include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[linux-3.10.git] / drivers / net / cxgb3 / cxgb3_offload.c
1 /*
2  * Copyright (c) 2006-2008 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #include <linux/list.h>
34 #include <linux/slab.h>
35 #include <net/neighbour.h>
36 #include <linux/notifier.h>
37 #include <asm/atomic.h>
38 #include <linux/proc_fs.h>
39 #include <linux/if_vlan.h>
40 #include <net/netevent.h>
41 #include <linux/highmem.h>
42 #include <linux/vmalloc.h>
43
44 #include "common.h"
45 #include "regs.h"
46 #include "cxgb3_ioctl.h"
47 #include "cxgb3_ctl_defs.h"
48 #include "cxgb3_defs.h"
49 #include "l2t.h"
50 #include "firmware_exports.h"
51 #include "cxgb3_offload.h"
52
53 static LIST_HEAD(client_list);
54 static LIST_HEAD(ofld_dev_list);
55 static DEFINE_MUTEX(cxgb3_db_lock);
56
57 static DEFINE_RWLOCK(adapter_list_lock);
58 static LIST_HEAD(adapter_list);
59
60 static const unsigned int MAX_ATIDS = 64 * 1024;
61 static const unsigned int ATID_BASE = 0x10000;
62
63 static inline int offload_activated(struct t3cdev *tdev)
64 {
65         const struct adapter *adapter = tdev2adap(tdev);
66
67         return (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map));
68 }
69
70 /**
71  *      cxgb3_register_client - register an offload client
72  *      @client: the client
73  *
74  *      Add the client to the client list,
75  *      and call backs the client for each activated offload device
76  */
77 void cxgb3_register_client(struct cxgb3_client *client)
78 {
79         struct t3cdev *tdev;
80
81         mutex_lock(&cxgb3_db_lock);
82         list_add_tail(&client->client_list, &client_list);
83
84         if (client->add) {
85                 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
86                         if (offload_activated(tdev))
87                                 client->add(tdev);
88                 }
89         }
90         mutex_unlock(&cxgb3_db_lock);
91 }
92
93 EXPORT_SYMBOL(cxgb3_register_client);
94
95 /**
96  *      cxgb3_unregister_client - unregister an offload client
97  *      @client: the client
98  *
99  *      Remove the client to the client list,
100  *      and call backs the client for each activated offload device.
101  */
102 void cxgb3_unregister_client(struct cxgb3_client *client)
103 {
104         struct t3cdev *tdev;
105
106         mutex_lock(&cxgb3_db_lock);
107         list_del(&client->client_list);
108
109         if (client->remove) {
110                 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
111                         if (offload_activated(tdev))
112                                 client->remove(tdev);
113                 }
114         }
115         mutex_unlock(&cxgb3_db_lock);
116 }
117
118 EXPORT_SYMBOL(cxgb3_unregister_client);
119
120 /**
121  *      cxgb3_add_clients - activate registered clients for an offload device
122  *      @tdev: the offload device
123  *
124  *      Call backs all registered clients once a offload device is activated
125  */
126 void cxgb3_add_clients(struct t3cdev *tdev)
127 {
128         struct cxgb3_client *client;
129
130         mutex_lock(&cxgb3_db_lock);
131         list_for_each_entry(client, &client_list, client_list) {
132                 if (client->add)
133                         client->add(tdev);
134         }
135         mutex_unlock(&cxgb3_db_lock);
136 }
137
138 /**
139  *      cxgb3_remove_clients - deactivates registered clients
140  *                             for an offload device
141  *      @tdev: the offload device
142  *
143  *      Call backs all registered clients once a offload device is deactivated
144  */
145 void cxgb3_remove_clients(struct t3cdev *tdev)
146 {
147         struct cxgb3_client *client;
148
149         mutex_lock(&cxgb3_db_lock);
150         list_for_each_entry(client, &client_list, client_list) {
151                 if (client->remove)
152                         client->remove(tdev);
153         }
154         mutex_unlock(&cxgb3_db_lock);
155 }
156
157 void cxgb3_event_notify(struct t3cdev *tdev, u32 event, u32 port)
158 {
159         struct cxgb3_client *client;
160
161         mutex_lock(&cxgb3_db_lock);
162         list_for_each_entry(client, &client_list, client_list) {
163                 if (client->event_handler)
164                         client->event_handler(tdev, event, port);
165         }
166         mutex_unlock(&cxgb3_db_lock);
167 }
168
169 static struct net_device *get_iff_from_mac(struct adapter *adapter,
170                                            const unsigned char *mac,
171                                            unsigned int vlan)
172 {
173         int i;
174
175         for_each_port(adapter, i) {
176                 struct vlan_group *grp;
177                 struct net_device *dev = adapter->port[i];
178                 const struct port_info *p = netdev_priv(dev);
179
180                 if (!memcmp(dev->dev_addr, mac, ETH_ALEN)) {
181                         if (vlan && vlan != VLAN_VID_MASK) {
182                                 grp = p->vlan_grp;
183                                 dev = NULL;
184                                 if (grp)
185                                         dev = vlan_group_get_device(grp, vlan);
186                         } else
187                                 while (dev->master)
188                                         dev = dev->master;
189                         return dev;
190                 }
191         }
192         return NULL;
193 }
194
195 static int cxgb_ulp_iscsi_ctl(struct adapter *adapter, unsigned int req,
196                               void *data)
197 {
198         int i;
199         int ret = 0;
200         unsigned int val = 0;
201         struct ulp_iscsi_info *uiip = data;
202
203         switch (req) {
204         case ULP_ISCSI_GET_PARAMS:
205                 uiip->pdev = adapter->pdev;
206                 uiip->llimit = t3_read_reg(adapter, A_ULPRX_ISCSI_LLIMIT);
207                 uiip->ulimit = t3_read_reg(adapter, A_ULPRX_ISCSI_ULIMIT);
208                 uiip->tagmask = t3_read_reg(adapter, A_ULPRX_ISCSI_TAGMASK);
209
210                 val = t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ);
211                 for (i = 0; i < 4; i++, val >>= 8)
212                         uiip->pgsz_factor[i] = val & 0xFF;
213
214                 val = t3_read_reg(adapter, A_TP_PARA_REG7);
215                 uiip->max_txsz =
216                 uiip->max_rxsz = min((val >> S_PMMAXXFERLEN0)&M_PMMAXXFERLEN0,
217                                      (val >> S_PMMAXXFERLEN1)&M_PMMAXXFERLEN1);
218                 /*
219                  * On tx, the iscsi pdu has to be <= tx page size and has to
220                  * fit into the Tx PM FIFO.
221                  */
222                 val = min(adapter->params.tp.tx_pg_size,
223                           t3_read_reg(adapter, A_PM1_TX_CFG) >> 17);
224                 uiip->max_txsz = min(val, uiip->max_txsz);
225
226                 /* set MaxRxData to 16224 */
227                 val = t3_read_reg(adapter, A_TP_PARA_REG2);
228                 if ((val >> S_MAXRXDATA) != 0x3f60) {
229                         val &= (M_RXCOALESCESIZE << S_RXCOALESCESIZE);
230                         val |= V_MAXRXDATA(0x3f60);
231                         printk(KERN_INFO
232                                 "%s, iscsi set MaxRxData to 16224 (0x%x).\n",
233                                 adapter->name, val);
234                         t3_write_reg(adapter, A_TP_PARA_REG2, val);
235                 }
236
237                 /*
238                  * on rx, the iscsi pdu has to be < rx page size and the
239                  * the max rx data length programmed in TP
240                  */
241                 val = min(adapter->params.tp.rx_pg_size,
242                           ((t3_read_reg(adapter, A_TP_PARA_REG2)) >>
243                                 S_MAXRXDATA) & M_MAXRXDATA);
244                 uiip->max_rxsz = min(val, uiip->max_rxsz);
245                 break;
246         case ULP_ISCSI_SET_PARAMS:
247                 t3_write_reg(adapter, A_ULPRX_ISCSI_TAGMASK, uiip->tagmask);
248                 /* program the ddp page sizes */
249                 for (i = 0; i < 4; i++)
250                         val |= (uiip->pgsz_factor[i] & 0xF) << (8 * i);
251                 if (val && (val != t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ))) {
252                         printk(KERN_INFO
253                                 "%s, setting iscsi pgsz 0x%x, %u,%u,%u,%u.\n",
254                                 adapter->name, val, uiip->pgsz_factor[0],
255                                 uiip->pgsz_factor[1], uiip->pgsz_factor[2],
256                                 uiip->pgsz_factor[3]);
257                         t3_write_reg(adapter, A_ULPRX_ISCSI_PSZ, val);
258                 }
259                 break;
260         default:
261                 ret = -EOPNOTSUPP;
262         }
263         return ret;
264 }
265
266 /* Response queue used for RDMA events. */
267 #define ASYNC_NOTIF_RSPQ 0
268
269 static int cxgb_rdma_ctl(struct adapter *adapter, unsigned int req, void *data)
270 {
271         int ret = 0;
272
273         switch (req) {
274         case RDMA_GET_PARAMS: {
275                 struct rdma_info *rdma = data;
276                 struct pci_dev *pdev = adapter->pdev;
277
278                 rdma->udbell_physbase = pci_resource_start(pdev, 2);
279                 rdma->udbell_len = pci_resource_len(pdev, 2);
280                 rdma->tpt_base =
281                         t3_read_reg(adapter, A_ULPTX_TPT_LLIMIT);
282                 rdma->tpt_top = t3_read_reg(adapter, A_ULPTX_TPT_ULIMIT);
283                 rdma->pbl_base =
284                         t3_read_reg(adapter, A_ULPTX_PBL_LLIMIT);
285                 rdma->pbl_top = t3_read_reg(adapter, A_ULPTX_PBL_ULIMIT);
286                 rdma->rqt_base = t3_read_reg(adapter, A_ULPRX_RQ_LLIMIT);
287                 rdma->rqt_top = t3_read_reg(adapter, A_ULPRX_RQ_ULIMIT);
288                 rdma->kdb_addr = adapter->regs + A_SG_KDOORBELL;
289                 rdma->pdev = pdev;
290                 break;
291         }
292         case RDMA_CQ_OP:{
293                 unsigned long flags;
294                 struct rdma_cq_op *rdma = data;
295
296                 /* may be called in any context */
297                 spin_lock_irqsave(&adapter->sge.reg_lock, flags);
298                 ret = t3_sge_cqcntxt_op(adapter, rdma->id, rdma->op,
299                                         rdma->credits);
300                 spin_unlock_irqrestore(&adapter->sge.reg_lock, flags);
301                 break;
302         }
303         case RDMA_GET_MEM:{
304                 struct ch_mem_range *t = data;
305                 struct mc7 *mem;
306
307                 if ((t->addr & 7) || (t->len & 7))
308                         return -EINVAL;
309                 if (t->mem_id == MEM_CM)
310                         mem = &adapter->cm;
311                 else if (t->mem_id == MEM_PMRX)
312                         mem = &adapter->pmrx;
313                 else if (t->mem_id == MEM_PMTX)
314                         mem = &adapter->pmtx;
315                 else
316                         return -EINVAL;
317
318                 ret =
319                         t3_mc7_bd_read(mem, t->addr / 8, t->len / 8,
320                                         (u64 *) t->buf);
321                 if (ret)
322                         return ret;
323                 break;
324         }
325         case RDMA_CQ_SETUP:{
326                 struct rdma_cq_setup *rdma = data;
327
328                 spin_lock_irq(&adapter->sge.reg_lock);
329                 ret =
330                         t3_sge_init_cqcntxt(adapter, rdma->id,
331                                         rdma->base_addr, rdma->size,
332                                         ASYNC_NOTIF_RSPQ,
333                                         rdma->ovfl_mode, rdma->credits,
334                                         rdma->credit_thres);
335                 spin_unlock_irq(&adapter->sge.reg_lock);
336                 break;
337         }
338         case RDMA_CQ_DISABLE:
339                 spin_lock_irq(&adapter->sge.reg_lock);
340                 ret = t3_sge_disable_cqcntxt(adapter, *(unsigned int *)data);
341                 spin_unlock_irq(&adapter->sge.reg_lock);
342                 break;
343         case RDMA_CTRL_QP_SETUP:{
344                 struct rdma_ctrlqp_setup *rdma = data;
345
346                 spin_lock_irq(&adapter->sge.reg_lock);
347                 ret = t3_sge_init_ecntxt(adapter, FW_RI_SGEEC_START, 0,
348                                                 SGE_CNTXT_RDMA,
349                                                 ASYNC_NOTIF_RSPQ,
350                                                 rdma->base_addr, rdma->size,
351                                                 FW_RI_TID_START, 1, 0);
352                 spin_unlock_irq(&adapter->sge.reg_lock);
353                 break;
354         }
355         case RDMA_GET_MIB: {
356                 spin_lock(&adapter->stats_lock);
357                 t3_tp_get_mib_stats(adapter, (struct tp_mib_stats *)data);
358                 spin_unlock(&adapter->stats_lock);
359                 break;
360         }
361         default:
362                 ret = -EOPNOTSUPP;
363         }
364         return ret;
365 }
366
367 static int cxgb_offload_ctl(struct t3cdev *tdev, unsigned int req, void *data)
368 {
369         struct adapter *adapter = tdev2adap(tdev);
370         struct tid_range *tid;
371         struct mtutab *mtup;
372         struct iff_mac *iffmacp;
373         struct ddp_params *ddpp;
374         struct adap_ports *ports;
375         struct ofld_page_info *rx_page_info;
376         struct tp_params *tp = &adapter->params.tp;
377         int i;
378
379         switch (req) {
380         case GET_MAX_OUTSTANDING_WR:
381                 *(unsigned int *)data = FW_WR_NUM;
382                 break;
383         case GET_WR_LEN:
384                 *(unsigned int *)data = WR_FLITS;
385                 break;
386         case GET_TX_MAX_CHUNK:
387                 *(unsigned int *)data = 1 << 20;        /* 1MB */
388                 break;
389         case GET_TID_RANGE:
390                 tid = data;
391                 tid->num = t3_mc5_size(&adapter->mc5) -
392                     adapter->params.mc5.nroutes -
393                     adapter->params.mc5.nfilters - adapter->params.mc5.nservers;
394                 tid->base = 0;
395                 break;
396         case GET_STID_RANGE:
397                 tid = data;
398                 tid->num = adapter->params.mc5.nservers;
399                 tid->base = t3_mc5_size(&adapter->mc5) - tid->num -
400                     adapter->params.mc5.nfilters - adapter->params.mc5.nroutes;
401                 break;
402         case GET_L2T_CAPACITY:
403                 *(unsigned int *)data = 2048;
404                 break;
405         case GET_MTUS:
406                 mtup = data;
407                 mtup->size = NMTUS;
408                 mtup->mtus = adapter->params.mtus;
409                 break;
410         case GET_IFF_FROM_MAC:
411                 iffmacp = data;
412                 iffmacp->dev = get_iff_from_mac(adapter, iffmacp->mac_addr,
413                                                 iffmacp->vlan_tag &
414                                                 VLAN_VID_MASK);
415                 break;
416         case GET_DDP_PARAMS:
417                 ddpp = data;
418                 ddpp->llimit = t3_read_reg(adapter, A_ULPRX_TDDP_LLIMIT);
419                 ddpp->ulimit = t3_read_reg(adapter, A_ULPRX_TDDP_ULIMIT);
420                 ddpp->tag_mask = t3_read_reg(adapter, A_ULPRX_TDDP_TAGMASK);
421                 break;
422         case GET_PORTS:
423                 ports = data;
424                 ports->nports = adapter->params.nports;
425                 for_each_port(adapter, i)
426                         ports->lldevs[i] = adapter->port[i];
427                 break;
428         case ULP_ISCSI_GET_PARAMS:
429         case ULP_ISCSI_SET_PARAMS:
430                 if (!offload_running(adapter))
431                         return -EAGAIN;
432                 return cxgb_ulp_iscsi_ctl(adapter, req, data);
433         case RDMA_GET_PARAMS:
434         case RDMA_CQ_OP:
435         case RDMA_CQ_SETUP:
436         case RDMA_CQ_DISABLE:
437         case RDMA_CTRL_QP_SETUP:
438         case RDMA_GET_MEM:
439         case RDMA_GET_MIB:
440                 if (!offload_running(adapter))
441                         return -EAGAIN;
442                 return cxgb_rdma_ctl(adapter, req, data);
443         case GET_RX_PAGE_INFO:
444                 rx_page_info = data;
445                 rx_page_info->page_size = tp->rx_pg_size;
446                 rx_page_info->num = tp->rx_num_pgs;
447                 break;
448         case GET_ISCSI_IPV4ADDR: {
449                 struct iscsi_ipv4addr *p = data;
450                 struct port_info *pi = netdev_priv(p->dev);
451                 p->ipv4addr = pi->iscsi_ipv4addr;
452                 break;
453         }
454         case GET_EMBEDDED_INFO: {
455                 struct ch_embedded_info *e = data;
456
457                 spin_lock(&adapter->stats_lock);
458                 t3_get_fw_version(adapter, &e->fw_vers);
459                 t3_get_tp_version(adapter, &e->tp_vers);
460                 spin_unlock(&adapter->stats_lock);
461                 break;
462         }
463         default:
464                 return -EOPNOTSUPP;
465         }
466         return 0;
467 }
468
469 /*
470  * Dummy handler for Rx offload packets in case we get an offload packet before
471  * proper processing is setup.  This complains and drops the packet as it isn't
472  * normal to get offload packets at this stage.
473  */
474 static int rx_offload_blackhole(struct t3cdev *dev, struct sk_buff **skbs,
475                                 int n)
476 {
477         while (n--)
478                 dev_kfree_skb_any(skbs[n]);
479         return 0;
480 }
481
482 static void dummy_neigh_update(struct t3cdev *dev, struct neighbour *neigh)
483 {
484 }
485
486 void cxgb3_set_dummy_ops(struct t3cdev *dev)
487 {
488         dev->recv = rx_offload_blackhole;
489         dev->neigh_update = dummy_neigh_update;
490 }
491
492 /*
493  * Free an active-open TID.
494  */
495 void *cxgb3_free_atid(struct t3cdev *tdev, int atid)
496 {
497         struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
498         union active_open_entry *p = atid2entry(t, atid);
499         void *ctx = p->t3c_tid.ctx;
500
501         spin_lock_bh(&t->atid_lock);
502         p->next = t->afree;
503         t->afree = p;
504         t->atids_in_use--;
505         spin_unlock_bh(&t->atid_lock);
506
507         return ctx;
508 }
509
510 EXPORT_SYMBOL(cxgb3_free_atid);
511
512 /*
513  * Free a server TID and return it to the free pool.
514  */
515 void cxgb3_free_stid(struct t3cdev *tdev, int stid)
516 {
517         struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
518         union listen_entry *p = stid2entry(t, stid);
519
520         spin_lock_bh(&t->stid_lock);
521         p->next = t->sfree;
522         t->sfree = p;
523         t->stids_in_use--;
524         spin_unlock_bh(&t->stid_lock);
525 }
526
527 EXPORT_SYMBOL(cxgb3_free_stid);
528
529 void cxgb3_insert_tid(struct t3cdev *tdev, struct cxgb3_client *client,
530                       void *ctx, unsigned int tid)
531 {
532         struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
533
534         t->tid_tab[tid].client = client;
535         t->tid_tab[tid].ctx = ctx;
536         atomic_inc(&t->tids_in_use);
537 }
538
539 EXPORT_SYMBOL(cxgb3_insert_tid);
540
541 /*
542  * Populate a TID_RELEASE WR.  The skb must be already propely sized.
543  */
544 static inline void mk_tid_release(struct sk_buff *skb, unsigned int tid)
545 {
546         struct cpl_tid_release *req;
547
548         skb->priority = CPL_PRIORITY_SETUP;
549         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
550         req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
551         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
552 }
553
554 static void t3_process_tid_release_list(struct work_struct *work)
555 {
556         struct t3c_data *td = container_of(work, struct t3c_data,
557                                            tid_release_task);
558         struct sk_buff *skb;
559         struct t3cdev *tdev = td->dev;
560
561
562         spin_lock_bh(&td->tid_release_lock);
563         while (td->tid_release_list) {
564                 struct t3c_tid_entry *p = td->tid_release_list;
565
566                 td->tid_release_list = (struct t3c_tid_entry *)p->ctx;
567                 spin_unlock_bh(&td->tid_release_lock);
568
569                 skb = alloc_skb(sizeof(struct cpl_tid_release),
570                                 GFP_KERNEL);
571                 if (!skb)
572                         skb = td->nofail_skb;
573                 if (!skb) {
574                         spin_lock_bh(&td->tid_release_lock);
575                         p->ctx = (void *)td->tid_release_list;
576                         td->tid_release_list = (struct t3c_tid_entry *)p;
577                         break;
578                 }
579                 mk_tid_release(skb, p - td->tid_maps.tid_tab);
580                 cxgb3_ofld_send(tdev, skb);
581                 p->ctx = NULL;
582                 if (skb == td->nofail_skb)
583                         td->nofail_skb =
584                                 alloc_skb(sizeof(struct cpl_tid_release),
585                                         GFP_KERNEL);
586                 spin_lock_bh(&td->tid_release_lock);
587         }
588         td->release_list_incomplete = (td->tid_release_list == NULL) ? 0 : 1;
589         spin_unlock_bh(&td->tid_release_lock);
590
591         if (!td->nofail_skb)
592                 td->nofail_skb =
593                         alloc_skb(sizeof(struct cpl_tid_release),
594                                 GFP_KERNEL);
595 }
596
597 /* use ctx as a next pointer in the tid release list */
598 void cxgb3_queue_tid_release(struct t3cdev *tdev, unsigned int tid)
599 {
600         struct t3c_data *td = T3C_DATA(tdev);
601         struct t3c_tid_entry *p = &td->tid_maps.tid_tab[tid];
602
603         spin_lock_bh(&td->tid_release_lock);
604         p->ctx = (void *)td->tid_release_list;
605         p->client = NULL;
606         td->tid_release_list = p;
607         if (!p->ctx || td->release_list_incomplete)
608                 schedule_work(&td->tid_release_task);
609         spin_unlock_bh(&td->tid_release_lock);
610 }
611
612 EXPORT_SYMBOL(cxgb3_queue_tid_release);
613
614 /*
615  * Remove a tid from the TID table.  A client may defer processing its last
616  * CPL message if it is locked at the time it arrives, and while the message
617  * sits in the client's backlog the TID may be reused for another connection.
618  * To handle this we atomically switch the TID association if it still points
619  * to the original client context.
620  */
621 void cxgb3_remove_tid(struct t3cdev *tdev, void *ctx, unsigned int tid)
622 {
623         struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
624
625         BUG_ON(tid >= t->ntids);
626         if (tdev->type == T3A)
627                 (void)cmpxchg(&t->tid_tab[tid].ctx, ctx, NULL);
628         else {
629                 struct sk_buff *skb;
630
631                 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
632                 if (likely(skb)) {
633                         mk_tid_release(skb, tid);
634                         cxgb3_ofld_send(tdev, skb);
635                         t->tid_tab[tid].ctx = NULL;
636                 } else
637                         cxgb3_queue_tid_release(tdev, tid);
638         }
639         atomic_dec(&t->tids_in_use);
640 }
641
642 EXPORT_SYMBOL(cxgb3_remove_tid);
643
644 int cxgb3_alloc_atid(struct t3cdev *tdev, struct cxgb3_client *client,
645                      void *ctx)
646 {
647         int atid = -1;
648         struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
649
650         spin_lock_bh(&t->atid_lock);
651         if (t->afree &&
652             t->atids_in_use + atomic_read(&t->tids_in_use) + MC5_MIN_TIDS <=
653             t->ntids) {
654                 union active_open_entry *p = t->afree;
655
656                 atid = (p - t->atid_tab) + t->atid_base;
657                 t->afree = p->next;
658                 p->t3c_tid.ctx = ctx;
659                 p->t3c_tid.client = client;
660                 t->atids_in_use++;
661         }
662         spin_unlock_bh(&t->atid_lock);
663         return atid;
664 }
665
666 EXPORT_SYMBOL(cxgb3_alloc_atid);
667
668 int cxgb3_alloc_stid(struct t3cdev *tdev, struct cxgb3_client *client,
669                      void *ctx)
670 {
671         int stid = -1;
672         struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
673
674         spin_lock_bh(&t->stid_lock);
675         if (t->sfree) {
676                 union listen_entry *p = t->sfree;
677
678                 stid = (p - t->stid_tab) + t->stid_base;
679                 t->sfree = p->next;
680                 p->t3c_tid.ctx = ctx;
681                 p->t3c_tid.client = client;
682                 t->stids_in_use++;
683         }
684         spin_unlock_bh(&t->stid_lock);
685         return stid;
686 }
687
688 EXPORT_SYMBOL(cxgb3_alloc_stid);
689
690 /* Get the t3cdev associated with a net_device */
691 struct t3cdev *dev2t3cdev(struct net_device *dev)
692 {
693         const struct port_info *pi = netdev_priv(dev);
694
695         return (struct t3cdev *)pi->adapter;
696 }
697
698 EXPORT_SYMBOL(dev2t3cdev);
699
700 static int do_smt_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
701 {
702         struct cpl_smt_write_rpl *rpl = cplhdr(skb);
703
704         if (rpl->status != CPL_ERR_NONE)
705                 printk(KERN_ERR
706                        "Unexpected SMT_WRITE_RPL status %u for entry %u\n",
707                        rpl->status, GET_TID(rpl));
708
709         return CPL_RET_BUF_DONE;
710 }
711
712 static int do_l2t_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
713 {
714         struct cpl_l2t_write_rpl *rpl = cplhdr(skb);
715
716         if (rpl->status != CPL_ERR_NONE)
717                 printk(KERN_ERR
718                        "Unexpected L2T_WRITE_RPL status %u for entry %u\n",
719                        rpl->status, GET_TID(rpl));
720
721         return CPL_RET_BUF_DONE;
722 }
723
724 static int do_rte_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
725 {
726         struct cpl_rte_write_rpl *rpl = cplhdr(skb);
727
728         if (rpl->status != CPL_ERR_NONE)
729                 printk(KERN_ERR
730                        "Unexpected RTE_WRITE_RPL status %u for entry %u\n",
731                        rpl->status, GET_TID(rpl));
732
733         return CPL_RET_BUF_DONE;
734 }
735
736 static int do_act_open_rpl(struct t3cdev *dev, struct sk_buff *skb)
737 {
738         struct cpl_act_open_rpl *rpl = cplhdr(skb);
739         unsigned int atid = G_TID(ntohl(rpl->atid));
740         struct t3c_tid_entry *t3c_tid;
741
742         t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid);
743         if (t3c_tid && t3c_tid->ctx && t3c_tid->client &&
744             t3c_tid->client->handlers &&
745             t3c_tid->client->handlers[CPL_ACT_OPEN_RPL]) {
746                 return t3c_tid->client->handlers[CPL_ACT_OPEN_RPL] (dev, skb,
747                                                                     t3c_tid->
748                                                                     ctx);
749         } else {
750                 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
751                        dev->name, CPL_ACT_OPEN_RPL);
752                 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
753         }
754 }
755
756 static int do_stid_rpl(struct t3cdev *dev, struct sk_buff *skb)
757 {
758         union opcode_tid *p = cplhdr(skb);
759         unsigned int stid = G_TID(ntohl(p->opcode_tid));
760         struct t3c_tid_entry *t3c_tid;
761
762         t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid);
763         if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
764             t3c_tid->client->handlers[p->opcode]) {
765                 return t3c_tid->client->handlers[p->opcode] (dev, skb,
766                                                              t3c_tid->ctx);
767         } else {
768                 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
769                        dev->name, p->opcode);
770                 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
771         }
772 }
773
774 static int do_hwtid_rpl(struct t3cdev *dev, struct sk_buff *skb)
775 {
776         union opcode_tid *p = cplhdr(skb);
777         unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
778         struct t3c_tid_entry *t3c_tid;
779
780         t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
781         if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
782             t3c_tid->client->handlers[p->opcode]) {
783                 return t3c_tid->client->handlers[p->opcode]
784                     (dev, skb, t3c_tid->ctx);
785         } else {
786                 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
787                        dev->name, p->opcode);
788                 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
789         }
790 }
791
792 static int do_cr(struct t3cdev *dev, struct sk_buff *skb)
793 {
794         struct cpl_pass_accept_req *req = cplhdr(skb);
795         unsigned int stid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
796         struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
797         struct t3c_tid_entry *t3c_tid;
798         unsigned int tid = GET_TID(req);
799
800         if (unlikely(tid >= t->ntids)) {
801                 printk("%s: passive open TID %u too large\n",
802                        dev->name, tid);
803                 t3_fatal_err(tdev2adap(dev));
804                 return CPL_RET_BUF_DONE;
805         }
806
807         t3c_tid = lookup_stid(t, stid);
808         if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
809             t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]) {
810                 return t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]
811                     (dev, skb, t3c_tid->ctx);
812         } else {
813                 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
814                        dev->name, CPL_PASS_ACCEPT_REQ);
815                 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
816         }
817 }
818
819 /*
820  * Returns an sk_buff for a reply CPL message of size len.  If the input
821  * sk_buff has no other users it is trimmed and reused, otherwise a new buffer
822  * is allocated.  The input skb must be of size at least len.  Note that this
823  * operation does not destroy the original skb data even if it decides to reuse
824  * the buffer.
825  */
826 static struct sk_buff *cxgb3_get_cpl_reply_skb(struct sk_buff *skb, size_t len,
827                                                gfp_t gfp)
828 {
829         if (likely(!skb_cloned(skb))) {
830                 BUG_ON(skb->len < len);
831                 __skb_trim(skb, len);
832                 skb_get(skb);
833         } else {
834                 skb = alloc_skb(len, gfp);
835                 if (skb)
836                         __skb_put(skb, len);
837         }
838         return skb;
839 }
840
841 static int do_abort_req_rss(struct t3cdev *dev, struct sk_buff *skb)
842 {
843         union opcode_tid *p = cplhdr(skb);
844         unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
845         struct t3c_tid_entry *t3c_tid;
846
847         t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
848         if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
849             t3c_tid->client->handlers[p->opcode]) {
850                 return t3c_tid->client->handlers[p->opcode]
851                     (dev, skb, t3c_tid->ctx);
852         } else {
853                 struct cpl_abort_req_rss *req = cplhdr(skb);
854                 struct cpl_abort_rpl *rpl;
855                 struct sk_buff *reply_skb;
856                 unsigned int tid = GET_TID(req);
857                 u8 cmd = req->status;
858
859                 if (req->status == CPL_ERR_RTX_NEG_ADVICE ||
860                     req->status == CPL_ERR_PERSIST_NEG_ADVICE)
861                         goto out;
862
863                 reply_skb = cxgb3_get_cpl_reply_skb(skb,
864                                                     sizeof(struct
865                                                            cpl_abort_rpl),
866                                                     GFP_ATOMIC);
867
868                 if (!reply_skb) {
869                         printk("do_abort_req_rss: couldn't get skb!\n");
870                         goto out;
871                 }
872                 reply_skb->priority = CPL_PRIORITY_DATA;
873                 __skb_put(reply_skb, sizeof(struct cpl_abort_rpl));
874                 rpl = cplhdr(reply_skb);
875                 rpl->wr.wr_hi =
876                     htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
877                 rpl->wr.wr_lo = htonl(V_WR_TID(tid));
878                 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, tid));
879                 rpl->cmd = cmd;
880                 cxgb3_ofld_send(dev, reply_skb);
881 out:
882                 return CPL_RET_BUF_DONE;
883         }
884 }
885
886 static int do_act_establish(struct t3cdev *dev, struct sk_buff *skb)
887 {
888         struct cpl_act_establish *req = cplhdr(skb);
889         unsigned int atid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
890         struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
891         struct t3c_tid_entry *t3c_tid;
892         unsigned int tid = GET_TID(req);
893
894         if (unlikely(tid >= t->ntids)) {
895                 printk("%s: active establish TID %u too large\n",
896                        dev->name, tid);
897                 t3_fatal_err(tdev2adap(dev));
898                 return CPL_RET_BUF_DONE;
899         }
900
901         t3c_tid = lookup_atid(t, atid);
902         if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
903             t3c_tid->client->handlers[CPL_ACT_ESTABLISH]) {
904                 return t3c_tid->client->handlers[CPL_ACT_ESTABLISH]
905                     (dev, skb, t3c_tid->ctx);
906         } else {
907                 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
908                        dev->name, CPL_ACT_ESTABLISH);
909                 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
910         }
911 }
912
913 static int do_trace(struct t3cdev *dev, struct sk_buff *skb)
914 {
915         struct cpl_trace_pkt *p = cplhdr(skb);
916
917         skb->protocol = htons(0xffff);
918         skb->dev = dev->lldev;
919         skb_pull(skb, sizeof(*p));
920         skb_reset_mac_header(skb);
921         netif_receive_skb(skb);
922         return 0;
923 }
924
925 /*
926  * That skb would better have come from process_responses() where we abuse
927  * ->priority and ->csum to carry our data.  NB: if we get to per-arch
928  * ->csum, the things might get really interesting here.
929  */
930
931 static inline u32 get_hwtid(struct sk_buff *skb)
932 {
933         return ntohl((__force __be32)skb->priority) >> 8 & 0xfffff;
934 }
935
936 static inline u32 get_opcode(struct sk_buff *skb)
937 {
938         return G_OPCODE(ntohl((__force __be32)skb->csum));
939 }
940
941 static int do_term(struct t3cdev *dev, struct sk_buff *skb)
942 {
943         unsigned int hwtid = get_hwtid(skb);
944         unsigned int opcode = get_opcode(skb);
945         struct t3c_tid_entry *t3c_tid;
946
947         t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
948         if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
949             t3c_tid->client->handlers[opcode]) {
950                 return t3c_tid->client->handlers[opcode] (dev, skb,
951                                                           t3c_tid->ctx);
952         } else {
953                 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
954                        dev->name, opcode);
955                 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
956         }
957 }
958
959 static int nb_callback(struct notifier_block *self, unsigned long event,
960                        void *ctx)
961 {
962         switch (event) {
963         case (NETEVENT_NEIGH_UPDATE):{
964                 cxgb_neigh_update((struct neighbour *)ctx);
965                 break;
966         }
967         case (NETEVENT_PMTU_UPDATE):
968                 break;
969         case (NETEVENT_REDIRECT):{
970                 struct netevent_redirect *nr = ctx;
971                 cxgb_redirect(nr->old, nr->new);
972                 cxgb_neigh_update(nr->new->neighbour);
973                 break;
974         }
975         default:
976                 break;
977         }
978         return 0;
979 }
980
981 static struct notifier_block nb = {
982         .notifier_call = nb_callback
983 };
984
985 /*
986  * Process a received packet with an unknown/unexpected CPL opcode.
987  */
988 static int do_bad_cpl(struct t3cdev *dev, struct sk_buff *skb)
989 {
990         printk(KERN_ERR "%s: received bad CPL command 0x%x\n", dev->name,
991                *skb->data);
992         return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
993 }
994
995 /*
996  * Handlers for each CPL opcode
997  */
998 static cpl_handler_func cpl_handlers[NUM_CPL_CMDS];
999
1000 /*
1001  * Add a new handler to the CPL dispatch table.  A NULL handler may be supplied
1002  * to unregister an existing handler.
1003  */
1004 void t3_register_cpl_handler(unsigned int opcode, cpl_handler_func h)
1005 {
1006         if (opcode < NUM_CPL_CMDS)
1007                 cpl_handlers[opcode] = h ? h : do_bad_cpl;
1008         else
1009                 printk(KERN_ERR "T3C: handler registration for "
1010                        "opcode %x failed\n", opcode);
1011 }
1012
1013 EXPORT_SYMBOL(t3_register_cpl_handler);
1014
1015 /*
1016  * T3CDEV's receive method.
1017  */
1018 int process_rx(struct t3cdev *dev, struct sk_buff **skbs, int n)
1019 {
1020         while (n--) {
1021                 struct sk_buff *skb = *skbs++;
1022                 unsigned int opcode = get_opcode(skb);
1023                 int ret = cpl_handlers[opcode] (dev, skb);
1024
1025 #if VALIDATE_TID
1026                 if (ret & CPL_RET_UNKNOWN_TID) {
1027                         union opcode_tid *p = cplhdr(skb);
1028
1029                         printk(KERN_ERR "%s: CPL message (opcode %u) had "
1030                                "unknown TID %u\n", dev->name, opcode,
1031                                G_TID(ntohl(p->opcode_tid)));
1032                 }
1033 #endif
1034                 if (ret & CPL_RET_BUF_DONE)
1035                         kfree_skb(skb);
1036         }
1037         return 0;
1038 }
1039
1040 /*
1041  * Sends an sk_buff to a T3C driver after dealing with any active network taps.
1042  */
1043 int cxgb3_ofld_send(struct t3cdev *dev, struct sk_buff *skb)
1044 {
1045         int r;
1046
1047         local_bh_disable();
1048         r = dev->send(dev, skb);
1049         local_bh_enable();
1050         return r;
1051 }
1052
1053 EXPORT_SYMBOL(cxgb3_ofld_send);
1054
1055 static int is_offloading(struct net_device *dev)
1056 {
1057         struct adapter *adapter;
1058         int i;
1059
1060         read_lock_bh(&adapter_list_lock);
1061         list_for_each_entry(adapter, &adapter_list, adapter_list) {
1062                 for_each_port(adapter, i) {
1063                         if (dev == adapter->port[i]) {
1064                                 read_unlock_bh(&adapter_list_lock);
1065                                 return 1;
1066                         }
1067                 }
1068         }
1069         read_unlock_bh(&adapter_list_lock);
1070         return 0;
1071 }
1072
1073 void cxgb_neigh_update(struct neighbour *neigh)
1074 {
1075         struct net_device *dev = neigh->dev;
1076
1077         if (dev && (is_offloading(dev))) {
1078                 struct t3cdev *tdev = dev2t3cdev(dev);
1079
1080                 BUG_ON(!tdev);
1081                 t3_l2t_update(tdev, neigh);
1082         }
1083 }
1084
1085 static void set_l2t_ix(struct t3cdev *tdev, u32 tid, struct l2t_entry *e)
1086 {
1087         struct sk_buff *skb;
1088         struct cpl_set_tcb_field *req;
1089
1090         skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
1091         if (!skb) {
1092                 printk(KERN_ERR "%s: cannot allocate skb!\n", __func__);
1093                 return;
1094         }
1095         skb->priority = CPL_PRIORITY_CONTROL;
1096         req = (struct cpl_set_tcb_field *)skb_put(skb, sizeof(*req));
1097         req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1098         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid));
1099         req->reply = 0;
1100         req->cpu_idx = 0;
1101         req->word = htons(W_TCB_L2T_IX);
1102         req->mask = cpu_to_be64(V_TCB_L2T_IX(M_TCB_L2T_IX));
1103         req->val = cpu_to_be64(V_TCB_L2T_IX(e->idx));
1104         tdev->send(tdev, skb);
1105 }
1106
1107 void cxgb_redirect(struct dst_entry *old, struct dst_entry *new)
1108 {
1109         struct net_device *olddev, *newdev;
1110         struct tid_info *ti;
1111         struct t3cdev *tdev;
1112         u32 tid;
1113         int update_tcb;
1114         struct l2t_entry *e;
1115         struct t3c_tid_entry *te;
1116
1117         olddev = old->neighbour->dev;
1118         newdev = new->neighbour->dev;
1119         if (!is_offloading(olddev))
1120                 return;
1121         if (!is_offloading(newdev)) {
1122                 printk(KERN_WARNING "%s: Redirect to non-offload "
1123                        "device ignored.\n", __func__);
1124                 return;
1125         }
1126         tdev = dev2t3cdev(olddev);
1127         BUG_ON(!tdev);
1128         if (tdev != dev2t3cdev(newdev)) {
1129                 printk(KERN_WARNING "%s: Redirect to different "
1130                        "offload device ignored.\n", __func__);
1131                 return;
1132         }
1133
1134         /* Add new L2T entry */
1135         e = t3_l2t_get(tdev, new->neighbour, newdev);
1136         if (!e) {
1137                 printk(KERN_ERR "%s: couldn't allocate new l2t entry!\n",
1138                        __func__);
1139                 return;
1140         }
1141
1142         /* Walk tid table and notify clients of dst change. */
1143         ti = &(T3C_DATA(tdev))->tid_maps;
1144         for (tid = 0; tid < ti->ntids; tid++) {
1145                 te = lookup_tid(ti, tid);
1146                 BUG_ON(!te);
1147                 if (te && te->ctx && te->client && te->client->redirect) {
1148                         update_tcb = te->client->redirect(te->ctx, old, new, e);
1149                         if (update_tcb) {
1150                                 l2t_hold(L2DATA(tdev), e);
1151                                 set_l2t_ix(tdev, tid, e);
1152                         }
1153                 }
1154         }
1155         l2t_release(L2DATA(tdev), e);
1156 }
1157
1158 /*
1159  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1160  * The allocated memory is cleared.
1161  */
1162 void *cxgb_alloc_mem(unsigned long size)
1163 {
1164         void *p = kmalloc(size, GFP_KERNEL);
1165
1166         if (!p)
1167                 p = vmalloc(size);
1168         if (p)
1169                 memset(p, 0, size);
1170         return p;
1171 }
1172
1173 /*
1174  * Free memory allocated through t3_alloc_mem().
1175  */
1176 void cxgb_free_mem(void *addr)
1177 {
1178         if (is_vmalloc_addr(addr))
1179                 vfree(addr);
1180         else
1181                 kfree(addr);
1182 }
1183
1184 /*
1185  * Allocate and initialize the TID tables.  Returns 0 on success.
1186  */
1187 static int init_tid_tabs(struct tid_info *t, unsigned int ntids,
1188                          unsigned int natids, unsigned int nstids,
1189                          unsigned int atid_base, unsigned int stid_base)
1190 {
1191         unsigned long size = ntids * sizeof(*t->tid_tab) +
1192             natids * sizeof(*t->atid_tab) + nstids * sizeof(*t->stid_tab);
1193
1194         t->tid_tab = cxgb_alloc_mem(size);
1195         if (!t->tid_tab)
1196                 return -ENOMEM;
1197
1198         t->stid_tab = (union listen_entry *)&t->tid_tab[ntids];
1199         t->atid_tab = (union active_open_entry *)&t->stid_tab[nstids];
1200         t->ntids = ntids;
1201         t->nstids = nstids;
1202         t->stid_base = stid_base;
1203         t->sfree = NULL;
1204         t->natids = natids;
1205         t->atid_base = atid_base;
1206         t->afree = NULL;
1207         t->stids_in_use = t->atids_in_use = 0;
1208         atomic_set(&t->tids_in_use, 0);
1209         spin_lock_init(&t->stid_lock);
1210         spin_lock_init(&t->atid_lock);
1211
1212         /*
1213          * Setup the free lists for stid_tab and atid_tab.
1214          */
1215         if (nstids) {
1216                 while (--nstids)
1217                         t->stid_tab[nstids - 1].next = &t->stid_tab[nstids];
1218                 t->sfree = t->stid_tab;
1219         }
1220         if (natids) {
1221                 while (--natids)
1222                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1223                 t->afree = t->atid_tab;
1224         }
1225         return 0;
1226 }
1227
1228 static void free_tid_maps(struct tid_info *t)
1229 {
1230         cxgb_free_mem(t->tid_tab);
1231 }
1232
1233 static inline void add_adapter(struct adapter *adap)
1234 {
1235         write_lock_bh(&adapter_list_lock);
1236         list_add_tail(&adap->adapter_list, &adapter_list);
1237         write_unlock_bh(&adapter_list_lock);
1238 }
1239
1240 static inline void remove_adapter(struct adapter *adap)
1241 {
1242         write_lock_bh(&adapter_list_lock);
1243         list_del(&adap->adapter_list);
1244         write_unlock_bh(&adapter_list_lock);
1245 }
1246
1247 int cxgb3_offload_activate(struct adapter *adapter)
1248 {
1249         struct t3cdev *dev = &adapter->tdev;
1250         int natids, err;
1251         struct t3c_data *t;
1252         struct tid_range stid_range, tid_range;
1253         struct mtutab mtutab;
1254         unsigned int l2t_capacity;
1255
1256         t = kzalloc(sizeof(*t), GFP_KERNEL);
1257         if (!t)
1258                 return -ENOMEM;
1259
1260         err = -EOPNOTSUPP;
1261         if (dev->ctl(dev, GET_TX_MAX_CHUNK, &t->tx_max_chunk) < 0 ||
1262             dev->ctl(dev, GET_MAX_OUTSTANDING_WR, &t->max_wrs) < 0 ||
1263             dev->ctl(dev, GET_L2T_CAPACITY, &l2t_capacity) < 0 ||
1264             dev->ctl(dev, GET_MTUS, &mtutab) < 0 ||
1265             dev->ctl(dev, GET_TID_RANGE, &tid_range) < 0 ||
1266             dev->ctl(dev, GET_STID_RANGE, &stid_range) < 0)
1267                 goto out_free;
1268
1269         err = -ENOMEM;
1270         L2DATA(dev) = t3_init_l2t(l2t_capacity);
1271         if (!L2DATA(dev))
1272                 goto out_free;
1273
1274         natids = min(tid_range.num / 2, MAX_ATIDS);
1275         err = init_tid_tabs(&t->tid_maps, tid_range.num, natids,
1276                             stid_range.num, ATID_BASE, stid_range.base);
1277         if (err)
1278                 goto out_free_l2t;
1279
1280         t->mtus = mtutab.mtus;
1281         t->nmtus = mtutab.size;
1282
1283         INIT_WORK(&t->tid_release_task, t3_process_tid_release_list);
1284         spin_lock_init(&t->tid_release_lock);
1285         INIT_LIST_HEAD(&t->list_node);
1286         t->dev = dev;
1287
1288         T3C_DATA(dev) = t;
1289         dev->recv = process_rx;
1290         dev->neigh_update = t3_l2t_update;
1291
1292         /* Register netevent handler once */
1293         if (list_empty(&adapter_list))
1294                 register_netevent_notifier(&nb);
1295
1296         t->nofail_skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_KERNEL);
1297         t->release_list_incomplete = 0;
1298
1299         add_adapter(adapter);
1300         return 0;
1301
1302 out_free_l2t:
1303         t3_free_l2t(L2DATA(dev));
1304         L2DATA(dev) = NULL;
1305 out_free:
1306         kfree(t);
1307         return err;
1308 }
1309
1310 void cxgb3_offload_deactivate(struct adapter *adapter)
1311 {
1312         struct t3cdev *tdev = &adapter->tdev;
1313         struct t3c_data *t = T3C_DATA(tdev);
1314
1315         remove_adapter(adapter);
1316         if (list_empty(&adapter_list))
1317                 unregister_netevent_notifier(&nb);
1318
1319         free_tid_maps(&t->tid_maps);
1320         T3C_DATA(tdev) = NULL;
1321         t3_free_l2t(L2DATA(tdev));
1322         L2DATA(tdev) = NULL;
1323         if (t->nofail_skb)
1324                 kfree_skb(t->nofail_skb);
1325         kfree(t);
1326 }
1327
1328 static inline void register_tdev(struct t3cdev *tdev)
1329 {
1330         static int unit;
1331
1332         mutex_lock(&cxgb3_db_lock);
1333         snprintf(tdev->name, sizeof(tdev->name), "ofld_dev%d", unit++);
1334         list_add_tail(&tdev->ofld_dev_list, &ofld_dev_list);
1335         mutex_unlock(&cxgb3_db_lock);
1336 }
1337
1338 static inline void unregister_tdev(struct t3cdev *tdev)
1339 {
1340         mutex_lock(&cxgb3_db_lock);
1341         list_del(&tdev->ofld_dev_list);
1342         mutex_unlock(&cxgb3_db_lock);
1343 }
1344
1345 static inline int adap2type(struct adapter *adapter)
1346 {
1347         int type = 0;
1348
1349         switch (adapter->params.rev) {
1350         case T3_REV_A:
1351                 type = T3A;
1352                 break;
1353         case T3_REV_B:
1354         case T3_REV_B2:
1355                 type = T3B;
1356                 break;
1357         case T3_REV_C:
1358                 type = T3C;
1359                 break;
1360         }
1361         return type;
1362 }
1363
1364 void __devinit cxgb3_adapter_ofld(struct adapter *adapter)
1365 {
1366         struct t3cdev *tdev = &adapter->tdev;
1367
1368         INIT_LIST_HEAD(&tdev->ofld_dev_list);
1369
1370         cxgb3_set_dummy_ops(tdev);
1371         tdev->send = t3_offload_tx;
1372         tdev->ctl = cxgb_offload_ctl;
1373         tdev->type = adap2type(adapter);
1374
1375         register_tdev(tdev);
1376 }
1377
1378 void __devexit cxgb3_adapter_unofld(struct adapter *adapter)
1379 {
1380         struct t3cdev *tdev = &adapter->tdev;
1381
1382         tdev->recv = NULL;
1383         tdev->neigh_update = NULL;
1384
1385         unregister_tdev(tdev);
1386 }
1387
1388 void __init cxgb3_offload_init(void)
1389 {
1390         int i;
1391
1392         for (i = 0; i < NUM_CPL_CMDS; ++i)
1393                 cpl_handlers[i] = do_bad_cpl;
1394
1395         t3_register_cpl_handler(CPL_SMT_WRITE_RPL, do_smt_write_rpl);
1396         t3_register_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl);
1397         t3_register_cpl_handler(CPL_RTE_WRITE_RPL, do_rte_write_rpl);
1398         t3_register_cpl_handler(CPL_PASS_OPEN_RPL, do_stid_rpl);
1399         t3_register_cpl_handler(CPL_CLOSE_LISTSRV_RPL, do_stid_rpl);
1400         t3_register_cpl_handler(CPL_PASS_ACCEPT_REQ, do_cr);
1401         t3_register_cpl_handler(CPL_PASS_ESTABLISH, do_hwtid_rpl);
1402         t3_register_cpl_handler(CPL_ABORT_RPL_RSS, do_hwtid_rpl);
1403         t3_register_cpl_handler(CPL_ABORT_RPL, do_hwtid_rpl);
1404         t3_register_cpl_handler(CPL_RX_URG_NOTIFY, do_hwtid_rpl);
1405         t3_register_cpl_handler(CPL_RX_DATA, do_hwtid_rpl);
1406         t3_register_cpl_handler(CPL_TX_DATA_ACK, do_hwtid_rpl);
1407         t3_register_cpl_handler(CPL_TX_DMA_ACK, do_hwtid_rpl);
1408         t3_register_cpl_handler(CPL_ACT_OPEN_RPL, do_act_open_rpl);
1409         t3_register_cpl_handler(CPL_PEER_CLOSE, do_hwtid_rpl);
1410         t3_register_cpl_handler(CPL_CLOSE_CON_RPL, do_hwtid_rpl);
1411         t3_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req_rss);
1412         t3_register_cpl_handler(CPL_ACT_ESTABLISH, do_act_establish);
1413         t3_register_cpl_handler(CPL_SET_TCB_RPL, do_hwtid_rpl);
1414         t3_register_cpl_handler(CPL_GET_TCB_RPL, do_hwtid_rpl);
1415         t3_register_cpl_handler(CPL_RDMA_TERMINATE, do_term);
1416         t3_register_cpl_handler(CPL_RDMA_EC_STATUS, do_hwtid_rpl);
1417         t3_register_cpl_handler(CPL_TRACE_PKT, do_trace);
1418         t3_register_cpl_handler(CPL_RX_DATA_DDP, do_hwtid_rpl);
1419         t3_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_hwtid_rpl);
1420         t3_register_cpl_handler(CPL_ISCSI_HDR, do_hwtid_rpl);
1421 }