]> nv-tegra.nvidia Code Review - linux-3.10.git/blob - drivers/gpu/drm/i915/intel_dp.c
Merge branch 'drm-nouveau-next' of git://anongit.freedesktop.org/git/nouveau/linux...
[linux-3.10.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include "drmP.h"
32 #include "drm.h"
33 #include "drm_crtc.h"
34 #include "drm_crtc_helper.h"
35 #include "drm_edid.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39
40 #define DP_LINK_STATUS_SIZE     6
41 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
42
43 /**
44  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
45  * @intel_dp: DP struct
46  *
47  * If a CPU or PCH DP output is attached to an eDP panel, this function
48  * will return true, and false otherwise.
49  */
50 static bool is_edp(struct intel_dp *intel_dp)
51 {
52         return intel_dp->base.type == INTEL_OUTPUT_EDP;
53 }
54
55 /**
56  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
57  * @intel_dp: DP struct
58  *
59  * Returns true if the given DP struct corresponds to a PCH DP port attached
60  * to an eDP panel, false otherwise.  Helpful for determining whether we
61  * may need FDI resources for a given DP output or not.
62  */
63 static bool is_pch_edp(struct intel_dp *intel_dp)
64 {
65         return intel_dp->is_pch_edp;
66 }
67
68 /**
69  * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
70  * @intel_dp: DP struct
71  *
72  * Returns true if the given DP struct corresponds to a CPU eDP port.
73  */
74 static bool is_cpu_edp(struct intel_dp *intel_dp)
75 {
76         return is_edp(intel_dp) && !is_pch_edp(intel_dp);
77 }
78
79 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
80 {
81         return container_of(encoder, struct intel_dp, base.base);
82 }
83
84 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
85 {
86         return container_of(intel_attached_encoder(connector),
87                             struct intel_dp, base);
88 }
89
90 /**
91  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
92  * @encoder: DRM encoder
93  *
94  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
95  * by intel_display.c.
96  */
97 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
98 {
99         struct intel_dp *intel_dp;
100
101         if (!encoder)
102                 return false;
103
104         intel_dp = enc_to_intel_dp(encoder);
105
106         return is_pch_edp(intel_dp);
107 }
108
109 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
110 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
111 static void intel_dp_link_down(struct intel_dp *intel_dp);
112
113 void
114 intel_edp_link_config(struct intel_encoder *intel_encoder,
115                        int *lane_num, int *link_bw)
116 {
117         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
118
119         *lane_num = intel_dp->lane_count;
120         if (intel_dp->link_bw == DP_LINK_BW_1_62)
121                 *link_bw = 162000;
122         else if (intel_dp->link_bw == DP_LINK_BW_2_7)
123                 *link_bw = 270000;
124 }
125
126 int
127 intel_edp_target_clock(struct intel_encoder *intel_encoder,
128                        struct drm_display_mode *mode)
129 {
130         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
131
132         if (intel_dp->panel_fixed_mode)
133                 return intel_dp->panel_fixed_mode->clock;
134         else
135                 return mode->clock;
136 }
137
138 static int
139 intel_dp_max_lane_count(struct intel_dp *intel_dp)
140 {
141         int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
142         switch (max_lane_count) {
143         case 1: case 2: case 4:
144                 break;
145         default:
146                 max_lane_count = 4;
147         }
148         return max_lane_count;
149 }
150
151 static int
152 intel_dp_max_link_bw(struct intel_dp *intel_dp)
153 {
154         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
155
156         switch (max_link_bw) {
157         case DP_LINK_BW_1_62:
158         case DP_LINK_BW_2_7:
159                 break;
160         default:
161                 max_link_bw = DP_LINK_BW_1_62;
162                 break;
163         }
164         return max_link_bw;
165 }
166
167 static int
168 intel_dp_link_clock(uint8_t link_bw)
169 {
170         if (link_bw == DP_LINK_BW_2_7)
171                 return 270000;
172         else
173                 return 162000;
174 }
175
176 /*
177  * The units on the numbers in the next two are... bizarre.  Examples will
178  * make it clearer; this one parallels an example in the eDP spec.
179  *
180  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
181  *
182  *     270000 * 1 * 8 / 10 == 216000
183  *
184  * The actual data capacity of that configuration is 2.16Gbit/s, so the
185  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
186  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
187  * 119000.  At 18bpp that's 2142000 kilobits per second.
188  *
189  * Thus the strange-looking division by 10 in intel_dp_link_required, to
190  * get the result in decakilobits instead of kilobits.
191  */
192
193 static int
194 intel_dp_link_required(int pixel_clock, int bpp)
195 {
196         return (pixel_clock * bpp + 9) / 10;
197 }
198
199 static int
200 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
201 {
202         return (max_link_clock * max_lanes * 8) / 10;
203 }
204
205 static bool
206 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
207                           struct drm_display_mode *mode,
208                           bool adjust_mode)
209 {
210         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
211         int max_lanes = intel_dp_max_lane_count(intel_dp);
212         int max_rate, mode_rate;
213
214         mode_rate = intel_dp_link_required(mode->clock, 24);
215         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
216
217         if (mode_rate > max_rate) {
218                 mode_rate = intel_dp_link_required(mode->clock, 18);
219                 if (mode_rate > max_rate)
220                         return false;
221
222                 if (adjust_mode)
223                         mode->private_flags
224                                 |= INTEL_MODE_DP_FORCE_6BPC;
225
226                 return true;
227         }
228
229         return true;
230 }
231
232 static int
233 intel_dp_mode_valid(struct drm_connector *connector,
234                     struct drm_display_mode *mode)
235 {
236         struct intel_dp *intel_dp = intel_attached_dp(connector);
237
238         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
239                 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
240                         return MODE_PANEL;
241
242                 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
243                         return MODE_PANEL;
244         }
245
246         if (!intel_dp_adjust_dithering(intel_dp, mode, false))
247                 return MODE_CLOCK_HIGH;
248
249         if (mode->clock < 10000)
250                 return MODE_CLOCK_LOW;
251
252         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
253                 return MODE_H_ILLEGAL;
254
255         return MODE_OK;
256 }
257
258 static uint32_t
259 pack_aux(uint8_t *src, int src_bytes)
260 {
261         int     i;
262         uint32_t v = 0;
263
264         if (src_bytes > 4)
265                 src_bytes = 4;
266         for (i = 0; i < src_bytes; i++)
267                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
268         return v;
269 }
270
271 static void
272 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
273 {
274         int i;
275         if (dst_bytes > 4)
276                 dst_bytes = 4;
277         for (i = 0; i < dst_bytes; i++)
278                 dst[i] = src >> ((3-i) * 8);
279 }
280
281 /* hrawclock is 1/4 the FSB frequency */
282 static int
283 intel_hrawclk(struct drm_device *dev)
284 {
285         struct drm_i915_private *dev_priv = dev->dev_private;
286         uint32_t clkcfg;
287
288         clkcfg = I915_READ(CLKCFG);
289         switch (clkcfg & CLKCFG_FSB_MASK) {
290         case CLKCFG_FSB_400:
291                 return 100;
292         case CLKCFG_FSB_533:
293                 return 133;
294         case CLKCFG_FSB_667:
295                 return 166;
296         case CLKCFG_FSB_800:
297                 return 200;
298         case CLKCFG_FSB_1067:
299                 return 266;
300         case CLKCFG_FSB_1333:
301                 return 333;
302         /* these two are just a guess; one of them might be right */
303         case CLKCFG_FSB_1600:
304         case CLKCFG_FSB_1600_ALT:
305                 return 400;
306         default:
307                 return 133;
308         }
309 }
310
311 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
312 {
313         struct drm_device *dev = intel_dp->base.base.dev;
314         struct drm_i915_private *dev_priv = dev->dev_private;
315
316         return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
317 }
318
319 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
320 {
321         struct drm_device *dev = intel_dp->base.base.dev;
322         struct drm_i915_private *dev_priv = dev->dev_private;
323
324         return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
325 }
326
327 static void
328 intel_dp_check_edp(struct intel_dp *intel_dp)
329 {
330         struct drm_device *dev = intel_dp->base.base.dev;
331         struct drm_i915_private *dev_priv = dev->dev_private;
332
333         if (!is_edp(intel_dp))
334                 return;
335         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
336                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
337                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
338                               I915_READ(PCH_PP_STATUS),
339                               I915_READ(PCH_PP_CONTROL));
340         }
341 }
342
343 static int
344 intel_dp_aux_ch(struct intel_dp *intel_dp,
345                 uint8_t *send, int send_bytes,
346                 uint8_t *recv, int recv_size)
347 {
348         uint32_t output_reg = intel_dp->output_reg;
349         struct drm_device *dev = intel_dp->base.base.dev;
350         struct drm_i915_private *dev_priv = dev->dev_private;
351         uint32_t ch_ctl = output_reg + 0x10;
352         uint32_t ch_data = ch_ctl + 4;
353         int i;
354         int recv_bytes;
355         uint32_t status;
356         uint32_t aux_clock_divider;
357         int try, precharge;
358
359         intel_dp_check_edp(intel_dp);
360         /* The clock divider is based off the hrawclk,
361          * and would like to run at 2MHz. So, take the
362          * hrawclk value and divide by 2 and use that
363          *
364          * Note that PCH attached eDP panels should use a 125MHz input
365          * clock divider.
366          */
367         if (is_cpu_edp(intel_dp)) {
368                 if (IS_GEN6(dev) || IS_GEN7(dev))
369                         aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
370                 else
371                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
372         } else if (HAS_PCH_SPLIT(dev))
373                 aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
374         else
375                 aux_clock_divider = intel_hrawclk(dev) / 2;
376
377         if (IS_GEN6(dev))
378                 precharge = 3;
379         else
380                 precharge = 5;
381
382         /* Try to wait for any previous AUX channel activity */
383         for (try = 0; try < 3; try++) {
384                 status = I915_READ(ch_ctl);
385                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
386                         break;
387                 msleep(1);
388         }
389
390         if (try == 3) {
391                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
392                      I915_READ(ch_ctl));
393                 return -EBUSY;
394         }
395
396         /* Must try at least 3 times according to DP spec */
397         for (try = 0; try < 5; try++) {
398                 /* Load the send data into the aux channel data registers */
399                 for (i = 0; i < send_bytes; i += 4)
400                         I915_WRITE(ch_data + i,
401                                    pack_aux(send + i, send_bytes - i));
402
403                 /* Send the command and wait for it to complete */
404                 I915_WRITE(ch_ctl,
405                            DP_AUX_CH_CTL_SEND_BUSY |
406                            DP_AUX_CH_CTL_TIME_OUT_400us |
407                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
408                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
409                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
410                            DP_AUX_CH_CTL_DONE |
411                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
412                            DP_AUX_CH_CTL_RECEIVE_ERROR);
413                 for (;;) {
414                         status = I915_READ(ch_ctl);
415                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
416                                 break;
417                         udelay(100);
418                 }
419
420                 /* Clear done status and any errors */
421                 I915_WRITE(ch_ctl,
422                            status |
423                            DP_AUX_CH_CTL_DONE |
424                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
425                            DP_AUX_CH_CTL_RECEIVE_ERROR);
426
427                 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
428                               DP_AUX_CH_CTL_RECEIVE_ERROR))
429                         continue;
430                 if (status & DP_AUX_CH_CTL_DONE)
431                         break;
432         }
433
434         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
435                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
436                 return -EBUSY;
437         }
438
439         /* Check for timeout or receive error.
440          * Timeouts occur when the sink is not connected
441          */
442         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
443                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
444                 return -EIO;
445         }
446
447         /* Timeouts occur when the device isn't connected, so they're
448          * "normal" -- don't fill the kernel log with these */
449         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
450                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
451                 return -ETIMEDOUT;
452         }
453
454         /* Unload any bytes sent back from the other side */
455         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
456                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
457         if (recv_bytes > recv_size)
458                 recv_bytes = recv_size;
459
460         for (i = 0; i < recv_bytes; i += 4)
461                 unpack_aux(I915_READ(ch_data + i),
462                            recv + i, recv_bytes - i);
463
464         return recv_bytes;
465 }
466
467 /* Write data to the aux channel in native mode */
468 static int
469 intel_dp_aux_native_write(struct intel_dp *intel_dp,
470                           uint16_t address, uint8_t *send, int send_bytes)
471 {
472         int ret;
473         uint8_t msg[20];
474         int msg_bytes;
475         uint8_t ack;
476
477         intel_dp_check_edp(intel_dp);
478         if (send_bytes > 16)
479                 return -1;
480         msg[0] = AUX_NATIVE_WRITE << 4;
481         msg[1] = address >> 8;
482         msg[2] = address & 0xff;
483         msg[3] = send_bytes - 1;
484         memcpy(&msg[4], send, send_bytes);
485         msg_bytes = send_bytes + 4;
486         for (;;) {
487                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
488                 if (ret < 0)
489                         return ret;
490                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
491                         break;
492                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
493                         udelay(100);
494                 else
495                         return -EIO;
496         }
497         return send_bytes;
498 }
499
500 /* Write a single byte to the aux channel in native mode */
501 static int
502 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
503                             uint16_t address, uint8_t byte)
504 {
505         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
506 }
507
508 /* read bytes from a native aux channel */
509 static int
510 intel_dp_aux_native_read(struct intel_dp *intel_dp,
511                          uint16_t address, uint8_t *recv, int recv_bytes)
512 {
513         uint8_t msg[4];
514         int msg_bytes;
515         uint8_t reply[20];
516         int reply_bytes;
517         uint8_t ack;
518         int ret;
519
520         intel_dp_check_edp(intel_dp);
521         msg[0] = AUX_NATIVE_READ << 4;
522         msg[1] = address >> 8;
523         msg[2] = address & 0xff;
524         msg[3] = recv_bytes - 1;
525
526         msg_bytes = 4;
527         reply_bytes = recv_bytes + 1;
528
529         for (;;) {
530                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
531                                       reply, reply_bytes);
532                 if (ret == 0)
533                         return -EPROTO;
534                 if (ret < 0)
535                         return ret;
536                 ack = reply[0];
537                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
538                         memcpy(recv, reply + 1, ret - 1);
539                         return ret - 1;
540                 }
541                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
542                         udelay(100);
543                 else
544                         return -EIO;
545         }
546 }
547
548 static int
549 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
550                     uint8_t write_byte, uint8_t *read_byte)
551 {
552         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
553         struct intel_dp *intel_dp = container_of(adapter,
554                                                 struct intel_dp,
555                                                 adapter);
556         uint16_t address = algo_data->address;
557         uint8_t msg[5];
558         uint8_t reply[2];
559         unsigned retry;
560         int msg_bytes;
561         int reply_bytes;
562         int ret;
563
564         intel_dp_check_edp(intel_dp);
565         /* Set up the command byte */
566         if (mode & MODE_I2C_READ)
567                 msg[0] = AUX_I2C_READ << 4;
568         else
569                 msg[0] = AUX_I2C_WRITE << 4;
570
571         if (!(mode & MODE_I2C_STOP))
572                 msg[0] |= AUX_I2C_MOT << 4;
573
574         msg[1] = address >> 8;
575         msg[2] = address;
576
577         switch (mode) {
578         case MODE_I2C_WRITE:
579                 msg[3] = 0;
580                 msg[4] = write_byte;
581                 msg_bytes = 5;
582                 reply_bytes = 1;
583                 break;
584         case MODE_I2C_READ:
585                 msg[3] = 0;
586                 msg_bytes = 4;
587                 reply_bytes = 2;
588                 break;
589         default:
590                 msg_bytes = 3;
591                 reply_bytes = 1;
592                 break;
593         }
594
595         for (retry = 0; retry < 5; retry++) {
596                 ret = intel_dp_aux_ch(intel_dp,
597                                       msg, msg_bytes,
598                                       reply, reply_bytes);
599                 if (ret < 0) {
600                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
601                         return ret;
602                 }
603
604                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
605                 case AUX_NATIVE_REPLY_ACK:
606                         /* I2C-over-AUX Reply field is only valid
607                          * when paired with AUX ACK.
608                          */
609                         break;
610                 case AUX_NATIVE_REPLY_NACK:
611                         DRM_DEBUG_KMS("aux_ch native nack\n");
612                         return -EREMOTEIO;
613                 case AUX_NATIVE_REPLY_DEFER:
614                         udelay(100);
615                         continue;
616                 default:
617                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
618                                   reply[0]);
619                         return -EREMOTEIO;
620                 }
621
622                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
623                 case AUX_I2C_REPLY_ACK:
624                         if (mode == MODE_I2C_READ) {
625                                 *read_byte = reply[1];
626                         }
627                         return reply_bytes - 1;
628                 case AUX_I2C_REPLY_NACK:
629                         DRM_DEBUG_KMS("aux_i2c nack\n");
630                         return -EREMOTEIO;
631                 case AUX_I2C_REPLY_DEFER:
632                         DRM_DEBUG_KMS("aux_i2c defer\n");
633                         udelay(100);
634                         break;
635                 default:
636                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
637                         return -EREMOTEIO;
638                 }
639         }
640
641         DRM_ERROR("too many retries, giving up\n");
642         return -EREMOTEIO;
643 }
644
645 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
646 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
647
648 static int
649 intel_dp_i2c_init(struct intel_dp *intel_dp,
650                   struct intel_connector *intel_connector, const char *name)
651 {
652         int     ret;
653
654         DRM_DEBUG_KMS("i2c_init %s\n", name);
655         intel_dp->algo.running = false;
656         intel_dp->algo.address = 0;
657         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
658
659         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
660         intel_dp->adapter.owner = THIS_MODULE;
661         intel_dp->adapter.class = I2C_CLASS_DDC;
662         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
663         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
664         intel_dp->adapter.algo_data = &intel_dp->algo;
665         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
666
667         ironlake_edp_panel_vdd_on(intel_dp);
668         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
669         ironlake_edp_panel_vdd_off(intel_dp, false);
670         return ret;
671 }
672
673 static bool
674 intel_dp_mode_fixup(struct drm_encoder *encoder,
675                     const struct drm_display_mode *mode,
676                     struct drm_display_mode *adjusted_mode)
677 {
678         struct drm_device *dev = encoder->dev;
679         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
680         int lane_count, clock;
681         int max_lane_count = intel_dp_max_lane_count(intel_dp);
682         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
683         int bpp, mode_rate;
684         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
685
686         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
687                 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
688                 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
689                                         mode, adjusted_mode);
690         }
691
692         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
693                 return false;
694
695         DRM_DEBUG_KMS("DP link computation with max lane count %i "
696                       "max bw %02x pixel clock %iKHz\n",
697                       max_lane_count, bws[max_clock], adjusted_mode->clock);
698
699         if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
700                 return false;
701
702         bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
703         mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
704
705         for (clock = 0; clock <= max_clock; clock++) {
706                 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
707                         int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
708
709                         if (mode_rate <= link_avail) {
710                                 intel_dp->link_bw = bws[clock];
711                                 intel_dp->lane_count = lane_count;
712                                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
713                                 DRM_DEBUG_KMS("DP link bw %02x lane "
714                                                 "count %d clock %d bpp %d\n",
715                                        intel_dp->link_bw, intel_dp->lane_count,
716                                        adjusted_mode->clock, bpp);
717                                 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
718                                               mode_rate, link_avail);
719                                 return true;
720                         }
721                 }
722         }
723
724         return false;
725 }
726
727 struct intel_dp_m_n {
728         uint32_t        tu;
729         uint32_t        gmch_m;
730         uint32_t        gmch_n;
731         uint32_t        link_m;
732         uint32_t        link_n;
733 };
734
735 static void
736 intel_reduce_ratio(uint32_t *num, uint32_t *den)
737 {
738         while (*num > 0xffffff || *den > 0xffffff) {
739                 *num >>= 1;
740                 *den >>= 1;
741         }
742 }
743
744 static void
745 intel_dp_compute_m_n(int bpp,
746                      int nlanes,
747                      int pixel_clock,
748                      int link_clock,
749                      struct intel_dp_m_n *m_n)
750 {
751         m_n->tu = 64;
752         m_n->gmch_m = (pixel_clock * bpp) >> 3;
753         m_n->gmch_n = link_clock * nlanes;
754         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
755         m_n->link_m = pixel_clock;
756         m_n->link_n = link_clock;
757         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
758 }
759
760 void
761 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
762                  struct drm_display_mode *adjusted_mode)
763 {
764         struct drm_device *dev = crtc->dev;
765         struct intel_encoder *encoder;
766         struct drm_i915_private *dev_priv = dev->dev_private;
767         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
768         int lane_count = 4;
769         struct intel_dp_m_n m_n;
770         int pipe = intel_crtc->pipe;
771
772         /*
773          * Find the lane count in the intel_encoder private
774          */
775         for_each_encoder_on_crtc(dev, crtc, encoder) {
776                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
777
778                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
779                     intel_dp->base.type == INTEL_OUTPUT_EDP)
780                 {
781                         lane_count = intel_dp->lane_count;
782                         break;
783                 }
784         }
785
786         /*
787          * Compute the GMCH and Link ratios. The '3' here is
788          * the number of bytes_per_pixel post-LUT, which we always
789          * set up for 8-bits of R/G/B, or 3 bytes total.
790          */
791         intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
792                              mode->clock, adjusted_mode->clock, &m_n);
793
794         if (HAS_PCH_SPLIT(dev)) {
795                 I915_WRITE(TRANSDATA_M1(pipe),
796                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
797                            m_n.gmch_m);
798                 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
799                 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
800                 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
801         } else {
802                 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
803                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
804                            m_n.gmch_m);
805                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
806                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
807                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
808         }
809 }
810
811 static void
812 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
813                   struct drm_display_mode *adjusted_mode)
814 {
815         struct drm_device *dev = encoder->dev;
816         struct drm_i915_private *dev_priv = dev->dev_private;
817         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
818         struct drm_crtc *crtc = intel_dp->base.base.crtc;
819         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
820
821         /*
822          * There are four kinds of DP registers:
823          *
824          *      IBX PCH
825          *      SNB CPU
826          *      IVB CPU
827          *      CPT PCH
828          *
829          * IBX PCH and CPU are the same for almost everything,
830          * except that the CPU DP PLL is configured in this
831          * register
832          *
833          * CPT PCH is quite different, having many bits moved
834          * to the TRANS_DP_CTL register instead. That
835          * configuration happens (oddly) in ironlake_pch_enable
836          */
837
838         /* Preserve the BIOS-computed detected bit. This is
839          * supposed to be read-only.
840          */
841         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
842
843         /* Handle DP bits in common between all three register formats */
844         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
845
846         switch (intel_dp->lane_count) {
847         case 1:
848                 intel_dp->DP |= DP_PORT_WIDTH_1;
849                 break;
850         case 2:
851                 intel_dp->DP |= DP_PORT_WIDTH_2;
852                 break;
853         case 4:
854                 intel_dp->DP |= DP_PORT_WIDTH_4;
855                 break;
856         }
857         if (intel_dp->has_audio) {
858                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
859                                  pipe_name(intel_crtc->pipe));
860                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
861                 intel_write_eld(encoder, adjusted_mode);
862         }
863         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
864         intel_dp->link_configuration[0] = intel_dp->link_bw;
865         intel_dp->link_configuration[1] = intel_dp->lane_count;
866         intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
867         /*
868          * Check for DPCD version > 1.1 and enhanced framing support
869          */
870         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
871             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
872                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
873         }
874
875         /* Split out the IBX/CPU vs CPT settings */
876
877         if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
878                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
879                         intel_dp->DP |= DP_SYNC_HS_HIGH;
880                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
881                         intel_dp->DP |= DP_SYNC_VS_HIGH;
882                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
883
884                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
885                         intel_dp->DP |= DP_ENHANCED_FRAMING;
886
887                 intel_dp->DP |= intel_crtc->pipe << 29;
888
889                 /* don't miss out required setting for eDP */
890                 if (adjusted_mode->clock < 200000)
891                         intel_dp->DP |= DP_PLL_FREQ_160MHZ;
892                 else
893                         intel_dp->DP |= DP_PLL_FREQ_270MHZ;
894         } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
895                 intel_dp->DP |= intel_dp->color_range;
896
897                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
898                         intel_dp->DP |= DP_SYNC_HS_HIGH;
899                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
900                         intel_dp->DP |= DP_SYNC_VS_HIGH;
901                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
902
903                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
904                         intel_dp->DP |= DP_ENHANCED_FRAMING;
905
906                 if (intel_crtc->pipe == 1)
907                         intel_dp->DP |= DP_PIPEB_SELECT;
908
909                 if (is_cpu_edp(intel_dp)) {
910                         /* don't miss out required setting for eDP */
911                         if (adjusted_mode->clock < 200000)
912                                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
913                         else
914                                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
915                 }
916         } else {
917                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
918         }
919 }
920
921 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
922 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
923
924 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
925 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
926
927 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
928 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
929
930 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
931                                        u32 mask,
932                                        u32 value)
933 {
934         struct drm_device *dev = intel_dp->base.base.dev;
935         struct drm_i915_private *dev_priv = dev->dev_private;
936
937         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
938                       mask, value,
939                       I915_READ(PCH_PP_STATUS),
940                       I915_READ(PCH_PP_CONTROL));
941
942         if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
943                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
944                           I915_READ(PCH_PP_STATUS),
945                           I915_READ(PCH_PP_CONTROL));
946         }
947 }
948
949 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
950 {
951         DRM_DEBUG_KMS("Wait for panel power on\n");
952         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
953 }
954
955 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
956 {
957         DRM_DEBUG_KMS("Wait for panel power off time\n");
958         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
959 }
960
961 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
962 {
963         DRM_DEBUG_KMS("Wait for panel power cycle\n");
964         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
965 }
966
967
968 /* Read the current pp_control value, unlocking the register if it
969  * is locked
970  */
971
972 static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
973 {
974         u32     control = I915_READ(PCH_PP_CONTROL);
975
976         control &= ~PANEL_UNLOCK_MASK;
977         control |= PANEL_UNLOCK_REGS;
978         return control;
979 }
980
981 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
982 {
983         struct drm_device *dev = intel_dp->base.base.dev;
984         struct drm_i915_private *dev_priv = dev->dev_private;
985         u32 pp;
986
987         if (!is_edp(intel_dp))
988                 return;
989         DRM_DEBUG_KMS("Turn eDP VDD on\n");
990
991         WARN(intel_dp->want_panel_vdd,
992              "eDP VDD already requested on\n");
993
994         intel_dp->want_panel_vdd = true;
995
996         if (ironlake_edp_have_panel_vdd(intel_dp)) {
997                 DRM_DEBUG_KMS("eDP VDD already on\n");
998                 return;
999         }
1000
1001         if (!ironlake_edp_have_panel_power(intel_dp))
1002                 ironlake_wait_panel_power_cycle(intel_dp);
1003
1004         pp = ironlake_get_pp_control(dev_priv);
1005         pp |= EDP_FORCE_VDD;
1006         I915_WRITE(PCH_PP_CONTROL, pp);
1007         POSTING_READ(PCH_PP_CONTROL);
1008         DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1009                       I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1010
1011         /*
1012          * If the panel wasn't on, delay before accessing aux channel
1013          */
1014         if (!ironlake_edp_have_panel_power(intel_dp)) {
1015                 DRM_DEBUG_KMS("eDP was not running\n");
1016                 msleep(intel_dp->panel_power_up_delay);
1017         }
1018 }
1019
1020 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1021 {
1022         struct drm_device *dev = intel_dp->base.base.dev;
1023         struct drm_i915_private *dev_priv = dev->dev_private;
1024         u32 pp;
1025
1026         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1027                 pp = ironlake_get_pp_control(dev_priv);
1028                 pp &= ~EDP_FORCE_VDD;
1029                 I915_WRITE(PCH_PP_CONTROL, pp);
1030                 POSTING_READ(PCH_PP_CONTROL);
1031
1032                 /* Make sure sequencer is idle before allowing subsequent activity */
1033                 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1034                               I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1035
1036                 msleep(intel_dp->panel_power_down_delay);
1037         }
1038 }
1039
1040 static void ironlake_panel_vdd_work(struct work_struct *__work)
1041 {
1042         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1043                                                  struct intel_dp, panel_vdd_work);
1044         struct drm_device *dev = intel_dp->base.base.dev;
1045
1046         mutex_lock(&dev->mode_config.mutex);
1047         ironlake_panel_vdd_off_sync(intel_dp);
1048         mutex_unlock(&dev->mode_config.mutex);
1049 }
1050
1051 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1052 {
1053         if (!is_edp(intel_dp))
1054                 return;
1055
1056         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1057         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1058
1059         intel_dp->want_panel_vdd = false;
1060
1061         if (sync) {
1062                 ironlake_panel_vdd_off_sync(intel_dp);
1063         } else {
1064                 /*
1065                  * Queue the timer to fire a long
1066                  * time from now (relative to the power down delay)
1067                  * to keep the panel power up across a sequence of operations
1068                  */
1069                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1070                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1071         }
1072 }
1073
1074 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1075 {
1076         struct drm_device *dev = intel_dp->base.base.dev;
1077         struct drm_i915_private *dev_priv = dev->dev_private;
1078         u32 pp;
1079
1080         if (!is_edp(intel_dp))
1081                 return;
1082
1083         DRM_DEBUG_KMS("Turn eDP power on\n");
1084
1085         if (ironlake_edp_have_panel_power(intel_dp)) {
1086                 DRM_DEBUG_KMS("eDP power already on\n");
1087                 return;
1088         }
1089
1090         ironlake_wait_panel_power_cycle(intel_dp);
1091
1092         pp = ironlake_get_pp_control(dev_priv);
1093         if (IS_GEN5(dev)) {
1094                 /* ILK workaround: disable reset around power sequence */
1095                 pp &= ~PANEL_POWER_RESET;
1096                 I915_WRITE(PCH_PP_CONTROL, pp);
1097                 POSTING_READ(PCH_PP_CONTROL);
1098         }
1099
1100         pp |= POWER_TARGET_ON;
1101         if (!IS_GEN5(dev))
1102                 pp |= PANEL_POWER_RESET;
1103
1104         I915_WRITE(PCH_PP_CONTROL, pp);
1105         POSTING_READ(PCH_PP_CONTROL);
1106
1107         ironlake_wait_panel_on(intel_dp);
1108
1109         if (IS_GEN5(dev)) {
1110                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1111                 I915_WRITE(PCH_PP_CONTROL, pp);
1112                 POSTING_READ(PCH_PP_CONTROL);
1113         }
1114 }
1115
1116 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1117 {
1118         struct drm_device *dev = intel_dp->base.base.dev;
1119         struct drm_i915_private *dev_priv = dev->dev_private;
1120         u32 pp;
1121
1122         if (!is_edp(intel_dp))
1123                 return;
1124
1125         DRM_DEBUG_KMS("Turn eDP power off\n");
1126
1127         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1128
1129         pp = ironlake_get_pp_control(dev_priv);
1130         /* We need to switch off panel power _and_ force vdd, for otherwise some
1131          * panels get very unhappy and cease to work. */
1132         pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1133         I915_WRITE(PCH_PP_CONTROL, pp);
1134         POSTING_READ(PCH_PP_CONTROL);
1135
1136         intel_dp->want_panel_vdd = false;
1137
1138         ironlake_wait_panel_off(intel_dp);
1139 }
1140
1141 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1142 {
1143         struct drm_device *dev = intel_dp->base.base.dev;
1144         struct drm_i915_private *dev_priv = dev->dev_private;
1145         u32 pp;
1146
1147         if (!is_edp(intel_dp))
1148                 return;
1149
1150         DRM_DEBUG_KMS("\n");
1151         /*
1152          * If we enable the backlight right away following a panel power
1153          * on, we may see slight flicker as the panel syncs with the eDP
1154          * link.  So delay a bit to make sure the image is solid before
1155          * allowing it to appear.
1156          */
1157         msleep(intel_dp->backlight_on_delay);
1158         pp = ironlake_get_pp_control(dev_priv);
1159         pp |= EDP_BLC_ENABLE;
1160         I915_WRITE(PCH_PP_CONTROL, pp);
1161         POSTING_READ(PCH_PP_CONTROL);
1162 }
1163
1164 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1165 {
1166         struct drm_device *dev = intel_dp->base.base.dev;
1167         struct drm_i915_private *dev_priv = dev->dev_private;
1168         u32 pp;
1169
1170         if (!is_edp(intel_dp))
1171                 return;
1172
1173         DRM_DEBUG_KMS("\n");
1174         pp = ironlake_get_pp_control(dev_priv);
1175         pp &= ~EDP_BLC_ENABLE;
1176         I915_WRITE(PCH_PP_CONTROL, pp);
1177         POSTING_READ(PCH_PP_CONTROL);
1178         msleep(intel_dp->backlight_off_delay);
1179 }
1180
1181 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1182 {
1183         struct drm_device *dev = intel_dp->base.base.dev;
1184         struct drm_crtc *crtc = intel_dp->base.base.crtc;
1185         struct drm_i915_private *dev_priv = dev->dev_private;
1186         u32 dpa_ctl;
1187
1188         assert_pipe_disabled(dev_priv,
1189                              to_intel_crtc(crtc)->pipe);
1190
1191         DRM_DEBUG_KMS("\n");
1192         dpa_ctl = I915_READ(DP_A);
1193         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1194         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1195
1196         /* We don't adjust intel_dp->DP while tearing down the link, to
1197          * facilitate link retraining (e.g. after hotplug). Hence clear all
1198          * enable bits here to ensure that we don't enable too much. */
1199         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1200         intel_dp->DP |= DP_PLL_ENABLE;
1201         I915_WRITE(DP_A, intel_dp->DP);
1202         POSTING_READ(DP_A);
1203         udelay(200);
1204 }
1205
1206 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1207 {
1208         struct drm_device *dev = intel_dp->base.base.dev;
1209         struct drm_crtc *crtc = intel_dp->base.base.crtc;
1210         struct drm_i915_private *dev_priv = dev->dev_private;
1211         u32 dpa_ctl;
1212
1213         assert_pipe_disabled(dev_priv,
1214                              to_intel_crtc(crtc)->pipe);
1215
1216         dpa_ctl = I915_READ(DP_A);
1217         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1218              "dp pll off, should be on\n");
1219         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1220
1221         /* We can't rely on the value tracked for the DP register in
1222          * intel_dp->DP because link_down must not change that (otherwise link
1223          * re-training will fail. */
1224         dpa_ctl &= ~DP_PLL_ENABLE;
1225         I915_WRITE(DP_A, dpa_ctl);
1226         POSTING_READ(DP_A);
1227         udelay(200);
1228 }
1229
1230 /* If the sink supports it, try to set the power state appropriately */
1231 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1232 {
1233         int ret, i;
1234
1235         /* Should have a valid DPCD by this point */
1236         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1237                 return;
1238
1239         if (mode != DRM_MODE_DPMS_ON) {
1240                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1241                                                   DP_SET_POWER_D3);
1242                 if (ret != 1)
1243                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1244         } else {
1245                 /*
1246                  * When turning on, we need to retry for 1ms to give the sink
1247                  * time to wake up.
1248                  */
1249                 for (i = 0; i < 3; i++) {
1250                         ret = intel_dp_aux_native_write_1(intel_dp,
1251                                                           DP_SET_POWER,
1252                                                           DP_SET_POWER_D0);
1253                         if (ret == 1)
1254                                 break;
1255                         msleep(1);
1256                 }
1257         }
1258 }
1259
1260 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1261                                   enum pipe *pipe)
1262 {
1263         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1264         struct drm_device *dev = encoder->base.dev;
1265         struct drm_i915_private *dev_priv = dev->dev_private;
1266         u32 tmp = I915_READ(intel_dp->output_reg);
1267
1268         if (!(tmp & DP_PORT_EN))
1269                 return false;
1270
1271         if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
1272                 *pipe = PORT_TO_PIPE_CPT(tmp);
1273         } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1274                 *pipe = PORT_TO_PIPE(tmp);
1275         } else {
1276                 u32 trans_sel;
1277                 u32 trans_dp;
1278                 int i;
1279
1280                 switch (intel_dp->output_reg) {
1281                 case PCH_DP_B:
1282                         trans_sel = TRANS_DP_PORT_SEL_B;
1283                         break;
1284                 case PCH_DP_C:
1285                         trans_sel = TRANS_DP_PORT_SEL_C;
1286                         break;
1287                 case PCH_DP_D:
1288                         trans_sel = TRANS_DP_PORT_SEL_D;
1289                         break;
1290                 default:
1291                         return true;
1292                 }
1293
1294                 for_each_pipe(i) {
1295                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1296                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1297                                 *pipe = i;
1298                                 return true;
1299                         }
1300                 }
1301         }
1302
1303         DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n", intel_dp->output_reg);
1304
1305         return true;
1306 }
1307
1308 static void intel_disable_dp(struct intel_encoder *encoder)
1309 {
1310         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1311
1312         /* Make sure the panel is off before trying to change the mode. But also
1313          * ensure that we have vdd while we switch off the panel. */
1314         ironlake_edp_panel_vdd_on(intel_dp);
1315         ironlake_edp_backlight_off(intel_dp);
1316         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1317         ironlake_edp_panel_off(intel_dp);
1318
1319         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1320         if (!is_cpu_edp(intel_dp))
1321                 intel_dp_link_down(intel_dp);
1322 }
1323
1324 static void intel_post_disable_dp(struct intel_encoder *encoder)
1325 {
1326         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1327
1328         if (is_cpu_edp(intel_dp)) {
1329                 intel_dp_link_down(intel_dp);
1330                 ironlake_edp_pll_off(intel_dp);
1331         }
1332 }
1333
1334 static void intel_enable_dp(struct intel_encoder *encoder)
1335 {
1336         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1337         struct drm_device *dev = encoder->base.dev;
1338         struct drm_i915_private *dev_priv = dev->dev_private;
1339         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1340
1341         if (WARN_ON(dp_reg & DP_PORT_EN))
1342                 return;
1343
1344         ironlake_edp_panel_vdd_on(intel_dp);
1345         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1346         intel_dp_start_link_train(intel_dp);
1347         ironlake_edp_panel_on(intel_dp);
1348         ironlake_edp_panel_vdd_off(intel_dp, true);
1349         intel_dp_complete_link_train(intel_dp);
1350         ironlake_edp_backlight_on(intel_dp);
1351 }
1352
1353 static void intel_pre_enable_dp(struct intel_encoder *encoder)
1354 {
1355         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1356
1357         if (is_cpu_edp(intel_dp))
1358                 ironlake_edp_pll_on(intel_dp);
1359 }
1360
1361 /*
1362  * Native read with retry for link status and receiver capability reads for
1363  * cases where the sink may still be asleep.
1364  */
1365 static bool
1366 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1367                                uint8_t *recv, int recv_bytes)
1368 {
1369         int ret, i;
1370
1371         /*
1372          * Sinks are *supposed* to come up within 1ms from an off state,
1373          * but we're also supposed to retry 3 times per the spec.
1374          */
1375         for (i = 0; i < 3; i++) {
1376                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1377                                                recv_bytes);
1378                 if (ret == recv_bytes)
1379                         return true;
1380                 msleep(1);
1381         }
1382
1383         return false;
1384 }
1385
1386 /*
1387  * Fetch AUX CH registers 0x202 - 0x207 which contain
1388  * link status information
1389  */
1390 static bool
1391 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1392 {
1393         return intel_dp_aux_native_read_retry(intel_dp,
1394                                               DP_LANE0_1_STATUS,
1395                                               link_status,
1396                                               DP_LINK_STATUS_SIZE);
1397 }
1398
1399 static uint8_t
1400 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1401                      int r)
1402 {
1403         return link_status[r - DP_LANE0_1_STATUS];
1404 }
1405
1406 static uint8_t
1407 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1408                                  int lane)
1409 {
1410         int         s = ((lane & 1) ?
1411                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1412                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1413         uint8_t l = adjust_request[lane>>1];
1414
1415         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1416 }
1417
1418 static uint8_t
1419 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1420                                       int lane)
1421 {
1422         int         s = ((lane & 1) ?
1423                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1424                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1425         uint8_t l = adjust_request[lane>>1];
1426
1427         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1428 }
1429
1430
1431 #if 0
1432 static char     *voltage_names[] = {
1433         "0.4V", "0.6V", "0.8V", "1.2V"
1434 };
1435 static char     *pre_emph_names[] = {
1436         "0dB", "3.5dB", "6dB", "9.5dB"
1437 };
1438 static char     *link_train_names[] = {
1439         "pattern 1", "pattern 2", "idle", "off"
1440 };
1441 #endif
1442
1443 /*
1444  * These are source-specific values; current Intel hardware supports
1445  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1446  */
1447
1448 static uint8_t
1449 intel_dp_voltage_max(struct intel_dp *intel_dp)
1450 {
1451         struct drm_device *dev = intel_dp->base.base.dev;
1452
1453         if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1454                 return DP_TRAIN_VOLTAGE_SWING_800;
1455         else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1456                 return DP_TRAIN_VOLTAGE_SWING_1200;
1457         else
1458                 return DP_TRAIN_VOLTAGE_SWING_800;
1459 }
1460
1461 static uint8_t
1462 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1463 {
1464         struct drm_device *dev = intel_dp->base.base.dev;
1465
1466         if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1467                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1468                 case DP_TRAIN_VOLTAGE_SWING_400:
1469                         return DP_TRAIN_PRE_EMPHASIS_6;
1470                 case DP_TRAIN_VOLTAGE_SWING_600:
1471                 case DP_TRAIN_VOLTAGE_SWING_800:
1472                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1473                 default:
1474                         return DP_TRAIN_PRE_EMPHASIS_0;
1475                 }
1476         } else {
1477                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1478                 case DP_TRAIN_VOLTAGE_SWING_400:
1479                         return DP_TRAIN_PRE_EMPHASIS_6;
1480                 case DP_TRAIN_VOLTAGE_SWING_600:
1481                         return DP_TRAIN_PRE_EMPHASIS_6;
1482                 case DP_TRAIN_VOLTAGE_SWING_800:
1483                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1484                 case DP_TRAIN_VOLTAGE_SWING_1200:
1485                 default:
1486                         return DP_TRAIN_PRE_EMPHASIS_0;
1487                 }
1488         }
1489 }
1490
1491 static void
1492 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1493 {
1494         uint8_t v = 0;
1495         uint8_t p = 0;
1496         int lane;
1497         uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1498         uint8_t voltage_max;
1499         uint8_t preemph_max;
1500
1501         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1502                 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1503                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1504
1505                 if (this_v > v)
1506                         v = this_v;
1507                 if (this_p > p)
1508                         p = this_p;
1509         }
1510
1511         voltage_max = intel_dp_voltage_max(intel_dp);
1512         if (v >= voltage_max)
1513                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1514
1515         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1516         if (p >= preemph_max)
1517                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1518
1519         for (lane = 0; lane < 4; lane++)
1520                 intel_dp->train_set[lane] = v | p;
1521 }
1522
1523 static uint32_t
1524 intel_dp_signal_levels(uint8_t train_set)
1525 {
1526         uint32_t        signal_levels = 0;
1527
1528         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1529         case DP_TRAIN_VOLTAGE_SWING_400:
1530         default:
1531                 signal_levels |= DP_VOLTAGE_0_4;
1532                 break;
1533         case DP_TRAIN_VOLTAGE_SWING_600:
1534                 signal_levels |= DP_VOLTAGE_0_6;
1535                 break;
1536         case DP_TRAIN_VOLTAGE_SWING_800:
1537                 signal_levels |= DP_VOLTAGE_0_8;
1538                 break;
1539         case DP_TRAIN_VOLTAGE_SWING_1200:
1540                 signal_levels |= DP_VOLTAGE_1_2;
1541                 break;
1542         }
1543         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1544         case DP_TRAIN_PRE_EMPHASIS_0:
1545         default:
1546                 signal_levels |= DP_PRE_EMPHASIS_0;
1547                 break;
1548         case DP_TRAIN_PRE_EMPHASIS_3_5:
1549                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1550                 break;
1551         case DP_TRAIN_PRE_EMPHASIS_6:
1552                 signal_levels |= DP_PRE_EMPHASIS_6;
1553                 break;
1554         case DP_TRAIN_PRE_EMPHASIS_9_5:
1555                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1556                 break;
1557         }
1558         return signal_levels;
1559 }
1560
1561 /* Gen6's DP voltage swing and pre-emphasis control */
1562 static uint32_t
1563 intel_gen6_edp_signal_levels(uint8_t train_set)
1564 {
1565         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1566                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1567         switch (signal_levels) {
1568         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1569         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1570                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1571         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1572                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1573         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1574         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1575                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1576         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1577         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1578                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1579         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1580         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1581                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1582         default:
1583                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1584                               "0x%x\n", signal_levels);
1585                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1586         }
1587 }
1588
1589 /* Gen7's DP voltage swing and pre-emphasis control */
1590 static uint32_t
1591 intel_gen7_edp_signal_levels(uint8_t train_set)
1592 {
1593         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1594                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1595         switch (signal_levels) {
1596         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1597                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1598         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1599                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1600         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1601                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1602
1603         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1604                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1605         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1606                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1607
1608         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1609                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1610         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1611                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1612
1613         default:
1614                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1615                               "0x%x\n", signal_levels);
1616                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1617         }
1618 }
1619
1620 static uint8_t
1621 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1622                       int lane)
1623 {
1624         int s = (lane & 1) * 4;
1625         uint8_t l = link_status[lane>>1];
1626
1627         return (l >> s) & 0xf;
1628 }
1629
1630 /* Check for clock recovery is done on all channels */
1631 static bool
1632 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1633 {
1634         int lane;
1635         uint8_t lane_status;
1636
1637         for (lane = 0; lane < lane_count; lane++) {
1638                 lane_status = intel_get_lane_status(link_status, lane);
1639                 if ((lane_status & DP_LANE_CR_DONE) == 0)
1640                         return false;
1641         }
1642         return true;
1643 }
1644
1645 /* Check to see if channel eq is done on all channels */
1646 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1647                          DP_LANE_CHANNEL_EQ_DONE|\
1648                          DP_LANE_SYMBOL_LOCKED)
1649 static bool
1650 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1651 {
1652         uint8_t lane_align;
1653         uint8_t lane_status;
1654         int lane;
1655
1656         lane_align = intel_dp_link_status(link_status,
1657                                           DP_LANE_ALIGN_STATUS_UPDATED);
1658         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1659                 return false;
1660         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1661                 lane_status = intel_get_lane_status(link_status, lane);
1662                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1663                         return false;
1664         }
1665         return true;
1666 }
1667
1668 static bool
1669 intel_dp_set_link_train(struct intel_dp *intel_dp,
1670                         uint32_t dp_reg_value,
1671                         uint8_t dp_train_pat)
1672 {
1673         struct drm_device *dev = intel_dp->base.base.dev;
1674         struct drm_i915_private *dev_priv = dev->dev_private;
1675         int ret;
1676
1677         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1678                 dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1679
1680                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1681                 case DP_TRAINING_PATTERN_DISABLE:
1682                         dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1683                         break;
1684                 case DP_TRAINING_PATTERN_1:
1685                         dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1686                         break;
1687                 case DP_TRAINING_PATTERN_2:
1688                         dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1689                         break;
1690                 case DP_TRAINING_PATTERN_3:
1691                         DRM_ERROR("DP training pattern 3 not supported\n");
1692                         dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1693                         break;
1694                 }
1695
1696         } else {
1697                 dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1698
1699                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1700                 case DP_TRAINING_PATTERN_DISABLE:
1701                         dp_reg_value |= DP_LINK_TRAIN_OFF;
1702                         break;
1703                 case DP_TRAINING_PATTERN_1:
1704                         dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1705                         break;
1706                 case DP_TRAINING_PATTERN_2:
1707                         dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1708                         break;
1709                 case DP_TRAINING_PATTERN_3:
1710                         DRM_ERROR("DP training pattern 3 not supported\n");
1711                         dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1712                         break;
1713                 }
1714         }
1715
1716         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1717         POSTING_READ(intel_dp->output_reg);
1718
1719         intel_dp_aux_native_write_1(intel_dp,
1720                                     DP_TRAINING_PATTERN_SET,
1721                                     dp_train_pat);
1722
1723         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1724             DP_TRAINING_PATTERN_DISABLE) {
1725                 ret = intel_dp_aux_native_write(intel_dp,
1726                                                 DP_TRAINING_LANE0_SET,
1727                                                 intel_dp->train_set,
1728                                                 intel_dp->lane_count);
1729                 if (ret != intel_dp->lane_count)
1730                         return false;
1731         }
1732
1733         return true;
1734 }
1735
1736 /* Enable corresponding port and start training pattern 1 */
1737 static void
1738 intel_dp_start_link_train(struct intel_dp *intel_dp)
1739 {
1740         struct drm_device *dev = intel_dp->base.base.dev;
1741         int i;
1742         uint8_t voltage;
1743         bool clock_recovery = false;
1744         int voltage_tries, loop_tries;
1745         uint32_t DP = intel_dp->DP;
1746
1747         /* Write the link configuration data */
1748         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1749                                   intel_dp->link_configuration,
1750                                   DP_LINK_CONFIGURATION_SIZE);
1751
1752         DP |= DP_PORT_EN;
1753
1754         memset(intel_dp->train_set, 0, 4);
1755         voltage = 0xff;
1756         voltage_tries = 0;
1757         loop_tries = 0;
1758         clock_recovery = false;
1759         for (;;) {
1760                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1761                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1762                 uint32_t    signal_levels;
1763
1764
1765                 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1766                         signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1767                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1768                 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1769                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1770                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1771                 } else {
1772                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1773                         DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1774                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1775                 }
1776
1777                 if (!intel_dp_set_link_train(intel_dp, DP,
1778                                              DP_TRAINING_PATTERN_1 |
1779                                              DP_LINK_SCRAMBLING_DISABLE))
1780                         break;
1781                 /* Set training pattern 1 */
1782
1783                 udelay(100);
1784                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1785                         DRM_ERROR("failed to get link status\n");
1786                         break;
1787                 }
1788
1789                 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1790                         DRM_DEBUG_KMS("clock recovery OK\n");
1791                         clock_recovery = true;
1792                         break;
1793                 }
1794
1795                 /* Check to see if we've tried the max voltage */
1796                 for (i = 0; i < intel_dp->lane_count; i++)
1797                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1798                                 break;
1799                 if (i == intel_dp->lane_count && voltage_tries == 5) {
1800                         ++loop_tries;
1801                         if (loop_tries == 5) {
1802                                 DRM_DEBUG_KMS("too many full retries, give up\n");
1803                                 break;
1804                         }
1805                         memset(intel_dp->train_set, 0, 4);
1806                         voltage_tries = 0;
1807                         continue;
1808                 }
1809
1810                 /* Check to see if we've tried the same voltage 5 times */
1811                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1812                         ++voltage_tries;
1813                         if (voltage_tries == 5) {
1814                                 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1815                                 break;
1816                         }
1817                 } else
1818                         voltage_tries = 0;
1819                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1820
1821                 /* Compute new intel_dp->train_set as requested by target */
1822                 intel_get_adjust_train(intel_dp, link_status);
1823         }
1824
1825         intel_dp->DP = DP;
1826 }
1827
1828 static void
1829 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1830 {
1831         struct drm_device *dev = intel_dp->base.base.dev;
1832         bool channel_eq = false;
1833         int tries, cr_tries;
1834         uint32_t DP = intel_dp->DP;
1835
1836         /* channel equalization */
1837         tries = 0;
1838         cr_tries = 0;
1839         channel_eq = false;
1840         for (;;) {
1841                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1842                 uint32_t    signal_levels;
1843                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1844
1845                 if (cr_tries > 5) {
1846                         DRM_ERROR("failed to train DP, aborting\n");
1847                         intel_dp_link_down(intel_dp);
1848                         break;
1849                 }
1850
1851                 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1852                         signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1853                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1854                 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1855                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1856                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1857                 } else {
1858                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1859                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1860                 }
1861
1862                 /* channel eq pattern */
1863                 if (!intel_dp_set_link_train(intel_dp, DP,
1864                                              DP_TRAINING_PATTERN_2 |
1865                                              DP_LINK_SCRAMBLING_DISABLE))
1866                         break;
1867
1868                 udelay(400);
1869                 if (!intel_dp_get_link_status(intel_dp, link_status))
1870                         break;
1871
1872                 /* Make sure clock is still ok */
1873                 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1874                         intel_dp_start_link_train(intel_dp);
1875                         cr_tries++;
1876                         continue;
1877                 }
1878
1879                 if (intel_channel_eq_ok(intel_dp, link_status)) {
1880                         channel_eq = true;
1881                         break;
1882                 }
1883
1884                 /* Try 5 times, then try clock recovery if that fails */
1885                 if (tries > 5) {
1886                         intel_dp_link_down(intel_dp);
1887                         intel_dp_start_link_train(intel_dp);
1888                         tries = 0;
1889                         cr_tries++;
1890                         continue;
1891                 }
1892
1893                 /* Compute new intel_dp->train_set as requested by target */
1894                 intel_get_adjust_train(intel_dp, link_status);
1895                 ++tries;
1896         }
1897
1898         intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
1899 }
1900
1901 static void
1902 intel_dp_link_down(struct intel_dp *intel_dp)
1903 {
1904         struct drm_device *dev = intel_dp->base.base.dev;
1905         struct drm_i915_private *dev_priv = dev->dev_private;
1906         uint32_t DP = intel_dp->DP;
1907
1908         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
1909                 return;
1910
1911         DRM_DEBUG_KMS("\n");
1912
1913         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1914                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1915                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1916         } else {
1917                 DP &= ~DP_LINK_TRAIN_MASK;
1918                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1919         }
1920         POSTING_READ(intel_dp->output_reg);
1921
1922         msleep(17);
1923
1924         if (HAS_PCH_IBX(dev) &&
1925             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1926                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1927
1928                 /* Hardware workaround: leaving our transcoder select
1929                  * set to transcoder B while it's off will prevent the
1930                  * corresponding HDMI output on transcoder A.
1931                  *
1932                  * Combine this with another hardware workaround:
1933                  * transcoder select bit can only be cleared while the
1934                  * port is enabled.
1935                  */
1936                 DP &= ~DP_PIPEB_SELECT;
1937                 I915_WRITE(intel_dp->output_reg, DP);
1938
1939                 /* Changes to enable or select take place the vblank
1940                  * after being written.
1941                  */
1942                 if (crtc == NULL) {
1943                         /* We can arrive here never having been attached
1944                          * to a CRTC, for instance, due to inheriting
1945                          * random state from the BIOS.
1946                          *
1947                          * If the pipe is not running, play safe and
1948                          * wait for the clocks to stabilise before
1949                          * continuing.
1950                          */
1951                         POSTING_READ(intel_dp->output_reg);
1952                         msleep(50);
1953                 } else
1954                         intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1955         }
1956
1957         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1958         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1959         POSTING_READ(intel_dp->output_reg);
1960         msleep(intel_dp->panel_power_down_delay);
1961 }
1962
1963 static bool
1964 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1965 {
1966         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1967                                            sizeof(intel_dp->dpcd)) &&
1968             (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1969                 return true;
1970         }
1971
1972         return false;
1973 }
1974
1975 static void
1976 intel_dp_probe_oui(struct intel_dp *intel_dp)
1977 {
1978         u8 buf[3];
1979
1980         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
1981                 return;
1982
1983         ironlake_edp_panel_vdd_on(intel_dp);
1984
1985         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
1986                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
1987                               buf[0], buf[1], buf[2]);
1988
1989         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
1990                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
1991                               buf[0], buf[1], buf[2]);
1992
1993         ironlake_edp_panel_vdd_off(intel_dp, false);
1994 }
1995
1996 static bool
1997 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
1998 {
1999         int ret;
2000
2001         ret = intel_dp_aux_native_read_retry(intel_dp,
2002                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
2003                                              sink_irq_vector, 1);
2004         if (!ret)
2005                 return false;
2006
2007         return true;
2008 }
2009
2010 static void
2011 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2012 {
2013         /* NAK by default */
2014         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
2015 }
2016
2017 /*
2018  * According to DP spec
2019  * 5.1.2:
2020  *  1. Read DPCD
2021  *  2. Configure link according to Receiver Capabilities
2022  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2023  *  4. Check link status on receipt of hot-plug interrupt
2024  */
2025
2026 static void
2027 intel_dp_check_link_status(struct intel_dp *intel_dp)
2028 {
2029         u8 sink_irq_vector;
2030         u8 link_status[DP_LINK_STATUS_SIZE];
2031
2032         if (!intel_dp->base.connectors_active)
2033                 return;
2034
2035         if (WARN_ON(!intel_dp->base.base.crtc))
2036                 return;
2037
2038         /* Try to read receiver status if the link appears to be up */
2039         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2040                 intel_dp_link_down(intel_dp);
2041                 return;
2042         }
2043
2044         /* Now read the DPCD to see if it's actually running */
2045         if (!intel_dp_get_dpcd(intel_dp)) {
2046                 intel_dp_link_down(intel_dp);
2047                 return;
2048         }
2049
2050         /* Try to read the source of the interrupt */
2051         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2052             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2053                 /* Clear interrupt source */
2054                 intel_dp_aux_native_write_1(intel_dp,
2055                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2056                                             sink_irq_vector);
2057
2058                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2059                         intel_dp_handle_test_request(intel_dp);
2060                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2061                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2062         }
2063
2064         if (!intel_channel_eq_ok(intel_dp, link_status)) {
2065                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2066                               drm_get_encoder_name(&intel_dp->base.base));
2067                 intel_dp_start_link_train(intel_dp);
2068                 intel_dp_complete_link_train(intel_dp);
2069         }
2070 }
2071
2072 static enum drm_connector_status
2073 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2074 {
2075         if (intel_dp_get_dpcd(intel_dp))
2076                 return connector_status_connected;
2077         return connector_status_disconnected;
2078 }
2079
2080 static enum drm_connector_status
2081 ironlake_dp_detect(struct intel_dp *intel_dp)
2082 {
2083         enum drm_connector_status status;
2084
2085         /* Can't disconnect eDP, but you can close the lid... */
2086         if (is_edp(intel_dp)) {
2087                 status = intel_panel_detect(intel_dp->base.base.dev);
2088                 if (status == connector_status_unknown)
2089                         status = connector_status_connected;
2090                 return status;
2091         }
2092
2093         return intel_dp_detect_dpcd(intel_dp);
2094 }
2095
2096 static enum drm_connector_status
2097 g4x_dp_detect(struct intel_dp *intel_dp)
2098 {
2099         struct drm_device *dev = intel_dp->base.base.dev;
2100         struct drm_i915_private *dev_priv = dev->dev_private;
2101         uint32_t bit;
2102
2103         switch (intel_dp->output_reg) {
2104         case DP_B:
2105                 bit = DPB_HOTPLUG_LIVE_STATUS;
2106                 break;
2107         case DP_C:
2108                 bit = DPC_HOTPLUG_LIVE_STATUS;
2109                 break;
2110         case DP_D:
2111                 bit = DPD_HOTPLUG_LIVE_STATUS;
2112                 break;
2113         default:
2114                 return connector_status_unknown;
2115         }
2116
2117         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2118                 return connector_status_disconnected;
2119
2120         return intel_dp_detect_dpcd(intel_dp);
2121 }
2122
2123 static struct edid *
2124 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2125 {
2126         struct intel_dp *intel_dp = intel_attached_dp(connector);
2127         struct edid     *edid;
2128         int size;
2129
2130         if (is_edp(intel_dp)) {
2131                 if (!intel_dp->edid)
2132                         return NULL;
2133
2134                 size = (intel_dp->edid->extensions + 1) * EDID_LENGTH;
2135                 edid = kmalloc(size, GFP_KERNEL);
2136                 if (!edid)
2137                         return NULL;
2138
2139                 memcpy(edid, intel_dp->edid, size);
2140                 return edid;
2141         }
2142
2143         edid = drm_get_edid(connector, adapter);
2144         return edid;
2145 }
2146
2147 static int
2148 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2149 {
2150         struct intel_dp *intel_dp = intel_attached_dp(connector);
2151         int     ret;
2152
2153         if (is_edp(intel_dp)) {
2154                 drm_mode_connector_update_edid_property(connector,
2155                                                         intel_dp->edid);
2156                 ret = drm_add_edid_modes(connector, intel_dp->edid);
2157                 drm_edid_to_eld(connector,
2158                                 intel_dp->edid);
2159                 return intel_dp->edid_mode_count;
2160         }
2161
2162         ret = intel_ddc_get_modes(connector, adapter);
2163         return ret;
2164 }
2165
2166
2167 /**
2168  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2169  *
2170  * \return true if DP port is connected.
2171  * \return false if DP port is disconnected.
2172  */
2173 static enum drm_connector_status
2174 intel_dp_detect(struct drm_connector *connector, bool force)
2175 {
2176         struct intel_dp *intel_dp = intel_attached_dp(connector);
2177         struct drm_device *dev = intel_dp->base.base.dev;
2178         enum drm_connector_status status;
2179         struct edid *edid = NULL;
2180
2181         intel_dp->has_audio = false;
2182
2183         if (HAS_PCH_SPLIT(dev))
2184                 status = ironlake_dp_detect(intel_dp);
2185         else
2186                 status = g4x_dp_detect(intel_dp);
2187
2188         DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2189                       intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2190                       intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2191                       intel_dp->dpcd[6], intel_dp->dpcd[7]);
2192
2193         if (status != connector_status_connected)
2194                 return status;
2195
2196         intel_dp_probe_oui(intel_dp);
2197
2198         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2199                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2200         } else {
2201                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2202                 if (edid) {
2203                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
2204                         kfree(edid);
2205                 }
2206         }
2207
2208         return connector_status_connected;
2209 }
2210
2211 static int intel_dp_get_modes(struct drm_connector *connector)
2212 {
2213         struct intel_dp *intel_dp = intel_attached_dp(connector);
2214         struct drm_device *dev = intel_dp->base.base.dev;
2215         struct drm_i915_private *dev_priv = dev->dev_private;
2216         int ret;
2217
2218         /* We should parse the EDID data and find out if it has an audio sink
2219          */
2220
2221         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2222         if (ret) {
2223                 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2224                         struct drm_display_mode *newmode;
2225                         list_for_each_entry(newmode, &connector->probed_modes,
2226                                             head) {
2227                                 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2228                                         intel_dp->panel_fixed_mode =
2229                                                 drm_mode_duplicate(dev, newmode);
2230                                         break;
2231                                 }
2232                         }
2233                 }
2234                 return ret;
2235         }
2236
2237         /* if eDP has no EDID, try to use fixed panel mode from VBT */
2238         if (is_edp(intel_dp)) {
2239                 /* initialize panel mode from VBT if available for eDP */
2240                 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2241                         intel_dp->panel_fixed_mode =
2242                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2243                         if (intel_dp->panel_fixed_mode) {
2244                                 intel_dp->panel_fixed_mode->type |=
2245                                         DRM_MODE_TYPE_PREFERRED;
2246                         }
2247                 }
2248                 if (intel_dp->panel_fixed_mode) {
2249                         struct drm_display_mode *mode;
2250                         mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2251                         drm_mode_probed_add(connector, mode);
2252                         return 1;
2253                 }
2254         }
2255         return 0;
2256 }
2257
2258 static bool
2259 intel_dp_detect_audio(struct drm_connector *connector)
2260 {
2261         struct intel_dp *intel_dp = intel_attached_dp(connector);
2262         struct edid *edid;
2263         bool has_audio = false;
2264
2265         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2266         if (edid) {
2267                 has_audio = drm_detect_monitor_audio(edid);
2268                 kfree(edid);
2269         }
2270
2271         return has_audio;
2272 }
2273
2274 static int
2275 intel_dp_set_property(struct drm_connector *connector,
2276                       struct drm_property *property,
2277                       uint64_t val)
2278 {
2279         struct drm_i915_private *dev_priv = connector->dev->dev_private;
2280         struct intel_dp *intel_dp = intel_attached_dp(connector);
2281         int ret;
2282
2283         ret = drm_connector_property_set_value(connector, property, val);
2284         if (ret)
2285                 return ret;
2286
2287         if (property == dev_priv->force_audio_property) {
2288                 int i = val;
2289                 bool has_audio;
2290
2291                 if (i == intel_dp->force_audio)
2292                         return 0;
2293
2294                 intel_dp->force_audio = i;
2295
2296                 if (i == HDMI_AUDIO_AUTO)
2297                         has_audio = intel_dp_detect_audio(connector);
2298                 else
2299                         has_audio = (i == HDMI_AUDIO_ON);
2300
2301                 if (has_audio == intel_dp->has_audio)
2302                         return 0;
2303
2304                 intel_dp->has_audio = has_audio;
2305                 goto done;
2306         }
2307
2308         if (property == dev_priv->broadcast_rgb_property) {
2309                 if (val == !!intel_dp->color_range)
2310                         return 0;
2311
2312                 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2313                 goto done;
2314         }
2315
2316         return -EINVAL;
2317
2318 done:
2319         if (intel_dp->base.base.crtc) {
2320                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2321                 intel_set_mode(crtc, &crtc->mode,
2322                                crtc->x, crtc->y, crtc->fb);
2323         }
2324
2325         return 0;
2326 }
2327
2328 static void
2329 intel_dp_destroy(struct drm_connector *connector)
2330 {
2331         struct drm_device *dev = connector->dev;
2332
2333         if (intel_dpd_is_edp(dev))
2334                 intel_panel_destroy_backlight(dev);
2335
2336         drm_sysfs_connector_remove(connector);
2337         drm_connector_cleanup(connector);
2338         kfree(connector);
2339 }
2340
2341 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2342 {
2343         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2344
2345         i2c_del_adapter(&intel_dp->adapter);
2346         drm_encoder_cleanup(encoder);
2347         if (is_edp(intel_dp)) {
2348                 kfree(intel_dp->edid);
2349                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2350                 ironlake_panel_vdd_off_sync(intel_dp);
2351         }
2352         kfree(intel_dp);
2353 }
2354
2355 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2356         .mode_fixup = intel_dp_mode_fixup,
2357         .mode_set = intel_dp_mode_set,
2358         .disable = intel_encoder_noop,
2359 };
2360
2361 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2362         .dpms = intel_connector_dpms,
2363         .detect = intel_dp_detect,
2364         .fill_modes = drm_helper_probe_single_connector_modes,
2365         .set_property = intel_dp_set_property,
2366         .destroy = intel_dp_destroy,
2367 };
2368
2369 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2370         .get_modes = intel_dp_get_modes,
2371         .mode_valid = intel_dp_mode_valid,
2372         .best_encoder = intel_best_encoder,
2373 };
2374
2375 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2376         .destroy = intel_dp_encoder_destroy,
2377 };
2378
2379 static void
2380 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2381 {
2382         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2383
2384         intel_dp_check_link_status(intel_dp);
2385 }
2386
2387 /* Return which DP Port should be selected for Transcoder DP control */
2388 int
2389 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2390 {
2391         struct drm_device *dev = crtc->dev;
2392         struct intel_encoder *encoder;
2393
2394         for_each_encoder_on_crtc(dev, crtc, encoder) {
2395                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2396
2397                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2398                     intel_dp->base.type == INTEL_OUTPUT_EDP)
2399                         return intel_dp->output_reg;
2400         }
2401
2402         return -1;
2403 }
2404
2405 /* check the VBT to see whether the eDP is on DP-D port */
2406 bool intel_dpd_is_edp(struct drm_device *dev)
2407 {
2408         struct drm_i915_private *dev_priv = dev->dev_private;
2409         struct child_device_config *p_child;
2410         int i;
2411
2412         if (!dev_priv->child_dev_num)
2413                 return false;
2414
2415         for (i = 0; i < dev_priv->child_dev_num; i++) {
2416                 p_child = dev_priv->child_dev + i;
2417
2418                 if (p_child->dvo_port == PORT_IDPD &&
2419                     p_child->device_type == DEVICE_TYPE_eDP)
2420                         return true;
2421         }
2422         return false;
2423 }
2424
2425 static void
2426 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2427 {
2428         intel_attach_force_audio_property(connector);
2429         intel_attach_broadcast_rgb_property(connector);
2430 }
2431
2432 void
2433 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2434 {
2435         struct drm_i915_private *dev_priv = dev->dev_private;
2436         struct drm_connector *connector;
2437         struct intel_dp *intel_dp;
2438         struct intel_encoder *intel_encoder;
2439         struct intel_connector *intel_connector;
2440         const char *name = NULL;
2441         int type;
2442
2443         intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2444         if (!intel_dp)
2445                 return;
2446
2447         intel_dp->output_reg = output_reg;
2448         intel_dp->port = port;
2449         /* Preserve the current hw state. */
2450         intel_dp->DP = I915_READ(intel_dp->output_reg);
2451
2452         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2453         if (!intel_connector) {
2454                 kfree(intel_dp);
2455                 return;
2456         }
2457         intel_encoder = &intel_dp->base;
2458
2459         if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2460                 if (intel_dpd_is_edp(dev))
2461                         intel_dp->is_pch_edp = true;
2462
2463         if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2464                 type = DRM_MODE_CONNECTOR_eDP;
2465                 intel_encoder->type = INTEL_OUTPUT_EDP;
2466         } else {
2467                 type = DRM_MODE_CONNECTOR_DisplayPort;
2468                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2469         }
2470
2471         connector = &intel_connector->base;
2472         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2473         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2474
2475         connector->polled = DRM_CONNECTOR_POLL_HPD;
2476
2477         intel_encoder->cloneable = false;
2478
2479         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2480                           ironlake_panel_vdd_work);
2481
2482         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2483
2484         connector->interlace_allowed = true;
2485         connector->doublescan_allowed = 0;
2486
2487         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2488                          DRM_MODE_ENCODER_TMDS);
2489         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2490
2491         intel_connector_attach_encoder(intel_connector, intel_encoder);
2492         drm_sysfs_connector_add(connector);
2493
2494         intel_encoder->enable = intel_enable_dp;
2495         intel_encoder->pre_enable = intel_pre_enable_dp;
2496         intel_encoder->disable = intel_disable_dp;
2497         intel_encoder->post_disable = intel_post_disable_dp;
2498         intel_encoder->get_hw_state = intel_dp_get_hw_state;
2499         intel_connector->get_hw_state = intel_connector_get_hw_state;
2500
2501         /* Set up the DDC bus. */
2502         switch (port) {
2503         case PORT_A:
2504                 name = "DPDDC-A";
2505                 break;
2506         case PORT_B:
2507                 dev_priv->hotplug_supported_mask |= DPB_HOTPLUG_INT_STATUS;
2508                 name = "DPDDC-B";
2509                 break;
2510         case PORT_C:
2511                 dev_priv->hotplug_supported_mask |= DPC_HOTPLUG_INT_STATUS;
2512                 name = "DPDDC-C";
2513                 break;
2514         case PORT_D:
2515                 dev_priv->hotplug_supported_mask |= DPD_HOTPLUG_INT_STATUS;
2516                 name = "DPDDC-D";
2517                 break;
2518         default:
2519                 WARN(1, "Invalid port %c\n", port_name(port));
2520                 break;
2521         }
2522
2523         /* Cache some DPCD data in the eDP case */
2524         if (is_edp(intel_dp)) {
2525                 struct edp_power_seq    cur, vbt;
2526                 u32 pp_on, pp_off, pp_div;
2527
2528                 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2529                 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2530                 pp_div = I915_READ(PCH_PP_DIVISOR);
2531
2532                 if (!pp_on || !pp_off || !pp_div) {
2533                         DRM_INFO("bad panel power sequencing delays, disabling panel\n");
2534                         intel_dp_encoder_destroy(&intel_dp->base.base);
2535                         intel_dp_destroy(&intel_connector->base);
2536                         return;
2537                 }
2538
2539                 /* Pull timing values out of registers */
2540                 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2541                         PANEL_POWER_UP_DELAY_SHIFT;
2542
2543                 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2544                         PANEL_LIGHT_ON_DELAY_SHIFT;
2545
2546                 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2547                         PANEL_LIGHT_OFF_DELAY_SHIFT;
2548
2549                 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2550                         PANEL_POWER_DOWN_DELAY_SHIFT;
2551
2552                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2553                                PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2554
2555                 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2556                               cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2557
2558                 vbt = dev_priv->edp.pps;
2559
2560                 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2561                               vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2562
2563 #define get_delay(field)        ((max(cur.field, vbt.field) + 9) / 10)
2564
2565                 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2566                 intel_dp->backlight_on_delay = get_delay(t8);
2567                 intel_dp->backlight_off_delay = get_delay(t9);
2568                 intel_dp->panel_power_down_delay = get_delay(t10);
2569                 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2570
2571                 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2572                               intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2573                               intel_dp->panel_power_cycle_delay);
2574
2575                 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2576                               intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2577         }
2578
2579         intel_dp_i2c_init(intel_dp, intel_connector, name);
2580
2581         if (is_edp(intel_dp)) {
2582                 bool ret;
2583                 struct edid *edid;
2584
2585                 ironlake_edp_panel_vdd_on(intel_dp);
2586                 ret = intel_dp_get_dpcd(intel_dp);
2587                 ironlake_edp_panel_vdd_off(intel_dp, false);
2588
2589                 if (ret) {
2590                         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2591                                 dev_priv->no_aux_handshake =
2592                                         intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2593                                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2594                 } else {
2595                         /* if this fails, presume the device is a ghost */
2596                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
2597                         intel_dp_encoder_destroy(&intel_dp->base.base);
2598                         intel_dp_destroy(&intel_connector->base);
2599                         return;
2600                 }
2601
2602                 ironlake_edp_panel_vdd_on(intel_dp);
2603                 edid = drm_get_edid(connector, &intel_dp->adapter);
2604                 if (edid) {
2605                         drm_mode_connector_update_edid_property(connector,
2606                                                                 edid);
2607                         intel_dp->edid_mode_count =
2608                                 drm_add_edid_modes(connector, edid);
2609                         drm_edid_to_eld(connector, edid);
2610                         intel_dp->edid = edid;
2611                 }
2612                 ironlake_edp_panel_vdd_off(intel_dp, false);
2613         }
2614
2615         intel_encoder->hot_plug = intel_dp_hot_plug;
2616
2617         if (is_edp(intel_dp)) {
2618                 dev_priv->int_edp_connector = connector;
2619                 intel_panel_setup_backlight(dev);
2620         }
2621
2622         intel_dp_add_properties(intel_dp, connector);
2623
2624         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2625          * 0xd.  Failure to do so will result in spurious interrupts being
2626          * generated on the port when a cable is not attached.
2627          */
2628         if (IS_G4X(dev) && !IS_GM45(dev)) {
2629                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2630                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2631         }
2632 }