHIFT;
4861                 }
4862                 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4863                 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4864                 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4865                 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
4866         }
4867         q_vector->cpu = cpu;
4868 out_no_update:
4869         put_cpu();
4870 }
4871
4872 static void igb_setup_dca(struct igb_adapter *adapter)
4873 {
4874         struct e1000_hw *hw = &adapter->hw;
4875         int i;
4876
4877         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4878                 return;
4879
4880         /* Always use CB2 mode, difference is masked in the CB driver. */
4881         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4882
4883         for (i = 0; i < adapter->num_q_vectors; i++) {
4884                 adapter->q_vector[i]->cpu = -1;
4885                 igb_update_dca(adapter->q_vector[i]);
4886         }
4887 }
4888
4889 static int __igb_notify_dca(struct device *dev, void *data)
4890 {
4891         struct net_device *netdev = dev_get_drvdata(dev);
4892         struct igb_adapter *adapter = netdev_priv(netdev);
4893         struct pci_dev *pdev = adapter->pdev;
4894         struct e1000_hw *hw = &adapter->hw;
4895         unsigned long event = *(unsigned long *)data;
4896
4897         switch (event) {
4898         case DCA_PROVIDER_ADD:
4899                 /* if already enabled, don't do it again */
4900                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4901                         break;
4902                 if (dca_add_requester(dev) == 0) {
4903                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
4904                         dev_info(&pdev->dev, "DCA enabled\n");
4905                         igb_setup_dca(adapter);
4906                         break;
4907                 }
4908                 /* Fall Through since DCA is disabled. */
4909         case DCA_PROVIDER_REMOVE:
4910                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4911                         /* without this a class_device is left
4912                          * hanging around in the sysfs model */
4913                         dca_remove_requester(dev);
4914                         dev_info(&pdev->dev, "DCA disabled\n");
4915                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4916                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4917                 }
4918                 break;
4919         }
4920
4921         return 0;
4922 }
4923
4924 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4925                           void *p)
4926 {
4927         int ret_val;
4928
4929         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4930                                          __igb_notify_dca);
4931
4932         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4933 }
4934 #endif /* CONFIG_IGB_DCA */
4935
4936 #ifdef CONFIG_PCI_IOV
4937 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
4938 {
4939         unsigned char mac_addr[ETH_ALEN];
4940         struct pci_dev *pdev = adapter->pdev;
4941         struct e1000_hw *hw = &adapter->hw;
4942         struct pci_dev *pvfdev;
4943         unsigned int device_id;
4944         u16 thisvf_devfn;
4945
4946         random_ether_addr(mac_addr);
4947         igb_set_vf_mac(adapter, vf, mac_addr);
4948
4949         switch (adapter->hw.mac.type) {
4950         case e1000_82576:
4951                 device_id = IGB_82576_VF_DEV_ID;
4952                 /* VF Stride for 82576 is 2 */
4953                 thisvf_devfn = (pdev->devfn + 0x80 + (vf << 1)) |
4954                         (pdev->devfn & 1);
4955                 break;
4956         case e1000_i350:
4957                 device_id = IGB_I350_VF_DEV_ID;
4958                 /* VF Stride for I350 is 4 */
4959                 thisvf_devfn = (pdev->devfn + 0x80 + (vf << 2)) |
4960                                 (pdev->devfn & 3);
4961                 break;
4962         default:
4963                 device_id = 0;
4964                 thisvf_devfn = 0;
4965                 break;
4966         }
4967
4968         pvfdev = pci_get_device(hw->vendor_id, device_id, NULL);
4969         while (pvfdev) {
4970                 if (pvfdev->devfn == thisvf_devfn)
4971                         break;
4972                 pvfdev = pci_get_device(hw->vendor_id,
4973                                         device_id, pvfdev);
4974         }
4975
4976         if (pvfdev)
4977                 adapter->vf_data[vf].vfdev = pvfdev;
4978         else
4979                 dev_err(&pdev->dev,
4980                         "Couldn't find pci dev ptr for VF %4.4x\n",
4981                         thisvf_devfn);
4982         return pvfdev != NULL;
4983 }
4984
4985 static int igb_find_enabled_vfs(struct igb_adapter *adapter)
4986 {
4987         struct e1000_hw *hw = &adapter->hw;
4988         struct pci_dev *pdev = adapter->pdev;
4989         struct pci_dev *pvfdev;
4990         u16 vf_devfn = 0;
4991         u16 vf_stride;
4992         unsigned int device_id;
4993         int vfs_found = 0;
4994
4995         switch (adapter->hw.mac.type) {
4996         case e1000_82576:
4997                 device_id = IGB_82576_VF_DEV_ID;
4998                 /* VF Stride for 82576 is 2 */
4999                 vf_stride = 2;
5000                 break;
5001         case e1000_i350:
5002                 device_id = IGB_I350_VF_DEV_ID;
5003                 /* VF Stride for I350 is 4 */
5004                 vf_stride = 4;
5005                 break;
5006         default:
5007                 device_id = 0;
5008                 vf_stride = 0;
5009                 break;
5010         }
5011
5012         vf_devfn = pdev->devfn + 0x80;
5013         pvfdev = pci_get_device(hw->vendor_id, device_id, NULL);
5014         while (pvfdev) {
5015                 if (pvfdev->devfn == vf_devfn)
5016                         vfs_found++;
5017                 vf_devfn += vf_stride;
5018                 pvfdev = pci_get_device(hw->vendor_id,
5019                                         device_id, pvfdev);
5020         }
5021
5022         return vfs_found;
5023 }
5024
5025 static int igb_check_vf_assignment(struct igb_adapter *adapter)
5026 {
5027         int i;
5028         for (i = 0; i < adapter->vfs_allocated_count; i++) {
5029                 if (adapter->vf_data[i].vfdev) {
5030                         if (adapter->vf_data[i].vfdev->dev_flags &
5031                             PCI_DEV_FLAGS_ASSIGNED)
5032                                 return true;
5033                 }
5034         }
5035         return false;
5036 }
5037
5038 #endif
5039 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5040 {
5041         struct e1000_hw *hw = &adapter->hw;
5042         u32 ping;
5043         int i;
5044
5045         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5046                 ping = E1000_PF_CONTROL_MSG;
5047                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5048                         ping |= E1000_VT_MSGTYPE_CTS;
5049                 igb_write_mbx(hw, &ping, 1, i);
5050         }
5051 }
5052
5053 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5054 {
5055         struct e1000_hw *hw = &adapter->hw;
5056         u32 vmolr = rd32(E1000_VMOLR(vf));
5057         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5058
5059         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5060                             IGB_VF_FLAG_MULTI_PROMISC);
5061         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5062
5063         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5064                 vmolr |= E1000_VMOLR_MPME;
5065                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5066                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5067         } else {
5068                 /*
5069                  * if we have hashes and we are clearing a multicast promisc
5070                  * flag we need to write the hashes to the MTA as this step
5071                  * was previously skipped
5072                  */
5073                 if (vf_data->num_vf_mc_hashes > 30) {
5074                         vmolr |= E1000_VMOLR_MPME;
5075                 } else if (vf_data->num_vf_mc_hashes) {
5076                         int j;
5077                         vmolr |= E1000_VMOLR_ROMPE;
5078                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5079                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5080                 }
5081         }
5082
5083         wr32(E1000_VMOLR(vf), vmolr);
5084
5085         /* there are flags left unprocessed, likely not supported */
5086         if (*msgbuf & E1000_VT_MSGINFO_MASK)
5087                 return -EINVAL;
5088
5089         return 0;
5090
5091 }
5092
5093 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5094                                   u32 *msgbuf, u32 vf)
5095 {
5096         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5097         u16 *hash_list = (u16 *)&msgbuf[1];
5098         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5099         int i;
5100
5101         /* salt away the number of multicast addresses assigned
5102          * to this VF for later use to restore when the PF multi cast
5103          * list changes
5104          */
5105         vf_data->num_vf_mc_hashes = n;
5106
5107         /* only up to 30 hash values supported */
5108         if (n > 30)
5109                 n = 30;
5110
5111         /* store the hashes for later use */
5112         for (i = 0; i < n; i++)
5113                 vf_data->vf_mc_hashes[i] = hash_list[i];
5114
5115         /* Flush and reset the mta with the new values */
5116         igb_set_rx_mode(adapter->netdev);
5117
5118         return 0;
5119 }
5120
5121 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5122 {
5123         struct e1000_hw *hw = &adapter->hw;
5124         struct vf_data_storage *vf_data;
5125         int i, j;
5126
5127         for (i = 0; i < adapter->vfs_allocated_count; i++) {
5128                 u32 vmolr = rd32(E1000_VMOLR(i));
5129                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5130
5131                 vf_data = &adapter->vf_data[i];
5132
5133                 if ((vf_data->num_vf_mc_hashes > 30) ||
5134                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5135                         vmolr |= E1000_VMOLR_MPME;
5136                 } else if (vf_data->num_vf_mc_hashes) {
5137                         vmolr |= E1000_VMOLR_ROMPE;
5138                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5139                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5140                 }
5141                 wr32(E1000_VMOLR(i), vmolr);
5142         }
5143 }
5144
5145 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5146 {
5147         struct e1000_hw *hw = &adapter->hw;
5148         u32 pool_mask, reg, vid;
5149         int i;
5150
5151         pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5152
5153         /* Find the vlan filter for this id */
5154         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5155                 reg = rd32(E1000_VLVF(i));
5156
5157                 /* remove the vf from the pool */
5158                 reg &= ~pool_mask;
5159
5160                 /* if pool is empty then remove entry from vfta */
5161                 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5162                     (reg & E1000_VLVF_VLANID_ENABLE)) {
5163                         reg = 0;
5164                         vid = reg & E1000_VLVF_VLANID_MASK;
5165                         igb_vfta_set(hw, vid, false);
5166                 }
5167
5168                 wr32(E1000_VLVF(i), reg);
5169         }
5170
5171         adapter->vf_data[vf].vlans_enabled = 0;
5172 }
5173
5174 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5175 {
5176         struct e1000_hw *hw = &adapter->hw;
5177         u32 reg, i;
5178
5179         /* The vlvf table only exists on 82576 hardware and newer */
5180         if (hw->mac.type < e1000_82576)
5181                 return -1;
5182
5183         /* we only need to do this if VMDq is enabled */
5184         if (!adapter->vfs_allocated_count)
5185                 return -1;
5186
5187         /* Find the vlan filter for this id */
5188         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5189                 reg = rd32(E1000_VLVF(i));
5190                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5191                     vid == (reg & E1000_VLVF_VLANID_MASK))
5192                         break;
5193         }
5194
5195         if (add) {
5196                 if (i == E1000_VLVF_ARRAY_SIZE) {
5197                         /* Did not find a matching VLAN ID entry that was
5198                          * enabled.  Search for a free filter entry, i.e.
5199                          * one without the enable bit set
5200                          */
5201                         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5202                                 reg = rd32(E1000_VLVF(i));
5203                                 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5204                                         break;
5205                         }
5206                 }
5207                 if (i < E1000_VLVF_ARRAY_SIZE) {
5208                         /* Found an enabled/available entry */
5209                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5210
5211                         /* if !enabled we need to set this up in vfta */
5212                         if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5213                                 /* add VID to filter table */
5214                                 igb_vfta_set(hw, vid, true);
5215                                 reg |= E1000_VLVF_VLANID_ENABLE;
5216                         }
5217                         reg &= ~E1000_VLVF_VLANID_MASK;
5218                         reg |= vid;
5219                         wr32(E1000_VLVF(i), reg);
5220
5221                         /* do not modify RLPML for PF devices */
5222                         if (vf >= adapter->vfs_allocated_count)
5223                                 return 0;
5224
5225                         if (!adapter->vf_data[vf].vlans_enabled) {
5226                                 u32 size;
5227                                 reg = rd32(E1000_VMOLR(vf));
5228                                 size = reg & E1000_VMOLR_RLPML_MASK;
5229                                 size += 4;
5230                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5231                                 reg |= size;
5232                                 wr32(E1000_VMOLR(vf), reg);
5233                         }
5234
5235                         adapter->vf_data[vf].vlans_enabled++;
5236                 }
5237         } else {
5238                 if (i < E1000_VLVF_ARRAY_SIZE) {
5239                         /* remove vf from the pool */
5240                         reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5241                         /* if pool is empty then remove entry from vfta */
5242                         if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5243                                 reg = 0;
5244                                 igb_vfta_set(hw, vid, false);
5245                         }
5246                         wr32(E1000_VLVF(i), reg);
5247
5248                         /* do not modify RLPML for PF devices */
5249                         if (vf >= adapter->vfs_allocated_count)
5250                                 return 0;
5251
5252                         adapter->vf_data[vf].vlans_enabled--;
5253                         if (!adapter->vf_data[vf].vlans_enabled) {
5254                                 u32 size;
5255                                 reg = rd32(E1000_VMOLR(vf));
5256                                 size = reg & E1000_VMOLR_RLPML_MASK;
5257                                 size -= 4;
5258                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5259                                 reg |= size;
5260                                 wr32(E1000_VMOLR(vf), reg);
5261                         }
5262                 }
5263         }
5264         return 0;
5265 }
5266
5267 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5268 {
5269         struct e1000_hw *hw = &adapter->hw;
5270
5271         if (vid)
5272                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5273         else
5274                 wr32(E1000_VMVIR(vf), 0);
5275 }
5276
5277 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5278                                int vf, u16 vlan, u8 qos)
5279 {
5280         int err = 0;
5281         struct igb_adapter *adapter = netdev_priv(netdev);
5282
5283         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5284                 return -EINVAL;
5285         if (vlan || qos) {
5286                 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5287                 if (err)
5288                         goto out;
5289                 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5290                 igb_set_vmolr(adapter, vf, !vlan);
5291                 adapter->vf_data[vf].pf_vlan = vlan;
5292                 adapter->vf_data[vf].pf_qos = qos;
5293                 dev_info(&adapter->pdev->dev,
5294                          "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5295                 if (test_bit(__IGB_DOWN, &adapter->state)) {
5296                         dev_warn(&adapter->pdev->dev,
5297                                  "The VF VLAN has been set,"
5298                                  " but the PF device is not up.\n");
5299                         dev_warn(&adapter->pdev->dev,
5300                                  "Bring the PF device up before"
5301                                  " attempting to use the VF device.\n");
5302                 }
5303         } else {
5304                 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5305                                    false, vf);
5306                 igb_set_vmvir(adapter, vlan, vf);
5307                 igb_set_vmolr(adapter, vf, true);
5308                 adapter->vf_data[vf].pf_vlan = 0;
5309                 adapter->vf_data[vf].pf_qos = 0;
5310        }
5311 out:
5312        return err;
5313 }
5314
5315 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5316 {
5317         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5318         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5319
5320         return igb_vlvf_set(adapter, vid, add, vf);
5321 }
5322
5323 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5324 {
5325         /* clear flags - except flag that indicates PF has set the MAC */
5326         adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5327         adapter->vf_data[vf].last_nack = jiffies;
5328
5329         /* reset offloads to defaults */
5330         igb_set_vmolr(adapter, vf, true);
5331
5332         /* reset vlans for device */
5333         igb_clear_vf_vfta(adapter, vf);
5334         if (adapter->vf_data[vf].pf_vlan)
5335                 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5336                                     adapter->vf_data[vf].pf_vlan,
5337                                     adapter->vf_data[vf].pf_qos);
5338         else
5339                 igb_clear_vf_vfta(adapter, vf);
5340
5341         /* reset multicast table array for vf */
5342         adapter->vf_data[vf].num_vf_mc_hashes = 0;
5343
5344         /* Flush and reset the mta with the new values */
5345         igb_set_rx_mode(adapter->netdev);
5346 }
5347
5348 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5349 {
5350         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5351
5352         /* generate a new mac address as we were hotplug removed/added */
5353         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5354                 random_ether_addr(vf_mac);
5355
5356         /* process remaining reset events */
5357         igb_vf_reset(adapter, vf);
5358 }
5359
5360 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5361 {
5362         struct e1000_hw *hw = &adapter->hw;
5363         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5364         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5365         u32 reg, msgbuf[3];
5366         u8 *addr = (u8 *)(&msgbuf[1]);
5367
5368         /* process all the same items cleared in a function level reset */
5369         igb_vf_reset(adapter, vf);
5370
5371         /* set vf mac address */
5372         igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5373
5374         /* enable transmit and receive for vf */
5375         reg = rd32(E1000_VFTE);
5376         wr32(E1000_VFTE, reg | (1 << vf));
5377         reg = rd32(E1000_VFRE);
5378         wr32(E1000_VFRE, reg | (1 << vf));
5379
5380         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5381
5382         /* reply to reset with ack and vf mac address */
5383         msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5384         memcpy(addr, vf_mac, 6);
5385         igb_write_mbx(hw, msgbuf, 3, vf);
5386 }
5387
5388 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5389 {
5390         /*
5391          * The VF MAC Address is stored in a packed array of bytes
5392          * starting at the second 32 bit word of the msg array
5393          */
5394         unsigned char *addr = (char *)&msg[1];
5395         int err = -1;
5396
5397         if (is_valid_ether_addr(addr))
5398                 err = igb_set_vf_mac(adapter, vf, addr);
5399
5400         return err;
5401 }
5402
5403 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5404 {
5405         struct e1000_hw *hw = &adapter->hw;
5406         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5407         u32 msg = E1000_VT_MSGTYPE_NACK;
5408
5409         /* if device isn't clear to send it shouldn't be reading either */
5410         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5411             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5412                 igb_write_mbx(hw, &msg, 1, vf);
5413                 vf_data->last_nack = jiffies;
5414         }
5415 }
5416
5417 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5418 {
5419         struct pci_dev *pdev = adapter->pdev;
5420         u32 msgbuf[E1000_VFMAILBOX_SIZE];
5421         struct e1000_hw *hw = &adapter->hw;
5422         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5423         s32 retval;
5424
5425         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5426
5427         if (retval) {
5428                 /* if receive failed revoke VF CTS stats and restart init */
5429                 dev_err(&pdev->dev, "Error receiving message from VF\n");
5430                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5431                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5432                         return;
5433                 goto out;
5434         }
5435
5436         /* this is a message we already processed, do nothing */
5437         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5438                 return;
5439
5440         /*
5441          * until the vf completes a reset it should not be
5442          * allowed to start any configuration.
5443          */
5444
5445         if (msgbuf[0] == E1000_VF_RESET) {
5446                 igb_vf_reset_msg(adapter, vf);
5447                 return;
5448         }
5449
5450         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5451                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5452                         return;
5453                 retval = -1;
5454                 goto out;
5455         }
5456
5457         switch ((msgbuf[0] & 0xFFFF)) {
5458         case E1000_VF_SET_MAC_ADDR:
5459                 retval = -EINVAL;
5460                 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5461                         retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5462                 else
5463                         dev_warn(&pdev->dev,
5464                                  "VF %d attempted to override administratively "
5465                                  "set MAC address\nReload the VF driver to "
5466                                  "resume operations\n", vf);
5467                 break;
5468         case E1000_VF_SET_PROMISC:
5469                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5470                 break;
5471         case E1000_VF_SET_MULTICAST:
5472                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5473                 break;
5474         case E1000_VF_SET_LPE:
5475                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5476                 break;
5477         case E1000_VF_SET_VLAN:
5478                 retval = -1;
5479                 if (vf_data->pf_vlan)
5480                         dev_warn(&pdev->dev,
5481                                  "VF %d attempted to override administratively "
5482                                  "set VLAN tag\nReload the VF driver to "
5483                                  "resume operations\n", vf);
5484                 else
5485                         retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5486                 break;
5487         default:
5488                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5489                 retval = -1;
5490                 break;
5491         }
5492
5493         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5494 out:
5495         /* notify the VF of the results of what it sent us */
5496         if (retval)
5497                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5498         else
5499                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5500
5501         igb_write_mbx(hw, msgbuf, 1, vf);
5502 }
5503
5504 static void igb_msg_task(struct igb_adapter *adapter)
5505 {
5506         struct e1000_hw *hw = &adapter->hw;
5507         u32 vf;
5508
5509         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5510                 /* process any reset requests */
5511                 if (!igb_check_for_rst(hw, vf))
5512                         igb_vf_reset_event(adapter, vf);
5513
5514                 /* process any messages pending */
5515                 if (!igb_check_for_msg(hw, vf))
5516                         igb_rcv_msg_from_vf(adapter, vf);
5517
5518                 /* process any acks */
5519                 if (!igb_check_for_ack(hw, vf))
5520                         igb_rcv_ack_from_vf(adapter, vf);
5521         }
5522 }
5523
5524 /**
5525  *  igb_set_uta - Set unicast filter table address
5526  *  @adapter: board private structure
5527  *
5528  *  The unicast table address is a register array of 32-bit registers.
5529  *  The table is meant to be used in a way similar to how the MTA is used
5530  *  however due to certain limitations in the hardware it is necessary to
5531  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5532  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5533  **/
5534 static void igb_set_uta(struct igb_adapter *adapter)
5535 {
5536         struct e1000_hw *hw = &adapter->hw;
5537         int i;
5538
5539         /* The UTA table only exists on 82576 hardware and newer */
5540         if (hw->mac.type < e1000_82576)
5541                 return;
5542
5543         /* we only need to do this if VMDq is enabled */
5544         if (!adapter->vfs_allocated_count)
5545                 return;
5546
5547         for (i = 0; i < hw->mac.uta_reg_count; i++)
5548                 array_wr32(E1000_UTA, i, ~0);
5549 }
5550
5551 /**
5552  * igb_intr_msi - Interrupt Handler
5553  * @irq: interrupt number
5554  * @data: pointer to a network interface device structure
5555  **/
5556 static irqreturn_t igb_intr_msi(int irq, void *data)
5557 {
5558         struct igb_adapter *adapter = data;
5559         struct igb_q_vector *q_vector = adapter->q_vector[0];
5560         struct e1000_hw *hw = &adapter->hw;
5561         /* read ICR disables interrupts using IAM */
5562         u32 icr = rd32(E1000_ICR);
5563
5564         igb_write_itr(q_vector);
5565
5566         if (icr & E1000_ICR_DRSTA)
5567                 schedule_work(&adapter->reset_task);
5568
5569         if (icr & E1000_ICR_DOUTSYNC) {
5570                 /* HW is reporting DMA is out of sync */
5571                 adapter->stats.doosync++;
5572         }
5573
5574         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5575                 hw->mac.get_link_status = 1;
5576                 if (!test_bit(__IGB_DOWN, &adapter->state))
5577                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5578         }
5579
5580         napi_schedule(&q_vector->napi);
5581
5582         return IRQ_HANDLED;
5583 }
5584
5585 /**
5586  * igb_intr - Legacy Interrupt Handler
5587  * @irq: interrupt number
5588  * @data: pointer to a network interface device structure
5589  **/
5590 static irqreturn_t igb_intr(int irq, void *data)
5591 {
5592         struct igb_adapter *adapter = data;
5593         struct igb_q_vector *q_vector = adapter->q_vector[0];
5594         struct e1000_hw *hw = &adapter->hw;
5595         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5596          * need for the IMC write */
5597         u32 icr = rd32(E1000_ICR);
5598
5599         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5600          * not set, then the adapter didn't send an interrupt */
5601         if (!(icr & E1000_ICR_INT_ASSERTED))
5602                 return IRQ_NONE;
5603
5604         igb_write_itr(q_vector);
5605
5606         if (icr & E1000_ICR_DRSTA)
5607                 schedule_work(&adapter->reset_task);
5608
5609         if (icr & E1000_ICR_DOUTSYNC) {
5610                 /* HW is reporting DMA is out of sync */
5611                 adapter->stats.doosync++;
5612         }
5613
5614         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5615                 hw->mac.get_link_status = 1;
5616                 /* guard against interrupt when we're going down */
5617                 if (!test_bit(__IGB_DOWN, &adapter->state))
5618                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5619         }
5620
5621         napi_schedule(&q_vector->napi);
5622
5623         return IRQ_HANDLED;
5624 }
5625
5626 void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5627 {
5628         struct igb_adapter *adapter = q_vector->adapter;
5629         struct e1000_hw *hw = &adapter->hw;
5630
5631         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5632             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5633                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5634                         igb_set_itr(q_vector);
5635                 else
5636                         igb_update_ring_itr(q_vector);
5637         }
5638
5639         if (!test_bit(__IGB_DOWN, &adapter->state)) {
5640                 if (adapter->msix_entries)
5641                         wr32(E1000_EIMS, q_vector->eims_value);
5642                 else
5643                         igb_irq_enable(adapter);
5644         }
5645 }
5646
5647 /**
5648  * igb_poll - NAPI Rx polling callback
5649  * @napi: napi polling structure
5650  * @budget: count of how many packets we should handle
5651  **/
5652 static int igb_poll(struct napi_struct *napi, int budget)
5653 {
5654         struct igb_q_vector *q_vector = container_of(napi,
5655                                                      struct igb_q_vector,
5656                                                      napi);
5657         bool clean_complete = true;
5658
5659 #ifdef CONFIG_IGB_DCA
5660         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5661                 igb_update_dca(q_vector);
5662 #endif
5663         if (q_vector->tx.ring)
5664                 clean_complete = igb_clean_tx_irq(q_vector);
5665
5666         if (q_vector->rx.ring)
5667                 clean_complete &= igb_clean_rx_irq(q_vector, budget);
5668
5669         /* If all work not completed, return budget and keep polling */
5670         if (!clean_complete)
5671                 return budget;
5672
5673         /* If not enough Rx work done, exit the polling mode */
5674         napi_complete(napi);
5675         igb_ring_irq_enable(q_vector);
5676
5677         return 0;
5678 }
5679
5680 /**
5681  * igb_systim_to_hwtstamp - convert system time value to hw timestamp
5682  * @adapter: board private structure
5683  * @shhwtstamps: timestamp structure to update
5684  * @regval: unsigned 64bit system time value.
5685  *
5686  * We need to convert the system time value stored in the RX/TXSTMP registers
5687  * into a hwtstamp which can be used by the upper level timestamping functions
5688  */
5689 static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
5690                                    struct skb_shared_hwtstamps *shhwtstamps,
5691                                    u64 regval)
5692 {
5693         u64 ns;
5694
5695         /*
5696          * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
5697          * 24 to match clock shift we setup earlier.
5698          */
5699         if (adapter->hw.mac.type >= e1000_82580)
5700                 regval <<= IGB_82580_TSYNC_SHIFT;
5701
5702         ns = timecounter_cyc2time(&adapter->clock, regval);
5703         timecompare_update(&adapter->compare, ns);
5704         memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
5705         shhwtstamps->hwtstamp = ns_to_ktime(ns);
5706         shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
5707 }
5708
5709 /**
5710  * igb_tx_hwtstamp - utility function which checks for TX time stamp
5711  * @q_vector: pointer to q_vector containing needed info
5712  * @buffer: pointer to igb_tx_buffer structure
5713  *
5714  * If we were asked to do hardware stamping and such a time stamp is
5715  * available, then it must have been for this skb here because we only
5716  * allow only one such packet into the queue.
5717  */
5718 static void igb_tx_hwtstamp(struct igb_q_vector *q_vector,
5719                             struct igb_tx_buffer *buffer_info)
5720 {
5721         struct igb_adapter *adapter = q_vector->adapter;
5722         struct e1000_hw *hw = &adapter->hw;
5723         struct skb_shared_hwtstamps shhwtstamps;
5724         u64 regval;
5725
5726         /* if skb does not support hw timestamp or TX stamp not valid exit */
5727         if (likely(!(buffer_info->tx_flags & IGB_TX_FLAGS_TSTAMP)) ||
5728             !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
5729                 return;
5730
5731         regval = rd32(E1000_TXSTMPL);
5732         regval |= (u64)rd32(E1000_TXSTMPH) << 32;
5733
5734         igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
5735         skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
5736 }
5737
5738 /**
5739  * igb_clean_tx_irq - Reclaim resources after transmit completes
5740  * @q_vector: pointer to q_vector containing needed info
5741  * returns true if ring is completely cleaned
5742  **/
5743 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5744 {
5745         struct igb_adapter *adapter = q_vector->adapter;
5746         struct igb_ring *tx_ring = q_vector->tx.ring;
5747         struct igb_tx_buffer *tx_buffer;
5748         union e1000_adv_tx_desc *tx_desc, *eop_desc;
5749         unsigned int total_bytes = 0, total_packets = 0;
5750         unsigned int budget = q_vector->tx.work_limit;
5751         unsigned int i = tx_ring->next_to_clean;
5752
5753         if (test_bit(__IGB_DOWN, &adapter->state))
5754                 return true;
5755
5756         tx_buffer = &tx_ring->tx_buffer_info[i];
5757         tx_desc = IGB_TX_DESC(tx_ring, i);
5758         i -= tx_ring->count;
5759
5760         for (; budget; budget--) {
5761                 eop_desc = tx_buffer->next_to_watch;
5762
5763                 /* prevent any other reads prior to eop_desc */
5764                 rmb();
5765
5766                 /* if next_to_watch is not set then there is no work pending */
5767                 if (!eop_desc)
5768                         break;
5769
5770                 /* if DD is not set pending work has not been completed */
5771                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5772                         break;
5773
5774                 /* clear next_to_watch to prevent false hangs */
5775                 tx_buffer->next_to_watch = NULL;
5776
5777                 /* update the statistics for this packet */
5778                 total_bytes += tx_buffer->bytecount;
5779                 total_packets += tx_buffer->gso_segs;
5780
5781                 /* retrieve hardware timestamp */
5782                 igb_tx_hwtstamp(q_vector, tx_buffer);
5783
5784                 /* free the skb */
5785                 dev_kfree_skb_any(tx_buffer->skb);
5786                 tx_buffer->skb = NULL;
5787
5788                 /* unmap skb header data */
5789                 dma_unmap_single(tx_ring->dev,
5790                                  tx_buffer->dma,
5791                                  tx_buffer->length,
5792                                  DMA_TO_DEVICE);
5793
5794                 /* clear last DMA location and unmap remaining buffers */
5795                 while (tx_desc != eop_desc) {
5796                         tx_buffer->dma = 0;
5797
5798                         tx_buffer++;
5799                         tx_desc++;
5800                         i++;
5801                         if (unlikely(!i)) {
5802                                 i -= tx_ring->count;
5803                                 tx_buffer = tx_ring->tx_buffer_info;
5804                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
5805                         }
5806
5807                         /* unmap any remaining paged data */
5808                         if (tx_buffer->dma) {
5809                                 dma_unmap_page(tx_ring->dev,
5810                                                tx_buffer->dma,
5811                                                tx_buffer->length,
5812                                                DMA_TO_DEVICE);
5813                         }
5814                 }
5815
5816                 /* clear last DMA location */
5817                 tx_buffer->dma = 0;
5818
5819                 /* move us one more past the eop_desc for start of next pkt */
5820                 tx_buffer++;
5821                 tx_desc++;
5822                 i++;
5823                 if (unlikely(!i)) {
5824                         i -= tx_ring->count;
5825                         tx_buffer = tx_ring->tx_buffer_info;
5826                         tx_desc = IGB_TX_DESC(tx_ring, 0);
5827                 }
5828         }
5829
5830         netdev_tx_completed_queue(txring_txq(tx_ring),
5831                                   total_packets, total_bytes);
5832         i += tx_ring->count;
5833         tx_ring->next_to_clean = i;
5834         u64_stats_update_begin(&tx_ring->tx_syncp);
5835         tx_ring->tx_stats.bytes += total_bytes;
5836         tx_ring->tx_stats.packets += total_packets;
5837         u64_stats_update_end(&tx_ring->tx_syncp);
5838         q_vector->tx.total_bytes += total_bytes;
5839         q_vector->tx.total_packets += total_packets;
5840
5841         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
5842                 struct e1000_hw *hw = &adapter->hw;
5843
5844                 eop_desc = tx_buffer->next_to_watch;
5845
5846                 /* Detect a transmit hang in hardware, this serializes the
5847                  * check with the clearing of time_stamp and movement of i */
5848                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5849                 if (eop_desc &&
5850                     time_after(jiffies, tx_buffer->time_stamp +
5851                                (adapter->tx_timeout_factor * HZ)) &&
5852                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5853
5854                         /* detected Tx unit hang */
5855                         dev_err(tx_ring->dev,
5856                                 "Detected Tx Unit Hang\n"
5857                                 "  Tx Queue             <%d>\n"
5858                                 "  TDH                  <%x>\n"
5859                                 "  TDT                  <%x>\n"
5860                                 "  next_to_use          <%x>\n"
5861                                 "  next_to_clean        <%x>\n"
5862                                 "buffer_info[next_to_clean]\n"
5863                                 "  time_stamp           <%lx>\n"
5864                                 "  next_to_watch        <%p>\n"
5865                                 "  jiffies              <%lx>\n"
5866                                 "  desc.status          <%x>\n",
5867                                 tx_ring->queue_index,
5868                                 rd32(E1000_TDH(tx_ring->reg_idx)),
5869                                 readl(tx_ring->tail),
5870                                 tx_ring->next_to_use,
5871                                 tx_ring->next_to_clean,
5872                                 tx_buffer->time_stamp,
5873                                 eop_desc,
5874                                 jiffies,
5875                                 eop_desc->wb.status);
5876                         netif_stop_subqueue(tx_ring->netdev,
5877                                             tx_ring->queue_index);
5878
5879                         /* we are about to reset, no point in enabling stuff */
5880                         return true;
5881                 }
5882         }
5883
5884         if (unlikely(total_packets &&
5885                      netif_carrier_ok(tx_ring->netdev) &&
5886                      igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5887                 /* Make sure that anybody stopping the queue after this
5888                  * sees the new next_to_clean.
5889                  */
5890                 smp_mb();
5891                 if (__netif_subqueue_stopped(tx_ring->netdev,
5892                                              tx_ring->queue_index) &&
5893                     !(test_bit(__IGB_DOWN, &adapter->state))) {
5894                         netif_wake_subqueue(tx_ring->netdev,
5895                                             tx_ring->queue_index);
5896
5897                         u64_stats_update_begin(&tx_ring->tx_syncp);
5898                         tx_ring->tx_stats.restart_queue++;
5899                         u64_stats_update_end(&tx_ring->tx_syncp);
5900                 }
5901         }
5902
5903         return !!budget;
5904 }
5905
5906 static inline void igb_rx_checksum(struct igb_ring *ring,
5907                                    union e1000_adv_rx_desc *rx_desc,
5908                                    struct sk_buff *skb)
5909 {
5910         skb_checksum_none_assert(skb);
5911
5912         /* Ignore Checksum bit is set */
5913         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
5914                 return;
5915
5916         /* Rx checksum disabled via ethtool */
5917         if (!(ring->netdev->features & NETIF_F_RXCSUM))
5918                 return;
5919
5920         /* TCP/UDP checksum error bit is set */
5921         if (igb_test_staterr(rx_desc,
5922                              E1000_RXDEXT_STATERR_TCPE |
5923                              E1000_RXDEXT_STATERR_IPE)) {
5924                 /*
5925                  * work around errata with sctp packets where the TCPE aka
5926                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5927                  * packets, (aka let the stack check the crc32c)
5928                  */
5929                 if (!((skb->len == 60) &&
5930                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
5931                         u64_stats_update_begin(&ring->rx_syncp);
5932                         ring->rx_stats.csum_err++;
5933                         u64_stats_update_end(&ring->rx_syncp);
5934                 }
5935                 /* let the stack verify checksum errors */
5936                 return;
5937         }
5938         /* It must be a TCP or UDP packet with a valid checksum */
5939         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
5940                                       E1000_RXD_STAT_UDPCS))
5941                 skb->ip_summed = CHECKSUM_UNNECESSARY;
5942
5943         dev_dbg(ring->dev, "cksum success: bits %08X\n",
5944                 le32_to_cpu(rx_desc->wb.upper.status_error));
5945 }
5946
5947 static inline void igb_rx_hash(struct igb_ring *ring,
5948                                union e1000_adv_rx_desc *rx_desc,
5949                                struct sk_buff *skb)
5950 {
5951         if (ring->netdev->features & NETIF_F_RXHASH)
5952                 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
5953 }
5954
5955 static void igb_rx_hwtstamp(struct igb_q_vector *q_vector,
5956                             union e1000_adv_rx_desc *rx_desc,
5957                             struct sk_buff *skb)
5958 {
5959         struct igb_adapter *adapter = q_vector->adapter;
5960         struct e1000_hw *hw = &adapter->hw;
5961         u64 regval;
5962
5963         if (!igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP |
5964                                        E1000_RXDADV_STAT_TS))
5965                 return;
5966
5967         /*
5968          * If this bit is set, then the RX registers contain the time stamp. No
5969          * other packet will be time stamped until we read these registers, so
5970          * read the registers to make them available again. Because only one
5971          * packet can be time stamped at a time, we know that the register
5972          * values must belong to this one here and therefore we don't need to
5973          * compare any of the additional attributes stored for it.
5974          *
5975          * If nothing went wrong, then it should have a shared tx_flags that we
5976          * can turn into a skb_shared_hwtstamps.
5977          */
5978         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
5979                 u32 *stamp = (u32 *)skb->data;
5980                 regval = le32_to_cpu(*(stamp + 2));
5981                 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
5982                 skb_pull(skb, IGB_TS_HDR_LEN);
5983         } else {
5984                 if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5985                         return;
5986
5987                 regval = rd32(E1000_RXSTMPL);
5988                 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5989         }
5990
5991         igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5992 }
5993
5994 static void igb_rx_vlan(struct igb_ring *ring,
5995                         union e1000_adv_rx_desc *rx_desc,
5996                         struct sk_buff *skb)
5997 {
5998         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
5999                 u16 vid;
6000                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6001                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags))
6002                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6003                 else
6004                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6005
6006                 __vlan_hwaccel_put_tag(skb, vid);
6007         }
6008 }
6009
6010 static inline u16 igb_get_hlen(union e1000_adv_rx_desc *rx_desc)
6011 {
6012         /* HW will not DMA in data larger than the given buffer, even if it
6013          * parses the (NFS, of course) header to be larger.  In that case, it
6014          * fills the header buffer and spills the rest into the page.
6015          */
6016         u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
6017                    E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
6018         if (hlen > IGB_RX_HDR_LEN)
6019                 hlen = IGB_RX_HDR_LEN;
6020         return hlen;
6021 }
6022
6023 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget)
6024 {
6025         struct igb_ring *rx_ring = q_vector->rx.ring;
6026         union e1000_adv_rx_desc *rx_desc;
6027         const int current_node = numa_node_id();
6028         unsigned int total_bytes = 0, total_packets = 0;
6029         u16 cleaned_count = igb_desc_unused(rx_ring);
6030         u16 i = rx_ring->next_to_clean;
6031
6032         rx_desc = IGB_RX_DESC(rx_ring, i);
6033
6034         while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
6035                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
6036                 struct sk_buff *skb = buffer_info->skb;
6037                 union e1000_adv_rx_desc *next_rxd;
6038
6039                 buffer_info->skb = NULL;
6040                 prefetch(skb->data);
6041
6042                 i++;
6043                 if (i == rx_ring->count)
6044                         i = 0;
6045
6046                 next_rxd = IGB_RX_DESC(rx_ring, i);
6047                 prefetch(next_rxd);
6048
6049                 /*
6050                  * This memory barrier is needed to keep us from reading
6051                  * any other fields out of the rx_desc until we know the
6052                  * RXD_STAT_DD bit is set
6053                  */
6054                 rmb();
6055
6056                 if (!skb_is_nonlinear(skb)) {
6057                         __skb_put(skb, igb_get_hlen(rx_desc));
6058                         dma_unmap_single(rx_ring->dev, buffer_info->dma,
6059                                          IGB_RX_HDR_LEN,
6060                                          DMA_FROM_DEVICE);
6061                         buffer_info->dma = 0;
6062                 }
6063
6064                 if (rx_desc->wb.upper.length) {
6065                         u16 length = le16_to_cpu(rx_desc->wb.upper.length);
6066
6067                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
6068                                                 buffer_info->page,
6069                                                 buffer_info->page_offset,
6070                                                 length);
6071
6072                         skb->len += length;
6073                         skb->data_len += length;
6074                         skb->truesize += PAGE_SIZE / 2;
6075
6076                         if ((page_count(buffer_info->page) != 1) ||
6077                             (page_to_nid(buffer_info->page) != current_node))
6078                                 buffer_info->page = NULL;
6079                         else
6080                                 get_page(buffer_info->page);
6081
6082                         dma_unmap_page(rx_ring->dev, buffer_info->page_dma,
6083                                        PAGE_SIZE / 2, DMA_FROM_DEVICE);
6084                         buffer_info->page_dma = 0;
6085                 }
6086
6087                 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)) {
6088                         struct igb_rx_buffer *next_buffer;
6089                         next_buffer = &rx_ring->rx_buffer_info[i];
6090                         buffer_info->skb = next_buffer->skb;
6091                         buffer_info->dma = next_buffer->dma;
6092                         next_buffer->skb = skb;
6093                         next_buffer->dma = 0;
6094                         goto next_desc;
6095                 }
6096
6097                 if (igb_test_staterr(rx_desc,
6098                                      E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
6099                         dev_kfree_skb_any(skb);
6100                         goto next_desc;
6101                 }
6102
6103                 igb_rx_hwtstamp(q_vector, rx_desc, skb);
6104                 igb_rx_hash(rx_ring, rx_desc, skb);
6105                 igb_rx_checksum(rx_ring, rx_desc, skb);
6106                 igb_rx_vlan(rx_ring, rx_desc, skb);
6107
6108                 total_bytes += skb->len;
6109                 total_packets++;
6110
6111                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6112
6113                 napi_gro_receive(&q_vector->napi, skb);
6114
6115                 budget--;
6116 next_desc:
6117                 if (!budget)
6118                         break;
6119
6120                 cleaned_count++;
6121                 /* return some buffers to hardware, one at a time is too slow */
6122                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6123                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
6124                         cleaned_count = 0;
6125                 }
6126
6127                 /* use prefetched values */
6128                 rx_desc = next_rxd;
6129         }
6130
6131         rx_ring->next_to_clean = i;
6132         u64_stats_update_begin(&rx_ring->rx_syncp);
6133         rx_ring->rx_stats.packets += total_packets;
6134         rx_ring->rx_stats.bytes += total_bytes;
6135         u64_stats_update_end(&rx_ring->rx_syncp);
6136         q_vector->rx.total_packets += total_packets;
6137         q_vector->rx.total_bytes += total_bytes;
6138
6139         if (cleaned_count)
6140                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6141
6142         return !!budget;
6143 }
6144
6145 static bool igb_alloc_mapped_skb(struct igb_ring *rx_ring,
6146                                  struct igb_rx_buffer *bi)
6147 {
6148         struct sk_buff *skb = bi->skb;
6149         dma_addr_t dma = bi->dma;
6150
6151         if (dma)
6152                 return true;
6153
6154         if (likely(!skb)) {
6155                 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6156                                                 IGB_RX_HDR_LEN);
6157                 bi->skb = skb;
6158                 if (!skb) {
6159                         rx_ring->rx_stats.alloc_failed++;
6160                         return false;
6161                 }
6162
6163                 /* initialize skb for ring */
6164                 skb_record_rx_queue(skb, rx_ring->queue_index);
6165         }
6166
6167         dma = dma_map_single(rx_ring->dev, skb->data,
6168                              IGB_RX_HDR_LEN, DMA_FROM_DEVICE);
6169
6170         if (dma_mapping_error(rx_ring->dev, dma)) {
6171                 rx_ring->rx_stats.alloc_failed++;
6172                 return false;
6173         }
6174
6175         bi->dma = dma;
6176         return true;
6177 }
6178
6179 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6180                                   struct igb_rx_buffer *bi)
6181 {
6182         struct page *page = bi->page;
6183         dma_addr_t page_dma = bi->page_dma;
6184         unsigned int page_offset = bi->page_offset ^ (PAGE_SIZE / 2);
6185
6186         if (page_dma)
6187                 return true;
6188
6189         if (!page) {
6190                 page = alloc_page(GFP_ATOMIC | __GFP_COLD);
6191                 bi->page = page;
6192                 if (unlikely(!page)) {
6193                         rx_ring->rx_stats.alloc_failed++;
6194                         return false;
6195                 }
6196         }
6197
6198         page_dma = dma_map_page(rx_ring->dev, page,
6199                                 page_offset, PAGE_SIZE / 2,
6200                                 DMA_FROM_DEVICE);
6201
6202         if (dma_mapping_error(rx_ring->dev, page_dma)) {
6203                 rx_ring->rx_stats.alloc_failed++;
6204                 return false;
6205         }
6206
6207         bi->page_dma = page_dma;
6208         bi->page_offset = page_offset;
6209         return true;
6210 }
6211
6212 /**
6213  * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6214  * @adapter: address of board private structure
6215  **/
6216 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6217 {
6218         union e1000_adv_rx_desc *rx_desc;
6219         struct igb_rx_buffer *bi;
6220         u16 i = rx_ring->next_to_use;
6221
6222         rx_desc = IGB_RX_DESC(rx_ring, i);
6223         bi = &rx_ring->rx_buffer_info[i];
6224         i -= rx_ring->count;
6225
6226         while (cleaned_count--) {
6227                 if (!igb_alloc_mapped_skb(rx_ring, bi))
6228                         break;
6229
6230                 /* Refresh the desc even if buffer_addrs didn't change
6231                  * because each write-back erases this info. */
6232                 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
6233
6234                 if (!igb_alloc_mapped_page(rx_ring, bi))
6235                         break;
6236
6237                 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
6238
6239                 rx_desc++;
6240                 bi++;
6241                 i++;
6242                 if (unlikely(!i)) {
6243                         rx_desc = IGB_RX_DESC(rx_ring, 0);
6244                         bi = rx_ring->rx_buffer_info;
6245                         i -= rx_ring->count;
6246                 }
6247
6248                 /* clear the hdr_addr for the next_to_use descriptor */
6249                 rx_desc->read.hdr_addr = 0;
6250         }
6251
6252         i += rx_ring->count;
6253
6254         if (rx_ring->next_to_use != i) {
6255                 rx_ring->next_to_use = i;
6256
6257                 /* Force memory writes to complete before letting h/w
6258                  * know there are new descriptors to fetch.  (Only
6259                  * applicable for weak-ordered memory model archs,
6260                  * such as IA-64). */
6261                 wmb();
6262                 writel(i, rx_ring->tail);
6263         }
6264 }
6265
6266 /**
6267  * igb_mii_ioctl -
6268  * @netdev:
6269  * @ifreq:
6270  * @cmd:
6271  **/
6272 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6273 {
6274         struct igb_adapter *adapter = netdev_priv(netdev);
6275         struct mii_ioctl_data *data = if_mii(ifr);
6276
6277         if (adapter->hw.phy.media_type != e1000_media_type_copper)
6278                 return -EOPNOTSUPP;
6279
6280         switch (cmd) {
6281         case SIOCGMIIPHY:
6282                 data->phy_id = adapter->hw.phy.addr;
6283                 break;
6284         case SIOCGMIIREG:
6285                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6286                                      &data->val_out))
6287                         return -EIO;
6288                 break;
6289         case SIOCSMIIREG:
6290         default:
6291                 return -EOPNOTSUPP;
6292         }
6293         return 0;
6294 }
6295
6296 /**
6297  * igb_hwtstamp_ioctl - control hardware time stamping
6298  * @netdev:
6299  * @ifreq:
6300  * @cmd:
6301  *
6302  * Outgoing time stamping can be enabled and disabled. Play nice and
6303  * disable it when requested, although it shouldn't case any overhead
6304  * when no packet needs it. At most one packet in the queue may be
6305  * marked for time stamping, otherwise it would be impossible to tell
6306  * for sure to which packet the hardware time stamp belongs.
6307  *
6308  * Incoming time stamping has to be configured via the hardware
6309  * filters. Not all combinations are supported, in particular event
6310  * type has to be specified. Matching the kind of event packet is
6311  * not supported, with the exception of "all V2 events regardless of
6312  * level 2 or 4".
6313  *
6314  **/
6315 static int igb_hwtstamp_ioctl(struct net_device *netdev,
6316                               struct ifreq *ifr, int cmd)
6317 {
6318         struct igb_adapter *adapter = netdev_priv(netdev);
6319         struct e1000_hw *hw = &adapter->hw;
6320         struct hwtstamp_config config;
6321         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
6322         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6323         u32 tsync_rx_cfg = 0;
6324         bool is_l4 = false;
6325         bool is_l2 = false;
6326         u32 regval;
6327
6328         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6329                 return -EFAULT;
6330
6331         /* reserved for future extensions */
6332         if (config.flags)
6333                 return -EINVAL;
6334
6335         switch (config.tx_type) {
6336         case HWTSTAMP_TX_OFF:
6337                 tsync_tx_ctl = 0;
6338         case HWTSTAMP_TX_ON:
6339                 break;
6340         default:
6341                 return -ERANGE;
6342         }
6343
6344         switch (config.rx_filter) {
6345         case HWTSTAMP_FILTER_NONE:
6346                 tsync_rx_ctl = 0;
6347                 break;
6348         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6349         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6350         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6351         case HWTSTAMP_FILTER_ALL:
6352                 /*
6353                  * register TSYNCRXCFG must be set, therefore it is not
6354                  * possible to time stamp both Sync and Delay_Req messages
6355                  * => fall back to time stamping all packets
6356                  */
6357                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6358                 config.rx_filter = HWTSTAMP_FILTER_ALL;
6359                 break;
6360         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
6361                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
6362                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
6363                 is_l4 = true;
6364                 break;
6365         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
6366                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
6367                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
6368                 is_l4 = true;
6369                 break;
6370         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6371         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6372                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
6373                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
6374                 is_l2 = true;
6375                 is_l4 = true;
6376                 config.rx_filter = HWTSTAMP_FILTER_SOME;
6377                 break;
6378         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6379         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6380                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
6381                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
6382                 is_l2 = true;
6383                 is_l4 = true;
6384                 config.rx_filter = HWTSTAMP_FILTER_SOME;
6385                 break;
6386         case HWTSTAMP_FILTER_PTP_V2_EVENT:
6387         case HWTSTAMP_FILTER_PTP_V2_SYNC:
6388         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6389                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
6390                 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
6391                 is_l2 = true;
6392                 is_l4 = true;
6393                 break;
6394         default:
6395                 return -ERANGE;
6396         }
6397
6398         if (hw->mac.type == e1000_82575) {
6399                 if (tsync_rx_ctl | tsync_tx_ctl)
6400                         return -EINVAL;
6401                 return 0;
6402         }
6403
6404         /*
6405          * Per-packet timestamping only works if all packets are
6406          * timestamped, so enable timestamping in all packets as
6407          * long as one rx filter was configured.
6408          */
6409         if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
6410                 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6411                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6412         }
6413
6414         /* enable/disable TX */
6415         regval = rd32(E1000_TSYNCTXCTL);
6416         regval &= ~E1000_TSYNCTXCTL_ENABLED;
6417         regval |= tsync_tx_ctl;
6418         wr32(E1000_TSYNCTXCTL, regval);
6419
6420         /* enable/disable RX */
6421         regval = rd32(E1000_TSYNCRXCTL);
6422         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
6423         regval |= tsync_rx_ctl;
6424         wr32(E1000_TSYNCRXCTL, regval);
6425
6426         /* define which PTP packets are time stamped */
6427         wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
6428
6429         /* define ethertype filter for timestamped packets */
6430         if (is_l2)
6431                 wr32(E1000_ETQF(3),
6432                                 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
6433                                  E1000_ETQF_1588 | /* enable timestamping */
6434                                  ETH_P_1588));     /* 1588 eth protocol type */
6435         else
6436                 wr32(E1000_ETQF(3), 0);
6437
6438 #define PTP_PORT 319
6439         /* L4 Queue Filter[3]: filter by destination port and protocol */
6440         if (is_l4) {
6441                 u32 ftqf = (IPPROTO_UDP /* UDP */
6442                         | E1000_FTQF_VF_BP /* VF not compared */
6443                         | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
6444                         | E1000_FTQF_MASK); /* mask all inputs */
6445                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
6446
6447                 wr32(E1000_IMIR(3), htons(PTP_PORT));
6448                 wr32(E1000_IMIREXT(3),
6449                      (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
6450                 if (hw->mac.type == e1000_82576) {
6451                         /* enable source port check */
6452                         wr32(E1000_SPQF(3), htons(PTP_PORT));
6453                         ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
6454                 }
6455                 wr32(E1000_FTQF(3), ftqf);
6456         } else {
6457                 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
6458         }
6459         wrfl();
6460
6461         adapter->hwtstamp_config = config;
6462
6463         /* clear TX/RX time stamp registers, just to be sure */
6464         regval = rd32(E1000_TXSTMPH);
6465         regval = rd32(E1000_RXSTMPH);
6466
6467         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
6468                 -EFAULT : 0;
6469 }
6470
6471 /**
6472  * igb_ioctl -
6473  * @netdev:
6474  * @ifreq:
6475  * @cmd:
6476  **/
6477 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6478 {
6479         switch (cmd) {
6480         case SIOCGMIIPHY:
6481         case SIOCGMIIREG:
6482         case SIOCSMIIREG:
6483                 return igb_mii_ioctl(netdev, ifr, cmd);
6484         case SIOCSHWTSTAMP:
6485                 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
6486         default:
6487                 return -EOPNOTSUPP;
6488         }
6489 }
6490
6491 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6492 {
6493         struct igb_adapter *adapter = hw->back;
6494         u16 cap_offset;
6495
6496         cap_offset = adapter->pdev->pcie_cap;
6497         if (!cap_offset)
6498                 return -E1000_ERR_CONFIG;
6499
6500         pci_read_config_word(adapter->pdev, cap_offset + reg, value);
6501
6502         return 0;
6503 }
6504
6505 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6506 {
6507         struct igb_adapter *adapter = hw->back;
6508         u16 cap_offset;
6509
6510         cap_offset = adapter->pdev->pcie_cap;
6511         if (!cap_offset)
6512                 return -E1000_ERR_CONFIG;
6513
6514         pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
6515
6516         return 0;
6517 }
6518
6519 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6520 {
6521         struct igb_adapter *adapter = netdev_priv(netdev);
6522         struct e1000_hw *hw = &adapter->hw;
6523         u32 ctrl, rctl;
6524         bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6525
6526         if (enable) {
6527                 /* enable VLAN tag insert/strip */
6528                 ctrl = rd32(E1000_CTRL);
6529                 ctrl |= E1000_CTRL_VME;
6530                 wr32(E1000_CTRL, ctrl);
6531
6532                 /* Disable CFI check */
6533                 rctl = rd32(E1000_RCTL);
6534                 rctl &= ~E1000_RCTL_CFIEN;
6535                 wr32(E1000_RCTL, rctl);
6536         } else {
6537                 /* disable VLAN tag insert/strip */
6538                 ctrl = rd32(E1000_CTRL);
6539                 ctrl &= ~E1000_CTRL_VME;
6540                 wr32(E1000_CTRL, ctrl);
6541         }
6542
6543         igb_rlpml_set(adapter);
6544 }
6545
6546 static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6547 {
6548         struct igb_adapter *adapter = netdev_priv(netdev);
6549         struct e1000_hw *hw = &adapter->hw;
6550         int pf_id = adapter->vfs_allocated_count;
6551
6552         /* attempt to add filter to vlvf array */
6553         igb_vlvf_set(adapter, vid, true, pf_id);
6554
6555         /* add the filter since PF can receive vlans w/o entry in vlvf */
6556         igb_vfta_set(hw, vid, true);
6557
6558         set_bit(vid, adapter->active_vlans);
6559
6560         return 0;
6561 }
6562
6563 static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6564 {
6565         struct igb_adapter *adapter = netdev_priv(netdev);
6566         struct e1000_hw *hw = &adapter->hw;
6567         int pf_id = adapter->vfs_allocated_count;
6568         s32 err;
6569
6570         /* remove vlan from VLVF table array */
6571         err = igb_vlvf_set(adapter, vid, false, pf_id);
6572
6573         /* if vid was not present in VLVF just remove it from table */
6574         if (err)
6575                 igb_vfta_set(hw, vid, false);
6576
6577         clear_bit(vid, adapter->active_vlans);
6578
6579         return 0;
6580 }
6581
6582 static void igb_restore_vlan(struct igb_adapter *adapter)
6583 {
6584         u16 vid;
6585
6586         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6587
6588         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6589                 igb_vlan_rx_add_vid(adapter->netdev, vid);
6590 }
6591
6592 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6593 {
6594         struct pci_dev *pdev = adapter->pdev;
6595         struct e1000_mac_info *mac = &adapter->hw.mac;
6596
6597         mac->autoneg = 0;
6598
6599         /* Make sure dplx is at most 1 bit and lsb of speed is not set
6600          * for the switch() below to work */
6601         if ((spd & 1) || (dplx & ~1))
6602                 goto err_inval;
6603
6604         /* Fiber NIC's only allow 1000 Gbps Full duplex */
6605         if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6606             spd != SPEED_1000 &&
6607             dplx != DUPLEX_FULL)
6608                 goto err_inval;
6609
6610         switch (spd + dplx) {
6611         case SPEED_10 + DUPLEX_HALF:
6612                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6613                 break;
6614         case SPEED_10 + DUPLEX_FULL:
6615                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6616                 break;
6617         case SPEED_100 + DUPLEX_HALF:
6618                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6619                 break;
6620         case SPEED_100 + DUPLEX_FULL:
6621                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6622                 break;
6623         case SPEED_1000 + DUPLEX_FULL:
6624                 mac->autoneg = 1;
6625                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6626                 break;
6627         case SPEED_1000 + DUPLEX_HALF: /* not supported */
6628         default:
6629                 goto err_inval;
6630         }
6631         return 0;
6632
6633 err_inval:
6634         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6635         return -EINVAL;
6636 }
6637
6638 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
6639                           bool runtime)
6640 {
6641         struct net_device *netdev = pci_get_drvdata(pdev);
6642         struct igb_adapter *adapter = netdev_priv(netdev);
6643         struct e1000_hw *hw = &adapter->hw;
6644         u32 ctrl, rctl, status;
6645         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6646 #ifdef CONFIG_PM
6647         int retval = 0;
6648 #endif
6649
6650         netif_device_detach(netdev);
6651
6652         if (netif_running(netdev))
6653                 __igb_close(netdev, true);
6654
6655         igb_clear_interrupt_scheme(adapter);
6656
6657 #ifdef CONFIG_PM
6658         retval = pci_save_state(pdev);
6659         if (retval)
6660                 return retval;
6661 #endif
6662
6663         status = rd32(E1000_STATUS);
6664         if (status & E1000_STATUS_LU)
6665                 wufc &= ~E1000_WUFC_LNKC;
6666
6667         if (wufc) {
6668                 igb_setup_rctl(adapter);
6669                 igb_set_rx_mode(netdev);
6670
6671                 /* turn on all-multi mode if wake on multicast is enabled */
6672                 if (wufc & E1000_WUFC_MC) {
6673                         rctl = rd32(E1000_RCTL);
6674                         rctl |= E1000_RCTL_MPE;
6675                         wr32(E1000_RCTL, rctl);
6676                 }
6677
6678                 ctrl = rd32(E1000_CTRL);
6679                 /* advertise wake from D3Cold */
6680                 #define E1000_CTRL_ADVD3WUC 0x00100000
6681                 /* phy power management enable */
6682                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6683                 ctrl |= E1000_CTRL_ADVD3WUC;
6684                 wr32(E1000_CTRL, ctrl);
6685
6686                 /* Allow time for pending master requests to run */
6687                 igb_disable_pcie_master(hw);
6688
6689                 wr32(E1000_WUC, E1000_WUC_PME_EN);
6690                 wr32(E1000_WUFC, wufc);
6691         } else {
6692                 wr32(E1000_WUC, 0);
6693                 wr32(E1000_WUFC, 0);
6694         }
6695
6696         *enable_wake = wufc || adapter->en_mng_pt;
6697         if (!*enable_wake)
6698                 igb_power_down_link(adapter);
6699         else
6700                 igb_power_up_link(adapter);
6701
6702         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6703          * would have already happened in close and is redundant. */
6704         igb_release_hw_control(adapter);
6705
6706         pci_disable_device(pdev);
6707
6708         return 0;
6709 }
6710
6711 #ifdef CONFIG_PM
6712 static int igb_suspend(struct device *dev)
6713 {
6714         int retval;
6715         bool wake;
6716         struct pci_dev *pdev = to_pci_dev(dev);
6717
6718         retval = __igb_shutdown(pdev, &wake, 0);
6719         if (retval)
6720                 return retval;
6721
6722         if (wake) {
6723                 pci_prepare_to_sleep(pdev);
6724         } else {
6725                 pci_wake_from_d3(pdev, false);
6726                 pci_set_power_state(pdev, PCI_D3hot);
6727         }
6728
6729         return 0;
6730 }
6731
6732 static int igb_resume(struct device *dev)
6733 {
6734         struct pci_dev *pdev = to_pci_dev(dev);
6735         struct net_device *netdev = pci_get_drvdata(pdev);
6736         struct igb_adapter *adapter = netdev_priv(netdev);
6737         struct e1000_hw *hw = &adapter->hw;
6738         u32 err;
6739
6740         pci_set_power_state(pdev, PCI_D0);
6741         pci_restore_state(pdev);
6742         pci_save_state(pdev);
6743
6744         err = pci_enable_device_mem(pdev);
6745         if (err) {
6746                 dev_err(&pdev->dev,
6747                         "igb: Cannot enable PCI device from suspend\n");
6748                 return err;
6749         }
6750         pci_set_master(pdev);
6751
6752         pci_enable_wake(pdev, PCI_D3hot, 0);
6753         pci_enable_wake(pdev, PCI_D3cold, 0);
6754
6755         if (!rtnl_is_locked()) {
6756                 /*
6757                  * shut up ASSERT_RTNL() warning in
6758                  * netif_set_real_num_tx/rx_queues.
6759                  */
6760                 rtnl_lock();
6761                 err = igb_init_interrupt_scheme(adapter);
6762                 rtnl_unlock();
6763         } else {
6764                 err = igb_init_interrupt_scheme(adapter);
6765         }
6766         if (err) {
6767                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6768                 return -ENOMEM;
6769         }
6770
6771         igb_reset(adapter);
6772
6773         /* let the f/w know that the h/w is now under the control of the
6774          * driver. */
6775         igb_get_hw_control(adapter);
6776
6777         wr32(E1000_WUS, ~0);
6778
6779         if (netdev->flags & IFF_UP) {
6780                 err = __igb_open(netdev, true);
6781                 if (err)
6782                         return err;
6783         }
6784
6785         netif_device_attach(netdev);
6786         return 0;
6787 }
6788
6789 #ifdef CONFIG_PM_RUNTIME
6790 static int igb_runtime_idle(struct device *dev)
6791 {
6792         struct pci_dev *pdev = to_pci_dev(dev);
6793         struct net_device *netdev = pci_get_drvdata(pdev);
6794         struct igb_adapter *adapter = netdev_priv(netdev);
6795
6796         if (!igb_has_link(adapter))
6797                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
6798
6799         return -EBUSY;
6800 }
6801
6802 static int igb_runtime_suspend(struct device *dev)
6803 {
6804         struct pci_dev *pdev = to_pci_dev(dev);
6805         int retval;
6806         bool wake;
6807
6808         retval = __igb_shutdown(pdev, &wake, 1);
6809         if (retval)
6810                 return retval;
6811
6812         if (wake) {
6813                 pci_prepare_to_sleep(pdev);
6814         } else {
6815                 pci_wake_from_d3(pdev, false);
6816                 pci_set_power_state(pdev, PCI_D3hot);
6817         }
6818
6819         return 0;
6820 }
6821
6822 static int igb_runtime_resume(struct device *dev)
6823 {
6824         return igb_resume(dev);
6825 }
6826 #endif /* CONFIG_PM_RUNTIME */
6827 #endif
6828
6829 static void igb_shutdown(struct pci_dev *pdev)
6830 {
6831         bool wake;
6832
6833         __igb_shutdown(pdev, &wake, 0);
6834
6835         if (system_state == SYSTEM_POWER_OFF) {
6836                 pci_wake_from_d3(pdev, wake);
6837                 pci_set_power_state(pdev, PCI_D3hot);
6838         }
6839 }
6840
6841 #ifdef CONFIG_NET_POLL_CONTROLLER
6842 /*
6843  * Polling 'interrupt' - used by things like netconsole to send skbs
6844  * without having to re-enable interrupts. It's not called while
6845  * the interrupt routine is executing.
6846  */
6847 static void igb_netpoll(struct net_device *netdev)
6848 {
6849         struct igb_adapter *adapter = netdev_priv(netdev);
6850         struct e1000_hw *hw = &adapter->hw;
6851         struct igb_q_vector *q_vector;
6852         int i;
6853
6854         for (i = 0; i < adapter->num_q_vectors; i++) {
6855                 q_vector = adapter->q_vector[i];
6856                 if (adapter->msix_entries)
6857                         wr32(E1000_EIMC, q_vector->eims_value);
6858                 else
6859                         igb_irq_disable(adapter);
6860                 napi_schedule(&q_vector->napi);
6861         }
6862 }
6863 #endif /* CONFIG_NET_POLL_CONTROLLER */
6864
6865 /**
6866  * igb_io_error_detected - called when PCI error is detected
6867  * @pdev: Pointer to PCI device
6868  * @state: The current pci connection state
6869  *
6870  * This function is called after a PCI bus error affecting
6871  * this device has been detected.
6872  */
6873 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6874                                               pci_channel_state_t state)
6875 {
6876         struct net_device *netdev = pci_get_drvdata(pdev);
6877         struct igb_adapter *adapter = netdev_priv(netdev);
6878
6879         netif_device_detach(netdev);
6880
6881         if (state == pci_channel_io_perm_failure)
6882                 return PCI_ERS_RESULT_DISCONNECT;
6883
6884         if (netif_running(netdev))
6885                 igb_down(adapter);
6886         pci_disable_device(pdev);
6887
6888         /* Request a slot slot reset. */
6889         return PCI_ERS_RESULT_NEED_RESET;
6890 }
6891
6892 /**
6893  * igb_io_slot_reset - called after the pci bus has been reset.
6894  * @pdev: Pointer to PCI device
6895  *
6896  * Restart the card from scratch, as if from a cold-boot. Implementation
6897  * resembles the first-half of the igb_resume routine.
6898  */
6899 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6900 {
6901         struct net_device *netdev = pci_get_drvdata(pdev);
6902         struct igb_adapter *adapter = netdev_priv(netdev);
6903         struct e1000_hw *hw = &adapter->hw;
6904         pci_ers_result_t result;
6905         int err;
6906
6907         if (pci_enable_device_mem(pdev)) {
6908                 dev_err(&pdev->dev,
6909                         "Cannot re-enable PCI device after reset.\n");
6910                 result = PCI_ERS_RESULT_DISCONNECT;
6911         } else {
6912                 pci_set_master(pdev);
6913                 pci_restore_state(pdev);
6914                 pci_save_state(pdev);
6915
6916                 pci_enable_wake(pdev, PCI_D3hot, 0);
6917                 pci_enable_wake(pdev, PCI_D3cold, 0);
6918
6919                 igb_reset(adapter);
6920                 wr32(E1000_WUS, ~0);
6921                 result = PCI_ERS_RESULT_RECOVERED;
6922         }
6923
6924         err = pci_cleanup_aer_uncorrect_error_status(pdev);
6925         if (err) {
6926                 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6927                         "failed 0x%0x\n", err);
6928                 /* non-fatal, continue */
6929         }
6930
6931         return result;
6932 }
6933
6934 /**
6935  * igb_io_resume - called when traffic can start flowing again.
6936  * @pdev: Pointer to PCI device
6937  *
6938  * This callback is called when the error recovery driver tells us that
6939  * its OK to resume normal operation. Implementation resembles the
6940  * second-half of the igb_resume routine.
6941  */
6942 static void igb_io_resume(struct pci_dev *pdev)
6943 {
6944         struct net_device *netdev = pci_get_drvdata(pdev);
6945         struct igb_adapter *adapter = netdev_priv(netdev);
6946
6947         if (netif_running(netdev)) {
6948                 if (igb_up(adapter)) {
6949                         dev_err(&pdev->dev, "igb_up failed after reset\n");
6950                         return;
6951                 }
6952         }
6953
6954         netif_device_attach(netdev);
6955
6956         /* let the f/w know that the h/w is now under the control of the
6957          * driver. */
6958         igb_get_hw_control(adapter);
6959 }
6960
6961 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6962                              u8 qsel)
6963 {
6964         u32 rar_low, rar_high;
6965         struct e1000_hw *hw = &adapter->hw;
6966
6967         /* HW expects these in little endian so we reverse the byte order
6968          * from network order (big endian) to little endian
6969          */
6970         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6971                   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6972         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6973
6974         /* Indicate to hardware the Address is Valid. */
6975         rar_high |= E1000_RAH_AV;
6976
6977         if (hw->mac.type == e1000_82575)
6978                 rar_high |= E1000_RAH_POOL_1 * qsel;
6979         else
6980                 rar_high |= E1000_RAH_POOL_1 << qsel;
6981
6982         wr32(E1000_RAL(index), rar_low);
6983         wrfl();
6984         wr32(E1000_RAH(index), rar_high);
6985         wrfl();
6986 }
6987
6988 static int igb_set_vf_mac(struct igb_adapter *adapter,
6989                           int vf, unsigned char *mac_addr)
6990 {
6991         struct e1000_hw *hw = &adapter->hw;
6992         /* VF MAC addresses start at end of receive addresses and moves
6993          * torwards the first, as a result a collision should not be possible */
6994         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6995
6996         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
6997
6998         igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
6999
7000         return 0;
7001 }
7002
7003 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7004 {
7005         struct igb_adapter *adapter = netdev_priv(netdev);
7006         if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7007                 return -EINVAL;
7008         adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7009         dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7010         dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
7011                                       " change effective.");
7012         if (test_bit(__IGB_DOWN, &adapter->state)) {
7013                 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
7014                          " but the PF device is not up.\n");
7015                 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
7016                          " attempting to use the VF device.\n");
7017         }
7018         return igb_set_vf_mac(adapter, vf, mac);
7019 }
7020
7021 static int igb_link_mbps(int internal_link_speed)
7022 {
7023         switch (internal_link_speed) {
7024         case SPEED_100:
7025                 return 100;
7026         case SPEED_1000:
7027                 return 1000;
7028         default:
7029                 return 0;
7030         }
7031 }
7032
7033 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7034                                   int link_speed)
7035 {
7036         int rf_dec, rf_int;
7037         u32 bcnrc_val;
7038
7039         if (tx_rate != 0) {
7040                 /* Calculate the rate factor values to set */
7041                 rf_int = link_speed / tx_rate;
7042                 rf_dec = (link_speed - (rf_int * tx_rate));
7043                 rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
7044
7045                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7046                 bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
7047                                E1000_RTTBCNRC_RF_INT_MASK);
7048                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7049         } else {
7050                 bcnrc_val = 0;
7051         }
7052
7053         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7054         wr32(E1000_RTTBCNRC, bcnrc_val);
7055 }
7056
7057 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7058 {
7059         int actual_link_speed, i;
7060         bool reset_rate = false;
7061
7062         /* VF TX rate limit was not set or not supported */
7063         if ((adapter->vf_rate_link_speed == 0) ||
7064             (adapter->hw.mac.type != e1000_82576))
7065                 return;
7066
7067         actual_link_speed = igb_link_mbps(adapter->link_speed);
7068         if (actual_link_speed != adapter->vf_rate_link_speed) {
7069                 reset_rate = true;
7070                 adapter->vf_rate_link_speed = 0;
7071                 dev_info(&adapter->pdev->dev,
7072                          "Link speed has been changed. VF Transmit "
7073                          "rate is disabled\n");
7074         }
7075
7076         for (i = 0; i < adapter->vfs_allocated_count; i++) {
7077                 if (reset_rate)
7078                         adapter->vf_data[i].tx_rate = 0;
7079
7080                 igb_set_vf_rate_limit(&adapter->hw, i,
7081                                       adapter->vf_data[i].tx_rate,
7082                                       actual_link_speed);
7083         }
7084 }
7085
7086 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7087 {
7088         struct igb_adapter *adapter = netdev_priv(netdev);
7089         struct e1000_hw *hw = &adapter->hw;
7090         int actual_link_speed;
7091
7092         if (hw->mac.type != e1000_82576)
7093                 return -EOPNOTSUPP;
7094
7095         actual_link_speed = igb_link_mbps(adapter->link_speed);
7096         if ((vf >= adapter->vfs_allocated_count) ||
7097             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7098             (tx_rate < 0) || (tx_rate > actual_link_speed))
7099                 return -EINVAL;
7100
7101         adapter->vf_rate_link_speed = actual_link_speed;
7102         adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7103         igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7104
7105         return 0;
7106 }
7107
7108 static int igb_ndo_get_vf_config(struct net_device *netdev,
7109                                  int vf, struct ifla_vf_info *ivi)
7110 {
7111         struct igb_adapter *adapter = netdev_priv(netdev);
7112         if (vf >= adapter->vfs_allocated_count)
7113                 return -EINVAL;
7114         ivi->vf = vf;
7115         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7116         ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7117         ivi->vlan = adapter->vf_data[vf].pf_vlan;
7118         ivi->qos = adapter->vf_data[vf].pf_qos;
7119         return 0;
7120 }
7121
7122 static void igb_vmm_control(struct igb_adapter *adapter)
7123 {
7124         struct e1000_hw *hw = &adapter->hw;
7125         u32 reg;
7126
7127         switch (hw->mac.type) {
7128         case e1000_82575:
7129         default:
7130                 /* replication is not supported for 82575 */
7131                 return;
7132         case e1000_82576:
7133                 /* notify HW that the MAC is adding vlan tags */
7134                 reg = rd32(E1000_DTXCTL);
7135                 reg |= E1000_DTXCTL_VLAN_ADDED;
7136                 wr32(E1000_DTXCTL, reg);
7137         case e1000_82580:
7138                 /* enable replication vlan tag stripping */
7139                 reg = rd32(E1000_RPLOLR);
7140                 reg |= E1000_RPLOLR_STRVLAN;
7141                 wr32(E1000_RPLOLR, reg);
7142         case e1000_i350:
7143                 /* none of the above registers are supported by i350 */
7144                 break;
7145         }
7146
7147         if (adapter->vfs_allocated_count) {
7148                 igb_vmdq_set_loopback_pf(hw, true);
7149                 igb_vmdq_set_replication_pf(hw, true);
7150                 igb_vmdq_set_anti_spoofing_pf(hw, true,
7151                                                 adapter->vfs_allocated_count);
7152         } else {
7153                 igb_vmdq_set_loopback_pf(hw, false);
7154                 igb_vmdq_set_replication_pf(hw, false);
7155         }
7156 }
7157
7158 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7159 {
7160         struct e1000_hw *hw = &adapter->hw;
7161         u32 dmac_thr;
7162         u16 hwm;
7163
7164         if (hw->mac.type > e1000_82580) {
7165                 if (adapter->flags & IGB_FLAG_DMAC) {
7166                         u32 reg;
7167
7168                         /* force threshold to 0. */
7169                         wr32(E1000_DMCTXTH, 0);
7170
7171                         /*
7172                          * DMA Coalescing high water mark needs to be greater
7173                          * than the Rx threshold. Set hwm to PBA - max frame
7174                          * size in 16B units, capping it at PBA - 6KB.
7175                          */
7176                         hwm = 64 * pba - adapter->max_frame_size / 16;
7177                         if (hwm < 64 * (pba - 6))
7178                                 hwm = 64 * (pba - 6);
7179                         reg = rd32(E1000_FCRTC);
7180                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7181                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7182                                 & E1000_FCRTC_RTH_COAL_MASK);
7183                         wr32(E1000_FCRTC, reg);
7184
7185                         /*
7186                          * Set the DMA Coalescing Rx threshold to PBA - 2 * max
7187                          * frame size, capping it at PBA - 10KB.
7188                          */
7189                         dmac_thr = pba - adapter->max_frame_size / 512;
7190                         if (dmac_thr < pba - 10)
7191                                 dmac_thr = pba - 10;
7192                         reg = rd32(E1000_DMACR);
7193                         reg &= ~E1000_DMACR_DMACTHR_MASK;
7194                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7195                                 & E1000_DMACR_DMACTHR_MASK);
7196
7197                         /* transition to L0x or L1 if available..*/
7198                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7199
7200                         /* watchdog timer= +-1000 usec in 32usec intervals */
7201                         reg |= (1000 >> 5);
7202                         wr32(E1000_DMACR, reg);
7203
7204                         /*
7205                          * no lower threshold to disable
7206                          * coalescing(smart fifb)-UTRESH=0
7207                          */
7208                         wr32(E1000_DMCRTRH, 0);
7209
7210                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7211
7212                         wr32(E1000_DMCTLX, reg);
7213
7214                         /*
7215                          * free space in tx packet buffer to wake from
7216                          * DMA coal
7217                          */
7218                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7219                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7220
7221                         /*
7222                          * make low power state decision controlled
7223                          * by DMA coal
7224                          */
7225                         reg = rd32(E1000_PCIEMISC);
7226                         reg &= ~E1000_PCIEMISC_LX_DECISION;
7227                         wr32(E1000_PCIEMISC, reg);
7228                 } /* endif adapter->dmac is not disabled */
7229         } else if (hw->mac.type == e1000_82580) {
7230                 u32 reg = rd32(E1000_PCIEMISC);
7231                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7232                 wr32(E1000_DMACR, 0);
7233         }
7234 }
7235
7236 /* igb_main.c */